
High frequency approximation of integral equations modelizingscattering phenomena.Armel de La BourdonnayeCERMICS-INRIABP9306902 Sophia-Antipolis CedexFranceAbstractIn this paper, we present a new way of discretizing integral equations coming from high fre-quency wave propagation. Indeed, using the eikonal equation, we will write that the solutionis locally the product of an amplitude by an oscillating function whose phase gradient modu-lus is the wave number. Discretizing in order to keep this relation, we will show that, is thelimit of high frequencies, the matrices we obtain are sparse (as sparse as volumic �nite-elementmethods, in fact), which is not the case with the classical way of discretizing for example withP1-Lagrange or Hdiv (see [11] or [13]) �nite elements. More precisely, if N is the number ofdegrees of freedom, we lower the complexity from O(N2) to O(N).Approximation haute fr�equence des �equations int�egrales venantdes probl�emes de di�raction.R�esum�eDans ce rapport, nous pr�esentons une nouvelle mani�ere de discr�etiser les �equations int�egralesqui viennent des ph�enom�enes de propagation en r�egime harmonique �a haute fr�equence. Ene�et, utilisant l'�equation eikonale nous allons �ecrire que localement la solution que l'on cherches'�ecrit comme une amplitude multipli�ee par une fonction oscillante dont le gradient de la phaseest de module proportionnel au nombre d'onde. En discr�etisant de mani�ere �a conserver cetteinformation, nous verrons que, dans la limite des hautes fr�equences, les matrices que nousobtenons sont tr�es creuses, ce qui n'est pas le cas lorque l'on discr�etise de mani�ere classiqueavec des �el�ements �nis P1 ou Hdiv (cf. [11] or [13]). Plus pr�ecisement, si N est le nombre dedegr�es de libert�e, nous passons d'une complexit�e en O(N2) �a une complexit�e en O(N).



Introduction.For solving scattering problems in frequency domain, there exists a large number of methods.Among them, the one of integral equations is known to be the most accurate. It is often chosento validate other approaches (see [15] for instance). Nevertheless, its main drawback is thatit cannot be used at high frequencies. Indeed, the resolution of integral equations with �niteelements leads to full matrices with O( 1�2 ) degrees of freedom, where � is the wave-length.Lots of studies have been done to reduce either the number of degrees of freedom or the numberof signi�cant coe�cients in the matrix. In two space dimensions, V. Rokhlin [14] proposed amethod using a decomposition in Hankel functions and addition formulae for these functions.This technique cannot be used in three dimensions because the corresponding addition formu-lae (Gegenbauer's formulae, [12], [17]) are much more complicated and cannot be treated in thesame way. In [2], F.X. Canning post-treats the matrix with Fourier transforms, which allowshim to neglect lots of coe�cients, just keeking a few signi�cant ones. Nevertheless, in this casetoo, the extension to three dimensions is not so easy, because Fast Fourier Transforms can beused only on regularly meshed parallelograms. Attempts have been performed using wavelets,following the idea of G. Beylkin, R. Coifman and V. Rokhlin [1], but the Green kernel of theHelmholtz equation is not enough decreasing to use this technique.In [5] we presented a method using the coupling between integral equations (on an axisym-metric shape wrapping the scatterer) and volumic �nite elements (between this shape and thescatterer). The technique we are going to describe here is more e�cient but less general sinceit does not allow to treat heterogeneous media. It is based on the same idea as F.X. Canning'sone [2]. Furthermore, it gives a mathematical explanation for it. Instead of localizing the basisfunctions only in space with a step proportional to the wave-length, we will localize both inspace and in the direction of propagation (i.e. in the cotangent �ber bundle) with a larger spa-tial step in order to keep the number of degrees of freedom constant (or of the same order). Wewill show that this idea will lead to a really small number of signi�cant interaction coe�cients.This method will allow the treatment of scattering problems with much higher frequencies thanbefore. Futhermore, it can be easily coupled with volumic or surfacic �nite elements.1 Position of the problem.Here we will set some notations and write the problem we want to solve. Let 
i be a boundedopen set of IR3, � its boundary and 
e the interior of its complementary. (see �gure 1).
