
ANALYSIS AND COMPENSATIONOF NUMERICAL DAMPINGIN A ONE DIMENSIONAL AEROELASTIC PROBLEMSerge Piperno, Bernard LarrouturouCERMICSINRIA, 06902 Sophia-Antipolis Cedex, France,and Michel LesoinneDpt. of Aerospace Engineering Sciences,Univ. of Colorado at Boulder, Boulder, CO. 80309-429, USA.AbstractHere we present analysis methods for a family of staggered schemes that are used in the numer-ical simulation of uid-structure interaction problems. The analysis has two goals: to identifythe numerical damping errors, in particular those due to the discrete coupling between the uidand the structure, and to improve the accuracy of the numerical results by compensating theseerrors. The �rst analysis method presented is based on the modi�ed equation of the numericalscheme, and the second method is an eigenvector analysis. Both methods provide correctionsof the coupled integration schemes in order to eliminate numerical e�ects, when the system'sfrequency is known. Other methods are proposed in order to achieve the same goal when thisfrequency is not known a priori.ANALYSE ET COMPENSATIONDE L'AMORTISSEMENT NUMERIQUE POURUN PROBLEME AEROELASTIQUE MONO-DIMENSIONNELR�esum�eNous pr�esentons ici plusieurs m�ethodes d'analyse pour des sch�emas num�eriques utilis�es dansdes simulations d'interactions uide-structure. Le but de cette analyse est double: identi�erles erreurs d'origine num�erique li�ees en particulier au couplage entre uide et structure, etdonner un moyen d'�eliminer ces e�ets purement num�eriques. Nous introduisons deux m�ethodesd'analyse: la premi�ere est fond�ee sur la th�eorie des �equations �equivalentes, et la seconde estune analyse de modes propres. Ces deux m�ethodes fournissent des corrections des sch�emasd'int�egration du syst�eme coupl�e qui �eliminent les e�ets purements num�eriques quand la r�eponsephysique du syst�eme est connue. D'autres m�ethodes sont pr�esent�ees pour les cas o�u cetter�eponse est inconnue.



1 IntroductionIn aerospace engineering and in the particular �eld of uid-structure interaction, it is importantto accurately investigate the physical stability of complex coupled systems such as ows aroundthree-dimensional structures [3, 7, 16]. These investigations are performed through numericalsimulations [13], in order to better predict the general behaviour of these coupled systemsand to prevent unstable phenomena such as utter or bu�etting [4, 9, 15]. Using their ownspace and time schemes, these simulations naturally have their own stability characteristics[8, 10, 12]. Thus, the results of these simulations give a combination of two responses, thephysical one and the numerical one. Of course, it is desirable that the numerical simulationpredicts a stable response (respectively: an unstable response) of a physical system only if thissystem is actually stable (resp.: unstable). Hence, controling the inuence of the numericalschemes and in particular of the numerical damping on the numerical results is the only wayto reach accuracy, in terms of stability of our numerical simulations.The ultimate objective of this study is to obtain better integration schemes for uid-structure interaction problems. For example, the well-known phenomenon of wing uttercorresponds to an unstable behavior of a wing (or a wing-body con�guration), which occursin three-dimensional geometries, with a non-ideal viscous uid and complex three-dimensionalstructures. The �rst step towards better numerical simulations of such phenomena is to analysesimpler uid-structure problems. This is why we consider in this report numerical simulationsof a simple model problem, which we present in Section 2: we deal with a plane piston subjectedto the one-dimensional ow of a compressible uid, in the linear acoustic regime. We use a�xed uniform mesh and take the motion of the piston into account by a boundary mass ux.This formulation allows us to consider a linear problem, which is a necessary �rst step towardsa more complete understanding of uid-structure interaction. This means also that we haveseparated here uid-structure interactions and uid-mesh interactions (we intend to analysethe latter, which occur in moving meshes methods or ALE-type formulations [2, 5, 6, 8], in aforthcoming work).Then, the goal of our study is two-fold. Our �rst goal is to derive methods for obtainingaccurate analytical predictions of the general damping of the numerical simulation. Once the�rst goal is achieved for a large family of schemes, we use these analytical results in orderto achieve our second goal, namely modifying the numerical schemes in order to accuratelysimulate the exact physical damping of the system.We also present in Section 2 the family of numerical schemes we use: since most engineer-ing coupled applications are simulated with staggered schemes (which allow to integrate thestructural and the uid parts separately during each time step), we consider this algorithmicapproach. Therefore we use simple schemes for the integration of the uid and the structureequations. For the boundary conditions, in particular at the uid-structure boundary, we usedi�erent formulations which are commonly used by aeroelasticians; this discrete treatment ofthe coupling between uid and structure will appear to have a very strong inuence on thenumerical results.In Section 3, we introduce a �rst method based on the modi�ed equation theory [17] forthe numerical analysis of this problem. This method is very simple, and gives good qualitativeresults provided that the treatment of the boundary conditions is precisely taken into account.These results give useful informations for more general aeroelastic simulations.In Section 4, we present a more accurate and powerful method for the analysis of thenumerical results. This method is based on the analysis of eigenvalues and eigenvectors of the1



