
Semantic analysis of a control-parallelextension of FortranGilbert Caplain Ren�e Lalement Thierry Salsetjuin 1993N o 93{18

Semantic analysis of a control-parallelextension of FortranGilbert Caplain Ren�e Lalement Thierry SalsetCERMICS, Ecole Nationale des Ponts et Chauss�eesF{93167 Noisy-le-Grand CedexAbstractWe study a correctness property of programs in a subset of Fortran X3H5, a control-parallelextension of Fortran. This property is an equivalence between the parallel program we analyzeand its sequential version. Under some assumptions, we prove that this property follows fromthe preservation of dependences, de�ned on the sequential version, by the control ow and thesynchronizations. To check this preservation, we propose an algorithm which builds a formula(an implication between systems of equations and inequations) from a new kind of block graph.In case the expressions are linear, the algorithm tries to prove that this formula is a tautologyby means of the Omega test.Analyse s�emantique d'une extension�a parall�elisme de contrôle de Fortran1R�esum�eNous �etudions une propri�et�e d'un sous-ensemble de Fortran X3H5, une extension �a par-all�elisme de contrôle de Fortran. Cette propri�et�e est une �equivalence entre le programme par-all�ele �etudi�e et sa version s�equentielle. Moyennant certaines hypoth�eses, nous prouvons que cettepropri�et�e r�esulte de la conservation des d�ependances, d�e�nies sur la version s�equentielle, par leot de contrôle et les synchronisations. Pour v�eri�er cette conservation, nous proposons un algo-rithme qui construit une formule (une implication entre syst�emes d'�equations et d'in�equations)�a partir d'un graphe de blocs. Dans le cas o�u les expressions sont lin�eaires, cet algorithme tentede prouver que cette formule est une tautologie �a l'aide du test Omega.1Ce travail a b�en�e�ci�e d'une aide du Minist�ere de la Recherche et de la Technologie, no 90 S 0961

Contents1 Introduction 32 Language 42.1 A subset of ANSI X3H5 : 42.2 Execution model : 42.3 Serial semantics : 62.4 Correctness : 73 Syntactic de�nitions 73.1 Textual ordering : 73.2 Loop nest of a statement and iteration space : 73.3 Common loop nest and common control type of two statements : : : : : : : : : : : : 93.4 In and Out sets : 103.4.1 In set for an expression : 103.4.2 In and Out sets for a statement : 113.5 Scoping and sharing : 124 Execution predicate 125 Precedences 135.1 Sequential precedence : 135.2 Synchronization precedence : 145.2.1 Event synchronization : 145.2.2 Ordinal synchronization : 145.2.3 Synchronization formula : 145.3 Precedence formula : 156 Data dependences 166.1 Dependence pairs : 166.2 Sharing and dependences : 176.3 Dependence formula : 206.4 Depth and support : 217 Correctness of parallel programs 217.1 Single process execution : 227.2 Deadlock analysis : 237.3 Main result : 248 An algorithm to check the correctness of a program 278.1 Easy cases : 288.2 Non locality of synchronization : 288.3 Block graph : 298.4 Construction of the block graph : 328.5 Computation of precedence formulas : 321

8.6 The formula to be proved : 338.7 Examples : 339 Conclusions 45

2

1 IntroductionThe main trend to give programmers access to parallel machines has been to provide them withparallelizing tools, either automatic or assisted ones. This was backed by the idea that parallelprogramming is too complex, and that the main needs were to port existing sequential codes tothese new machines. However, some programmers like to design their algorithms in a genuineparallel way and are not satis�ed with the output of existing parallelizers, not because of itsquality, but because of the poorness of the understanding they provide. Others, trying to get thebest performance from their costly supercomputers, must carefully parallelize their codes by hand.Our aim is to give the programmer a tool to write parallel programs and to verify them. The kindof parallel programming this report addresses is \Control Parallelism | Single Program MultipleData" (SPMD, Cf. [14]), and is presently used in most shared memory multiprocessors, eitherin the form of calls to libraries or through extensions to a sequential language, usually Fortran.Started in 1989 and supported by supercomputer manufacturers, the Parallel Computing Forumaimed at achieving the standardization of the syntax and semantics of \well understood parallelconstructs". Following the Forum, an ANSI committee has been formed (X3H5), �rst to de�ne alanguage independent model[9], then to bind it to Fortran-77[13], Fortran-90 and C. The languagewe study is the extension of Fortran-77 by the X3H5 parallel constructs.The proposal de�nes what a \standard conforming" program is or is not. Unfortunately, manysuch properties are not decidable, unlike static properties such as type correctness. The usualconservative approach is to reject a program when a property may be unsatis�ed and to acceptit only if the property can be proved. To be able to analyze parallel programs without beingtoo conservative, we restrict our study to a syntactic subset of the X3H5 Fortran language. Acompliant program may be executed with an arbitrary number of processes and must completeexecution without deadlock. A program must not assume a minimum number of processes in orderto avoid a deadlock. In particular, a program must not deadlock when executed with a singleprocess.We begin with the de�nition of the language we study, borrowing its semantics from the \in-tuitive model of program execution" given in the X3H5 proposal. Then, we set up the correctnessproblem: a parallel program and its sequential version, that we de�ne, must have the same ob-servable behavior. This requirement has its origin in the need to consider the existing sequentialprograms as the reference. The next section de�nes several properties on the syntactic level whichwill be useful later on: textual ordering, loop nest of a statement, statement instances and iterationspace of a statement, common loop nest and control type of two statements, variables read andwritten by a statement, scoping. Comparing the sequential run and any parallel run, we need toknow if some statement may not be executed in both runs. While an execution formula can bede�ned in our language for the sequential version of a parallel program, this cannot be extendedto the parallel program, for an execution may be non deterministic. A condition will be giventhat ensures that any parallel execution satis�es the sequential execution formula. We introducethe data dependences in a parallel program, with reference to the sequential order of execution: asequential dependence is safe in the parallel program if it is preserved by what remains of the se-quential control and the synchronizations. Next, a predicate stating a precedence relation betweentwo statement instances is de�ned by combining the sequential control ow, the execution formulaat speci�c statements, and the synchronization relation. We show how to compute this predicate,using a new kind of block graph so that a formula is associated to every path.3

2 Language2.1 A subset of ANSI X3H5The language we study is a subset of Fortran{77 extended by a subset of the X3H5 parallel con-structs. The extensions we include are the combined parallel and worksharing constructs paralleldo and parallel sections, the event and ordinal explicit synchronization; inside a workshar-ing construct, the new statement may be used. We do not consider the more general parallelregions, nor the mutual exclusion mechanisms (structured critical section and unstructuredlock synchronization), and the scommon statement. On the sequential side, we have structuredif and do loops, assignment, scalar and array variables, we exclude goto, procedure call, while,data, equivalence and save statements. We allow for parameters under the form of variablesthat are not written. A program instance is obtained from a program by assigning constant valuesto the parameters. A speci�cation of an abstract syntax for this subset is given in the followingtable.Several restrictions are enforced.� program parameters are not writable� loop indices are not writable, and are not used outside of loops� loop bounds only depend on indices of surrounding loops and program parameters� subscript expressions in arrays only involve index variables and program parameters (staticityof references)� ordinal statements only involve index variables, program parameters and ordinal variablesIn case a statement is embedded in loops, a statement instance is associated to every possiblevalue of the loop index vector, the vector of the index variables of loops within which this statementis embedded, ordered outermost left. The set of these integer vectors is the iteration space ofthe statement. If a denotes a statement and i is in its iteration space, a statement instancewill be denoted by a(i). Some syntactic restrictions above are needed to de�ne the statementinstances. Furthermore, out of convenience, loops and ordinal variables will be normalized, i.e.their increment will be set to 1. Other restrictions will be added later, such as linearity of subscriptand bound expressions and staticity of boolean expressions in if statements, which are required bythe algorithm we will introduce.2.2 Execution modelThe program execution begins with an initial process. A process has a data environment and atleast one of the following attributes: a current statement pointer, a virtual processor. A processruns sequentially until a parallel construct is encountered; then it becomes the base process for thisconstruct. A worksharing construct speci�es a number of threads, i.e., of units of work, which maybe assigned to processes running in parallel: each iteration of a parallel do and each sectionof a parallel sections is a thread. As nested parallelism is allowed, these threads are not thesmallest unit of work that can be passed to a process. When entering a parallel construct a teamof processes is created (the base process may be a member of this team), then each worksharing4

program ::= declaration+ stmt+declaration ::= name dim* typedim ::= integertype ::= INTEGER j REAL j LOGICAL j EVENT j ORDINALstmt ::= assign j if j do j pdo j psections j e-post j e-wait j o-set j o-post j o-waitassign ::= lhs rhslhs ::= scalar-ref j array-refrhs ::= expscalar-ref ::= namearray-ref ::= name explistexplist ::= exp+name ::= identi�erexp ::= : : :if ::= bexp then else endifbexp ::= expthen ::= stmt*else ::= stmt*endif ::= voiddo ::= head body enddohead ::= index lb ubindex ::= namelb ::= expub ::= expbody ::= stmt+enddo ::= voidpdo ::= head new body endpdonew ::= name*endpdo ::= voidpsections ::= new section* endpsectionssection ::= s-head body s-ends-head ::= name s-waits-end ::= voids-wait ::= name*endpsections ::= voide-post ::= lhse-wait ::= lhso-set ::= lhs expo-post ::= lhs expo-wait ::= lhs expTable 1: Abstract syntax of the language5

thread is assigned to some team member until all work de�ned by the construct is completed. Ifthe worksharing is ordered, this assignment and the beginning of each process must be donesequentially: in the index ordering for a parallel do, in the section ordering in a parallelsections. Otherwise, the assignment may be done in any order. Team members which are notassigned work and members which have completed their work wait at the end of the construct untilall work is completed.Each team member shares its data environment with the base process, except for private objectsspeci�ed by the parallel construct. The index variable of a parallel do is implicitly private, otherobjects are explicitly made private through the new statement, which de�nes a new scope for thenames it refers to. When a process completes its assigned work, all updates to the shared dataenvironment are made available to the other team members. When entering the parallel construct,a new instance of private objects is created in the data environment of each member of the team:here, creation means memory allocation, but neither initialization nor copy of the object from theglobal environment. Notice that the private attribute is relative to the process and not to thethread: all the threads executed by the same process share the same private object.At the end of a parallel construct, the team is dissolved and its base process continues execution.Two mechanisms for explicit synchronization are available: events and ordinals (or sequences).An event has one of two de�ned values: cleared and posted. Unde�ned when created, an eventgets a value by one of the atomic statements clear and post. The wait statement tests the valueof the event, continues if this value is posted, and repeats this step at a later time otherwise. Eachof these statements is a synchronization point where all shared objects are made consistent to theprocesses owning the event.An ordinal is a counting semaphore used to communicate between loop iterations or distinctloops. It has integer values, is initialized to an integer by the set statement, is incremented bypost and tested by wait. Increment and test are synchronization points where all shared objectsare made consistent. Moreover, post(o; n) compares the value of ordinal o to integer n� 1; if thisvalue is less than n�1, the statement is retried at a later time, and if it is equal to n�1, it proceedsincrementing ordinal o. wait(o; n) compares the value of o to n; if it is less than n, the statementis retried, and otherwise proceeds.It is straightforward to prove that our language does not allow in�nite loops: all programs cometo an end, either a normal termination, or a deadlock. A waiting statement is a statement on whichthe control may come to a wait, till some condition is met. In our language subset, the waitingstatements are the event and ordinal wait, the ordinal post, the wait clause of a section, the endparallel do and end parallel sections.2.3 Serial semanticsWith every (parallel) program is associated its sequential version, which is the result of the trans-formation of parallel do into do, the deletion1 of parallel sections, section, end parallelsections and explicit synchronization statements, and the substitution of new names for namesspeci�ed in new statements within their scope; this last point will be expanded later on.1Instead of deleting these statements, it will be more convenient to replace them by ordinary continue statementsin order to keep track of them. 6

