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Abstract

Here we present analysis methods for a family of staggered schemes that are used in the numer-
ical simulation of fluid-structure interaction problems. The analysis has two goals: to identify
the numerical damping errors, in particular those due to the discrete coupling between the fluid
and the structure, and to improve the accuracy of the numerical results by compensating these
errors. The first analysis method presented is based on the modified equation of the numerical
scheme, and the second method is an eigenvector analysis. Both methods provide corrections
of the coupled integration schemes in order to eliminate numerical effects, when the system’s
frequency is known. Other methods are proposed in order to achieve the same goal when this
frequency is not known a priori.

ANALYSE ET COMPENSATION
DE L’AMORTISSEMENT NUMERIQUE POUR
UN PROBLEME AEROELASTIQUE MONO-DIMENSIONNEL

Résumé

Nous présentons ici plusieurs méthodes d’analyse pour des schémas numériques utilisés dans
des simulations d’interactions fluide-structure. Le but de cette analyse est double: identifier
les erreurs d’origine numérique liées en particulier au couplage entre fluide et structure, et
?
donner un moyen d’éliminer ces effets purement numériques. Nous introduisons deux méthodes
d’analyse: la premiere est fondée sur la théorie des équations équivalentes, et la seconde est
?
une analyse de modes propres. Ces deux méthodes fournissent des corrections des schémas
d’intégration du systeme couplé qui éliminent les effets purements numériques quand la réponse
physique du systeme est connue. D’autres méthodes sont présentées pour les cas ou cette
réponse est inconnue.



1 Introduction

In aerospace engineering and in the particular field of fluid-structure interaction, it is important
to accurately investigate the physical stability of complex coupled systems such as flows around
three-dimensional structures [3, 7, 16]. These investigations are performed through numerical
simulations [13], in order to better predict the general behaviour of these coupled systems
and to prevent unstable phenomena such as flutter or buffetting [4, 9, 15]. Using their own
space and time schemes, these simulations naturally have their own stability characteristics
[8, 10, 12]. Thus, the results of these simulations give a combination of two responses, the
physical one and the numerical one. Of course, it is desirable that the numerical simulation
predicts a stable response (respectively: an unstable response) of a physical system only if this
system is actually stable (resp.: unstable). Hence, controling the influence of the numerical
schemes and in particular of the numerical damping on the numerical results is the only way
to reach accuracy, in terms of stability of our numerical simulations.

The ultimate objective of this study is to obtain better integration schemes for fluid-
structure interaction problems. For example, the well-known phenomenon of wing flutter
corresponds to an unstable behavior of a wing (or a wing-body configuration), which occurs
in three-dimensional geometries, with a non-ideal viscous fluid and complex three-dimensional
structures. The first step towards better numerical simulations of such phenomena is to analyse
simpler fluid-structure problems. This is why we consider in this report numerical simulations
of a simple model problem, which we present in Section 2: we deal with a plane piston subjected
to the one-dimensional flow of a compressible fluid, in the linear acoustic regime. We use a
fixed uniform mesh and take the motion of the piston into account by a boundary mass flux.
This formulation allows us to consider a linear problem, which is a necessary first step towards
a more complete understanding of fluid-structure interaction. This means also that we have
separated here fluid-structure interactions and fluid-mesh interactions (we intend to analyse
the latter, which occur in moving meshes methods or ALE-type formulations [2, 5, 6, 8], in a
forthcoming work).

Then, the goal of our study is two-fold. Our first goal is to derive methods for obtaining
accurate analytical predictions of the general damping of the numerical simulation. Once the
first goal is achieved for a large family of schemes, we use these analytical results in order
to achieve our second goal, namely modifying the numerical schemes in order to accurately
simulate the exact physical damping of the system.

We also present in Section 2 the family of numerical schemes we use: since most engineer-
ing coupled applications are simulated with staggered schemes (which allow to integrate the
structural and the fluid parts separately during each time step), we consider this algorithmic
approach. Therefore we use simple schemes for the integration of the fluid and the structure
equations. For the boundary conditions, in particular at the fluid-structure boundary, we use
different formulations which are commonly used by aeroelasticians; this discrete treatment of
the coupling between fluid and structure will appear to have a very strong influence on the
numerical results.

In Section 3, we introduce a first method based on the modified equation theory [17] for
the numerical analysis of this problem. This method is very simple, and gives good qualitative
results provided that the treatment of the boundary conditions is precisely taken into account.
These results give useful informations for more general aeroelastic simulations.

In Section 4, we present a more accurate and powerful method for the analysis of the
numerical results. This method is based on the analysis of eigenvalues and eigenvectors of the



amplification matrix for the coupled numerical system. Although this method may be uneasily
extendable to multi-dimensional cases, it gives in our case very interesting results: it confirms
some principles of the common know-how in numerical aeroelasticity, it confirms the results
obtained with the modified equation analysis, and it predicts accurately the numerical damping
for all linear schemes. The two methods are compared in Section 5.

In Section 6, we discuss applications of both previous methods to different families of
schemes. Finally, in Section 7, we show how the results of our analyses can be used more
generally for aeroelastic simulations. The presented methods allow us to exactly control the
final damping in the numerical simulation when the fundamental frequency of the system is
known (which is often the case in aerospatial applications, since flutter pulsations of wing-body
configurations are close or equal to eigen-pulsations of the structure). In such a case, we show
that we can derive corrections of the numerical schemes in order to compensate the numerical
damping. We also propose other general methods for achieving this goal in cases where there
is no available a priori evaluation of the system frequency.

2 The physical test case and the global numerical algorithm

In this section, we present the physical experiment under consideration: since actual aerospace
engineering problems are too complex to be analysed, we consider a simple one-dimensional
model problem. We also present the type of staggering schemes we will use to perform the
temporal integration of the coupled fluid-structure system.

2.1 The model problem

We consider the one-dimensional flow of a perfect gas in a chamber closed by a moving piston.
The equilibrium state of the system is defined by a uniform pressure Py inside and out of the
chamber, a uniform gas density pg in the chamber, where the gas is at rest (ugp = 0), and by
a stationnary chamber length L (in our experiment, we take standard values: P, = 1 atm,
po = 1.3 kg/m?®, v = 1.4). The chamber is described on Figure 1.

Fluid Piston
Fixed Piston’s motion
Wall -
\I \ H Pressure B
Equilibrium length of the chamber
X—axis 0

Figure 1: The piston and the fluid-filled one-dimensional chamber.

The one-dimensional flow in the chamber is supposed to be governed by the compressible



Euler equations, which we write with usual notations as:

pe+ (pu)gg =0,
(pu)i + (pu* + P)p =0, (1)
Ei+ [w(E+ P),=0.