ampli�cation matrix for the coupled numerical system. Although this method may be uneasilyextendable to multi-dimensional cases, it gives in our case very interesting results: it con�rmssome principles of the common know-how in numerical aeroelasticity, it con�rms the resultsobtained with the modi�ed equation analysis, and it predicts accurately the numerical dampingfor all linear schemes. The two methods are compared in Section 5.In Section 6, we discuss applications of both previous methods to di�erent families ofschemes. Finally, in Section 7, we show how the results of our analyses can be used moregenerally for aeroelastic simulations. The presented methods allow us to exactly control the�nal damping in the numerical simulation when the fundamental frequency of the system isknown (which is often the case in aerospatial applications, since utter pulsations of wing-bodycon�gurations are close or equal to eigen-pulsations of the structure). In such a case, we showthat we can derive corrections of the numerical schemes in order to compensate the numericaldamping. We also propose other general methods for achieving this goal in cases where thereis no available a priori evaluation of the system frequency.2 The physical test case and the global numerical algorithmIn this section, we present the physical experiment under consideration: since actual aerospaceengineering problems are too complex to be analysed, we consider a simple one-dimensionalmodel problem. We also present the type of staggering schemes we will use to perform thetemporal integration of the coupled uid-structure system.2.1 The model problemWe consider the one-dimensional ow of a perfect gas in a chamber closed by a moving piston.The equilibrium state of the system is de�ned by a uniform pressure P0 inside and out of thechamber, a uniform gas density �0 in the chamber, where the gas is at rest (u0 = 0), and bya stationnary chamber length L (in our experiment, we take standard values: P0 = 1 atm,�0 = 1:3 kg=m3,  = 1:4). The chamber is described on Figure 1.
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Euler equations, which we write with usual notations as:8><>: �t + (�u)x = 0 ;(�u)t + (�u2 + P )x = 0 ;Et + [u(E + P )]x = 0 : (1)Here, � is the density, u is the velocity, P is the pressure and E is the total energy per unitvolume. The position, speed and acceleration of the piston are respectively denoted by L + x(i.e. x denotes the deviation of the piston from its equilibrium position), _x and �x. Calling m,d and k the mass, the internal damping d and the sti�ness of the piston respectively, we writethe piston governing equation as:m�x+ d _x+ kx = P (x + L)� P0 ; (2)here, P (x + L) is the internal pressure at the piston, and we assume that the outer pressureremains constant and equal to P0.The boundary conditions for the uid are:�u(0) = 0 (3)at the �xed wall, and: u(x+ L) = _x (4)at the piston, which expresses that the uid velocity is there equal to the piston speed.Assuming furthermore that the system undergoes only small perturbations around the equili-brium state, we will linearize the above equations. Thus, we assume that:�� = �� �0 � �0 ; (5)�P = P � P0 � P0 ; (6)u � c0 ; (7)and, as usual in the linear acoustic regime, we have:�P = c2�� ; (8)which means that the gas variations are isentropic (we simply denote by c instead of c0the unperturbed sound speed). We then write the governing equations using the vectorW =  ���(�u) ! =  ���0�u ! as:Wt +  0 1c2 0 !Wx = 0 : (9)The linearized boundary conditions take the form:�u(0) = 0 ; (10)�u(L) = _x ; (11)and the piston equation now can be written as:m�x+ d _x+ kx = �P (L) = c2��(L) : (12)3



2.2 Evaluating the system frequencyIn the following, the reader will assume that d and k are equal to 0, if no other explicit statementis made. The piston equation then reduces to:m�x = �P (L) = c2��(L) : (13)Since d is equal to 0, the physical system is undamped and should undergo in�nite oscilla-tions of constant amplitude. We now present two di�erent ways of evaluating the frequency ofthese oscillations.The �rst crude estimate can be obtained in a very simple and rapid way by assumingthat, in addition to being isentropic, the gas ow is isobaric. In other words, one assumesthat the pressure is spatially constant in the chamber (an assumption which is consistent withthe highly subsonic character of the ow). Using this approximation (which di�ers from theacoustic approximation described above), we can write:m �x = P � P0; (14)where P = P (t) is the spatially constant pressure. It is given by:P�� = P0�0� ; (15)where � is the gas density (also spatially constant). Writing the mass conservation for thesystem, we have: (L+ x) � = L�0: (16)The position x then satis�es the following equation:m �x = P0 "�L+ xL �� � 1# : (17)For small enough initial perturbations (in piston speed and location), we can linearize thepreceding equation for x� L. We get: m �x = �P0L x: (18)Hence, the \isobaric pulsation" !i of the system is given by:!i2 = P0mL: (19)This formula can be rewritten with dimensionless quantities as�!iLc �2 = �0Lm : (20)Now, a second more instructive way of evaluating the system frequency consists in solvingthe linear system (9)-(13). Indeed, a major interest of this one-dimensional acoustic physicalexperiment is that we can exhibit an exact solution of the linear system (9)-(13). This exactsolution will be used later for more complex predictions. We have the following:4



Lemma 1 A solution of equation (9) with the boundary condition (10) is given by:W =  1+c ! cos[!(t� xc )] +  1�c ! cos[!(t+ xc )] (with ! 2 IR): (21)The proof is elementary and will be omitted.In order to solve the complete system (9)-(13), it remains to take into account the pistonboundary condition (11) and the equation (13) for the piston dynamics. Using (21), we thenhave: u(L) = �2c�0 sin(!Lc ) sin(!t) ; (22)m _u(L) = 2mc!�0 sin(!Lc ) cos(!t) ; (23)�P (L) = 2c2 cos(!Lc ) cos(!t) : (24)Hence, the piston equation (13) is satis�ed if and only if:2mc!�0 sin(!Lc ) = 2c2 cos(!Lc ) ; (25)which can be written as �!Lc � tan�!Lc � = �0Lm : (26)This formula deserves several comments. First, this relation is consistent with the previous\isobaric estimate" (20): in the limit of c going to +1, then tan (!L=c) ' !L=c and ! tendsto !i.Also, two interesting limits can be observed for relation (26). If m tends to +1, then!Lc = k�: the in�nite-mass piston behaves as a �xed wall, and we have a classical acousticregime with a velocity node at each end of the chamber. On the other hand, if m tends to 0,then !Lc = �2 + k�: the boundary condition at the piston becomes �P (L) = 0 from (13), andwe now have an acoustic regime with a velocity node at the �xed wall and a pressure node athe piston.Beside this, since tan(z) > z; 8z 2]0; �=2[, we see that the fundamental pulsation given by(26) is smaller than !i. Thus, the period of the system is greater than the \isobaric period",which is also coherent with the hypothesis of �nite wave speed.5



2.3 The general integration schemeWe conclude this section by briey presenting the general type of schemes used in our simula-tions below. The algorithm is derived from general aeroelasticity know-how [12, 13] and usesso-called staggering schemes, where the uid and the structure are integrated separately duringeach time step.Thus, the algorithm is the following: at each time level tn, we:� predict the piston speed for the next time step [tn; tn+1],� compute wall uxes for the uid during this time step,� integrate the uid from tn to tn+1,� compute an average pressure at the piston for the time step [tn; tn+1],� integrate the piston (submitted to this pressure) from tn to tn+1.We notice here that we could have used other staggering schemes, where the structure isintegrated �rst. But in fact, these algorithms di�er only by indices translations.In the following, we consider only explicit time integration schemes (except in section 6.3below).Although we postpone till the end of this report the presentation of our numerical resultsfor the oscillating piston, it is worth saying here that the clearest feature of these result lies inthe inability of the numerical schemes to reproduce the constant-amplitude system oscillations:the amplitude of the computed oscillations decreases with time (see e.g. Figure 2 below).Moreover, we sometimes also observe a deviation between the computed frequency and theknown analytical frequency. Analysing these numerical e�ects, and in particular the numericaldamping, is the object of the next sections.3 Modi�ed equation analysisIn this section, we use the modi�ed equation theory [17] to obtain analytical predictions ofour numerical results. Referring to [1, 17] for the details, we simply recall here that, forthe numerical solution of a linear hyperbolic or parabolic equation, the modi�ed equation isthe di�erential equation which is exactly satis�ed by the computational values; it is obtainedthrough Taylor expansions, and it is an adequate way to express the main properties of thenumerical schemes, in terms of error analysis.Let us recall the following example, which will be useful later on. Consider the numericalsolution of the advection equation ut + cux = 0, with c > 0, with the simple explicit upwindscheme: un+1j � unj�t + cunj � unj�1�x = 0 : (27)Then, the modi�ed equation of this scheme is, up to second order accuracy (see e.g. [1]):ut + cux = �uxx + c�uxxx ; (28)6