The intended observable behavior of the parallel program is that of its sequential version,whose semantics is (admittedly) well-de�ned. The di�erences between the original program and itssequential version lie in two new features of the parallel constructs:� the execution order of statements is not completely speci�ed� the data environment is not always the same, because of new statementsThe existence of a serial semantics is a rather peculiar requirement which does not necessarilyhold in any study dealing with parallel programs. For instance, the full X3H5 extensions allow towrite a parallel program to search one possible solution to a constraint problem by proceeding inseveral directions at once, and stopping as soon as one solution is found. Such a program givesnon-deterministic outputs and is not required to �nd the same solution as its sequential version (ofsome kind which remains to be de�ned for the full language).2.4 CorrectnessOur aim is to prove the correctness of a parallel program. But correctness against what? Usuallya correctness proof is given for a speci�cation or for some structural property, such as safety orliveness. In our case, the speci�cation is the behavior of the sequential version of the program, andthe structural properties are those of this version.We would like to show that all variables coming to be computed must, in both versions, undergothe same computations and, therefore, display the same values.Thus, a correct parallel program can be seen as some kind of parallelization of a sequentialprogram (and not as a genuine parallel program). The improvement sought through the paral-lelization, in this context, lies only in the ability to run the program faster, by allowing severalstatements to be executed simultaneously, on several available processors.3 Syntactic de�nitionsWe begin with a set of de�nitions which will be needed in the correctness proofs below. With eachstatement a or pair of statements a; b we associate a loop nest N(a), an iteration formula Itera(p;x),a common loop nest N(a; b), a common control type C(a; b), and sets of read and written referencesIn(a) and Out(a).3.1 Textual orderingFor two statements a and b, the relation a � b states that a precedes b in the textual order. Itseasy de�nition is omitted.3.2 Loop nest of a statement and iteration spaceFor a statement a, N(a), called the loop nest of a, is the list of the surrounding loop headers,ordered outside-in, and written as 4-tuples (C; i; l; u), where C is do or pdo, i is an index name,and l and u are expressions. We suppose that all index names are di�erent and that each expressiondepends only on previous indices and program parameters. If N is a loop nest, its length is jN j;the loop depth of statement a is jN(a)j, the number of (sequential or parallel) loops surrounding7

it. In the following, we use the symbol :: to concatenate two lists or add an element to either endof a list. The de�nition of the loop nest is given by the rules:� If p is a program statement, and p:stmt+ = : : : a : : :, then N(a) = []� If a is a do statement, and a:body = : : : b : : :, thenN(b) = N(a) :: (do; a:head),N(a:head) =N(a:enddo) = N(a)� If a is a parallel do statement, and a:body = : : : b : : :, then N(b) = N(a) :: (pdo; a:head),N(a:head) = N(a:endpdo) = N(a)� If a is an if statement, then N(a:bexp) = N(a:then) = N(a:else) = N(a)� If a is a parallel sections statement, and a:section� = : : : b : : :, then N(b) = N(a)� If a is a section statement, and a:stmt+ = : : : b : : : then N(b) = N(a)Every expression exp in a statement a is \bound" by the loop nestN(a), so it must be consideredas written [N(a)]exp. For instance, given the loopdo I = 1, Ndo J = 1, Ido K = I-J, IA(I,J,K) = 0end doend doend dothe assignment A(I,J,K) = 0 is bound by the three surrounding loop heads, and could be writtenas: [1 6 I 6 N][1 6 J 6 I][I � J 6 K 6 I]A(I; J;K) = 0As we may consider some ending sublist of N(a), say N2 when N(a) = N1 :: N2, we must also write[N1]N2 instead of N2 to stress in what syntactic context this sublist is located. Alternatively (butless accurately), we can write N2(I1; : : : ; Ip) if I1, : : : , Ip are the index names in N1.When we create a mathematical formula from a Fortran expression, we will have to substitutevariables for index variables; we will use the notation [x nN(a)] for this substitution. For instance[(x1; x2; x3) nN(a)]I+J-K = x1 + x2 � x3.Usually, the iteration space of a statement a is the set of integer vectors, that the index vectorspeci�ed by N(a) may take as values. In order to deal with program parameters, we replace thisset by a formula Itera(p;x) = I(N(a)) involving these parameters, p, and a list of variables xassociated to the index names in N(a), which is the conjunction of the loop headers:I([]) = trueI((C; i; l; u) :: N) = (l 6 i 6 u) ^ I(N)This formula does not depend on the loop types (C is do or pdo). When the program parametersare given integer values p, the formula Itera determines a subset Itera(p) of Nd (where d is thelength of N(a)), called the iteration space of a, for the given program instance.8

3.3 Common loop nest and common control type of two statementsFor each pair of statements a, b, the common loop nest N(a; b) is de�ned byN(a; b) = merge(N(a);N(b));using the auxiliary function merge : list � list! listmerge([]; N) = []merge(N; []) = []merge(h :: N1; h :: N2) = h :: merge(N1; N2)merge(h1 :: N1; h2 :: N2) = [] if h1 6= h2For any pair of statements a, b, we introduce the common iteration formula CIS(a; b) =I(N(a; b)).For each pair of statements a, b, the common control type C(a; b) is de�ned as one of the symbols`;', `jj' or `?', according to the least common ancestor of a and b, in the abstract syntax tree of theprogram: it is ';', meaning a sequential control relation, if this ancestor is a sequence of statements(body), it is 'jj', meaning a parallel control relation, if the ancestor is parallel sections; it is '?'if the ancestor is an if; moreover, it is also ';' when a is a boolean expression of an if, and b is astatement in one of its branches. We write \a0 in a" when a0 is a son of a in the abstract syntaxtree. p is a program a; b 2 p:stmt+C(a; b) = ;p is a do a; b 2 p:bodyC(a; b) = ;p is a parallel do a; b 2 p:bodyC(a; b) = ;p is a section a; b 2 p:bodyC(a; b) = ;p is a parallel sectionsa 6= b 2 p:section� a:s-head:name 2 b:s-head:s-waitC(a; b) = ;c is an if statement a in c.thenC(c:bexp; a) = ;c is an if statement b in c.elseC(c:bexp; b) = ;a 6= b a0 in a b0 in b C(a; b) = ;C(a0; b0) = ;p is a parallel sectionsa 6= b 2 p:section� a:s-head:name =2 b:s-head:s-waitb:s-head:name =2 a:s-head:s-waitC(a0; b0) = jj9

a0 in a b0 in b C(a; b) = jjC(a0; b0) = jjc is an if statement a in c.then b in c.elseC(a; b) = ?a0 in a b0 in b C(a; b) = ?C(a0; b0) = ?Figure 1 shows the abstract syntax tree of a program, and the loop nest and common controltype of two statements.
��� @@@��� @@@ ����� BBBBB

6? ?
6N(a) N(a; b)C(a; b)a b N(b)Figure 1: Loop nest and common control type of two statements3.4 In and Out setsThe In set of an expression or a statement is the set of all scalar and array references which areused (or read) by it. The Out set of a statement is the empty set or the singleton set of thereference which is written by the statement. These sets are needed to compute the dependencerelation between two statements.3.4.1 In set for an expressionIn(constant) = ?In(E1 opE2) = In(E1)[In(E2)In(opE1) = In(E1)In(name) = fnamegIn(name(E1; : : :En)) = fname(E1; : : :En)g [In(E1) [: : :[In(En)This de�nition is naturally extended to lists of expressions.10

3.4.2 In and Out sets for a statementIn what follows, a scalar reference will be treated as an array reference with an empty list ofsubscript expressions.� a is an assign statement In(a) = In(a:rhs) [In(a:lhs:explist)Out(a) = fa:lhsg� a is an event post statement In(a) = In(a:lhs:explist)Out(a) = fa:lhsg� a is an event wait statement In(a) = In(a:lhs)Out(a) = ?� a is an ordinal set statementIn(a) = In(a:exp) [In(a:lhs:explist)Out(a) = fa:lhsg� a is an ordinal post statementIn(a) = fa:lhsg [In(a:exp) [In(a:lhs:explist)Out(a) = fa:lhsg� a is an ordinal wait statementIn(a) = fa:lhsg [In(a:exp) [In(a:lhs:explist)Out(a) = ?Let strip be the mapping from left-hand sides (scalar or array references) to names, strippingo� the list of expressions from every array reference: strip(a) = fa:nameg, if a is a left hand side.For instance, strip(A(I � 1; J)) = A, strip(I) = I . As for expressions, any left-hand side nameoccurrence in a statement a is bound by N(a). Let OutNames(a), resp. InNames(a) be the set ofnames resulting from the application of the strip mapping to all elements of Out(a), resp. In(a):for instance, if In(a) = fA(I + 1); A(I � 1); Ig, then InNames(a) = fA; Ig. The strip mapping isnaturally extended to mappings Out(a)! OutNames(a) and In(a)! InNames(a).11