Here, p is the density, u is the velocity, P is the pressure and F is the total energy per unit
volume. The position, speed and acceleration of the piston are respectively denoted by L + z
(i.e. @ denotes the deviation of the piston from its equilibrium position), & and #. Calling m,
d and k the mass, the internal damping d and the stiffness of the piston respectively, we write
the piston governing equation as:

mi+di +ke=Pla+L)— P (2)

here, P(z + L) is the internal pressure at the piston, and we assume that the outer pressure
remains constant and equal to Fp.
The boundary conditions for the fluid are:

pu(0) =10 (3)

at the fixed wall, and:
w4+ L)=12 (4)
at the piston, which expresses that the fluid velocity is there equal to the piston speed.
Assuming furthermore that the system undergoes only small perturbations around the equili-

brium state, we will linearize the above equations. Thus, we assume that:

Ap=p—ps < po, (5)
AP=P-P < P,, (6)
u < ¢, (7)

and, as usual in the linear acoustic regime, we have:
AP =c*Ap (8)

which means that the gas variations are isentropic (we simply denote by ¢ instead of ¢g
the unperturbed sound speed). We then write the governing equations using the vector

_[ Ar Y_ | Ar :
W_(A(pu))_(poAu)as'

WH—(COQ é)m:o. (9)

The linearized boundary conditions take the form:
Au(0)=10, (10)
Au(l)=%, (11)

and the piston equation now can be written as:

mi + di + kx = AP(L) = *Ap(L) . (12)



2.2 Evaluating the system frequency

In the following, the reader will assume that d and k are equal to 0, if no other explicit statement
is made. The piston equation then reduces to:

mi = AP(L) = *Ap(L) . (13)

Since d is equal to 0, the physical system is undamped and should undergo infinite oscilla-
tions of constant amplitude. We now present two different ways of evaluating the frequency of
these oscillations.

The first crude estimate can be obtained in a very simple and rapid way by assuming
that, in addition to being isentropic, the gas flow is isobaric. In other words, one assumes
that the pressure is spatially constant in the chamber (an assumption which is consistent with
the highly subsonic character of the flow). Using this approximation (which differs from the
acoustic approximation described above), we can write:

mi=P— P, (14)
where P = P(t) is the spatially constant pressure. It is given by:
Pp™" = Popo™" (15)

where p is the gas density (also spatially constant). Writing the mass conservation for the
system, we have:

(L+2)p=Lpo. (16)

The position x then satisfies the following equation:

mi:POKLJL”)_Wq]. (17)

For small enough initial perturbations (in piston speed and location), we can linearize the
preceding equation for z < L. We get:

P
mi = —%w. (18)

Hence, the “isobaric pulsation” w; of the system is given by:

2 v Py
it = 19
wit = (19)

This formula can be rewritten with dimensionless quantities as
TN 2

(sz) _ pol
c om

Now, a second more instructive way of evaluating the system frequency consists in solving
the linear system (9)-(13). Indeed, a major interest of this one-dimensional acoustic physical
experiment is that we can exhibit an exact solution of the linear system (9)-(13). This exact
solution will be used later for more complex predictions. We have the following;:

(20)




Lemma 1 A solution of equation (9) with the boundary condition (10) is given by:

W= ( —|—10 ) cosle(t — 2] + ( . ) cosllt + )] (with w € IR). (21)

The proof is elementary and will be omitted.

In order to solve the complete system (9)-(13), it remains to take into account the piston
boundary condition (11) and the equation (13) for the piston dynamics. Using (21), we then
have:

W) = —i—zsin(%)sin(wt), (22)
mi(L) = 2”;§“sin(%)cos(m), (23)
AP(L) = 262COS(%)COS(wt). (24)

Hence, the piston equation (13) is satisfied if and only if:

2 L L
e sin(w—) = 2c? cos(w—) , (25)
Po ¢ ¢

which can be written as

(26)

This formula deserves several comments. First, this relation is consistent with the previous
“isobaric estimate” (20): in the limit of ¢ going to 400, then tan (wL/c) ~ wl/c and w tends
to w;.

Also, two interesting limits can be observed for relation (26). If m tends to 4oo, then
wl

— = km: the infinite-mass piston behaves as a fixed wall, and we have a classical acoustic
c
regime with a velocity node at each end of the chamber. On the other hand, if m tends to 0,
L
then 2~ = g + k7: the boundary condition at the piston becomes AP(L) = 0 from (13), and
c

we now have an acoustic regime with a velocity node at the fixed wall and a pressure node a
the piston.

Beside this, since tan(z) > z,Vz €]0,7/2[, we see that the fundamental pulsation given by
(26) is smaller than w;. Thus, the period of the system is greater than the “isobaric period”,
which is also coherent with the hypothesis of finite wave speed.



2.3 The general integration scheme

We conclude this section by briefly presenting the general type of schemes used in our simula-
tions below. The algorithm is derived from general aeroelasticity know-how [12, 13] and uses
so-called staggering schemes, where the fluid and the structure are integrated separately during
each time step.

Thus, the algorithm is the following: at each time level t*, we:

e predict the piston speed for the next time step [t,,t,41],

e compute wall fluxes for the fluid during this time step,

o integrate the fluid from ¢, to ¢,41,

e compute an average pressure at the piston for the time step [t,,t,11],
e integrate the piston (submitted to this pressure) from ¢, to t,41.

We notice here that we could have used other staggering schemes, where the structure is
integrated first. But in fact, these algorithms differ only by indices translations.

In the following, we consider only explicit time integration schemes (except in section 6.3
below).

Although we postpone till the end of this report the presentation of our numerical results
for the oscillating piston, it is worth saying here that the clearest feature of these result lies in
the inability of the numerical schemes to reproduce the constant-amplitude system oscillations:
the amplitude of the computed oscillations decreases with time (see e.g. Figure 2 below).
Moreover, we sometimes also observe a deviation between the computed frequency and the
known analytical frequency. Analysing these numerical effects, and in particular the numerical
damping, is the object of the next sections.

3 Modified equation analysis

In this section, we use the modified equation theory [17] to obtain analytical predictions of
our numerical results. Referring to [1, 17] for the details, we simply recall here that, for
the numerical solution of a linear hyperbolic or parabolic equation, the modified equation is
the differential equation which is exactly satisfied by the computational values; it is obtained
through Taylor expansions, and it is an adequate way to express the main properties of the
numerical schemes, in terms of error analysis.

Let us recall the following example, which will be useful later on. Consider the numerical
solution of the advection equation u; + cu, = 0, with ¢ > 0, with the simple explicit upwind
scheme:

n+1 n n n
(I — U ul—uj_l

J ]_I_C]

At Az

Then, the modified equation of this scheme is, up to second order accuracy (see e.g. [1]):

=0. (27)

Ut + CUy = YUy + CAuxxl’ ) (28)



with:
cAzx

o= (1 - l/) , (29)

2
Az? 9
/\:—T(l—31/—|—21/), (30)
cAt

where the Courant number v is given by v = —.