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ΩiFigure 1: Position of the problem.We suppose � is regular. We look for u in H1(
i)\H1loc(
e) solution of the Helmholtz equation1



with Neumann or Dirichlet boundary conditions. The function u sati�es :�u+ k2u = 0 in 
i [ 
e (1)@u@r + {ku = o(1r ) for r!1 (2)either @u@n = g on � (3)or u = f on � (4)with the Dirichlet right-hand side f in H1=2(�) and the Neumann right-hand side g in H�1=2(�).As usually, the wave number k satis�es k = 2�� where � is the wave-length. We will use anintegral equation. In the case of the Dirichlet problem the unknown is the jump of @u@n through�, which is in H�1=2(�) : p = �@u@n� and the integral equation is (see for instance [4]) :8q 2 H�1=2(�);Z��� e{kjx� yj4�jx� yj p(x)q(y)dxdy = Z� q(x)f(x)dx (5)For the Neumann problem, the unknown is the jump of u : � = [u] 2 H1=2(�) and the integralequation is (following Hamdi, [9]): 8 2 H1=2(�);Z��� e{kjx� yj4�jx� yj (rot� (x):rot��(y)� k2nx:ny (x)�(y))dxdy = Z�  (x)g(x)dx: (6)In our case, we will restrict the space of the right-hand side functions f ou g which correspondto a given incident wave. We will consider only traces of harmonic waves whose sources have anon zero distance from the scattering object. These functions are thus very regular (analytic ifthe surface � is analytic). It describes a space which is no longer dense in H1=2(�) or H�1=2(�).2 Presentation and justi�cation of the �nite element basis.With the restriction made above on the space of admissible incident waves, it is usual toconsider (at least in the case where the scatterer is convex) that the solution of the integralequations problem can be written as :u(x) =Xi ai(x; k)e{k�i(x) (7)where the sum is locally �nite and the ai(x; k) admit a development in 1k (see [16]). In thatcase, the eikonal equation is jr�j2 = 1 (8)We know that the formula (7) is not correct in what is called the penumbra region and in theneighborhood of the caustics. In the last case (see [8] or [10])u(x) = e{k�(x)(g(x)k1=3Ai(k2=3�(x)) + h(x)k2=3Ai0(k2=3�(x))) (9)2



where Ai is the Airy function. In the same way, we have an eikonal equation (see [16] forinstance) : jr�j2 + �jr�j2 = 1r�:r� = 0 (10)We can see that, locally (i.e. on a region smaller than O(1=k1=3), see [7]), the solution isasymptotically equivalent to a �nite sum of terms likee{kx:�a(x) (11)where � is a unit vector of R3.We will show that, locally, one can approach the solution by a function like the one of formula(11) where a will be compactly supported and with a limited regularity (for instance P1) and �varies in a discrete set of vectors of the sphere S2. What we are going to do is thus a microlocaldiscretization. Instead of having basis functions on the surface � whose support's characteristiclength is O(�), leading thus to O(k2) degrees of freedom, we will discretize the cosphere bundle�S2 with functions whose support size is O(��) on the surface multiplied by an oscillatingterm e{x:� where � describes a discrete set of values of S2 whose cardinal is O(k2�2�) and thuswith a step of O(�1��), where 0 < � < 1, in order to still have globally O(k2) degrees offreedom. More precisely, we take �i;j(x) = eik�j :(x�xi)�i(x) as basis functions, where the pointsxi describe the surface � and their number is O(k2�), the vectors �j describe the sphere S2 andtheir number is O(k2�2�), at last, the functions �i are piecewise C1 and globally Cm�1, theirvalue is 1 in xi and 0 in xj ; j 6= i, and their m �rst traces are null on the boundary of theirsupports. The diameter of the support of a basis function is thus O(��).3 Asymptotics.As in a classical �nite-element method, we try to compute the interaction of two basis functions.Here, since