3.5 Scoping and sharingIn addition to program units, a parallel construct (parallel do and parallel sections) de�nesa new scope for names. The scope of the index variable of a do contained in a parallel construct isthis construct; the same applies to a parallel do index variable. The scope of a name speci�edin a new statement is the parallel construct containing this statement.The scoping mechanism of the new statement introduces a strong di�erence between the parallelprogram and its sequential version. In order to consider that the new statement must be deletedto get the sequential version, it shall be required that this statement introduce fresh names insteadof reusing the same name in a new scope. Doing so, a write, out of the parallel construct, on avariable made private inside has the same e�ect in the parallel program and its sequential version.Moreover, an array promotion of these variables will be performed, as will be argued later.4 Execution predicateAs long as we have not proved that there is no memory conict between parallel processes, it is notpossible to assume that an expression may be evaluated to a well-de�ned value. When the programis shown to be correct, the value of an expression in a statement instance is the value computed bythe sequential version.For every statement a, we would like to use a predicate Exe(a(i)) meaning that the statementinstance a(i) is executed. In the case of a waiting statement (e.g. a wait), \being executed" willmean \being passed". An important fact must be pointed out: whereas we will de�ne Depa;b as aformula involving only the indices i (of a) and j (of b) and the program parameters, there is nosuch formula for Exe, and the predicate itself depends on the speci�c run of the program. It willbe used in the following proofs where it is su�cient to know that it is \run-time de�ned", moreaccurately run-time valued.In order to avoid this problem, we will be interested in the condition Exes for a statement tobe executed in the sequential version. It is well-de�ned and its expression is rather straightforwardfor our language, whose control structures have been drastically restricted: it involves the booleanexpressions of the embedding if statements and the bounds of the embedding loops. As bound loopsdepend only on index variables of the embedding loops and on program parameters, the value of aloop bound is determined only by the iteration vector. However, arbitrary variables may occur in aboolean expression, so that its value does not depend only on the iteration vector, but on the wholedata environment, �. In turn, we can derive from a standard dynamic semantics of our languagea partial function associating to the initial environment, a statement a and an iteration vector i,the environment curr env@a(i) in which the execution of a(i) takes place; this environment is onlyde�ned when instance a(i) is to be executed. So, for an arbitrary expression exp whose evaluationis required by the execution of statement a, its value [[exp]]@a(i) is de�ned as [[exp]](curr env@a(i)).Let us de�ne Exes(a(i)) when a is a simple statement of the parallel program, and i an iterationvector for a. Several cases have to be considered, depending on the nesting of a in a loop or in thebody of a if statement. In case a is nested, we consider the innermost loop or if in the range ofwhich a is nested.� a is not contained in a loop nor an if: then, Exes(a) = true.12

� The innermost nesting of a is in an if statement c, of boolean expression c:bexp, and let ibe an iteration vector of c and a:{ if a is in the then branch, Exes(a(i)) = Exes(c(i)) ^ [[c:bexp]]@c(i){ if a is in the else branch, Exes(a(i)) = Exes(c(i))^ :([[c:bexp]]@c(i))� The innermost nesting of a is in a loop c of lower and upper bound expressions c:lb and c:ubrespectively. Let i be an iteration vector of c and j be an integer taken as value by the indexde�ned by c. We then have: Exes(a(i :: j)) = Exes(c(i)) ^ ([[c:lb]]@c(i) � j � [[c:ub]]@c(i))We will show later that under adequate assumptions, the Exe predicate is actually well-de�nedand equal to Exes. In case no variable occurs in the boolean expressions, the above de�nitions aresimpli�ed so that the predicate Exes(a(i)) is de�ned by a formula Exes; the previous de�nitionsfor if and loops can be changed into:Exesa(x) = Exesc(x) ^ c:bexp[x n i]Exesa(x) = Exesc(x) ^ (:c:bexp)[x n i]Exesa(x :: y) = Exesc(x) ^ (c:lb � y � c:ub)[x n i]5 PrecedencesSequencing of parallel programs is speci�ed by the sequential subset of the language and by thesynchronization primitives. As this speci�cation is only partial, we de�ne a \precedence" predicateinstead of the more familiar sequencing predicate, and we split its de�nition into a sequentialprecedence and a synchronization precedence.5.1 Sequential precedenceFor each pair of statements a and b, we have de�ned the common loop nest N(a; b) and the commoncontrol type C(a; b). If N is a loop nest and C is `;' or `jj', we now de�ne a formula �N;C of twolists of variables, the lengths of which are not smaller than the length of N . Let x1 and x2 be listsof variables whose length is that of N , and y1, z2 be any lists of variables.�N; ; (x1 :: y1;x2 :: z2) = �N (x1;x2) _ (x1 = x2) if a� b�N; ; (x1 :: y1;x2 :: z2) = �N (x1;x2) if b� a or a = b�N; jj (x1 :: y1;x2 :: z2) = �N (x1;x2)In particular, �N;C specializes into �N(a;b);C(a;b) which will be convenient to abbreviate as Pre0a;b, thevariables of which are two lists of length jN(a)j and jN(b)j. This formula expresses the precedencebetween execution instances of a and b in the parallel program. For integer vectors p, i and j suchthat Itera(p; i) ^ Iterb(p; j) is true, Pre0a;b(i; j) means that if instances a(p; i) and b(p; j) are bothexecuted, then a(p; i) is executed before b(p; j).The sequential order ��N;C is obtained from the de�nition of the precedence order � in trans-forming every parallel do into a do statement and deleting all the parallel sections and13

section statements. This is not the execution ordering with a single process, since the synchro-nizations are not taken into account. Let x1 and x2 be lists of variables whose length is that of N ,and j1, z2 be any lists of variables.��N; ; (x1 :: j1;x2 :: z2) = ��N (x1;x2) _ (x1 = x2) if a� b��N; ; (x1 :: j1;x2 :: z2) = ��N (x1;x2) if b� a or a = b��N; jj (x1 :: j1;x2 :: z2) = ��N; ; (x1 :: j1;x2 :: z2)As above, ��N(a;b);C(a;b) is abbreviated into a �� b, or Seqa;b5.2 Synchronization precedenceWe de�ne synchronization pairs, and for each such pair u, a synchronization formula Syncu(p;x;y).5.2.1 Event synchronizationLet a, b be event post and wait statements on the same event (scalar or array) variable: we haveOutNames(a) \ InNames(b) = fng, Out(a) = frpg, rw 2 In(b), and strip(rw) = strip(rp) = n. Thepair ([N(a]rp; [N(b)]rw) is called an event synchronization pair.5.2.2 Ordinal synchronizationLet a, b be ordinal post and wait statements on the same ordinal variable (of increment 1, as forloops): OutNames(a) \ InNames(b) = fng, Out(a) = frpg, rw 2 In(b), and strip(rw) = n. Thepair ([N(a)]rp; [N(b)]rw) is called an explicit ordinal synchronization pair. Let a be an ordinal poststatement, and Out(a) = frpg. The reference [N(a)]rp is called an implicit ordinal synchronizationreference. Note that if u is a synchronization pair, then the opposite û cannot be a synchronizationpair.5.2.3 Synchronization formulaWith every synchronization pair u = ([N(a)]rp; [N(b)]rw) based on (a; b), we associate a synchro-nization formula Syncu : a! b. By de�nition, strip(rp) = strip(rw) = n, and both rp, rw are scalarreferences or array references of the same dimension, say d. Let rp:explist = [e1; : : : ; ed], andrw:explist = [f1; : : : ; fd]. These subscript expressions ei and fi may contain the program param-eters p. For an event synchronization pair, the formula Syncu is the conjunction of the equationsand inequations of the following system:8><>: [x nN(a)]ei = [y nN(b)]fi i = 1; : : : ; dItera(p;x)Iterb(p;y)where x (resp. y) is a tuple of integer variables of length jN(a)j (resp. jN(b)j).For an explicit ordinal synchronization pair, the synchronization formula is the conjunction of:8>>><>>>: [x nN(a)]ei = [y nN(b)]fi i = 1; : : : ; d[x nN(a)]rp:exp = [y nN(b)]rw:expItera(p;x)Iterb(p;y)14

where x and y are as above.Let [N(a)]rp be an implicit ordinal synchronization reference. We associate with it a synchro-nization formula Syncu : a! a, which is the conjunction of:8><>: [x nN(a)]rp:exp+ 1 = [y nN(a)]rp:expItera(p;x)Itera(p;y)where x and y are tuples of integer variables of length jN(a)j.5.3 Precedence formulaWe would like to use a predicate Pre(a(i); b(j)), expressing that: \If a(i) and b(j) are both executed,then the overall parallel program structure (sequential control and synchronization) implies thata(i) is executed before b(j) in any run of the parallel version".In order to obtain Pre from Pre0, we have to compose the sequential control ow Pre0 withthe synchronization ow Sync. This composition is not exactly a transitive closure, as might beexpected; Pre(a(i); b(j)) and Pre(b(j); c(k)) do not imply Pre(a(i); c(k)). For instance:parallel sections (ordered)sectionp: post(E)sectionif (B)thenw: wait(E)elseA=1endifa: A=2end parallel sectionsWe see that p precedes w, and w precedes a, but p does not precede a, because the else branchmay be taken, and without waiting for E, a is then executed concurrently with p. We can onlystate: if w is executed, then p precedes a.So, instead of transitivity of Pre, we have \transitivity modulo Exe":Pre(a(i); b(j)) ^ Exe(b(j))^ Pre(b(j); c(k))) Pre(a(i); c(k))The relation Pre would therefore be obtained, through this transitive closure modulo Exe alongpaths, and by disjunction between alternate paths (in a \conjunction in series, disjunction inparallel" manner), from the previously calculated relation Pre0 and the synchronization precedenceSync. However, the Exe predicate is not well-de�ned, so we replace it by Exes and we will provethat this replacement is sound. We de�ne the Pres predicate as the transitive closure of Pre0 andSync modulo Exes.The transitive closure of Pre0 is taken care of by the above calculation of Pre0. Therefore, itis straightforward to show that the precedence paths to consider between statements a and b are15