Recalling that out goal is to analyse the numerical errors for the coupled fluid-structure
system, we are going to use the modified equation in order to represent the numerical errors
related to the simulation of the fluid (more precisely, of the linear acoustic waves in the fluid).
We will therefore have to couple the modified equation with the discrete piston equation, and
we will see that not only the numerical approximation in the fluid (taken into account through
the modified equation), but also the time integration scheme for the structure and the discrete
treatment of boundary conditions have important influences on the numerical results.

3.1 Modified equation with diffusion

Let us assume that we use an explicit first-order accurate upwind scheme for the integration
of system (9). Restricting our attention to the main error term in the fluid approximation, we
will consider that our numerical solution satisfies:
0 1
Wt—l_(cQ O)Wx:qu, (31)
where the positive diffusion coefficient p is given in (29).

Since this equation differs from (9), we are now interested in appreciating the influence of u
on the system pulsation. We will use the same method as in the undamped case. The essential
difference lies in finding elementary solutions of (31). The first natural idea consists in taking
temporally damped oscillations. With this kind of solution, it is not possible to fulfill both the

fixed wall boundary condition (10) and the fundamental equation of dynamics for the piston.
Thus, we will consider temporally and spatially damped oscillations:

Lemma 2 A solution of equation (31) with the boundary condition (10) is given by:

W = Aot [( +1¢ ) e+ ( _16 ) e—m] (with z € C). (32)

We leave the proof to the reader.
As previously, we can write:

w(l) = 2—CSinh(zL)eZ(“Z_c)t7 (33)
Po

mU(L) = @Sinh(ZL)Z(,uZ—c)ez(“Z—C)t7 (34)
Po

AP(L) = 2¢ cosh(zL)e" 9" . (35)



Hence, the fundamental equation (13) is satisfied if and only if:

2me

~——sinh(2L)z(puz — ¢) = 2¢* cosh(z21L) , (36)
Po
which can be written as: c
2(pz —c)tanh(zL) = Pot , (37)
m
or:
: pz . pol.
(—izL) (1 —— ) tan(—izl) = —.
¢ m
(38)

Equation (38) has conjugate solutions. It is consistent with (26): indeed, if we take y = 0
in (38), it can be proved that z = :EE, with w given by (26) (the reader may check that a
¢

complex number r such that r tan(r) € IRT is necessarily on the imaginary axis).

Remark 1: Before analyzing the relation (38), let us come back to (31), and investigate
whether it was valid to keep only the diffusion error term. If we add the dispersion term, we
write, up to second order in Az and At:
0 1 0 1
Wt—l_(CQ O)Wl’—,uwxx‘l'A(Cz O)Wxamcv (39)

where the dispersion coefficient A is given by (30). As above for Lemma 2, we can show that
the elementary solutions of equation (39) with the boundary condition (10) are given by:

z Z—C CZ2 1 zZx 1 —Zx
W = ex(pz—ctA )tl(_l_c)e —I—(_C)e ] (for z € C). (40)

Then, the equation (38) for z becomes:
2
=me sinh(2L)2(pz — ¢ + Aez?) = 2¢? cosh(z1) . (41)
Po
Of course, the preceding equation reduces to (38) when A = 0. But we see also that the

influence of the dispersion term is much weaker than the one of the diffusion term, since the
2 .
w

ratio is small (when g and A are small, i.e. for z &= £—):
pz ¢
| Aez?| 1—2v\ wAz
= . (42)
|z 3 ¢

Therefore, we will actually neglect the dispersion error in the sequel, and analyse equation (38)
instead of (41). e

It is also interesting to analyse the dependence of the solution z of (38) on the diffusion
parameter p. We can linearize the equation for z around p = 0, knowing that for u = 0,

» =+ We obtain (the details are omitted):
¢

dIm (z(pz —¢)) o (43)
al'[/ Z:l;t_iw/c ’



ORe (2(pz — c)) B _ _w_2 [1 _ [1 + M (1 + @)] _1] ‘ (44)

n=0 2 2
al'[/ z=%iw/c ¢ Poc

Thus, from (43), it follows that the temporal pulsation of the elementary waves are changed
only at the second order when p is small (recall from Lemma 2 that z(uz — ¢) is precisely the
coefficient of the time variable ¢ in the solution (32)).

The interpretation of (44) is less obvious. For the sake of convenience, we have considered so
far complex variables, but we should now come back to the actual (real) variables, and observe

¢
the actual piston motion. With our complex solution, we have & = — sinh(zL)eZ(“Z_c)t, whence
2¢ . . . .
= ——sinh(zL)e™, with @ = 2(uz—c). Then, it is easy to check that we can write an equation
apg

of the form:

mi = ax + pi (45)
for the piston, with a and j real, by taking:
a=—mla? = —m|z(puz — ¢)]*, B =2mRe(a) =2mRe (2(uz —¢)) . (46)
Thus, we are now able to know the stiffness and the damping induced by the fluid on the piston.
For = 0, we find of course a = —mw? and 3 = 0. For a small diffusion u, we get from (43)
and (44):
2mw? pol m2w?\ 7 9
= - 1—|14+—11 4
p 3 [—I_m(—l_pgcz pt O), (47)
a = —mw?+0(p?). (48)
(49)

Remark 2: We achieved the same study with retaining the second-order terms (but still
neglecting the dispersion term in the modified equation). It shows that no second-order term is
introduced in the expansion of the damping 3 by the diffusion p. The influence of the dispersion
error will be analysed with second-order accurate schemes in Section 6.2 below. e

3.2 Roles of the scheme for the structure and of the discrete boundary
conditions

Through a and 3, the above analysis predicts analytical values for the numerically observed
pulsation and damping of the piston oscillations. For the pulsation of the coupled system, the
prediction (26) reveals to compare very well with numerical simulations: it gives a predicted
pulsation with a relative error less than one percent. This great accuracy is partly explained by
(48). But the analytically predicted damping factor § is not so accurate and is even sometimes
quite far from the numerical results.

In the following, we give explanations for this inaccuracy of the above analysis. We will
derive a new formula for the numerical damping 3 of the system, and we will check the validity
of the preceding prediction for a.



3.2.1 Sources of numerical damping

In the physical problem, we did not introduce any dissipation which could produce damping
(d=01in (12)). The whole damping is therefore of numerical origin. The first origin lies in the
numerical scheme for the fluid, and was taken into account through the modified equation. But
there is a second origin of numerical dissipation, which is related to the temporal integration
of the piston’s motion.