we are interested in the high frequency limit, we will compute only the �rst termof the expansion in 1k . Thus, we are looking for an equivalent ofA(k) = Z�2 e{kjx�yj4�jx� yj�i(x)�i0(y)e{k�j:(x�xi)e{k�j0 :(y�xi0)dxdy: (12)In order to take the homogeneity in � into account, we rewrite the spatial function as �i(k�(x�xi)). We set ~x = k�(x� xi) and ~y = k�(y � xi0). Then, we have :A(k) = 1k4� Z e{jk(xi�yi0 )+k1��(~x�~y)j4�jx� yj �i(~x)�i0(~y)e{k1���j:~xe{k1���j0 :~yd~xd~y (13)To evaluate the di�erent terms, we will use stationary and non-stationary phase theorems ([3]or [6]). In (13), the amplitude is �i(~x)�i0(~y)4�jx� yj ; (14)and the phase is p = jk(xi � yi0) + k1��(~x� ~y)j+ k1��(�j :~x+ �j0 :~y): (15)In order to perform stationary phase computations, we will restrain � to be inferior to 1=2.3



3.1 Far �eld interactions.We study �rst far �eld interactions which correspond to the cases where the supports of �i andphii0 are disjoint. Then, the amplitude is regular with Cm�1 continuity. We will show a seriesof three propositions which cover the di�erent kinds of interaction. We have �rstProposition 1 Let's suppose that the phase is neither stationary in x nor in y. Then,(i) if it is not stationary on the lines of singularity of �i and �i0,A(k) = 1k4�O( 1k(2m+4)(1��) ) (16)(ii) if it is not stationary on the lines of singularity of only one of the two functions �i and �i0and does not degenerate, A(k) = 1k4�O( 1k(2m+3)(1��)k1=2�� ) (17)(iii) If it is stationary on the lines of singularity of both �i and �i0 and does not degenerate,A(k) = 1k4�O( 1k(2m+2)(1��)k1�2� ) (18)Proof :Let us denote by ~L the vector xi�xi0 . Then, we have the development jk(xi�xi0)+k1��(~x�~y)j =kL+ k1��(~x� ~y): ~LL +O(k1�2�). So, to the same order, the phase p isP1 = kL+ k1��  (~x� ~y): ~LL + �j :~x+ �j0 :~y! : (19)We denote by Lx the operator Lx = k1�� rxp{jrxpj2 :rx (20)which is well de�ned if the phase is regular in x. We introduce the same notations in y. Thisoperator is bounded in k as one can see in formula (19). In case (i), we integrate m times bypart in x and in y and we obtain :A(k) = 1k4� 1k2m(1��) Z eipL?mx L?my �i(~x)�i0(~y)4�jx� yj dxdy (21)where L?m denotes the adjoint of L. As functions �i and �i0 are both piecewise C1, andglobally Cm�1, we can integrate by part once more in each variable. We have both an integralon the support of �i:�i0 and an integral on its boundary and its lines of singularity. Neverthelesson both terms we have again one order in k1��. Now, for the integral on the support, we canagain integrate it by part and we again obtain an order in k1��. For the integral on the linesof singularity, if the phase is not stationary on them, we can integrate by part and we obtainanother term in k1��. If it is stationary we develop the phase up to the next order in k. Letx0 be the point where the phase is stationary. In the neighborhood of this point,p(�x) = jk(x0 � y) + k1���xj+ �i:(x0 + �x); (22)= k(jx0 � yj+ �:x0) + k1�2� (�x�i:n)22jx0 � yj +O(�x3k1�3�): (23)4



where n is the normal to �. Since the term of order k1�� is null for the phase is stationary. Inthis case the stationary phase theorem says that the integral is O(k1=2��). This allows us toconclude the proof of the di�erent cases of the proposition. 