paths of the following form (considering only event synchronizations):a! p1 w1 ! p2 w2 ! : : :! pn wn ! b;where ! denotes the Pre0 relation, pi denotes a post, wi denotes a wait, and denotes thesynchronization relation Sync. The corresponding calculation of Pres will be realized throughrelations such as:Pre0a;p1 ^Exesp1 ^ Syncp1;w1 ^Exesw1 ^Pre0w1;p2 ^ : : :^ Exeswn ^Pre0wn;b) Presa;bOrdinal synchronizations work along similar lines.6 Data dependencesWhen several parallel processes share a memory location, if one of them writes it, and others reador write it, the resulting e�ect is unpredictable, because of a race between these processes. This isconsidered to be an error in a parallel program, at least in our case, because the results are di�erentfrom the sequential version.In a sequential program, as well as in a single process execution, there is no memory conict, buteach memory location induces a data dependence between statement instances which sequentiallyaccess it, from write to read (a ow dependence), from read to write (an antidependence), or fromwrite to write (an output dependence). This data dependence generates a partial order on statementinstances which is included in the total execution order. Starting with a parallel program, the datadependence order de�ned for its sequential version must be preserved by any multiple processexecution, so that no memory conict can occur.Dependences computation does not play the same role for parallelization and for veri�cationof parallel programs. Dependences in sequential programs are allowed and are obstructions torestructuring transformations. Dependences in a parallel program can be unsafe and must beforbidden if they incur memory conicts; on the other hand, dependences that are shown to be safeare allowed. Although this safety problem is dynamic, we want to search statically for a possibleoccurrence of memory conicts. Doing so, we point out pairs of statements some instances of whichmay create memory conicts.6.1 Dependence pairsLet a, b be if boolean expressions, or assignments. We de�ne dependence pairs based on (a; b) aspairs of the form ([N(a)]r; [N(b)]s), where r, resp. s is a reference in a, resp. b, as follows.� IfOutNames(a)\InNames(b) 6= ?, let n be the name such thatOutNames(a)\InNames(b) =OutNames(a) = fng, and ro such that Out(a) = frog, and strip(ro) = n; for every referencer 2 In(b) such that strip(r) = n, let us consider the out-in dependence pair ([N(a)]ro; [N(b)]r)� if OutNames(b) \ InNames(a) 6= ?, then let n be such that OutNames(b) \ InNames(a) =OutNames(b) = fng, and ro such that Out(b) = frog, and strip(ro) = n; for every referencer 2 In(a) such that strip(r) = n, let us consider the in-out dependence pair ([N(a)]r; [N(b)]ro)16

� if OutNames(a) \ OutNames(b) 6= ?, then let n be the name such that OutNames(a) \OutNames(b) = OutNames(a) = OutNames(b) = fng, and ro, so the references such thatOut(a) = frog, Out(b) = fsog, and strip(r0) = strip(s0) = n; let us consider the out-outdependence pair ([N(a)]ro; [N(b)]so).Note that if u = ([N(a)]ro; [N(b)]r) is an out-in pair, then û = ([N(b)]r; [N(a)]ro) is an in-outpair, if u = ([N(a)]r; [N(b)]ro) is an in-out pair, then û = ([N(b)]ro; [N(a)]r) is an out-in pair, andthat if u = ([N(a)]ro; [N(b)]so) is an out-out pair, so is û = ([N(b)]so; [N(a)]ro). The pair û is calledthe opposite dependence pair.Remark For the computation of dependences, there is no evaluation problem caused by possi-ble conicts, since the subscript expressions only involve parameters and index variables and wesupposed that none of them is writable: the value of a subscript expression is therefore well-de�ned.6.2 Sharing and dependencesFor the computation of dependences, a process p (resp. q) executes a (resp. b), and a memorylocation is accessible in the data environment of p and q. If only shared variables were involved,there would be only one data environment, as in the case of sequential programs. Private variablesoccur in two forms: implicit (loop indices) and explicit (statement new). Let us remind that theprivate attribute is relative to the process and not to the thread (see Section 2.2).There is no dependence between loop indices since we have supposed that they are not writable(and not because they are private). The situation is more intricate for explicitly private variables.If a variable is explicitly private with respect to a parallel construct, there is no dependence ifprocesses p and q are not the same, but we do not know which process is involved in the execution,so dependence is intrinsically dynamic. However, such independence may not preserve the serialinterpretation. For instance, inparallel sectionsnew TsectionT = 0sectionA = Tend parallel sectionsthe conict between T=0 and A=T is removed if the sections are executed by di�erent processes,leaving shared variable A unde�ned, whereas it remains if only one process is involved, the resultdepending on the scheduling of the sections. If the parallel sections is ordered, the behavioris the same as in the sequential version; otherwise, variable A is unde�ned on completion of thisconstruct. Now, before A=T, put an arbitrary sequential body in the second section; variable A isstill de�ned in the sequential version, whereas in the parallel program, the de�nition of A dependsonly on the de�nition of T in this sequential body. Since we want to investigate only the parallelconstructs, we should then accept programs that lead to variables with unde�ned values whiletheir sequential versions lead to de�ned values. Therefore, we must modify the de�nition of thesequential version of a program. 17

In the fragment we study, making an object private to a parallel construct is normally useful inorder to use it as a temporary variable, local to one thread2. This is the case for:parallel do I = 1, 100new TT = A(I) ** 2B(I) = T * (T - 1)end parallel dowhere the use of variable T allows A(I)**2 to be computed only once. (Actually, it should be thecompiler's task to make such optimization, and not the programmer's.) On the contrary, in theloop parallel do I=1, 100new TT = T + 1A(I) = Tend parallel doT is uninitialized when each process executes the assignment for the �rst time, leading to an arrayA with random values. If an initialization T = 0 is inserted just after new T, then every A(I) gets1. The same behavior appears in the sequential version, in both cases, if we suppose that the newstatement is converted into renaming in the sequential version. This program is incorrect for misuseof sequential, not parallel constructs.In order to preserve the serial semantics, the simplest idea is to require that the value of aprivate variable used in a thread has been computed in the same thread, and therefore to promotea private variable to an array in case of parallel do, or to duplicate it as one distinct variableper section, in case of parallel sections. This will faithfully represent the case of maximumparallelism (one process per thread). Even if this interpretation is not that of X3H5, because thefull language does need a privatization mechanism based on processes, we believe that the intendedmeaning of private variable in the fragment we study is relative only to parallel threads insteadof processes. Hence, in the de�nition of the sequential version of a parallel program, the new nstatement is transformed into1. a new name in the scope2. an array promotion: if statement new n is speci�ed in a parallel loop of header h, then adimension is added to name n, whose length is the number of iterations in h.Note that array promotion for private variables in parallel loops should need dynamic allocation,since the number of threads is the result of loop bounds evaluation; so the new statement shouldbe replaced by a dimension statement just before the loop, within its loop nest, at a place whereit must not be found in Fortran 77 (if this nest is not empty). For instance, given a loop nest2Note that the parallel region of X3H5 allows for more general ways of using a private variable in the scope ofthe parallel construct, where initialization and use of the value computed by the work distributed by the worksharingconstructs can be done within the parallel construct; we do not study this form.18

parallel do I = 1, 100do J = 1, Iparallel do K = J, Inew T.....its sequential version should be something likedo I = 1, 100do J = 1, Idimension T(J:I)do K = J, I.....A static hull of the array dimension can be de�ned, giving in this example dimension T(1:100)instead of dimension T(J:I), so that the sequential version we consider does remain within theframework of Fortran 77. The computation of this static hull is made possible by our assumptionthat loop bounds depend only on parameters and indices of surrounding loops.A few examples are shown below, with the sequential versions at the right of the parallelprogram. With simple renamingparallel sectionsnew TsectionT = 0 Tps1 = 0sectionA = T A = Tps2end parallel sectionsthere is no dependence, since the names are made di�erent. With array promotion, inparallel do I = 3, 100 dimension Tdo(3:100)new T do I = 3, 100T = A(I) ** 2 Tdo(I) = A(I) ** 2B(I) = T * (T - 1) B(I) = Tdo(I) * (Tdo(I) - 1)end parallel do end door, in the sequentially incorrect programparallel do I=1, 100 dimension Tdo(1:100)new T do I=1, 100T = T + 1 Tdo(I) = Tdo(I) + 1A(I) = T A(I) = Tdo(I)end parallel do end dothere is a dependence pair involving the variable Tdo.The scalar variable T is private for the parallel do and shared for the parallel sectionsin the following fragment:parallel do I = 1, 100 dimension Tdo(1:100)new T do I = 1, 100parallel sections (ordered) 19

sectionT = A(I) Tdo(I) = A(I)post(E(I))sectionwait(E(I))B(I) = T B(I) = Tdo(I)end parallel sectionsend parallel do end doThe value of T used in the ith parallel iteration has been computed in the same iteration, butin the other thread of the parallel sections.With this completed de�nition of the sequential version, there will be no dependence involvingprivate variables at the structure level where they have been so declared.6.3 Dependence formulaLet u = ([N(a)]r; [N(b)]s) be any dependence pair based on (a; b). By de�nition, strip(r) =strip(s) = n, and both r, s are scalar references or array references of the same dimension, say d.Let r:explist = [e1; : : : ; ed], and s:explist = [f1; : : : ; fd]. These subscript expressions ei and fimay contain as variables the program parameters p.We associate to the dependence pair u a dependence formula Depu : a ! b, which is theconjunction of the equations and inequations of the following system:8>>><>>>: [x nN(a)]ei = [y nN(b)]fi i = 1; : : : ; d(a �� b)(x;y)Itera(p;x)Iterb(p;y)where x (resp. y) is a tuple of integer variables of length jN(a)j (resp. jN(b)j), and �� is thesequential order. This dependence formula Depu is named out-in, in-out or out-out according tothe dependence pair from which it is built. We say that u is a dependence between the referencesr and s if the dependence formula Depu(p;x;y) : a ! b is satis�able, i.e, has a solution (p; i; j).Further, it is called a true dependence, an anti-dependence, or an output dependence, when Depuis respectively an out-in, in-out or out-out formula.As the relation a �� b is anti-symmetric, every tuple (i; j) can be solution of at most one ofthe formulas Depu and Depû, where û is the opposite of u. However, both Depu and Depû mayhave (di�erent) solutions; this is the case for the loopdo I = 1, 10a: A(I) = ...b: ... = A(3*I-5)end doFor u = ([1 6 I 6 10]A(I); [16 I 6 10]A(3 � I � 5)), Depu is x = 3y� 5^ x 6 y ^ 1 6 x 6 10^ 1 6y 6 10, and Depû is x = 3y � 5 ^ y < x ^ 1 6 x 6 10 ^ 1 6 y 6 10. The pair (1; 2) is a solution ofDepu, whereas (4; 3) is a solution of Depû: both formulas are satis�able.Note that if n is the name of a scalar reference, then the dependence equation on n reduces ton = n, and the set of solutions is the graph of the relation �� in the product Itera� Iterb.20