with: � = c�x2 (1� �) ; (29)� = ��x26 �1� 3� + 2�2� ; (30)where the Courant number � is given by � = c�t�x .Recalling that out goal is to analyse the numerical errors for the coupled uid-structuresystem, we are going to use the modi�ed equation in order to represent the numerical errorsrelated to the simulation of the uid (more precisely, of the linear acoustic waves in the uid).We will therefore have to couple the modi�ed equation with the discrete piston equation, andwe will see that not only the numerical approximation in the uid (taken into account throughthe modi�ed equation), but also the time integration scheme for the structure and the discretetreatment of boundary conditions have important inuences on the numerical results.3.1 Modi�ed equation with di�usionLet us assume that we use an explicit �rst-order accurate upwind scheme for the integrationof system (9). Restricting our attention to the main error term in the uid approximation, wewill consider that our numerical solution satis�es:Wt +  0 1c2 0 !Wx = �Wxx ; (31)where the positive di�usion coe�cient � is given in (29).Since this equation di�ers from (9), we are now interested in appreciating the inuence of �on the system pulsation. We will use the same method as in the undamped case. The essentialdi�erence lies in �nding elementary solutions of (31). The �rst natural idea consists in takingtemporally damped oscillations. With this kind of solution, it is not possible to ful�ll both the�xed wall boundary condition (10) and the fundamental equation of dynamics for the piston.Thus, we will consider temporally and spatially damped oscillations:Lemma 2 A solution of equation (31) with the boundary condition (10) is given by:W = ez(�z�c)t " 1+c ! ezx +  1�c ! e�zx# (with z 2 C): (32)We leave the proof to the reader.As previously, we can write:u(L) = 2c�0 sinh(zL)ez(�z�c)t ; (33)m _u(L) = 2mc�0 sinh(zL)z(�z � c)ez(�z�c)t ; (34)�P (L) = 2c2 cosh(zL)ez(�z�c)t : (35)7



Hence, the fundamental equation (13) is satis�ed if and only if:2mc�0 sinh(zL)z(�z � c) = 2c2 cosh(zL) ; (36)which can be written as: z(�z � c) tanh(zL) = �0cm ; (37)or: (�izL)�1� �zc � tan (�izL) = �0Lm : (38)Equation (38) has conjugate solutions. It is consistent with (26): indeed, if we take � = 0in (38), it can be proved that z = � i!c , with ! given by (26) (the reader may check that acomplex number r such that r tan(r) 2 IR+ is necessarily on the imaginary axis).Remark 1: Before analyzing the relation (38), let us come back to (31), and investigatewhether it was valid to keep only the di�usion error term. If we add the dispersion term, wewrite, up to second order in �x and �t:Wt +  0 1c2 0 !Wx = �Wxx + � 0 1c2 0 !Wxxx ; (39)where the dispersion coe�cient � is given by (30). As above for Lemma 2, we can show thatthe elementary solutions of equation (39) with the boundary condition (10) are given by:W = ez(�z�c+�cz2 )t " 1+c ! ezx +  1�c ! e�zx# (for z 2 C): (40)Then, the equation (38) for z becomes:2mc�0 sinh(zL)z(�z � c+ �cz2) = 2c2 cosh(zL) : (41)Of course, the preceding equation reduces to (38) when � = 0. But we see also that theinuence of the dispersion term is much weaker than the one of the di�usion term, since theratio �cz2�z is small (when � and � are small, i.e. for z � � i!c ):j�cz2jj�zj = �1� 2�3 � !�xc : (42)Therefore, we will actually neglect the dispersion error in the sequel, and analyse equation (38)instead of (41). �It is also interesting to analyse the dependence of the solution z of (38) on the di�usionparameter �. We can linearize the equation for z around � = 0, knowing that for � = 0,z = � i!c . We obtain (the details are omitted):@Im (z(�z � c))@� ���� �=0z=�i!=c = 0 ; (43)8



@Re (z(�z � c))@� ���� �=0z=�i!=c = �!2c2 241� "1 + �0Lm  1 + m2!2�20c2 !#�135 : (44)Thus, from (43), it follows that the temporal pulsation of the elementary waves are changedonly at the second order when � is small (recall from Lemma 2 that z(�z � c) is precisely thecoe�cient of the time variable t in the solution (32)).The interpretation of (44) is less obvious. For the sake of convenience, we have considered sofar complex variables, but we should now come back to the actual (real) variables, and observethe actual piston motion. With our complex solution, we have _x = 2c�0 sinh(zL)ez(�z�c)t , whencex = 2ca�0 sinh(zL)eat, with a = z(�z�c). Then, it is easy to check that we can write an equationof the form: m�x = �x+ � _x (45)for the piston, with � and � real, by taking:� = �mjaj2 = �mjz(�z � c)j2 ; � = 2mRe(a) = 2mRe (z(�z � c)) : (46)Thus, we are now able to know the sti�ness and the damping induced by the uid on the piston.For � = 0, we �nd of course � = �m!2 and � = 0. For a small di�usion �, we get from (43)and (44): � = �2m!2c2 241� "1 + �0Lm  1 + m2!2�20c2 !#�135 � + O(�2) ; (47)� = �m!2 + O(�2) : (48)(49)Remark 2: We achieved the same study with retaining the second-order terms (but stillneglecting the dispersion term in the modi�ed equation). It shows that no second-order term isintroduced in the expansion of the damping � by the di�usion �. The inuence of the dispersionerror will be analysed with second-order accurate schemes in Section 6.2 below. �3.2 Roles of the scheme for the structure and of the discrete boundaryconditionsThrough � and �, the above analysis predicts analytical values for the numerically observedpulsation and damping of the piston oscillations. For the pulsation of the coupled system, theprediction (26) reveals to compare very well with numerical simulations: it gives a predictedpulsation with a relative error less than one percent. This great accuracy is partly explained by(48). But the analytically predicted damping factor � is not so accurate and is even sometimesquite far from the numerical results.In the following, we give explanations for this inaccuracy of the above analysis. We willderive a new formula for the numerical damping � of the system, and we will check the validityof the preceding prediction for �. 9