2Then, we showProposition 2 When the phase is stationary in one of the two variables only (we denote it byx) without degenerating, then :(i) If it is not stationary on the set of singularity of the shape function of the other variable(�i0), A(k) = 1k4�O( 1k(m+2)(1��)k1�2� ) (24)(ii) If it is stationary on the set of singularity of �i0,A(k) = 1k4�O( 1k(m+1)(1��)k3=2(1�2�)) (25)Proof :In y we do the same job as for the previous proposition. In x, we have to develop the phaseto the next order in k. We denote by Cx the curvature operator of � in x. Its eigenvalues are1R1 and 1R2 where R1 and R2 are the two radii of curvature of the surface. Hence, x � xi =� + 12Cxi(�; �):nxi + O(j� j3) where � is tangent to the surface � in xi. We use the samenotations with primes (') for y. We perform the change of variables : ~� = k�� . Then,jk(x� y)j = jk~L+ k1��(~� � ~� 0) + k1�2�(C(~�; ~�)n� C 0(~� 0; ~� 0)n0)j+O(j~� j3 + j~� 0j3). The secondorder term of this expression ist2 = k1�2�2 0@(C(~�; ~�)n� C 0(~� 0; ~� 0)n0): ~LL + �����~LL ^ (~� � ~� 0)�����21A (26)The term of second order in the last part of the phase ist20 = k1�2�2 ��j :nC(~� ; ~�) + �j0 :n0C 0(~� 0; ~� 0)� (27)Thus, according to the stationary phase theorem, when the phase is not degenerated but isstationary in the variable � 0, the integral in this variable leads to a term in 1k1�2� . Thisconcludes the proof of the proposition. 2At last, we haveProposition 3 When the phase is stationary in the two variables, without degenerating,A(k) = O( 1k2 ) (28)Proof :We proceed as in the proof of the previous proposition for the stationary variable. We thenhave A(k) = 1k4�O( 1k(1�2�): dim(�2)2 ): This ends the proof of the proposition. 2We are now presenting the cases when the phase is stationary.5



Proposition 4 In A(k), the phase is stationary when ~LL + �j==nxi and ~LL � �j0==nxi0 with anaccuracy of O(k��).Proof :In formula (19), the term of �rst order is �(~x� ~y): ~LL + �j :~x+ �j0 :~y� and the rest is O(k��).Then, projecting the gradient of this term on Txi� � Txi0�, the product of the planes tangentto � at xi and xi0 , we obtain that the tangential gradient is null if and only if ~LL + �j==nxi and~LL � �j0==nxi0 . The relative accuracy comes from the terms in k�� that we neglected. 2
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ξFigure 2:Let us give a geometrical interpretation of these conditions. Saying that ~LL + �j==nxi meansthat �j is either � ~LL , or its symmetric with respect to the plane tangent to � in xi. The relativeaccuracy given in the proposition means that instead of considering xi we can consider any xin the support of �i. Hence, �i is the direction of a ray going from the support of �i to thesupport of �i0 either directly or after a specular re
ection on the surface � (see �gure 2). Thecondition on �j0 can be interpreted in the same way and the relative accuracy means that wecan consider any y in the support of �i0 instead of xi0 . So, the phase is stationary if we arein one of the four cases illustrated in the following �gures (�gures 3 to 6). When the phase isstationary only in one variable (x for instance), the interpretation is simpler. Indeed, we thenhave only two cases : transmission in xi or re
ection in xi.Figure 3: Transmission in x, transmission in y
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Figure 4: Transmission in x, re
ection in y
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Let us see now in which cases the phase is stationary on a line of singularity.Proposition 5 The phase is stationary in x along a line if and only if x� xi0jx� xi0 j +�j is orthog-onal to the tangent to the line with an accuracy of k��.Proof :Indeed, we just have to write that the gradient of the phase (computed as before) is in theplane is orthogonal to the tangent to the line. 2This situation is illustrated on �gure 7. Let us remark that, when the phase is degenerated,we may have a decay rate of A(k) which is still slower. It depends on the value of �. Finally,we have shown that, for points which are not neighbors, the basis functions whose interactionsare dominating are those corresponding to the four cases illustrated above.