6.4 Depth and supportLet a, b be if boolean expressions, or assignments. The dependence vectors are vectors in thecommon iteration space. The notation j�N stands for the jN j �rst components of j . If (i; j) 2Itera� Iterb satis�es a dependence formula Depu : a! b, then the di�erence j�N(a; b)�i�N(a; b) 2CIS(a; b) is called a dependence vector. Let Vecu be their set. The dependence is uniform if theset Vecu is reduced to one element: this is a very usual case, but using formulas allows us also todeal with non uniform dependences. When the dependence is loop independent (it occurs withinthe same iteration of embedding loops), Vecu = Vecû = f(0; : : : ; 0)g.The depth of a dependence Depu : a ! b is the least rank k such that there exists a solution(p; i; j) of Depu with a non-zero kth component of j�N(a; b)� i�N(a; b).The support of a non-zero dependence is the binding loop in the loop nest whose depth is equalto the dependence depth: it is serial if it is a do, and parallel if it is a parallel do statement.The support index is the index of the support loop statement.For instance, in the loopparallel do Ido JA(I,J) = = A(I-1,J+1)end doend parallel dothe dependence is of depth 1, the support loop is the parallel do I, which is parallel, the supportindex is I.The support of a zero dependence is the common control type of the pair of statements; it isserial if the common control type is ';' and parallel if it is 'jj'.7 Correctness of parallel programsThe dependence preservation requirement (introduced in [5]) can be expressed as follows:If two statement instances a(i) and b(j) are in a dependence relation Depa;b(i; j){ which implies that a(i) comes before b(j) in the sequential version {, and if bothinstances are executed, then the parallel program structure must ensure that a(i) isexecuted before b(j).Using the predicates we have introduced: for all statements a and b and for all parallel executions,Exesa ^Exesb ^Depa;b) Presa;bThe aim of this requirement is to avoid race conditions: situations when the value received by avariable depends on which of two concurrent statement instances happens to be executed �rst.Moreover, we could then replace Dep and Pres by approximations, from above for Dep, frombelow for Pres : it is su�cient to use predicates Dep? and Pres? such that Dep) Dep? andPres?) Pres, respectively meaning that \a dependence may exist" and \a precedence must exist".In the following results we do not consider ordinal synchronizations, but only event synchro-nizations. These results could be rather straightforwardly extended so as to include ordinals.21

7.1 Single process executionThe ANSI X3H5 proposal requires that a compliant program not deadlock whatever the numberof available processes. Therefore, a program should not deadlock in a single process execution. Onthe other hand, we wish to ensure the semantic equivalence between the sequential version and anysingle process execution. This will be taken care of by a result we will �rst prove.Before stating Assumption A1, let us recall that, under the X3H5 proposal, the orderedcondition in a worksharing construct means that its parallel threads will be assigned to the availableprocesses, in the sequential order. In other words, no parallel thread shall be assigned to an availableprocess as long as another parallel thread preceding it in the sequential order, has not been assignedyet.Assumption A1 All parallel constructs in which there are synchronization statements (i.e. post,wait, clear statements) are ordered.Comment This assumption, though not a requirement of the proposal, is suggested in it, asa hint towards \good" programming. It can easily be checked at compilation time. Throughoutour study, we will consider only programs meeting this assumption.Theorem 1 Under the following hypotheses:� Assumption A1� There is no dependence between two parallel threads within any non-ordered parallel con-struct;� Some single process execution does not deadlock;the sequential version and any single process execution are semantically equivalent (in the sensede�ned above).Proof : We consider a program instance. Let us �rst restrict ourselves to the case when all parallelconstructs are ordered. In that case, by de�nition of the ordered clause, there is exactly onesingle process run, and the execution order of the statement instances, if executed in both runs, isthe same in both runs.For this program instance, let us compare the execution of its sequential version and a singleprocess execution of its parallel version. The only possible di�erences between the two versions,then, are consecutive to the fact that the synchronization statements are disabled in the sequentialversion.Therefore, considering runs of the two programs, the �rst di�erence arising, if any, involvesa synchronization statement. For everything occurring before that moment, both versions aresemantically equivalent. Thus, the event involved in this synchronization statement is the same inboth runs. This synchronization statement cannot be a post, nor a clear, because no di�erencewould thus occur. It has to be a wait involving an event which is not posted at that point, hencea deadlock in the single process run, whereas the sequential run proceeds.Therefore, either such a deadlock occurs | in which case, there is a semantic equivalence upto the deadlock point | or there is no di�erence arising between the two runs.22

Let us consider now the case when there are non-ordered parallel constructs. Then, accordingto Assumption A1, these constructs contain no synchronization statement. Now, still consideringa program instance in its sequential and its single process aspects, an extra di�erence must beconsidered: in every non-ordered parallel construct, the parallel threads may be assigned to theprocess in any order, which gives place to several possible single process runs.We assume that there is no dependence between any two such threads. Therefore, no di�erenceis brought, in the values computed, by inverting any two threads. Thus, any permutation of threadsbrings no such di�erence: the threads are \execution order independent". Hence we obtain the sameresult as in the case when all parallel constructs are ordered. J7.2 Deadlock analysisIt is straightforward to express the no-deadlock condition for single process execution, in anyprogram instance, under Assumption A1. According to the previous result, we have to expressthat, for any wait statement instance, any single process run does not deadlock precisely on thatstatement instance. So, for any given wait instance !, we wish to express that, either ! is notreached in the sequential version, or, if it is, and assuming that no deadlock occurred before ! inthe single process run we are considering { hence the semantic equivalence up to ! { the event that! involves is posted at that point. The semantic equivalence up to ! is crucial here, allowing us toconsider expression evaluation in the sequential version up to !.LetW be the �nite set of wait statements in the program, each w 2 W with an iteration vectoriw. For every w, the event expression involved is w:lhs, and its value computed by instance w(i)in a run equivalent to the sequential execution up to itself is [[w:lhs]]@w(i).nodeadlock = ŵ2W 8yw(Exesw(yw)) [[w:lhs]]@w(yw) = posted)An event is posted at some point, i� this event has been previously posted by a post and notcleared by a clear meanwhile. Let P (resp. C) be the set of post (resp. clear) statements inthe program.([[w:lhs]]@w(yw) = posted) = _p2P 9xpSeqp;w(xp;yw) ^ Exesp(xp) ^(p:lhs:name) = w:lhs:name) ^(p:lhs:explist[ip nN(p)] = w:lhs:explist[iw nN(w)])^noclearp;w(xp;yw)The noclear predicate expresses that no clear has cleared the event posted by a post before await: noclearp;w(xp;yw) = ĉ2C 8zc:[Seqp;c(xp; zc) ^ Seqc;w(zc;yw) ^ Exesc(zc) ^(c:lhs:name = p:lhs:name) ^(c:lhs:explist[zc nN(c)] = p:lhs:explist[xp nN(p)])]23

7.3 Main resultAssumption S1 (weak version) A clear statement, and a post or wait statement involvingthe same event variable, must be related in a precedence relation, or else must be mutually exclusive(lying in alternative branches of an if). In other words, there must be no race condition betweena post or wait statement, and a clear statement involving the same event.Comment This assumption seems obviously reasonable. Strangely, it does not seem to be arequirement of the X3H5 proposal. Basically, it boils down to a \no race condition" requirementinvolving event variables, if we consider thatwait statements read, and post and clear statementswrite on such a variable.Assumption S1 (strong version) A clear statement, and a post orwait statement involvingthe same event must not be present within the same parallel construct.Comment This strong version, that we will assume in our algorithms, seems reasonable too;moreover, it can be checked quite straightforwardly.Assumption S2 (Ensured precedence from post to wait) For any wait statement, forany event variable this statement may involve, all post statements susceptible to trigger this waitby posting the corresponding event, if there are several, are mutually exclusive (only one may beexecuted in a given execution).Comment This assumption will be necessary, in our context, in order to be able to useSync(p; w) as a precedence, when a post statement instance p posts the event that the wait state-ment instance w is waiting for. Otherwise, in case several non mutually exclusive post statementinstances post the same event, it is no longer possible to state that any of them, if executed, isexecuted before the corresponding wait. Notice that we do not require a symmetric condition: onepost may post towards several non mutually exclusive waits.Under Assumptions S1(weak) and S2, together with the static event reference assumption (therestriction that the event arguments depend only on parameters and indices, not variables), therelation Sync is well-de�ned, in the sense that it can be expressed statically.Theorem 2 Under the following hypotheses:i. Assumptions S1 (weak version) and S2;ii. No deadlock in any single process run;iii. For all statements a and b, Exesa ^Exesb ^Depa;b) Presa;b;the execution predicate Exe is well-de�ned and equals Exes, and the parallel program is semanticallyequivalent to its sequential version.We will �rst prove a lemma.Lemma 1 For any statement instance �, except the program start and wait statements,24

� either Exe(�) (resp. Exes(�)) equals the conjunction of Exe(�) (resp. Exes(�)) for one orseveral statement instances � such that Pre0(�; �);� or there exists a statement instance � such that Pre0(�; �) and that Exe(�) (resp. Exes(�))depends only on the result of the execution of � on the data and control environment; more-over, � has to be executed in order for � to be executed.Moreover, for any wait instance !, the condition denoted (!) (resp. S(!)) for this instanceto be reached (not meaning that it is passed) similarly depends on statement instances � such thatPre0(�; !).Proof (of the lemma). For any statement instance �, except the program start and waits, weare in one of the following cases, for the statement a of which � is an instance:� a is the �rst statement in the then or else branch of an if, or the �rst statement in a loopbody: then, we are in the second case of the lemma, where � corresponds to the if statementor the loop head, respectively.� a is a end parallel do or end parallel sections, or a section wait: then we are in the�rst case of the lemma, the execution of the statement instance depends on the terminationof every parallel thread it concludes, or (for a section wait) of some thread which precedesit (in the sense of Pre0).� In all other cases (remember we rule out the program start and thewaits), there is a statementb immediately preceding a (in an obvious sense): we are again in the �rst case of the lemma,with one �: the corresponding instance of b.As for the condition for a wait instance to be reached, the same proof is obtained by �c-tively inserting a continue statement just before the wait statement, and applying the previousderivation to this continue. JNotice that this result is consistent with the previously mentioned fact that the precedencesexpressed by Pre0 are independent of the speci�c parallel run considered { a fact that we will keepin mind in the following proof of the theorem.Proof (of the theorem). We consider a program instance, by giving values to the parameters.Then, there is only one run of the sequential version of this program instance, whereas there aregenerally several possible runs of the parallel version. We consider one of them.1) We will make use of a notion of time step. In order to remain as general as possible, wewill assume three properties for the set of time steps considered here: the execution of a statementinstance is achieved in one time step; for every time step, there is (at least potentially) a next one;two statement instances which are in a precedence relation cannot execute in the same time step.Let t be a time step such that the following recurrence assumption holds:Semantic equivalence up to time step t: for any statement instance � executedstrictly before t in this parallel run, � is also executed in the sequential version; more-over, all variables involved in � (as input or output) underwent the same computations,due to the same statement instances, in both runs up to the point reached, in theparallel run, just before time step t. 25