3.2.1 Sources of numerical dampingIn the physical problem, we did not introduce any dissipation which could produce damping(d = 0 in (12)). The whole damping is therefore of numerical origin. The �rst origin lies in thenumerical scheme for the uid, and was taken into account through the modi�ed equation. Butthere is a second origin of numerical dissipation, which is related to the temporal integrationof the piston's motion.Indeed, in the above analysis, we considered that the numerical solution W in the uid is nolonger discrete, but continuous in space and time: it is the solution (32) of the modi�ed equation(31), and we considered that all spatial and temporal errors of the uid approximation are dealtwith through the modi�ed equation. However, we also used a time-continuous representationfor the piston, since we coupled the solution (32) with the di�erential piston equation (13). Inpractice, in the numerical simulations, we use a discrete form of the fundamental equation, andthe numerical errors related to this approximation have been neglected in the above analysis,since they are not taken into account in the modi�ed equation of the uid.For instance, if the speed of the piston is computed with the scheme:m _xn+1 � _xn�t = �Pn(L) ; (50)then the argument used in the preceding section to obtain equations (36) and (38) is no longervalid. We then have to introduce the discrete temporal scheme in our reasoning.3.2.2 New predictions for the numerical dampingLet us therefore come back to (32), and search a new equation for z, assuming that the scheme(50) is used for the piston. From (33) and (35), we deduce (still denoting a = z(�z � c)):mea�t � 1�t 2c�0 sinh(zL) = 2c2 cosh(zL) ; (51)which can be rewritten as: z(�z � c) tanh(zL) = �0cm a�tea�t � 1 ; (52)which now replaces (37).The expansion of z around the value z0 = � i!c (where ! is given by (26)) in terms of � and�t (which are assumed to be small with respect to c2=! and 1=! respectively) takes the form:z = � i!c � "1 + �0Lm  1 + m2!2�20c2 !#�1 "!2c3 �+ !22c�t# ; (53)hence: � = �2m!2c2 241� "1 + �0Lm  1 + m2!2�20c2 !#�135 �+m!2"1 + �0Lm  1 + m2!2�20c2 !#�1�t+O(�2;�t2) : (54)10



The preceding formula appears to give a very good prediction of the total numerical damp-ing. For example, we simulated the motion of a 0:8kg piston with a one meter chamber, andtried several values of the Courant number (with 50 mesh points). With � = 0:045, we numer-ically found � = �1:87, whereas our formula (54) predicts � = �1:80. For � = 0:45, we found� = �1:33 and the analytical prediction is � = �1:32. The average error is then less than 4%in the �rst case, less than 1% in the latter.4 Coupled eigenvector analysisIn the previous section, we were only able to take partially into account the inuence of thediscrete treatment of the boundary conditions on the numerical simulations. We now haveto be more speci�c about these conditions, and analyse in details their overall e�ect on thenumerical damping of the piston oscillations.To be more speci�c, let us write down the boundary conditions for the family of schemesconsidered in this section. We call N the number of computational cells in the chamber [0; L](i.e. N�x = L), and write the explicit scheme under the following form, for 1 � i � N :Wn+1i �Wni�t + �ni+1=2 � �ni�1=2�x = 0 : (55)Outside the boundaries, the numerical ux �ni+1=2 is based on �rst-order upwinding. For �n1=2,at the �xed wall, we use upwinding with a "mirror" cell, i.e. a �ctitious cell with the samedensity as in the �rst cell and the opposite momentum of the �rst true cell. At the other endof the chamber, we have to evaluate a ux through the moving piston; we take:�nN+1=2 =  �0V �pc2��nN ! : (56)Here, V �p is a prediction of the piston speed, evaluated as a weighted average of the nth andn+ 1st computational speeds by the formulas:mV n+1p � V np�t = c2��nN ; (57)V �p = (1� �)V np + �V n+1p ; (58)where � is a �xed parameter. Such conditions are commonly used in aeroelasticity simulations(see e.g. [7]).At �rst sight, we are not able to really take these conditions into acount in the modi�edequation analysis of the previous section. This is why we now introduce a second method,which we call the \coupled eigenvector analysis".4.1 Presentation of the analysisThe analysis which we now present is an eigenvector and eigenvalues analysis. We consider theset of all computational values at a certain time step, for both the uid and the piston, and11



we see it as an unknown vector which is changing during time integration. We still denote byW the vector of the conserved variables for the uid and by Vp the speed of the piston. Let usalso add that we still consider the physically undamped and free (i.e. with no spring) piston(d = k = 0 in (12)).Writing the complete scheme under the form: WVp !n+1 =  WVp !n + �tF WVp !n; (59)we are going to search the eigenvectors and eigenvalues of the linear operator F , which inparticular takes into account the detailed formulation of the discrete coupling between uidand structure.From our knowledge of the exact solution (21) and of the modi�ed solution (32), we maymake a good guess for the eigenvectors of the coupled operator F . We set:8><>: Wn1 = AnW+ezx1 + kg BnW�e�zx1 ;Wni = AnW+ezxi + BnW�e�zxi for 1 < i < N ;WnN = kd AnW+ezxN + BnW�e�zxN ; (60)where xi = �i� 12��x is the center of the th cell, z 2 C is a spatial pulsation, W� =  1�c !are the eigenvectors of the acoustic matrix appearing in (9), An and Bn are the amplitudesof the forward and backward waves, kg and kd are correction coe�cients at both ends of thechamber.Our goal is to �nd An, Bn, kg, kd and z such that:1. the solution at time tn+1 = tn +�t has the form:8><>: Wn+11 = An+1W+ezx1 + kg Bn+1W�e�zx1 ;Wn+1i = An+1W+ezxi + Bn+1W�e�zxi for 1 < i < N ;Wn+1N = kd An+1W+ezxN + Bn+1W�e�zxN ; (61)2. there exists a complex number � such that:An+1An = Bn+1Bn = V n+1pV np = � : (62)4.2 Coupled eigenvector analysis with a predicted piston speedLet us conduct this eigenvector analysis, for the scheme detailed in equations (55)-(58). Wegive the main outlines of the whole computation. First we write the evolution equation for theuid in a medium cell (including cells 2 and N � 1, because the upwind uxes for these cellsdo not involve neither kg nor kd). Writing x = xi, for 2 � i � N � 1, we have:Wn+1i = Wni + �t�x hcAnW+ez(x��x) � cBnW�e�zx � cAnW+ezx + cBnW�e�z(x+�x)i : (63)12