x

x−y
x−yFigure 7: Stationary phase on a line3.2 Near �eld interactions.Now we are doing the same study in the case where the supports of the basis functions havenon empty intersection. Thus, we can suppose that xi = xi0 . So, we perform the change ofvariables : ~x = k�x and ~y = k�y. Then A(k) becomesA(k) = 1k3� Z e{jk1��(~x�~y)j4�j~x� ~yj �(~x)�0(~y)e{k1���j:~xe{k1���j0 :~yd~xd~y (29)As previously, we write : x = � + 12C(�; �)n and y = � 0 + 12C(� 0; � 0)n where � is in the planetangent to � at xi, n is the unit vector normal to � at the same point and C is the curvaturematrix. Writing ~� = k�� and similarly for � 0, we haveA(k) = 1k3� Z e{k1��(j�j+�:�+�:�)+k1�2�(�:n (C�C0)2 +�:n (C+C0)2 )+k1�3� (C�C0)28�4�j�j �(�; �)d�d� (30)where we have set � = ~� � ~� 0, � = ~� + ~� 0, C = C(~� ; ~�), C0 = C(~� 0; ~� 0), � = �j + �j02 , � = �j � �j02and �(�; �) is a regular function. We show the following proposition :Proposition 6 (i) If the phase is neither stationary in � nor in � and is not stationary in �on a line of singularity of � or �0,A(k) = O( 1k3�k1��k(m+2)(1��) ) (31)8



(ii) If the phase is stationary neither in � nor in � and is stationary in � on a line of singularityof � and �0, A(k) = O( 1k3�k1��k(m+1)(1��)k1=2�� ) (32)(iii) If the phase is stationary in � but not in � and is not degenerated,A(k) = O( 1k3�k1��k1�2� ) (33)(iv) If the phase is stationary both in � and in �,A(k) = O( 1k 32 ) (34)Proof :For point (i), we keep only the �rst-order term in k in the expansion of the phase. Then, in�, we can use the same technique than for the far-�eld interactions and we obtain the term in1k(m+2)(1��) . In � we use polar coordinates and we integrate by parts. The �rst term comingis in 1k1�� taken in � = 0.For point (ii), still using the same technique, we have in � a term 1k(m+1)(1��)k1=2�� due tothe stationarity, nothing is changed in �.For point (iii) we still have the same order in �. In �, we have to evaluate, with the terms ofsecond order in k in the phase,Z e{k1��(�:�)+k1�2�(�:nC(�;�))�(0; �)d� (35)Then, we obtain a term in 1k(1�2�) for the integral in �.For point (iv), we keep the previous result in �. In �, things become more complicated. Indeed,here, when the phase is stationary in �, we have �j�j + �T = 0 where �T is the orthogonalprojection of � on the plane tangent to � in xi. Then the phase is degenerated in direction�. Thus, we decompose � in two directions (�1; �2), with �1 transverse to �. Then the phase isnot degenerated in �1. Using the stationary phase theorem we gain a term in 1k1=2�� . For thevariable �2, if � > 1=3, the integral is of order 0 in k. Otherwise, by homogeneity, there is afactor of 1k1=6��=2 . 2Lastly, let us see the geometrical meaning of the two cases of stationarity we have encounteredfor the near �eld interactions.Proposition 7 (i) The phase is stationary in � if and only if �j � �j0 is parallel to the normalto � in xi.(ii) The phase is stationary in � and in � if and only if �j = �j0 is tangent to the surface.Proof :Indeed the phase is stationary in � if and only if � is normal to the surface and � = �i � �j .This ends the proof of point (i). 9



The phase is stationary in �, as we have already remarked, if and only if �j�j + �T = 0. Thismeans that j�T j = 1. So, � is in the tangent plane and its modulus is 1, since its projectionis of modulus 1. Thus, necessarily �j = �0j because both vectors have a modulus equal to 1.Then, � = �j . We remark that the phase is then also stationary in �. This ends the proof ofthe proposition. 2The situation of point (i) corresponds to the cases of transmission or re