We wish to prove that this semantic equivalence extends to time step t.2) Let us consider the set Et of all statement instances eligible for execution at time step t,i.e. which are executed at time step t by some parallel run, knowing the current run up to timestep t. All or some of them will be executed at time step t by the existing processes, while the restof them will be postponed to the set Et0 of statement instances eligible for execution at the nexttime step t0 { if still eligible. We �rst show that for any 2 Et, Exes() holds.For 2 Et, in case is not a wait statement instance, the above lemma applies: Exe()depends only on some statement instance(s) � such that Pre0(�;), and such that � has beenexecuted before t. The recurrence hypothesis then implies that the result of the execution of � onthe environment is identical in the sequential run. Therefore, is also executed in the sequentialversion: we have Exes().In case is a wait statement instance, its executability implies that it has been reached andthat the event it involves is posted at this point; hence, this event has been previously postedand not previously cleared afterwards. Due to the recurrence hypothesis and the above lemma,this statement is therefore reached (and executed, because it is disabled) in the sequential version:therefore, we have Exes() too.Notice that the executability of at time step t cannot be overridden afterwards in case ispostponed. This results from the above lemma in case is not a wait; when it is, this results fromthe weak version of Assumption S1, which rules out the possibility that the event it involves becleared randomly.3) We show now that the hypothesis of semantic equivalence propagates to all instances in Etexecuted at t by the given run. Let us consider an instance 2 Et, and some variable x usedby as input. In order to ensure the semantic equivalence for , since we assume the semanticequivalence up to time step t, we just need to rule out the case that the value of x used by asinput in the sequential version would be computed by some instance � not executed before time tin this parallel run. If this were the case, we would have Exes(�) because it is � which computesx in the sequential version; we have Exes() as we saw in 2); we would have Dep(�;); thereforewe would get Pres(�;). This is not su�cient for immediately excluding that be executable attime step t, because we must remember that Pres is de�ned referring to the sequential version andthe values acquired by various expressions in that version, and we do not know, at this point, whathappens after time step t. However, a closer look will show us that Pres(�;) indeed rules out thehypothesis that 2 Et, hence the contradiction we are looking for.We clearly would not have Pre0(�;), since otherwise, � would necessarily have been executedbefore time step t; so Pres(�;) would be realized through synchronizations, i.e., as previouslyexplained, through one or several paths of the form:� ! p1 or � = p1p1 w1 ! p2 w2 ! � � � ! pn wnwn ! or wn = where, again, ! denotes a Pre0 relation, pi denotes a post, wi denotes a wait, and denotes asynchronization link Sync.The executability of at time step t implies that, either some wait instance wn has beenexecuted before t, or { in case = wn { the event involved in wn has been posted. Then, necessarily,26

this event has been previously posted by pn, according to Assumption S2. Continuing upstreamthrough the above path, we �nd that the executability of at time step t implies that � must havebeen executed before, hence the contradiction.We have thus proved that any statement instance � executed in some parallel run is also executedin the sequential version, and that any variable involved in this statement instance undergoes thesame calculations (and therefore receives the same values) in both runs. This shows Exe) Exesand the semantic equivalence restricted to all variables e�ectively involved in some parallel run.4) For the converse, Exes) Exe, suppose by contradiction that there are statement instanceswhich are executed in the sequential version and not in some parallel run, and let � be the earliestone in the sequential order, for some given run.In case � is not a wait, according to the lemma, the non-execution of � in this parallel run isdependent on previous (in the sense of Pre0) statement instances; by de�nition of �, these instancesare executed in this parallel run, with the same e�ects on the control and data environment, asshown previously. This contradicts the non-execution of � in this parallel run.In case � is a wait { hence a deadlock in this parallel run { let us consider the single processrun matching the sequential version (this is the single process run obtained by considering the non-ordered parallel constructs as if they were ordered). Then, due to the semantic equivalence upto �, as above, the event involved in � in both runs is the same, and it is similarly uninitialized orcleared in both runs. This would imply a deadlock in this single process run, a possibility which werule out in hypothesis (ii) of our theorem. JThis theorem, together with Theorem 1, straightforwardly implies the following result:Corollary 1 Under the following hypotheses :� Assumption A1, S1(weak) and S2;� Some single process run does not deadlock;� There is no dependence between two parallel threads within any non-ordered parallel con-struct;� For all statements a and b, Exesa ^Exesb ^Depa;b) Presa;b ;the parallel program and its sequential version are semantically equivalent; especially, no parallelrun can deadlock.8 An algorithm to check the correctness of a programThe aim of this algorithm is to check the condition iii of Theorem 2. No other checking is to bedone : the syntactic restrictions, assumptions A1, S1(strong) and S2, and the no-deadlock conditionmust be checked elsewhere. Besides, the algorithm presently relies on the possibility of staticallyde�ning the relevant predicates by formulas. Therefore, we assume that no variable occurs inboolean conditions of if statements. 27

8.1 Easy casesFor every dependence pair u = (r; s) based on a; b, the following steps are realized:1. if N(a; b) does not contain any parallel do and if C(a; b) 6= jj, then a and b cannot beconcurrently executed, so u may only be a safe dependence, and therefore has not to beconsidered2. otherwise, as condition Seqa;b(x;y) is a disjunction, each member of this disjunction, of theform (x1 = y1) ^ : : :^ (xk�1 = yk�1) ^ (xk < yk), gives a system (a conjunction of equationsand inequations) which is tested in turn for each value of k, from 1 to jN(a; b)j3. if no system has solutions, then u is not a dependence and has not to be considered4. the �rst (i.e. corresponding to the least k) system which has a solution yields the depth kand support of the dependence5. if this support is sequential, which means a do loop, then this dependence is preserved6. if this support is parallel, then the dependence may not be preserved, and synchronizationsmust be analyzed7. other systems (i.e. corresponding to larger k's) must be solved too, looking for other depen-dencesThe algorithm which is used for these systems is the Omega test, based on Fourier-Motzkin'svariable elimination, recently developed by W. Pugh[10] at the University of Maryland, and partof Wolf's tiny parallelization tool (Cf. [12]). As this test applies only to linear systems, we can dealonly with programs whose bound and subscript expressions are linear. As for other tests, such asthose built upon the simplex algorithm, it is a conservative test that can only ensure non-existenceof solutions.The interest of the Omega test lies in its ability to deal with integer unknowns and to realizesymbolic projections �x in order to eliminate the variables not in x, which give reduced forms ofthe constraints. A reduced form is an important information which may be used to �x an incorrectprogram; however, we know how to use this reduced form only when projection does not splinter aproblem into several ones.This test solves more general problems than systems of equations and inequations; it can com-pute a gist formula de�ned so that (gist p given q)^ q is equivalent to p^ q ([11]). In order to provethat a formula 8xy (D) 9zP) is a tautology, we compute gist �x;y(P) givenD, and check that itis true.8.2 Non locality of synchronizationThe following example shows that a synchronization may have a global e�ect.parallel sections (ordered)sectionpost(E(1))parallel do (ordered) I = 2,N 28

apost(E(I))wait(F(I-1))bend parallel dosectiondo I = 1,Nwait(E(I))post(F(I))end doend parallel sectionsThe precedence between a(i) and b(i+ 1), for i > 2 is caused by the synchronizations, not by thecontrol ow inside the parallel do; the precedence chain is a(i) ! postE(i) wait(E(i)) !post(F (i)) wait(F (i))! b(i+ 1).Therefore, to compute precedences within a construct, the synchronizations force us to considera whole program unit. This non-locality, in the same avor as other non-structured control primi-tives (the infamous goto, the locks), is of course an unpleasant feature of parallel programming inFortran X3H5.8.3 Block graphTo compute precedences in a program unit, a block graph is built. This is a graph whose nodesare blocks, a generalization of basic blocks (Cf. [1]); a similar structure is proposed in [5]. Blocksare of �ve kinds: fork blocks, synchronization blocks, conditional blocks, join blocks and ordinaryblocks.� a fork block is a parallel sections block� a synchronization block is{ either a sequence of statements, the �rst of which is a (event or ordinal) wait, or thelast of which is an event post (but both synchronization statements are nor allowed inthe same block), and the others do not contain any synchronization statement{ or made of one ordinal post� a conditional block block contains the boolean expression of an if� a join block is an end parallel sections or end if block� an ordinary block is a list of statements where no synchronization statement occurs.Note that statements in a block are not only simple ones (assignments, as in basic blocks, andsynchronizations) but may contain any structured control, sequential or parallel, which does notinvolve synchronization. Once this decomposition into blocks is done, a structured statement canbe seen as made up from a sequence of blocks instead of a sequence of statements. All statementsin a block share the same iteration vector (to which other components may be added inside for29

loops) and the same execution formula (to which other formulas may be conjuncted inside loopsand if branches).The decomposition is done so that, �rst, the synchronization blocks are maximal, second theordinary blocks are maximal. For instance, there exists a conditional block only when at least onebranch contains a synchronization; two ordinary blocks are not consecutive.Precedences within a block are computed by the Pre0 relation. This relation is extended tohold between blocks, or between statements and blocks, considering a block as a statement.
bool

post

wait

post

Figure 2: BlocksBlocks are implemented as structures, with links as shown in Figure 2, which could use outgoing�elds succ to the next block in a sequence, the sections in a parallel sections or the branchesof an if, back to the �rst block in a do body, sync to the wait blocks related to a post block.Graph edges are of two kinds:� synchronization edges between a post-block and a wait-block for events or ordinals of samename, and from an ordinal post-block to itself� control edges:{ from an if block to the �rst blocks of its branches{ from the last blocks in branches of an if to the end if block{ from a block to the following block in the sequence of a structured statement{ from the last block in a do loop to its �rst block{ from the parallel sections block to the �rst block in every section{ from the last block of every section to the end parallel sections block{ from the last block of a section to the �rst block of a section waiting for it (through await clause)Once built, as shown on the following section, the graph is simpli�ed, by removing join and emptyblocks. 30