Identifying with (62), we get:An+1An = Bn+1Bn = 1 + c�t�x �e�z�x � 1� = � : (64)If we write the same equation for the �rst cell, we obtain:Wn+11 = Wn1 + �t�x hc �W+ �W��kgBne�zx1 � cAnW+ezx1 + cBnW�e�z(x1+�x)i ; (65)and the identi�cation implies: kg = 1 ; (66)Bn = An : (67)The equation for the last cell writes:Wn+1N = WnN + �t�x [ cAnW+ez(xN��x) � cBnW�e�zxN��0V �p2 �W+ +W��� c��nN2 �W+ �W�� ] : (68)Introducing the expressions of V �p and ��nN , the preceding equation implies:kd = 1 + �1� ez�x� e�2zxN ; (69)V npAn = �c2��tm h2 cosh zxN + �1� ez�x� e�zxN i�2c�0 �e�zxN �e�z�x � 1�� 12 �ezxN � e�zxN ez�x�� : (70)Lastly, writing the last relation (62), we �nd an additional equation which determines z(and therefore � from (64)):1m � �x(e�z�x � 1) + �c�t� h2 cosh zxN + �1� ez�x� e�zxN i =� 2�0 �e�zxN �e�z�x � 1�� sinh zxN + 12e�zxN �ez�x � 1�� : (71)We recall that, in this equation, xN is given by xN = L��x=2. Notice also that, as expected,the amplitudes An, Bn are determined only up to a multiplicative constant.Equation (71) is very interesting. For example, if we assume that � = 0 and if we take thelimit when �t and �x tend to 0, we �nd exactly equation (26).Assuming that �x and �t are very small (compared with c=! and 1=! respectively), wecan obtain the following expansion of z around the value z0 = � i!c given by (26):z = z0 � !22c2"1 + �0Lm  1 + m2!2�20c2 !#�1 [�x� 2�c�t] : (72)13



De�ning the coe�cient a by setting � = exp(a�t), we can again de�ne the sti�ness coef-�cient � and the continuous damping � as in (46). Then � can be shown to be equal to itsprevious value � = �m!2 up to second-order accuracy, whereas, using (64) and (72), we �nd:�2m = !2(� � 1)�x2c � !2(2�� � 1)�x2c "1 + �0Lm  1 + m2!2�20c2 !# : (73)Thus, we now have a precise analytical prediction of the numerical damping e�ect, whichtakes into account in full detail the numerical formulation (55)-(58). The question is then tocompare this prediction with the prediction (54) obtained with the modi�ed equation analysis.5 Comparing the two methodsThe �rst remark to be pointed out about equation (73) is the following one: if we take � = 0,corresponding to the choice V �p = V np in (58), we �nd exactly the same prediction for � as in(54) (with � in (54) given by (29)). This is the reason why our previous prediction (54) turnedout to be valid when we took V �p = V np , as in the simulations whose results are reported at thevery end of Section 3.Now, if we take � 6= 0 in (73), we �nd a di�erent prediction. Again, this analytical predictionrevealed to be very accurate when compared with the actually observed damping of the pistonin a numerical simulation: for the same physical parameters as before but with � = 1, thesimulation gave � = �2:73, whereas (73) predicts � = �2:82, i.e. the error in the prediction isagain less than 4%.It is also worth noticing that, when � > 0, � < ��=0. Taking a positive value for �gives more damping and more stable numerical simulations. This explains the usual choice ofaeroelasticians.At this point, we may wonder whether the modi�ed equation analysis is really restricted tocases where � = 0: is it really impossible to analyse the schemes operating with � 6= 0 usingthe modi�ed equation analysis? This question leads us to revisit our �rst analysis, and willalso allow us to better understand the equations (57)-(58).Indeed, for the modi�ed equation analysis, we did not explicitly describe the discrete bound-ary condition at the piston. Of course, the treatment of the boundary has no inuence on themodi�ed equation itself, which concerns only the internal part of the ow. But, in practice,the formulation of the boundary condition with the parameter � induces a certain time shiftbetween the uid and the structure, and this acts as a modi�ed boundary condition for themodi�ed equation.Let us be more speci�c, and show how we can handle the dependence on � within themodi�ed equation analysis. To make the boundary ux (56) consistent with the other numericaluxes, we have to consider that V �p is an approximation of the piston speed at time n�t. Butthen, from (58), the nth computational piston speed V np represents the speed of the piston attime (n � �)�t ! In other words, for the scheme (55)-(58) with the parameter �, we shouldreplace equation (50) in the modi�ed equation analysis by:m _x[(n+ 1� �)�t] � _x[(n� �)�t]�t = �P (L; n�t) : (74)14



Instead of (51), we then �nd:me�a��t ea�t � 1�t 2c�0 sinh(zL) = 2c2 cosh(zL) ; (75)and the �nal result for �, which replaces (54), becomes:� = �2m!2�c2 + m!2 �2�c2 + (1� 2�)�t�"1 + �0Lm  1 + m2!2�20c2 !# ++O(�2;�t2) : (76)It is straightforward to see that this prediction exactly coincides with (73) (again with thevalue (29) of �). We have therefore extended the modi�ed equation analysis to the above familyof schemes, for any value of the parameter �, and we have also learnt how to interprete the roleof this parameter: V �p is an approximation of the piston speed at time n�t, and V np must beseen as an evaluation of the piston speed at time (n� �)�t.Remark 3: Since the modi�ed equation analysis is easier to conduct than the eigenvectoranalysis, the preceding remarks about the extension of the former make it possible to analysesituations where the eigenvector analysis would be very complex or would even fail, because�nding the analytical form of the eigenvectors is impossible. For example, we simulated aslightly di�erent problem, with acoustic waves propagating in a chamber of �xed length L(without a piston), but moving on tracks without friction. The coupled eigenvector analysis isfeasible but complex. On the contrary, it is easy to solve the modi�ed equation; we �nd that:W = hW+ezx �W�ez(L�x)i ez(�z�c)t : (77)For the \�-scheme" (i.e. with discrete equations similar to (57)-(58) for the chamber velocity),the complex pulsation z is solution of:e�a��t ea�t � 1�t = tanh(zL2 )2c�0m : (78)Then, the new pulsation �! and the new damping �� are given by:tan( �!L2c ) = � m�0L �!L2c ; (79)and: ��2m = �!2(� � 1)�x2c � �!2(2�� � 1)�x2c"1 + �0Lm  1 + m2�!24�20c2!# : (80)These predictions were numerically tested and we again found an error less than 3%. More-over, we also performed arti�cially undamped solutions of the physical problem with an ade-quate value of � (see Section 7.2 below). � 15