ection in xi. Thesituation of point (ii) corresponds to the case where the wave is tangent to the surface.4 Approximation of the operator.Now, we are going to give a method to compute integral equations using the results of theprevious section. We will approximate the exact matrix and give an evaluation of the error.We denote by �i;j the basis function introduced in section 2. We will retain in the matrix theinteraction of �i;j and �i0;j0 if and only if :�Tx xi � xi0jxi � xi0 j + �j � Ck�� (36)and �Tx0 xi � xi0jxi � xi0 j + �j0 � Ck�� (37)where �Tx is the orthogonal projection onto the plane Txi�, and �Tx0 is the corresponding in xi0 .In the opposite case, their interaction, which we have shown to be negligible, will be consideredas null.4.1 Accuracy of the approximation.We now analyze the accuracy of this approximation, and how it behaves with respect to k. Firstwe observe how the di�erent terms computed in the previous section compare. We will supposewe use unstructured meshes on the surface. The shape functions on � will be Pm �Lagrange,then Cm�1 and piecewise C1 with their m �rst traces null on the boundary of their support.We choose � = 1=2. Doing this, we avoid considering the special cases where the phaseis degenerating. Then, we have the following table which summarize the expansions of theprevious section. It is easy to see that the rule exposed above (36 and 37) which determineswhich interactions are to be retained, says exactly that we have to keep only the terms whichin the last two lines able of 1.Now we choose an algebra norm on the matrices. We will choose the one coming from theeuclidian norm.De�nition 1 Let A = (ai;j) be a squared matrix, we de�ne its norm as :jjAjj = maxjjxjj=1 jjAxjj (38)where jjxjj2 =Xi x2i .Let us denote by A the full matrix of approximations and ~A the approximated matrix. We canstate the following proposition. 10



Far �eld interactions Near �eld interactionsprop. 1 case (i) 1k(m+4)prop. 1 case (ii) 1k(m+7=2)prop. 1 case (iii) 1k(m+3)prop. 2 case (i) 1k(m=2+3) prop. 6 case (i) 1k(m=2+3)prop. 2 case (ii) 1k(m=2+5=2) prop. 6 case (ii) 1k(m=2+5=2)prop. 3 1k2 prop. 6 case (iii) 1k2prop. 6 case (iv) 1k3=2Table 1: Order of the di�erent termsProposition 8 jjA� ~Ajj � O( 1km=2 )jjAjj (39)Proof :We are going to evaluate the number of terms in the matrix for each case of the previous table.We have the table (2). Far �eld interactions Near �eld interactionsprop. 1 case (i) O(k4)prop. 1 case (ii)O(k7=2)prop. 1 case (iii) O(k3)prop. 2 case (i) O(k3) prop. 6 case (i) O(k3)prop. 2 case (ii)O(k5=2) prop. 6 case (ii) O(k5=2)prop. 3 O(k2) prop. 6 case (iii) O(k2)prop. 6 case (iv) O(k3=2)Table 2: Quantity of the di�erent terms in the matrix� Indeed, let us start with the top of the �rst column. The �rst case corresponds to thegeneric case. As we have O(k2) degrees of freedom, we have the result.� For the next case, it corresponds to a phase which is stationary on an edge only. Then,denoting by x; � the degree of freedom corresponding to the row of matrix we are consid-ering, if we want the stationarity to occur in the x variable, we can choose O(k1=2) y on �and any direction of propagation, thus O(k) �. If at the opposite, there is no stationarityin x, then we can choose any y (thus O(k)), but just O(k1=2) directions �.11



� For the next case, the phase is stationary on an edge in x and on an edge in y. Hence fora given x; �, we can choose O(k1=2) y and then O(k1=2) �.� Then, we have the cases where the phase is stationary on �. The �rst one is the genericsituation. For a given x; �, if the stationarity occurs for the x variable, we can chooseO(1) y and any �. Else, we choose any y and we have O(1) possible �.� The next case corresponds to an additional stationarity on the edge. Thus, either thephase is stationary on � in x and we have O(1) y and O(k1=2) �, or we have O(k1=2) yand O(1) �.� Then we have the case where the phase is stationary on �� �. Here, for a given x; �, wehave O(1) possible y and as many directions.� For the near �eld interactions we use the same kind of arguments. For the �rst case, fora given x; � we have O(1) possible y and any � is convenient.� For the next case, we still have the same number of possible y, but � is to be choosedamong O(k1=2) values due to the stationarity on the lines of singularity.� Finally, for the last two cases, nothing is changed in y, but we have (�� �)?