Indeed, in the above analysis, we considered that the numerical solution W in the fluid is no
longer discrete, but continuous in space and time: it is the solution (32) of the modified equation
(31), and we considered that all spatial and temporal errors of the fluid approximation are dealt
with through the modified equation. However, we also used a time-continuous representation
for the piston, since we coupled the solution (32) with the differential piston equation (13). In
practice, in the numerical simulations, we use a discrete form of the fundamental equation, and
the numerical errors related to this approximation have been neglected in the above analysis,
since they are not taken into account in the modified equation of the fluid.

For instance, if the speed of the piston is computed with the scheme:

in—l—l — gn

me———— = AP'(L) (50)

then the argument used in the preceding section to obtain equations (36) and (38) is no longer
valid. We then have to introduce the discrete temporal scheme in our reasoning.

3.2.2 New predictions for the numerical damping

Let us therefore come back to (32), and search a new equation for z, assuming that the scheme
(50) is used for the piston. From (33) and (35), we deduce (still denoting a = z(puz — ¢)):

alt
—12
meTp—z sinh(zL) = 2¢* cosh(zL) , (51)
which can be rewritten as:
poc  aAt
—c)tanh(zl)= ——/———
s — o) tanh (=) = 220D

(52)
which now replaces (37). '
The expansion of z around the value zy = +2 (where w is given by (26)) in terms of p and
¢
At (which are assumed to be small with respect to ¢?/w and 1/w respectively) takes the form:
: I 2,2\ [,,2 2
z:iﬁ—[upo—(u%)] [w—,u—l—w—At], (53)
¢ m poe

hence:

(54)

10



The preceding formula appears to give a very good prediction of the total numerical damp-
ing. For example, we simulated the motion of a 0.8kg piston with a one meter chamber, and
tried several values of the Courant number (with 50 mesh points). With v = 0.045, we numer-
ically found # = —1.87, whereas our formula (54) predicts 5 = —1.80. For v = 0.45, we found
3 = —1.33 and the analytical prediction is 3 = —1.32. The average error is then less than 4%
in the first case, less than 1% in the latter.

4 Coupled eigenvector analysis

In the previous section, we were only able to take partially into account the influence of the
discrete treatment of the boundary conditions on the numerical simulations. We now have
to be more specific about these conditions, and analyse in details their overall effect on the
numerical damping of the piston oscillations.

To be more specific, let us write down the boundary conditions for the family of schemes
considered in this section. We call N the number of computational cells in the chamber [0, L]
(i.e. NAz = L), and write the explicit scheme under the following form, for 1 < ¢ < N:

I/Vin'i'1 - wr . (I)?-|-1/2 - @?_1/2 _
At Az

0. (55)
Outside the boundaries, the numerical flux <I>?_|_1/2 is based on first-order upwinding. For <I>7f/2,
at the fixed wall, we use upwinding with a "mirror” cell, i.e. a fictitious cell with the same
density as in the first cell and the opposite momentum of the first true cell. At the other end
of the chamber, we have to evaluate a flux through the moving piston; we take:

n vy
N+1/2:( PoVp ) i (56)

Apj

Here, V7 is a prediction of the piston speed, evaluated as a weighted average of the n" and
n + 1% computational speeds by the formulas:

Vn-l—l _ Vn
mL— 2 = PAp (57)
* n n+1
Vi=({1-0)V+0vV ", (58)

where 6 is a fixed parameter. Such conditions are commonly used in aeroelasticity simulations
(see e.g. [T]).

At first sight, we are not able to really take these conditions into acount in the modified
equation analysis of the previous section. This is why we now introduce a second method,
which we call the “coupled eigenvector analysis”.

4.1 Presentation of the analysis

The analysis which we now present is an eigenvector and eigenvalues analysis. We consider the
set of all computational values at a certain time step, for both the fluid and the piston, and

11



we see it as an unknown vector which is changing during time integration. We still denote by
W the vector of the conserved variables for the fluid and by V), the speed of the piston. Let us
also add that we still consider the physically undamped and free (i.e. with no spring) piston
(d=k=0in (12)).

Writing the complete scheme under the form:

n+1 n n
) er) e

we are going to search the eigenvectors and eigenvalues of the linear operator F, which in
particular takes into account the detailed formulation of the discrete coupling between fluid
and structure.

From our knowledge of the exact solution (21) and of the modified solution (32), we may
make a good guess for the eigenvectors of the coupled operator F. We set:

wp o = ArWtes 1 4 k9 BW e
wr = AW TerE 4 B"W=e™#" for l<i< N, (60)
Wi = kT AnWtery 4 B"W=em N |
o1 . . . . n 1
where z; = [ ¢ — 3 Az is the center of the th cell, z € C is a spatial pulsation, W+ = L.

are the eigenvectors of the acoustic matrix appearing in (9), A” and B™ are the amplitudes
of the forward and backward waves, k, and kq are correction coefficients at both ends of the
chamber.

Our goal is to find A", B", kg, kg and 2 such that:

1. the solution at time t"t! = ™ + At has the form:

Wln—l—l — An-l—l W—I— 7Tl + k9 Bn—l—l W= e ?%1 ,
wrtt = At tesmi 4 B W=e % forl<i< N, (61)
W]?;Lf—l—l — kd An—l—l W—I—esz + Bn—l—l W= e %N :

2. there exists a complex number A such that:

An-l—l Bn-l—l Vpn-l-l

p

= . (62)

4.2 Coupled eigenvector analysis with a predicted piston speed

Let us conduct this eigenvector analysis, for the scheme detailed in equations (55)-(58). We
give the main outlines of the whole computation. First we write the evolution equation for the
fluid in a medium cell (including cells 2 and N — 1, because the upwind fluxes for these cells
do not involve neither k, nor kq). Writing 2 = z;, for 2 < ¢ < N — 1, we have:

A
Win-l-l — Wzn‘|‘_

i
3 A WH =AW e — AT e 4 BT A (63)
z

12



Identifying with (62), we get:

AT BT At (e —1) = .

Ar  Bn Az (64)

If we write the same equation for the first cell, we obtain:

At

W=

[c (WF — W) kyB ™1 — cA"We™™ 4 cB”W_e_Z(“"'Ax)] . (65)
and the identification implies:

ky = 1, (66)
B" = A", (67)

The equation for the last cell writes:

W](Lf‘l‘l — W;{L] _I_ ﬁ[ CAHW+€Z(1’N—A1’) _ CBnW_e_Z$N

Az oV cApt (68)
= (W W) - = (W - ]
Introducing the expressions of V" and Apy;, the preceding equation implies:
kg = 1+ (1 — 62Aw) e~ 2N , (69)
v 2Nt
_r _ zAz\ —zm
o - [2coshzx]\r—|—(1 e )e N]
2c _ —2A 1 — A :|
p” [e (e ) 5 (e e e ) (70)

Lastly, writing the last relation (62), we find an additional equation which determines z

(and therefore A from (64)):

Az

% m + HCAt] [2 cosh zxn + (1 — eZA“’) e_Zl’N] =

—3 [e‘”N (e_ZAx — 1) — sinh zzy + %e_mN (eZAx — 1)] .