6 Analysing other schemesWe now use the two previous methods in order to analyse some other schemes for our modeluid-structure problem.6.1 Schemes with predicted pressure and speedIn this part, we conduct the coupled eigenvector analysis for other schemes which are alsocommonly used by aeroelasticians, where a predicted pressure at the piston is used. Instead of(56), we now use a wall ux given by:�nN+1=2 =  �0V �pc2��� ! ; (81)with: ��� = (1� �)��nN + ���n+1N ; (82)where ��n+1N is predicted with the �rst component of (68). The predicted piston speed V �p isstill given by (57)-(58).The computation follows the same lines as above. Equations (64), (66) and (67) still hold,and the evolution equations for the solution in the last cell gives:��n+1N = ��nN + �t�x hcAnez(xN��x) � cBne�zxN � �0V �i ; (83)�(�u)n+1N = �(�u)nN + c�t�x hcAnez(xN��x) + cBne�zxN � c���Ni : (84)Introducing the expressions of V � and ���, we deduce from the preceding equations (after aquite heavy computation) that:kd = 1 + e�2zxN �1� ez�x��1� c��t�x �1 + �1� ez�x� c��t�x ; (85)V npAn = � c�0 ��e�z�x � 1 + �0c��tm ��kdezxN + e�zxN �+ e�zxN � ez(xN��x)� : (86)Using (57) and the last equality in (62), we �nally obtain the following relation �xing z:� �0�xm (e�z�x � 1) + e�z�x � 1 + �0c��tm � �kdezxN + e�zxN � = ez(xN��x) � e�zxN : (87)Assuming again that �x and �t are very small (respectively compared with c=! and 1=!),we can obtain the new expansion of z around the value z0 = � i!c . We �rst �nd:kd = 1+ z0 �1 + e�2Lz0� (c��t ��x) ; (88)16



whence: z = z0 � !22c2"1 + �0Lm  1 + m2!2�20c2 !#�1 [�x� 2(� � �)c�t] : (89)Using the value (64) of �, we �nd again that � has only a second-order variation, and weobtain a new value of the \continuous damping" �:�2m = !2(� � 1)�x2c � !2[2(�� �)� � 1]�x2c "1 + �0Lm  1 + m2!2�20c2 !# : (90)This equation is again very close to (73). Naturally, it coincides with (73) if we take � = 0,but it gives a di�erent prediction for � if � 6= 0. In order to test this expression, we performedfour numerical simulations, with � = 0 or 1 and � = 0 or 1 (and � = 0:45). The results arepresented in the following table:(�; �) (0; 0) (0; 1) (1; 0) (1; 1)Numerical damping - 1.326 + 0.250 - 2.917 - 1.318Predicted damping - 1.321 + 0.181 - 2.823 - 1.321Table 1: Numerically observed and analytically predicted valuesof the damping factor � for the (�; �)-scheme.We again have a very good agreement between the prediction and the results of the simulations.Relative errors between the analytically predicted and the numerically observed damping areless than 3%, except in the case (�; �) = (0; 1) (in this case, the absolute error between theprediction and the numerical value of � remains small, but the relative error is larger because� itself is rather small). Thus, the analytical prediction (90) of the numerical damping appearsto be quite satisfactory for the class of schemes under consideration.Remark 4: Notice also on Table 1 that the simulation with (�; �) = (0; 1) ran unstable:� > 0. We see here that the method for the coupled system might be unstable, although theuid scheme in itself operates under stable conditions (� < 1). This point is investigated inour next report [14]. �6.2 Second-order accurate schemesSo far, we have restricted our attention to �rst-order accurate schemes for the uid approxi-mation. In this section, we turn to a second-order accurate explicit scheme and analyse theinuence of this modi�cation on our analytical predictions of the sti�ness and damping para-meters � and �. We are going to use the modi�ed equation analysis.Let us therefore assume that we use for the integration of (9) a scheme which is second-order accurate in both time and space (such as the Lax-Wendro�, or second-order upwind, orleap-frog schemes...). Then, the modi�ed equation writes, up to second-order accuracy:Wt +  0 1c2 0 !Wx = � 0 1c2 0 !Wxxx ; (91)17



with � = O(�x2) (for instance, � = �x26 (�2 � 1) for the leap-frog and Lax-Wendro� schemes;see [1]).In order to reach also second-order accuracy for the structure, we use the scheme (56)-(58)with � = 1=2. Indeed, when � = 1=2, in full agreement with our previous observations on themeaning of � and the interpretation of V np (see Section 5), we can rewrite (56)-(58) as:�nN+1=2 =  �0V �pc2��nN ! ; (92)V �p = V n�1=2p + V n+1=2p2 ; mV n+1=2p � V n�1=2p�t = c2��nN ; (93)and this scheme is obviously second-order accurate.Then, we can easily conduct the modi�ed equation analysis. Using (40), we can show thatthe equation for z still takes the form (75), with a = cz(�z2 � 1). The asymptotic expansionsthen give: � = �m!2 � 2m !5c3L!Lc + �0mc!�20c2 +m2!2 �+ O(�2) ; (94)�2m = O(�2) : (95)We see that the dispersion parameter � produces a perturbation of the second order in�x in the pulsation (like the di�usion �) and a negligible fourth order perturbation on thedamping.6.3 Implicit time integration schemesIn this section, we consider the temporal integration of our acoustic model with implicitschemes. We will still use the coupled eigenvector analysis to predict the spatial and tem-poral pulsations.6.3.1 Presentation of the schemesWe now present a staggered implicit scheme for the solution of our model problem. For thetime step from tn to tn+1, we �rst compute the evolution of the uid, and then the evolutionof the structure in a second step. For the uid integration, we use predictions of the evolutionof the structure based on its state at time tn (but the state of the structure at tn+1 is notavailable in this uid step); on the other hand, for the structural integration, we can use thestate of the uid at time tn+1.In the preceding sections (except in Section 6.2), we have used a classical �rst-order accurateexplicit upwind scheme. The ux at the cell interfaces in the uid was given by:�ni+1=2 = A+Wni +A�Wni+1 ; (96)18