�. Thus, wehave O(1) possible �. This leads to O(k2) coe�cients in case (iii) and O(k3=2) in case(iv) since we have the additional constraint that � is tangent to �.Now, we just have to evaluate the importance of each line of Table 1 in the matrix. Then, wesee that jjAjj = O(1). On the other hand, for A � ~A, the leading term is the one of the �fthrow of the former tables. Then, we see that jjA� ~Ajj = O( 1km=2 ). This ends the proof of theproposition. 24.2 Complexity.We are now going to evaluate the complexity of the method presented here for the number ofoperations as for the memory requirement. First we showProposition 9 The computation of an interaction coe�cient of ~A is done with O(1) opera-tions.Proof :For far-�eld interactions, the coe�cients retained in ~A correspond to cases where the phase isstationary. Then, with � = 1=2, the following non zero term in the expansion of the phase isin k0. We then have to integrate a function which is not oscillating. Thus we can integrate itnumerically with O(1) points. For near �eld interactions, the leading-order term corresponds to� = 0, and as the phase is stationary in �, with the same arguments as above, we can computethe coe�cient with O(1) operations. 2Finally we can state the result :Proposition 10 With the method exposed here,(i) The complexity of the computation of the matrix ~A is O(k2).(ii) The complexity in terms of memory requirements is O(k2).12



Proof :Indeed, since for each degree of freedom, we keep in the corresponding line of the matrix onlyO(1) coe�cients (see Table 2), the total number of coe�cients is O(k2). This proves point (ii).Then, the previous proposition ends the proof of point (i). 25 Conclusion.We developped here a method to solve integral equations for scattering problems at high fre-quencies. This method keeps the interests of the integral equations since the accuracy iscontrolled and the matrix is computed once for all the incident waves. At the opposite, ithas no longer the main drawback of the �nite-element method in terms of CPU requirementsand overall in terms of memory requirements. Indeed, for a classical discretization using �niteelements the complexity is O(k4). Thus, our method which is still not a high frequency onesince the complexity increases with k, may be used in the same range of frequencies. In fact,we can qualify our method as an essentially mid range frequency one since it is not accurate forsmall k. Furthermore, it has the interest over the asymptotic methods like GTD or physicaloptics to have no special sensitivity to the geometry.Some developments of this work seem worthwhile. Beyond the implementation and the neces-sary numerical tests, it is possible to study the pattern of the pro�le of matrix ~A consideringgeometrical and mainly homological characteristics of the manifolds (�S2)2 which representthe retained interactions. We also intend to analyze the accuracy of the discretization. At lastwe want to study the possible hybridation of our method with others, and particularly thosewhich, like the �nite-element one, allow to take into account the heterogeneity of the medium.References[1] G. Beylkin, R. Coifman, and V. Rokhlin, Fast wavelet transforms and numericalalgorithms I, Comm. Pure Appl. Math., XLIV (1991), pp. 141{183.[2] F. X. Canning, Sparse approximation for solving integral equations with oscillatory ker-nels, Siam J. Sci. Stat. Comput., 13 (1992).[3] J. Chazarain and A. Piriou, Introduction �a la th�eorie des �equations aux d�eriv�ees par-tielles lin�eaires, Gauthier-Villars, Paris, 1981.[4] P. Colton and R. Kress, Integral equation method in scattering theory, Pure and Ap-plied Mathematics, (1983).[5] A. de La Bourdonnaye, Acc�el�eration du traitement num�erique de l'�equation deHelmholtz par �equations int�egrales et parall�elisation., PhD thesis, Ecole polytechnique,Palaiseau, France, 1991.[6] J. J. Duistermaat, Fourier integral operators, Courant Institute of Mathematical Sci-ences, New York, 1973.[7] V. Fock, The distribution of currents induced by a plane wave on the surface of a con-ductor, J. Phys., 10 (1946), pp. 130{136.[8] V. Guillemin and D. Schaeffer, Remarks on a paper of D. Ludwig, Bull. of the A.M.S.,79 (1973). 13
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