Po (71)

We recall that, in this equation, xy is given by x = L — Az /2. Notice also that, as expected,
the amplitudes A,, B, are determined only up to a multiplicative constant.

Equation (71) is very interesting. For example, if we assume that § = 0 and if we take the
limit when At and Az tend to 0, we find exactly equation (26).

Assuming that Az and At are very small (compared with ¢/w and 1/w respectively), we

can obtain the following expansion of z around the value zg = +2 given by (26):
c

2 I 2.2\7"1
Z:ZO_“_[H”; (1+ it )] [Az — 20cAt] . (72)

2¢? pie
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Defining the coefficient a by setting A = exp(aAt), we can again define the stiffness coef-
ficient a and the continuous damping S as in (46). Then « can be shown to be equal to its

previous value &« = —mw? up to second-order accuracy, whereas, using (64) and (72), we find:
B Wi v—1)Ax w?(20v — 1)Ax
2m 2¢ pol m2w? )
2e |1+ 22 1+ 22
m pic
(73)

Thus, we now have a precise analytical prediction of the numerical damping effect, which
takes into account in full detail the numerical formulation (55)-(58). The question is then to
compare this prediction with the prediction (54) obtained with the modified equation analysis.

5 Comparing the two methods

The first remark to be pointed out about equation (73) is the following one: if we take § = 0,
corresponding to the choice V' = VI in (58), we find exactly the same prediction for § as in
(54) (with g in (54) given by (29)). This is the reason why our previous prediction (54) turned
out to be valid when we took V¥ = V', as in the simulations whose results are reported at the
very end of Section 3.

Now, if we take # # 0in (73), we find a different prediction. Again, this analytical prediction
revealed to be very accurate when compared with the actually observed damping of the piston
in a numerical simulation: for the same physical parameters as before but with 8 = 1, the
simulation gave § = —2.73, whereas (73) predicts § = —2.82, i.e. the error in the prediction is
again less than 4%.

It is also worth noticing that, when 8 > 0, 8 < f(y—o9. Taking a positive value for 6
gives more damping and more stable numerical simulations. This explains the usual choice of
aeroelasticians.

At this point, we may wonder whether the modified equation analysis is really restricted to
cases where § = 0: is it really impossible to analyse the schemes operating with 6 # 0 using
the modified equation analysis? This question leads us to revisit our first analysis, and will
also allow us to better understand the equations (57)-(58).

Indeed, for the modified equation analysis, we did not explicitly describe the discrete bound-
ary condition at the piston. Of course, the treatment of the boundary has no influence on the
modified equation itself, which concerns only the internal part of the flow. But, in practice,
the formulation of the boundary condition with the parameter # induces a certain time shift
between the fluid and the structure, and this acts as a modified boundary condition for the
modified equation.

Let us be more specific, and show how we can handle the dependence on # within the
modified equation analysis. To make the boundary flux (56) consistent with the other numerical
fluxes, we have to consider that V' is an approximation of the piston speed at time nA¢. But
then, from (58), the nt" computational piston speed V,' represents the speed of the piston at
time (n — #)At ! In other words, for the scheme (55)-(58) with the parameter 6, we should
replace equation (50) in the modified equation analysis by:

B[(n+1—0)Al] — #[(n — §)Al]
mn Al

= AP(L,nAt) . (74)
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Instead of (51), we then find:

alt
—-12
€_a€At€Tp—§ Sinh(ZL) = 262 COSh(ZL) ’ (75)

m

and the final result for 3, which replaces (54), becomes:

(76)

It is straightforward to see that this prediction exactly coincides with (73) (again with the
value (29) of ). We have therefore extended the modified equation analysis to the above family
of schemes, for any value of the parameter 8, and we have also learnt how to interprete the role
of this parameter: V* is an approximation of the piston speed at time nAt¢, and V" must be
seen as an evaluation of the piston speed at time (n — §)At.

Remark 3: Since the modified equation analysis is easier to conduct than the eigenvector
analysis, the preceding remarks about the extension of the former make it possible to analyse
situations where the eigenvector analysis would be very complex or would even fail, because
finding the analytical form of the eigenvectors is impossible. For example, we simulated a
slightly different problem, with acoustic waves propagating in a chamber of fixed length I
(without a piston), but moving on tracks without friction. The coupled eigenvector analysis is
feasible but complex. On the contrary, it is easy to solve the modified equation; we find that:

W= (W - Wb ot (17)

For the “f-scheme” (i.e. with discrete equations similar to (57)-(58) for the chamber velocity),
the complex pulsation z is solution of:

alAt
—aonr € — 1 2L 2epo
. tanh(Z=H=Z=R
e Y anh( 5 ) - (78)
Then, the new pulsation @ and the new damping /3 are given by:
wlL m L
tan(—) = ———
a'n( 20 ) pOL 2C Y (79)
and:
B @i r—-1)Az o (20v — 1)Ax
2m 2¢ pol m2o? )
m 4pge
(80)

These predictions were numerically tested and we again found an error less than 3%. More-
over, we also performed artificially undamped solutions of the physical problem with an ade-
quate value of 6 (see Section 7.2 below). o
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6 Analysing other schemes

We now use the two previous methods in order to analyse some other schemes for our model
fluid-structure problem.

6.1 Schemes with predicted pressure and speed

In this part, we conduct the coupled eigenvector analysis for other schemes which are also
commonly used by aeroelasticians, where a predicted pressure at the piston is used. Instead of
(56), we now use a wall flux given by:

n _ pOV*
PN yi2 = ( CZAZ* ) ’ (81)
with:
Ap™ = (1- 6) Apf + AP (82)
where Ap”"’l is predicted with the first component of (68). The predicted piston speed V" is

still given by (57)-(58).
The computation follows the same lines as above. Equations (64), (66) and (67) still hold,
and the evolution equations for the solution in the last cell gives:

At
Apn-l—l Ap?\f + E [CAnez(xN—Aw) _ e¢B e 7N _ pov*] 7 (83)
cAt n z(zy—Axz) n_—zx *
Alpw! = Alpu)y + [cArelon=he) L epnemson — cApy] (84)

Introducing the expressions of V* and Ap*, we deduce from the preceding equations (after a
quite heavy computation) that:

—2zz N (1 ZAJJ) ( _ C¢At)
kg = CgbAt A ’ (85)
V) c pocO Al
op_ e—zAac _ Po ) eFEN | pTFENY 4 oTHEN ez(xN—Ax) ) 36
Ar Po [( ) (86)
Using (57) and the last equality in (62), we finally obtain the following relation fixing 2:
A AN
[ pOAw + e~?AT + Poc ] [kdesz + e—sz] — ez(xN—Ax) _ ¢TFIN
m(e=?27 — 1) m
(87)

Assuming again that Az and At are very small (respectively compared with c¢/w and 1/w),

w
we can obtain the new expansion of z around the value zp = £—. We first find:
c

kg=14+ 2z (1 + e_QLZO) (cpAt — Az) (88)
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whence:

z:zo—w—jll—l—poL (1+m22“’2)]_ [Az — 2(8 — ¢)eAd] . (89)

poc?