Procedure graph([s1; : : : ; sm]; li; lo; ld)input a sequence of statements s1; : : : ; sm, an input link lioutput a next link lo, a do loop link ldside-e�ect creation of a list of blocksmethodl : current input link, initialized to lik : current blockfor each statement si doif no synchronization occurs in siif (k = 0)CreateBlock(l; k)AddToBlock(k;si; l)if si is a wait or an ordinal postif (k 6= 0)CloseBlock(k)CreateBlock(l;k)AddToBlock(k;si; l)if si is an ordinal postCloseBlock(k)if si is an event postif (k = 0)CreateBlock(l; k)if CheckWait(k)CloseBlock(k)CreateBlock(l; k)AddToBlock(k;si; l)CloseBlock(k)if si is an if, at least one branch of which contains a synchroif (k 6= 0)CloseBlock(k)CreateIfBlock(l;si:bexp; k; l1; l2)graph(si:then; l1; l01;)graph(si:else; l2; l02;)CreateEndIfBlock(l01; l02; k; l)if si is a do whose body contains a synchroif (k 6= 0)CloseBlock(k)graph(si:body; l; l0; ld)CloseDo(l; ld)if si is a parallel do whose body contains a synchroif (k 6= 0)CloseBlock(k)graph(si:body; l; l0; ld)if si is a parallel sections at least one of the n sections of which contains a synchroif (k 6= 0)CloseBlock(k)CreateForkBlock(l;n; k; l0)for j = 1; : : : ; n dograph(si:section�[j]; l0[j]; l00[j];)AddWaitEdges(k;l0; l00)CreateJoinBlock(l00; k; l) 31

8.4 Construction of the block graphThe algorithm takes as input a sequence of statements and outputs a sequence of blocks; it usesthe following procedures:CreateBlock(l; k): allocates a new block k, and assigns it to lCreateIfBlock(l; exp; k; l1; l2): allocates a new if block k, puts exp into its expression �eld, assignsit to l, and makes l1 and l2 refer to its outgoing pointer �eldsCreateForkBlock(l; n; k; l0): allocates a new parallel sections block k for n sections, assigns itto l, and makes pointer array variable l0 refer to its outgoing pointer �eldCreateJoinBlock(l0; n; k; l): allocates a new end parallel sections block k for n sections, assignsl0[j] to k, and makes l refer to its outgoing pointer �eldAddToBlock(k; s; l): add statement s at the end of block k, and makes l refer to the outgoingpointer �eld of kCloseBlock(k): assigns the null pointer to kCloseDo(l; ld): assigns the block referred to by l to ldCreateEndIfBlock(l01; l02; k; l): allocates a new end if block k, assigns it to l01 and l02 and makes lrefer to the outgoing pointer �eld of kCheckWait(k): returns true if �rst statement in k is a wait, and false otherwiseAddWaitEdges(k; l0; l00): add edges corresponding to section wait clauses, updates l0 and l00 toremove edges from the fork block to waiting sections, and from waited sections to the joinblock.8.5 Computation of precedence formulasLet a, b be statements that can be involved in a dependence relation, between which we mustcompute a precedence relation. Let Ka and Kb be the blocks containing a and b, and u a path fromKa to Kb.� decompose u as a product u1 : : : un where each ui is, either a control path (i.e., a product ofcontrol edges), or a synchronization edge, so that any two consecutive ui are not both controlpaths; if u is empty, then form Pre0a;b� if ui is a control path from block Kp to block Kq and Kp 6= Kq, then form Pre0Kp;Kq ;� if ui is a control path from block Kp to itself, and n = 1, then form Pre0a;b;� if ui is a synchronization edge and the statements involved are p and w, form ExesKp ^SyncKp ;Kw ^ExesKw ; for u1, form Pre0a;p ^ExesKp ^ SyncKp;Kw ^ExesKw ; for un form ExesKp ^SyncKp ;Kw ^ExesKw ^Pre0w;b� conjunct these n formulas to obtain Presu. 32

8.6 The formula to be provedWe have to prove, for a path u, that the formula8x8y9z (Exesa ^Exesb ^Depa;b) Presu)is valid. Aside from free program parameters, quanti�ed variables are:� iteration variables x of a and y of b� iteration variables z for blocks on path u, occurring only on the right hand side of theimplication.Depa;b is a disjunction D1 _ : : : _ Dm, because of its component Seqa;b; every Di is a system ofequations and inequations. Only terms Di which have not be proven unsatis�able by the Omegatest must be processed here.Exes is a conjunction of if conditions and inequations derived from loop bounds, involving onlyparameters and iteration variables.Presu is a conjunction (along u) of formulas Exes, Pre0 and Sync; Pre0 is a disjunction ofequations and inequations, like Seq; Sync is a conjunction of equations and inequations on loopbounds. Transforming Presu into disjunctive normal form, i.e. into a disjunction of systems Pj, wemust show that for all i and all x;y, there exists a system Pj such thatDi(x;y)) Pj(x;y; z)has at least one solution in z.It is su�cient to prove that, for all i, there exists a system Pj such that8x8y9zDi(x;y)) Pj(x;y; z)is valid. This is only a su�cient condition.8.7 ExamplesExample 1A(0) =post(E(0))parallel do (ordered) I=1,Nw: wait(E(I-1))b: = A(I-1)a: A(I) =p: post(E(I))end parallel doStatements a and b satisfy:� N(a; b) = [(pdo; I; 1; N)]� C(a; b) = ; 33

� In(b) = fA(I � 1)g� Out(a) = fA(I)g� OutNames(a) \ InNames(b) = fAgTherefore, the dependence formula must be built:Depa;b(x; y) = (1 6 x 6 N) ^ (1 6 y 6 N) ^ (x < y) ^ (x = y � 1)As this formula is satis�able, precedences must be computed. Control precedences are:Pre0a;b(x; y) = false:As Pre0a;b(x; y) does not follow from Depa;b(x; y), synchronizations must be considered, and the blockgraph must be built. It is displayed on Figure 3. We have Exesa(x) = (1 6 x 6 N) and Exesb(y) =
A(0) = ...

post(E(0))

 wait(E(I-1))

 ... = A(I-1)

 A(I) = ...

 post(E(I))

end parallel do

s

parallel do (ordered) I= 1, N

c Figure 3: Block graph: example 1(1 6 y 6 N). Statements a and b occur in the same wait block kw, and there is a synchronizationedge s from the post block kp to kw with the formula Syncp;w(x; y) = (1 6 x 6 N) ^ (1 6 y 6N)^ (x = y� 1), and a control edge c from kw to kp; paths from kp to kw are the s(cs)n for n > 0.The formula Pres(x; y; z1; z2) is Pre0a;p(x; z1) ^ Exesp(z1) ^ Syncp;w(z1; z2) ^ Exesw(z2) ^ Pre0w;b(z2; y).We have to prove:8x8y9z19z2 (Depa;b(x; y)^ Exesa(x) ^ Exesb(y)) Press(x; y; z1; z2))i.e., 8x8y9z19z2((1 6 x 6 N) ^ (1 6 y 6 N) ^ (x < y) ^ (x = y � 1))(x = z1) ^ (1 6 z1 6 N) ^ (z1 = z2 � 1) ^ (1 6 z2 6 N) ^ (z2 = y))This problem is passed to the Omega test, which computes a gist which is true (empty system);this is su�cient to prove the program correctness. The following trace is obtained:34

parameter list = (n)------- conflict:- conflict on name = a- statement A =a(i166) = 1- statement B =x(i166) = a(i166-1)- type = wr- head operator = seq- A << B = false- common nest =paralleldo i166- dependence equation =i166 = -1+i166- iteration space for statement A =1 <= i166i166 <= n- iteration space for statement B =1 <= i166i166 <= nallpaths=((& & &) (& & & & &) (& & & & & & &) (& & & & & & & & &))testing path of length 3path=(() pre0 0)alternative sys:precedence problem:- Eq:0) y0 = z11) z0 = x02) z1 = 1+z0- GEq:0) 1 <= z01) z0 <= n2) 1 <= z13) z1 <= ndependence system:0) y0 = 1+x00) 1+x0 <= y01) y0 <= n2) 1 <= y03) x0 <= n4) 1 <= x0projected precedence system:5) y0 <= 1+x06) 1+x0 <= y07) 1 <= x08) 1+x0 <= ngist: ()If we substitute E(I+1) for E(I-1), the computed gist is instead 1+ y 6 x, which is not a validformula, as variables x and y are universally quanti�ed: this result is a serious hint for the program35

to be incorrect.Example 2: a non uniform dependenceparallel sections (ordered)sectiondo I=1,La: A(I) = ...p: post(E(I))end dosectiondo J=1,Mdo K=1,Nw: wait(E(J+K))b: ... = A(J+K)end doend doend parallel sectionsStatements a and b satisfy:� N(a; b) = ()� C(a; b) = jj� In(b) = fA(J +K)g� Out(a) = fA(I)g� OutNames(a) \ InNames(b) = fAg.The dependence formula is:Depa;b(x; y; z) = (1 6 x 6 L) ^ (1 6 y 6M) ^ (1 6 z 6 N) ^ (x = y + z)The precedence graph is displayed on Figure 4. The shortest path between the blocks containinga and b yields a synchronization precedence formula, which is the same as Depa;b(x; y; z). Check-ing \Dep) Pres" is therefore straightforward, as shown in the following output, by the thirdalternative system.parameter list = (n m l)------- conflict:- conflict on name = a- statement A =a(i173) = x(i173)- statement B =y(j172+k171) = a(j172+k171)- type = wr- head operator = par- A << B = true 36

 section

 do I=1,L

 A(I) = ...

 post(E(I))

 end do

 section

 do J=1,M

 do K=1,N

 wait(E(J+K))

 ... = A(J+K)

 end do

 end do

end parallel sections

parallel sections (ordered)

Figure 4: Block graph: example 2- common nest =- dependence equation =i173 = j172+k171- iteration space for statement A =1 <= i173i173 <= l- iteration space for statement B =1 <= j172j172 <= m1 <= k171k171 <= nallpaths=((& &) (& & &))testing path of length 2path=(() 0)alternative sys:path problem:- Eq:0) z0 = x01) z1+z2 = z0- GEq:0) 1+z1 <= y01) 1 <= z02) z0 <= l3) 1 <= z14) z1 <= m5) 1 <= z2 37

6) z2 <= ndependence system:0) y0+y1 = x00) y1 <= n1) 1 <= y12) y0 <= m3) 1 <= y04) x0 <= l5) 1 <= x0projected precedence system:6) x0 <= n+m7) 2 <= x08) x0 <= l9) 1+x0 <= n+y010) 2 <= y011) 1 <= m12) 1 <= ngist: (10 9)2 <= y01+x0 <= n+y0alternative sys:path problem:- Eq:0) y0 = z11) z0 = x02) z1+z2 = z0- GEq:0) 1+z2 <= y11) 1 <= z02) z0 <= l3) 1 <= z14) z1 <= m5) 1 <= z26) z2 <= ndependence system:0) y0+y1 = x00) y1 <= n1) 1 <= y12) y0 <= m3) 1 <= y04) x0 <= l5) 1 <= x0projected precedence system:6) 1+x0 <= y0+y17) x0 <= n+y08) x0 <= l9) 1 <= y010) y0 <= m11) 1+y0 <= x0gist: (6)1+x0 <= y0+y1alternative sys:path problem: 38