where A� = 12  �c 1c2 �c !, and the boundary uxes were given as:�n1=2 =  0c2��n1 � c�(�u)n1 ! ; �nN+1=2 =  �0V �pc2��� ! ; (97)with (from (82)): V �p = V np + c2��tm ��n ; (98)��� = ��Nn + ��t�x �A+WnN�1 +A�WnN � �0V �p � : (99)All uxes we just wrote are basically explicit. We consider from now on that, as far as theuid is concerned, we use hybrid explicit-implicit uxes obtained by substituting:Fn �! (1� �)Fn + �Fn+1 : (100)Moreover, in order to consider all implicit possibilities since the uid's state Fn+1 is alreadyknown, we introduce a new updating scheme for the piston. Instead of (57), we will write:mV n+1p � V np�t = c2 �(1�  )��n +  ��n+1� : (101)For the uid alone, this scheme is unconditionally stable when � � 1=2. If � < 1=2, thehybrid scheme is stable under the condition:� � 11� 2� : (102)6.3.2 Coupled eigenvector analysisWe present again the main outlines of the computation. Writing implicit uxes instead ofexplicit ones in the conservation equations for a standard cell gives instead of (64) the newrelation: An+1An = Bn+1Bn = 1 + (�� 1)c�t�x �1� e�z�x�1 + �c�t�x (1� e�z�x) = � : (103)The conservation equation for the �rst cell again gives equations (66) and (67). Lastly, theconservation equation for the last cell gives back (after some long calculations) equations (85)and (86). Then, using the new equations (101) and (103), we �nd a new equation for z:� �0�xm (e�z�x � 1) + e�z�x � 1 + �0c�tm (� +  � 1)� �kdezxN + e�zxN � = ez(xN��x) � e�zxN :(104)Now, we want to study this equation when �x is considered as very small (compared withc=!). But we can no longer consider �t as small since the time step �t is not limited by anyCFL-like condition (if we choose � � 1=2). 19



First we must notice that the expansion (88) for kd is no longer valid, since �t may be notsmall. In order to avoid any boundary artefact at spatial convergence, we would like to have:lim�x!0 kd = 1 : (105)This condition was automatically met for explicit schemes. For implicit schemes, the condition(105) will be satis�ed if we take: � = 0 : (106)With some easy computations, we �nd that z tends towards a limit z1 when �x tends to 0,with z1 solution of: z1 tanh(z1L) = ��0m (1� z1c�t(� +  � 1)) : (107)Thus, if we want the spatial and temporal pulsation to take a value independent of the timestep, we have to take: � +  = 1 : (108)If (108) holds, then z1 = z0 = � i!c with ! given by (26). We can now write the expansionof the solution z of (104) around z0 in terms of �x:z = z0 � !22c2"1 + �0Lm  1 + m2!2�20c2 !#�1�x ; (109)and we deduce the expansion of �:� = 1 + i(�� 1)!�t1 + i�!�t � !2�t2c 0@1� "1 + �0Lm  1 + m2!2�20c2 !#�11A(1 + i�!�t)2 �x : (110)We have chosen here z0 = + i!c . If we had chosen the conjugate value for z0, we would havefound the conjugate value of �. We see also that:lim�x!0� = 1 + i(�� 1)!�t1 + i�!�t : (111)Recalling that the sti�ness coe�cient � is de�ned by � = �mjaj2, where a is chosen such that� = exp(a�t), we see that � will have a second-order variation from its unperturbed value�m!2 if � = exp(�i!�t) + O(�t2) (in the limit of �x going to 0). From (111), this can berealized if we choose: � = 12 : (112)With this choice, the sti�ness and damping coe�cients � and � have the following expansions:� = �m!2 1� !2�t26 + O �!3�t3�+ O(�x2)! ; (113)20