Using the value (64) of A, we find again that « has only a second-order variation, and we
obtain a new value of the “continuous damping” 5:

B Wi v —1)Aw W22(0 — ¢)v — 1]Aw

2m 2¢ B 2,2\ "
% l1+@(1+—m2“ )]
p

(90)

This equation is again very close to (73). Naturally, it coincides with (73) if we take ¢ = 0,
but it gives a different prediction for 3 if ¢ # 0. In order to test this expression, we performed
four numerical simulations, with § = 0 or 1 and ¢ = 0 or 1 (and v = 0.45). The results are
presented in the following table:

(0. 9) 0,0) | (0.1) | (1,0) | (1, 1)
Numerical damping || - 1.326 | + 0.250 | - 2.917 | - 1.318
Predicted damping || - 1.321 | + 0.181 | - 2.823 | - 1.321

Table 1: Numerically observed and analytically predicted values
of the damping factor 3 for the (8, ¢)-scheme.

We again have a very good agreement between the prediction and the results of the simulations.
Relative errors between the analytically predicted and the numerically observed damping are
less than 3%, except in the case (8,¢) = (0,1) (in this case, the absolute error between the
prediction and the numerical value of § remains small, but the relative error is larger because
3 itself is rather small). Thus, the analytical prediction (90) of the numerical damping appears
to be quite satisfactory for the class of schemes under consideration.

Remark 4: Notice also on Table 1 that the simulation with (8,¢) = (0,1) ran unstable:
3 > 0. We see here that the method for the coupled system might be unstable, although the
fluid scheme in itself operates under stable conditions (v < 1). This point is investigated in
our next report [14]. e

6.2 Second-order accurate schemes

So far, we have restricted our attention to first-order accurate schemes for the fluid approxi-
mation. In this section, we turn to a second-order accurate explicit scheme and analyse the
influence of this modification on our analytical predictions of the stiffness and damping para-
meters a and 3. We are going to use the modified equation analysis.

Let us therefore assume that we use for the integration of (9) a scheme which is second-
order accurate in both time and space (such as the Lax-Wendroff, or second-order upwind, or
leap-frog schemes...). Then, the modified equation writes, up to second-order accuracy:

0 1 0 1
Wt‘|‘(62 O)Wx—/\(cz O)Wxxxv (91)
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Az?

with A = O(Az?) (for instance, A =
see [1]).

In order to reach also second-order accuracy for the structure, we use the scheme (56)-(58)
with = 1/2. Indeed, when 6 = 1/2, in full agreement with our previous observations on the
meaning of § and the interpretation of V" (see Section 5), we can rewrite (56)-(58) as:

n poVy
(I)N-|—1/2 = ( cQOA;”N ) ) (92)

(v — 1) for the leap-frog and Lax-Wendroff schemes;

Vpn—l/? 1 Vpn—l—l/? Vpn—l—l/? _ Vpn—l/?
2 > At
and this scheme is obviously second-order accurate.
Then, we can easily conduct the modified equation analysis. Using (40), we can show that
the equation for z still takes the form (75), with @ = cz(A2? — 1). The asymptotic expansions

V= = ApY (93)

then give:
5.3
B 9 w’c” L 9
a = —mw” —2m—s PoTew A+ O(N),
¢ 262 4 m22
Z_ o).
- (95)

We see that the dispersion parameter A produces a perturbation of the second order in
Az in the pulsation (like the diffusion p) and a negligible fourth order perturbation on the
damping.

6.3 Implicit time integration schemes

In this section, we consider the temporal integration of our acoustic model with implicit
schemes. We will still use the coupled eigenvector analysis to predict the spatial and tem-
poral pulsations.

6.3.1 Presentation of the schemes

We now present a staggered implicit scheme for the solution of our model problem. For the
time step from t" to t"*1, we first compute the evolution of the fluid, and then the evolution
of the structure in a second step. For the fluid integration, we use predictions of the evolution
of the structure based on its state at time ¢" (but the state of the structure at ¢"*! is not
available in this fluid step); on the other hand, for the structural integration, we can use the
state of the fluid at time ¢"+1,

In the preceding sections (except in Section 6.2), we have used a classical first-order accurate
explicit upwind scheme. The flux at the cell interfaces in the fluid was given by:

?4—1/2 = A+Win + AW, (96)
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1
where AT = = ( j:; ! , and the boundary fluxes were given as:
2\ ¢ =c
no__ 0 n — povp*
1/2_(02Ap7f—cA(pu)7f) ) N+1/2_(02Ap*) ) (97)
with (from (82)):
. . CPOAL
[ e Ap™ (98)
At
Ap* = Apy" + Z—x (A*Wh_y + AW = V) (99)

All fluxes we just wrote are basically explicit. We consider from now on that, as far as the
fluid is concerned, we use hybrid explicit-implicit fluxes obtained by substituting:

P — (1 — ) F™ 4 xF™HE (100)

Moreover, in order to consider all implicit possibilities since the fluid’s state F™t! is already
known, we introduce a new updating scheme for the piston. Instead of (57), we will write:

n+1l _ n
Vp Vp

M = ? ((1 —P)Ap" + QbAp”‘H) . (101)

For the fluid alone, this scheme is unconditionally stable when y > 1/2. If y < 1/2, the
hybrid scheme is stable under the condition:

(102)

6.3.2 Coupled eigenvector analysis

We present again the main outlines of the computation. Writing implicit fluxes instead of
explicit ones in the conservation equations for a standard cell gives instead of (64) the new
relation:

cAt

_ _ —zAx
AZI - B;? i Clitm L) A (103)
1 1 — e—2Az
txy, (L—e8)

The conservation equation for the first cell again gives equations (66) and (67). Lastly, the
conservation equation for the last cell gives back (after some long calculations) equations (85)
and (86). Then, using the new equations (101) and (103), we find a new equation for z:

poAz

Zr —zx _ 2(x —Al’ o
m 0+ —1)| [kge™N + ¢ N]_e(N ) _ om2N

_I_e—zAac 14

pocAt
m

(104)

Now, we want to study this equation when Az is considered as very small (compared with
¢/w). But we can no longer consider At as small since the time step At is not limited by any
CFL-like condition (if we choose y > 1/2).
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First we must notice that the expansion (88) for k4 is no longer valid, since At may be not
small. In order to avoid any boundary artefact at spatial convergence, we would like to have:

Alglcrgo kg=1. (105)

This condition was automatically met for explicit schemes. For implicit schemes, the condition
(105) will be satisfied if we take:

6=0.