- Eq:0) y1 = z21) y0 = z12) z0 = x03) z1+z2 = z0- GEq:0) 1 <= z01) z0 <= l2) 1 <= z13) z1 <= m4) 1 <= z25) z2 <= ndependence system:0) y0+y1 = x00) y1 <= n1) 1 <= y12) y0 <= m3) 1 <= y04) x0 <= l5) 1 <= x0projected precedence system:6) y0+y1 <= x07) x0 <= y0+y18) x0 <= n+y09) x0 <= l10) 1 <= y011) y0 <= m12) 1+y0 <= x0gist: ()This is a case of non uniform dependence, where usual parallelization methods which beginwith the computation of dependences cannot compute a dependence distance; here, the formalprocessing of equations allows to complete the correctness proof.Example 3: synchronizations through loopsparallel sections (ordered)sectiondo I=1,Ma: A(2*I) = ...p: post(EA(2*I-1))w: wait(EB(I))b: ... = B(I)end dosectiondo J=1,Nb': B(3*J) = ...p': post(EB(3*J))w': wait(EA(J+1))a': ... = A(J) 39

end doend parallel sections� N(a; a0) = ()� C(a; a0) = jj� In(a0) = fA(J)g� Out(a) = fA(2 � I)g� OutNames(a) \ InNames(a0) = fAg.The dependence formula between a and a0 is:Depa;a0(x; y) = (1 6 x 6M) ^ (1 6 y 6 N) ^ (2x = y)The precedence graph is displayed on Figure 5. To the synchronization edge s from the block
 do I=1,M

 A(2*I) = ...

 post(EA(2*I-1))

 wait(EB(I))

 ... = B(I)

 end do

section

 do J=1,N

 B(3*J) = ...

 wait(EA(J+1))

 ... = A(J)

 end do

section

parallel sections (ordered)

 post(EB(3*J))

end parallel sectionsFigure 5: Block graph: example 3containing a to the block containing a0 is associated the synchronization formulaSyncp;w0(x; y) = (1 6 x 6M) ^ (1 6 y 6 N) ^ (2x� 1 = y + 1);40

we have the precedence formulaPress(x; y; z1; z2) = Pre0a;p(x; z1) ^ Syncp;w0(z1; z2) ^ Pre0w0;a0(z2; y):i.e., the system 8>>>>>>>>>><>>>>>>>>>>: 1 6 x 6 m1 6 z1 6 mx 6 z11 6 z2 6 n2z1 � 1 = z2 + 11 6 y 6 nz2 6 yActually, this system is a disjunction of four alternative systems, because of the disjunctive formof the precedences. When the projection of each of these systems onto variables x, y, m, n is done,the computed gist contains universal variables, so that none is true. It can be proved that thedependence is preserved if 2 6 m, but the system is not presently able to do it.Example 4do I=1,MA(I)=Ipost(E(I))enddoparallel sections (ordered)sectionparallel do (ordered) I=M+1,3*Mwait(E(I-M))A(I)=I*A(I-M)post(E(I))end parallel dosectionparallel do J=1,M+1wait(E(3*M+1-J))end parallel doparallel do I=3*M+1,3*M+NA(I)=I*A(I-M)end parallel doend parallel sectionsThere are four dependences, as shown on Figure 6 The precedence graph is displayed on Figure 7.The �rst two dependences (within the parallel do) are obviously not preserved, because there isno precedence path from the statement to itself.------- conflict:- conflict on name = a- statement A =a(i162) = i162*a(i162-m) 41

 A(I)=I*A(I-M)

 wait(E(I-M))

 wait(E(3*M+1-J))

 parallel do I=3*M+1,3*M+N

 end parallel do

 A(I)=I*A(I-M) δ,δ

 post((E(I))

δ

δ

1 2

3

4

Figure 6: Dependences: example 4- statement B =a(i162) = i162*a(i162-m)- type = wr- head operator = seq- A << B = false- common nest =paralleldo i162- dependence equation =i162 = -m+i162- iteration space for statement A =1+ 3m <= i162i162 <= 3m+n- iteration space for statement B =1+ 3m <= i162i162 <= 3m+nallpaths=()------- conflict:- conflict on name = a- statement A = 42

do I=1,M

 A(I)=I

 post(E(I))

enddo

parallel sections (ordered)

 section

 parallel do (ordered) I= M+1,3*M

 A(I)=I*A(I-M)

 post((E(I))

 end parallel do

 section

 parallel do J=1,M+1

 wait(E(3*M+1-J))

 end parallel do

 parallel do I=3*M+1,3*M+N

 A(I)=I*A(I-M)

 end parallel do

end parallel sections

end

 wait(E(I-M))

Figure 7: Block graph: example 4a(i162) = i162*a(i162-m)- statement B =a(i162) = i162*a(i162-m)- type = rw- head operator = seq- A << B = false- common nest =paralleldo i162- dependence equation =-m+i162 = i162- iteration space for statement A =1+ 3m <= i162i162 <= 3m+n- iteration space for statement B =1+ 3m <= i162i162 <= 3m+nallpaths=() 43

The self-dependence is preserved through the �rst path, of length 3:------- conflict:- conflict on name = a- statement A =a(i160) = i160*a(i160-m)- statement B =a(i160) = i160*a(i160-m)- type = wr- head operator = seq- A << B = false- common nest =paralleldo i160- dependence equation =i160 = -m+i160- iteration space for statement A =1+m <= i160i160 <= 3m- iteration space for statement B =1+m <= i160i160 <= 3mallpaths=((& & &) (& & & & &) (& & & & & & &) (& & & & & & & & &))testing path of length 3path=(() pre0 0)alternative sys:path problem:- Eq:0) y0 = z11) z0 = x02) z1 = m+z0- GEq:0) 1+m <= z01) z0 <= 3m2) 1+m <= z13) z1 <= 3mdependence system:0) y0 = m+x00) 1+x0 <= y01) y0 <= 3m2) 1+m <= y03) x0 <= 3m4) 1+m <= x0projected precedence system:5) y0 <= m+x06) m+x0 <= y07) 1+m <= x08) x0 <= 2mgist: ()The last one is also preserved. 44

9 ConclusionsIn this report, we have presented a semantic analysis of a subset of Fortran X3H5. We believethat the emergence of a new standard will lead more programmers to design their own parallelprograms, instead of relying on the automatic parallelization of sequential programs. However, itis not certain that control parallelism is the best choice, and the issue of the competition betweenFortran X3H5 and data parallel extensions such as HPF is still unknown.We tried to shed some light on the semantics of the control parallel constructs, using techniquessuch as dependence analysis, well-known in parallelization, but applied here in a di�erent way. Thecorrectness property we investigate is the semantic equivalence between a parallel program and itssequential version, which means that any (shared) memory location observes the same sequence ofoperations in any execution of the parallel program and in the execution of its sequential version.The problem is not to �nd all dependences in a program but to single out those which may beunsafe in a parallel execution. More accurately we must show that a dependence in the sequentialversion of the program is preserved by any parallel execution of the program. This preservationproperty comes from the work of Callahan, Kennedy and Subhlok ([5]). In case we cannot achievesuch a proof, the dependence is considered as unsafe and reported as such to the programmer. Tomake the search for a proof possible, we had to strongly restrict the syntax of the subset we study.Our main result derives the semantic equivalence from several assumptions: syntactic restrictions,no deadlock in a single process execution, and the validity of a formula involving dependence,execution and precedence conditions. The construction and proof of this formula is the aim of thealgorithm we propose.This algorithm has been embedded in an interactive programming environment based on theCentaur[6] generic environment. It builds a graph whose nodes are blocks generalizing the basicblocks used in compiling, and whose edges hold the information of precedence (sequencing andsynchronization). The syntactic restrictions allow for a formal processing of several predicates (de-pendence, iteration, control precedence, synchronization). With these predicates we build systemsof linear equations and inequations with integer unknowns, and formulas which are quanti�ed im-plications of such systems; such a formula is associated to each precedence path in the block graphbetween two nodes that may be in a dependence relation. In order to prove that such a formulais valid, we pass it to the Omega test ([10]). This processing, although rather heavy, gives resultswhen more numerical algorithms fail, for instance where non uniform precedences are involved;moreover, it can output relations between program parameters which are su�cient conditions fora dependence to be preserved.We look forward to release some of the assumptions of our main result, notably the staticity ofreferences.References[1] A. Aho, R. Sethi, and J. D. Ullman. Compilers. Addison-Wesley, 1986.[2] R. Allen, D. Callahan, and K. Kennedy. Automatic decomposition of scienti�c programs forparallel execution. In ACM, Principles of Programming Languages. ACM Press, 1987.[3] U. Banerjee. Dependence Analysis for Supercomputing. Kluwer Academic Publishers, 1988.45

[4] U. Banerjee. An introduction to a formal theory of dependence analysis. The Journal ofSupercomputing, 2:133{149, 1988.[5] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchronization in a parallelprogramming tool. In 2nd ACM SIGPLAN Symp. on Principles and Practice of ParallelProgramming, pages 21{30, Seattle, march 1990. ACM Press.[6] D. Cl�ement. GIPE: Generation of Interactive Programming Environments. TSI, 9(2):157{165,1990.[7] B. Dehbonei. G�en�eration de code et Analyse Interproc�edurale au sein d'un Environnement deprogrammation Parall�ele. PhD thesis, Universit�e Paris 6, December 1990.[8] M.C. Giboulot, M. Loyer, G. Popovitch, and F. Thomasset. An interactive parallelizer underthe Centaur environment. Technical report, ESPRIT-II, 1990.[9] C. Pancake. Parallel Processing Model for High Level Programming Languages. ANSI, March1992. (Proposed Standard).[10] W. Pugh. A practical algorithm for exact array dependence analysis. Communications of theACM, 35(8):102{114, August 1992.[11] W. Pugh and D. Wonnacott. Eliminating false data dependences using the Omega test. Tech-nical Report UMIACS-TR-92-114, Dept. of Computer Science, Univ. of Maryland, CollegePark, MD, dec. 1992.[12] M. Wolfe. The tiny loop restructuring research tool. In Proc. of the 1991 Internat. Conf. onParallel Processing, 1991.[13] X3H5. FORTRAN 77 Binding of X3H5 Model for Parallel Programming Constructs. ANSI,September 1992. (draft version).[14] H. Zima. Supercompilers for Parallel and Vector Computers. ACM Press, New York, 1990.
46