�2m = �!22c 1 + !2�t24 ! 0@1� "1 + �0Lm  1 + m2!2�20c2 !#�11A�x+O(�x2) : (114)Let us make a few remarks on this last prediction. First, we see that � is always negative(and this point is clearly related with the unconditional stability of the hybrid explicit-implicitscheme when � = 1=2). Notice also that the free parameters � and  (on which we haveimposed the relation (108)) are not involved in the preceding analytical prediction for �.The unconditional global stability of these coupled schemes makes it possible to choosethe time step according to accuracy requirements. For instance, for �t = T25, T = 2�! beingthe period of the system, the relation (113) predicts only a one percent error on the systempulsation �. However, numerical tests tend to show that the preceding predictions are not asaccurate as expected. A possible explanation is that terms of higher order in �x in (113) and(114) may not be negligible.Remark 5: We see on (114) that the damping does depend on the time step, and more preciselythat increasing �t (with �x small and �xed) decreases the damping (i.e. increases � towards0). This is a somewhat surprising conclusion, since the dissipation error of implicit schemeusually increases with the time step. But we should keep in mind here that the dissipationerror of our implicit scheme (which is given by � = c�x2 (1 + (2�� 1)�) is independent of �twhen � = 12. �7 Discussion and conclusionsIn this section, we gather the conclusions of the preceding analyses, and show how their re-sults can be used in order to reduce the overall numerical damping in the simulations of themodel problem. Since our objective is to improve the numerical simulations of uid-structureinteractions in more general situations, we will try to extend our conclusions to more complexcases.7.1 Prediction of the numerical dampingAs a �rst general conclusion, we have recovered on our model problem some features of thenumerical schemes which are commonly used in aeroelasticity. First, for schemes like (56)-(58), where a prediction of the speed of the structure is used for the time integration of theuid, we found that the resulting numerical damping increases with the time lag � between theuid and the structure (i.e., j�j increases with �). On the opposite, for schemes like (81)-(82),where the pressure is predicted at the uid-structure boundary, we proved that the numericaldamping decreases with the delay in the prediction of the pressure (i.e., j�j decreases with �).Both results are illustrated on Figure 2, where we have presented the speed of the piston asfunction of time for four choices of the parameters � and �: the solid line, the dashed line and21
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which conclusions can be drawn from the previous analyses.7.2.1 Simulations with available predictionsLet us come back for a moment to our model acoustic problem, and perform some othernumerical experiments, using the (�; �)-schemes of Section 6.1. Then, we can use our analyticalprediction (90) to perform simulations where � is as small as possible: evaluating all terms in(90), we �nd that, for � = 0:45, � vanishes if �� � = 0:88. This was realized with the couples(0.12, 1.00) and (-0.88,0.00) for (�; �), and we actually obtained piston oscillations of �xedamplitude !Therefore, when the pulsation and the damping of the physical system are known a priori,a correction of the scheme can be derived from our analytical predictions in order to recoverthe correct damping. For more general situations, this objective may be reached only approx-imately, by taking average values for the physical parameters (such as L, �0..) involved in theanalytical expression (90).For our model problem, we also found an additional way of correcting the numerical scheme(but extending this second type of modi�cation to multi-dimensional problem may be uneasy).We used a very simple scheme (with � = 0 and � = 0), but modi�ed the piston time integrationscheme as follows: mV n+1p � V np�t = c2��n � �d V np ; (115)where �d is a small adaptable negative damping factor. Using either the modi�ed equation orthe coupled eigenvector analyses, it can be shown that the overall damping � vanishes if thearti�cial negative damping �d is taken equal to:�d = �L�0!2�c2  1 + m2!2�20c2 ! ; (116)where � is given by (29). The e�ciency of this modi�cation is illustrated on Figure 3, wherewe observe a nearly perfectly undamped numerical simulation.Let us also emphasize that all methods presented above can be applied to cases where thepiston is physically damped and/or linked to a spring, that is with non-zero coe�cients d or kin (12). The major di�erence is that the exact pulsation ! is no longer given by (26), but isobtained from the complex solution z of:�mcz + d+ kzc� tanh(zL) = ��0c : (117)Remark 6: Following the same approach as above for the explicit (�; �)-scheme, when we usedequation (90) in order to perform simulations with no global damping, let us now examine ifwe can eliminate the �rst-order damping term written in (114) for the implicit scheme ofSection 6.3. Ideally, we would like to do this without losing the second-order accuracy on �shown in (113). Thus, we will relax the conditions (108) and (112) and set instead:� = 12 +  ; � +  = 1+ � ; (118)23
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where  and � have to be chosen. Assuming that c��t is small in (107), we obtain the following�rst-order expansions: z = z0 +D�1 "� !22c2�x+ !2�tc �# ; (119)where D = 1 + �0Lm  1 + m2!2�20c2 !, and:� = �1� i!�t=21 + i!�t=2�2666641 + !2�t2�14 � ��D�1�t !2�x2c (D� 1) + !2�t�!1 + !2�t24 377775 : (120)We can now obtain the desired result:� = �m!2  1� !2�t26 +O �(!�t)3�+O(�x2)! ; � = O(�x2) ; (121)provided that we take:  = � = � �x2c�t : (122)This result raises a problem: since  is negative, we will have � < 1=2 from (118) and wemay loose the unconditional stability of the scheme for the uid; but this does not happen,since (118) and (122) imply that � = 11� 2� : in view of (102), we obtain an unconditionally(marginally) stable scheme. It seems therefore that we have found a close connection betweenour desire to suppress the global damping for the coupled system and the stability limit for thehybrid explicit-implicit scheme used in the uid. �7.2.2 Simulations with unavailable (accurate) predictionIn this part of the discussion, we assume that we do not dispose of predictions for the fun-damental pulsation and damping of the physical system (this can be for instance the case forcon�gurations where the masses of the uid and of the structure are close to each other).In such a case, most of the predictions presented in the preceding sections cannot be used.For our model problem with the physically undamped piston, we can however notice that theglobal damping factor � given by (73) can be made equal to zero (without using any informationon the pulsation !) by taking � = 1 and � = 1=2, which respectively produce no numericaldamping in the uid and in the structure. For the implicit scheme also, we can obtain zerodamping, since no information on ! is used to choose  and � in (122). But in these two cases,these conclusions lead to use numerical schemes operating exactly at their stability limit, whichcannot be useful for more general (nonlinear, multi-dimensional) situations. We therefore haveto �nd some other methods for reducing the numerical damping.In the case where the pulsation of the system can be bounded, the method (115) whichintroduces an arti�cial negative damping in the piston equation can provide help in decreasingthe numerical damping in the simulation. Let us indeed call �d(!) the right-hand side of (116)(notice that �d is a monotone decreasing function of !). If we know a priori a lower bound25
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 on the system pulsation !, then we can use the equation (115) for the piston, with�d = �d(
): this is a safe way to obtain a better (less damped) simulation, with no risk ofunstability.As an example, consider the undamped piston with a spring (i.e., take d = 0 but k > 0 in(12)). The pulsation of the coupled system is then given by:�!2 � !2s� tan(!Lc ) = !�0cm ; (123)where !s = s km is the spring pulsation. In a case where the system pulsation ! is larger thanthe spring pulsation !s, we tried the above method, with �d(!s). The results are shown onFigure 4, where the improvement clearly appears.Remark 7: Finally, other procedures based on energetic formulations can also be imagined(but their extensions to multiple dimensions are really not obvious). However, they can giveinteresting results for our model problem. Starting from the expression of the uid energy perunit volum � P � 1 + 12�u2�, assuming that the evolution of the uid is isentropic and usingthe expansions of P , u and � in terms of the perturbations �� and �u, we �nd that the total26
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0 0.1 0.2 0.3 0.4 0.5 0.6Figure 5: Total energy of the system during the simulation : the upper curve is obtained witha negative damping based on energy compensation, as in Remark 7.energy in the system is given by:E = 12�0  Z L0 c2��2 + �20�u2!+ 12m _x2 : (124)The (constant) equilibrium energy has been omitted in the preceding equation. The readerwill also notice that all �rst-order terms have disappeared in the expression of the total energy(these terms exactly cancel because the perturbations ��, �u and x are solutions of the linearsystem (9)-(12).For a given spatial scheme in the uid and given time integration schemes for the uidand the piston, we can evaluate the variation of the total energy in terms of all computationalvalues. For instance, for the �rst-order accurate explicit upwind scheme coupled with theexplicit scheme (57), we obtain:En+1 = En � c�t2�0 �1� c�t�x �Xi (Wi+1 �Wi)tB (Wi+1 �Wi) +O(�t2) ; (125)where the symmetric positive de�nite matrix B is such that W tBW is the discrete form of theintegral term of (124).Then, as we did in (115), we can add in the piston equation a negative damping �d evaluatedat each time step in order to give back to ths system the amount of energy dissipated during27



the current time step. This procedure has shown very interesting results in the one-dimensionalmodel problem with an explicit time-integration scheme (see Figure 5). However, the negativedamping had to switched o� when the piston speed was too small (this term is basically given bythe relation �d _x2 = �E, where �E is the dissipated energy). Perturbations on the momentumbalance of the system were also observed. Moreover, if the structure had not been reduced toa single point, a remaining question would have been to know where { on the structure { andhow give back to the system the dissipated energy. �7.2.3 ConclusionsThe coupled problems which are to be investigated in realistic uid-structure interactions pro-blems are so complex that we need to examine simpli�ed model problems in order to analyse indetail the behaviour of the numerical solution for the coupled system. For the one-dimensionalmodel problem proposed in this report, we have derived e�cient ways of analysing the overalle�ect of the numerical schemes on the pulsation and the amplitude of the system oscillations,and of compensating these e�ects by modifying the discrete formulations, for a wide class ofnumerical methods. There is good hope that several of these techniques can be useful formore general problems (although this conjecture still needs to be supported by more generalnumerical simulations, which we will undertake in a forthcoming work).ACKNOWLEDGEMENTS:We wish to thank our colleagues Charbel Fahrat, Loula Fezoui and Katherine Mer, withwhom we had fruitful conversations during completion of this work.The modeling part of this work was done while the third author was visiting CERMICSand INRIA, with support from DRET (under contract 92/322).
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