(106)

With some easy computations, we find that z tends towards a limit z; when Az tends to 0,
with z; solution of:

zmmm@ﬂgz—%a1—ﬁauw+¢—1». (107)

Thus, if we want the spatial and temporal pulsation to take a value independent of the time
step, we have to take:

Or=1.

(108)

If (108) holds, then z = zp = + 2 with w given by (26). We can now write the expansion
¢

of the solution z of (104) around z; in terms of Ax:

2 I 2 2\7° 1!
Z:%_K{HWOG+m“)]AL (109)

2c? m pic?

and we deduce the expansion of A:

2, 2\17!
C14i(x - DwAt WAL m Poc

A= - Az . 110
14 ixywAt 2¢ (1+ inAt)z (110)

We have chosen here z5 = —I—E. If we had chosen the conjugate value for zp, we would have

c
found the conjugate value of A. We see also that:

14+ iy — DwAt

lim A= 111
Aalcrgo 1+ ixwAt ( )
Recalling that the stiffness coefficient « is defined by a = —mla|?, where a is chosen such that

A = exp(aAt), we see that a will have a second-order variation from its unperturbed value
—mw? if A = exp(FiwAt) + O(At?) (in the limit of Az going to 0). From (111), this can be
realized if we choose:

X=§-

(112)

With this choice, the stiffness and damping coeflicients a and 3 have the following expansions:

WA AL

a = —mw? (1 — + 0 (wSAtS) + O(AxQ)) ,

(113)
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-1
B —w? pol m2w? 9
— = 1- |14+ — |14 —= A Az®) .
5 A Sl E s z +O(Az?)
2¢ 1+ 1

(114)

Let us make a few remarks on this last prediction. First, we see that 3 is always negative
(and this point is clearly related with the unconditional stability of the hybrid explicit-implicit
scheme when x = 1/2). Notice also that the free parameters § and  (on which we have
imposed the relation (108)) are not involved in the preceding analytical prediction for 3.

The unconditional global stability of these coupled schemes makes it possible to choose

T 27
the time step according to accuracy requirements. For instance, for At = 75 T = — being
w
the period of the system, the relation (113) predicts only a one percent error on the system
pulsation a. However, numerical tests tend to show that the preceding predictions are not as
accurate as expected. A possible explanation is that terms of higher order in Az in (113) and

(114) may not be negligible.

Remark 5: We see on (114) that the damping does depend on the time step, and more precisely
that increasing At (with Az small and fixed) decreases the damping (i.e. increases § towards
0). This is a somewhat surprising conclusion, since the dissipation error of implicit scheme
usually increases with the time step. But we should keep in mind here that the dissipation

error of our implicit scheme (which is given by p = % (14 (2x — 1)v) is independent of At

1
when x = 5

7 Discussion and conclusions

In this section, we gather the conclusions of the preceding analyses, and show how their re-
sults can be used in order to reduce the overall numerical damping in the simulations of the
model problem. Since our objective is to improve the numerical simulations of fluid-structure
interactions in more general situations, we will try to extend our conclusions to more complex
cases.

7.1 Prediction of the numerical damping

As a first general conclusion, we have recovered on our model problem some features of the
numerical schemes which are commonly used in aeroelasticity. First, for schemes like (56)-
(58), where a prediction of the speed of the structure is used for the time integration of the
fluid, we found that the resulting numerical damping increases with the time lag 6 between the
fluid and the structure (i.e., |3| increases with #). On the opposite, for schemes like (81)-(82),
where the pressure is predicted at the fluid-structure boundary, we proved that the numerical
damping decreases with the delay in the prediction of the pressure (i.e., || decreases with ¢).
Both results are illustrated on Figure 2, where we have presented the speed of the piston as
function of time for four choices of the parameters 8 and ¢: the solid line, the dashed line and
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Figure 2: Piston speed as a function of time with different predictions using the (8, ¢) scheme.

the dotted line were respectively obtained with (8,¢) = (0,0)and(1,1), with (8,¢) = (1,0)
and with (6,¢) = (0,1). In full agreement with our analyses, we also notice on Figure 2 that
changing the parameters 8 and ¢ has a very little effect on the numerically observed pulsation.

We have then achieved our first goal: an accurate prediction of the global numerical damp-
ing. We have also explained why both predictions have opposite effects on the global damping.
Moreover, the fact that this observation fully agrees with the general aeroelasticity know-how
[12, 13] shows that analysing our linear model problem can be useful for understanding more
general situations in aeroealsticity.

7.2 Compensation of the numerical damping

Now, as said in the introduction, we want to use our analytical predictions of the numerical
results in order to reduce the numerical damping.

We will have to distinguish between two situations. Fluid-structure simulations can indeed
be made in one of the two following opposite conditions: either one knows a priori a prediction
of the pulsation and of the exact damping of the physical system, or no such prediction is
available. In fact, an intermediate case could be considered, where upper and/or lower bounds
for these values are known. In the following, we successively consider these cases and show
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which conclusions can be drawn from the previous analyses.

7.2.1 Simulations with available predictions

Let us come back for a moment to our model acoustic problem, and perform some other
numerical experiments, using the (6, ¢)-schemes of Section 6.1. Then, we can use our analytical
prediction (90) to perform simulations where 3 is as small as possible: evaluating all terms in
(90), we find that, for v = 0.45, § vanishes if ¢ — 6 = 0.88. This was realized with the couples
(0.12, 1.00) and (-0.88,0.00) for (6, ¢), and we actually obtained piston oscillations of fixed
amplitude !

Therefore, when the pulsation and the damping of the physical system are known a priori,
a correction of the scheme can be derived from our analytical predictions in order to recover
the correct damping. For more general situations, this objective may be reached only approx-
imately, by taking average values for the physical parameters (such as L, pg..) involved in the
analytical expression (90).

For our model problem, we also found an additional way of correcting the numerical scheme
(but extending this second type of modification to multi-dimensional problem may be uneasy).
We used a very simple scheme (with # = 0 and ¢ = 0), but modified the piston time integration
scheme as follows:

Vn—l—l _ Vn
m% = CzApn — (Sd Vpn 5 (115)

where ¢d is a small adaptable negative damping factor. Using either the modified equation or
the coupled eigenvector analyses, it can be shown that the overall damping 3 vanishes if the
artificial negative damping éd is taken equal to:

L 2 2,2
§d = — po““(um“), (116)

2 p2c?

where 1 is given by (29). The efficiency of this modification is illustrated on Figure 3, where
we observe a nearly perfectly undamped numerical simulation.

Let us also emphasize that all methods presented above can be applied to cases where the
piston is physically damped and/or linked to a spring, that is with non-zero coefficients d or k
n (12). The major difference is that the exact pulsation w is no longer given by (26), but is
obtained from the complex solution z of:

k
(mcz +d+ —) tanh(zL) = —poc . (117)
ze

Remark 6: Following the same approach as above for the explicit (8, ¢)-scheme, when we used
equation (90) in order to perform simulations with no global damping, let us now examine if
we can eliminate the first-order damping term written in (114) for the implicit scheme of
Section 6.3. Ideally, we would like to do this without losing the second-order accuracy on «
shown in (113). Thus, we will relax the conditions (108) and (112) and set instead:

1
X=gt7. 0+v=1+6, (118)
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Figure 3: Piston’s speed for two simulations :
via negative damping éd of the piston.

24



where v and ¢ have to be chosen. Assuming that c6At is small in (107), we obtain the following
first-order expansions:

2 2
B 1 w w?At
z=z+D [—ﬁAw—l— . 6] , (119)
L 2,,2
where D = 1—|—p0— (1—|—%), and:
m poe
1 ZA
, 14 w2AL? (— —7) DAL ZEE (D 1) + WAL
‘o [1 - zwAt/Q] 4 ¢ (120)
T+ iwAt/2 w?At?
14
4
We can now obtain the desired result:
2 A 42
o= —mw? (1 R U ((wany) + O(sz)) . B =0(A2?), (121)
provided that we take:
_go_ B¢ (122)
10T T

This result raises a problem: since 7 is negative, we will have xy < 1/2 from (118) and we
may loose the unconditional stability of the scheme for the fluid; but this does not happen,

since (118) and (122) imply that v =

T o in view of (102), we obtain an unconditionally

(marginally) stable scheme. It seems therefore that we have found a close connection between
our desire to suppress the global damping for the coupled system and the stability limit for the
hybrid explicit-implicit scheme used in the fluid. e

7.2.2 Simulations with unavailable (accurate) prediction

In this part of the discussion, we assume that we do not dispose of predictions for the fun-
damental pulsation and damping of the physical system (this can be for instance the case for
configurations where the masses of the fluid and of the structure are close to each other).

In such a case, most of the predictions presented in the preceding sections cannot be used.
For our model problem with the physically undamped piston, we can however notice that the
global damping factor 3 given by (73) can be made equal to zero (without using any information
on the pulsation w) by taking v = 1 and 6 = 1/2, which respectively produce no numerical
damping in the fluid and in the structure. For the implicit scheme also, we can obtain zero
damping, since no information on w is used to choose v and ¢ in (122). But in these two cases,
these conclusions lead to use numerical schemes operating exactly at their stability limit, which
cannot be useful for more general (nonlinear, multi-dimensional) situations. We therefore have
to find some other methods for reducing the numerical damping.

In the case where the pulsation of the system can be bounded, the method (115) which
introduces an artificial negative damping in the piston equation can provide help in decreasing
the numerical damping in the simulation. Let us indeed call éd(w) the right-hand side of (116)
(notice that éd is a monotone decreasing function of w). If we know a priori a lower bound
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Figure 4: Piston speed for three compensation modes: no compensation (dashed line), compen-
sation via negative damping 8d based on the spring pulsation w, (solid line) or on the coupled
system pulsation w (dotted line).

w > © on the system pulsation w, then we can use the equation (115) for the piston, with
dd = 6d(Q): this is a safe way to obtain a better (less damped) simulation, with no risk of
unstability.

As an example, consider the undamped piston with a spring (i.e., take d = 0 but £ > 0 in
(12)). The pulsation of the coupled system is then given by:

2_ 2 wkL.  wpoc
(w ws) tan( . )= — (123)
where w, = 1/ — is the spring pulsation. In a case where the system pulsation w is larger than
m

the spring pulsation w, we tried the above method, with éd(ws). The results are shown on
Figure 4, where the improvement clearly appears.

Remark 7: Finally, other procedures based on energetic formulations can also be imagined
(but their extensions to multiple dimensions are really not obvious). However, they can give
interesting results for our model problem. Starting from the expression of the fluid energy per

unit volum (—1 + §pu2), assuming that the evolution of the fluid is isentropic and using

the expansions of P, u and p in terms of the perturbations Ap and Awu, we find that the total
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Figure 5: Total energy of the system during the simulation : the upper curve is obtained with
a negative damping based on energy compensation, as in Remark 7.

energy in the system is given by:

E = i (/L CQAp2 + p%Auz) + lmabz . (124)
2p0 0 2

The (constant) equilibrium energy has been omitted in the preceding equation. The reader
will also notice that all first-order terms have disappeared in the expression of the total energy
(these terms exactly cancel because the perturbations Ap, Au and z are solutions of the linear
system (9)-(12).

For a given spatial scheme in the fluid and given time integration schemes for the fluid
and the piston, we can evaluate the variation of the total energy in terms of all computational
values. For instance, for the first-order accurate explicit upwind scheme coupled with the
explicit scheme (57), we obtain:

At cAt
E”+1:E”—C—(1——) Wit — Wi)' B (Wipy — Wi) + O(A2 125
o (17 50 ) S W =W B = W) £ O(AR), (125)
where the symmetric positive definite matrix B is such that W*BW is the discrete form of the
integral term of (124).

Then, as we did in (115), we can add in the piston equation a negative damping éd evaluated

at each time step in order to give back to ths system the amount of energy dissipated during
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the current time step. This procedure has shown very interesting results in the one-dimensional
model problem with an explicit time-integration scheme (see Figure 5). However, the negative
damping had to switched off when the piston speed was too small (this term is basically given by
the relation 6di? = §E, where §E is the dissipated energy). Perturbations on the momentum
balance of the system were also observed. Moreover, if the structure had not been reduced to
a single point, a remaining question would have been to know where — on the structure — and
how give back to the system the dissipated energy. e

7.2.3 Conclusions

The coupled problems which are to be investigated in realistic fluid-structure interactions pro-
blems are so complex that we need to examine simplified model problems in order to analyse in
detail the behaviour of the numerical solution for the coupled system. For the one-dimensional
model problem proposed in this report, we have derived efficient ways of analysing the overall
effect of the numerical schemes on the pulsation and the amplitude of the system oscillations,
and of compensating these effects by modifying the discrete formulations, for a wide class of
numerical methods. There is good hope that several of these techniques can be useful for
more general problems (although this conjecture still needs to be supported by more general
numerical simulations, which we will undertake in a forthcoming work).
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