
A Parallel Compressible 3D Navier-StokesSolver Using Unstructured MeshesMark LORIOT? Loula FEZOUI�? SIMULOG, Les Taissounières HB2, Route des Dolines, 06560 VALBONNE,FRANCE.� CERMICS/INRIA Sophia-Antipolis, 2004, Route des Lucioles, 06560VALBONNE, FRANCE.AbstractWe describe in this paper a strategy for parallelising a 3D compressible Navier-Stokes solver using unstructured meshes on a class of message-passing MIMD ma-chines. The performance results obtained on two parallel machines, the Meiko Con-certo and Intel iPSC860 are presented and compared to those obtained on CRAY.IntroductionDe�ning a way to implement a given serial algorithm on a parallel machine, depends ofcourse on the level of parallelism of the algorithm as well as on some of the characteristicsof the selected machine, but also on some previously set objectives. As an example, insome of our previous works ([6], [11], our goal was to reach a maximum e�ciency, accept-ing thus to introduce a large set of modi�cations in the existing algorithm and sometimesto write the program again completely. This proved to be necessary for some machines(the Connection Machine CM-2, for instance) and remains feasible for �small� programswhich correspond here to the one- and two-dimensional cases.In the present paper, we deal with an existing industrial code, NSTC3D (3D Compress-ible Navier-Stokes [7] which already runs on scalar and vector machines. A minimum ofmodi�cations in the program source is required when building a parallel version, in orderto be able to easily maintain and upgrade this program. Moreover, we want the resultingparallel program to be as little �machine-dependant� as possible. That is, it must run onboth serial and parallel machines (at least of the same kind) with no further modi�cation.From this viewpoint, the highest e�ciency to be achieved on any particular machine isleft to an optimisation phase which will not be discussed here.Only a certain kind of multi-processor machines will be addressed in this paper, althoughthe methodology we use also successfully applies to shared memory systems [10]. Theparallel machines addressed here are of MIMD distributed memory type with a message-passing communication model. Such a choice is not so restrictive since a lot of existingparallel machines belong to this class (Intel hypercube, Paragon, Meiko, Ncube, etc..).1

The main characteristics of NSTC3D is that it is based on �nite volume schemes using�nite element type grids (here tetrahedra), which results in complex data structures. Asimple way to achieve a parallel implementation is to split the mesh among the processormemories. This is done here via a �preprocessor� which generates also all the necessarydata to perform communications between the split domains (ie the processors). A two-dimensional version of this preprocessor with a set of experiment results may be found in[4],[5].We recall in the �rst section of this paper the equations to be solved, and present brie�ythe numerical method used. In the second section we describe the mesh-decompositionsoftware. Numerical solutions and performance comparisons are presented in the lastsection .1 The FEM/FVM Navier Stokes solverIn the sequel we shall describe brie�y the method used here to solve numerically theNavier-Stokes system. This method is based on a �nite volume formulation applied to�nite element type discretisation of computational domains. For more details on themethod, one may refer to [2] and [7] and the references included.The conservative form of the 3D Navier-Stokes system describing the compressible andviscous �ow of a perfect gas writes as follows:@W@t + ~r: ~F(W) = 1Re ~r: ~R(W) (1)where W is the vector of the conservative variables which are respectively the density �,the momentum vector �~V and the total energy E. Re is the Reynolds number.The pressure P is related to the other variables through the perfect gas state equation:P = (
 � 1)�E � 12�(2 + v2 + w2)�where
 is the ratio of speci�c heats (1:4 for air).The de�nition of the convective �uxes ~F and the viscous �uxes ~R may be found inany classical �uid mechanics book and one may also refer to [7] for the model used here.1.1 The Spatial DiscretisationSince we are interested in using �nite volume approximations on unstructured meshes,we have to construct a partition of the computational domain
, made of control vol-umes. Unstructured meshes result from a standard �nite element triangulation (2D) ortetrahedrisation (3D). The following �gure (1) shows a control cell in 2D and 3D spacedimensions.The main idea behind the mixed �nite element/�nite volume approximation used hereis the use of a di�erent approach for each side of the system (1). The left hand side(Euler part) is approximated by means of a �nite volume Galerkin (FVG) approximation.A description of such an approach in two space dimensions may be found in [3]. Theextension to the 3D case is straightforward. A classical �nite element Galerkin (FEG)2

i

j

G1

G2

I

G

GG

M

M

M

i

T

1

2

3

13

2

middles of edges

G ,G ,G centres of facets

G centre of gravity of T
1 2 3

G

M 3M 1 M 2, ,

Figure 1: 2D cell (left) and contribution to 3D cell (right)approximation is used to discretise the right hand side (viscous part) of (1).This results in the following semi-discrete system:vol(Ci)dWi(t)dt + Z@Ci ~F(W):~�d� + Z@Ci\@
 ~F(W):~�d� = � 1Re XT;i2T Z Z ZT ~R(W):~r'Ti d!where ~� is the outward normal to the boundary @Ci and 'Ti is the restriction to the elementT of the P1 basis function of node i.Convective FluxesThe approximation of the Euler part of the system is done in two stages: �rst we applyany monotonic upwind scheme extended to the case of unstructured meshes [3] and thenperform the second order accuracy using a linear interpolation around each grid vertex.First Order Explicit Upwind FluxesWe split the boubondary of an internal cell Ci into an union of boundary interfaces@Ci [@Cj where j denotes a neighbouring node of i:Z@Ci ~F(W):~�d� = Xj2K(i) Z@Ci[@Cj ~F(W):~�d�where K(i) is the set of neighbouring nodes of node i.Z@Ci[@Cj ~F(W):~�ijd� = �(Wi;Wj; ~�ij) = �ijThe upwind numerical approximation selected here is based on van Leer's Flux function([9]). One may use however any other upwind centered scheme such as Roe's or Osher'sscheme for example. �ij = F+(Wi) + F�(Wj)3

The de�nition of the split �uxes may be found in [9].Second order extensionFollowing the MUSCL (Monotonic Upwind Scheme for Conservation Laws) introducedby van Leer ([8]), one may use, to enhance the accuracy, the same numerical �ux function(as in the �rst order scheme) applied now to certain values Wij ;Wji of the vector W atthe interface of cells Ci and Cj. �ij = �(Wij;Wji; ~�ij)Wij = Wi + 12(~rW)i:~ijWji = Wj � 12(~rW)j :~ijThe gradient of W at node i may be de�ned as follows:vol(Ci):(~rW)i = XT;i2T vol(T)4 4Xk=1Wk:~r'TkWe shall not use here any limitation technique for we apply the van Leer scheme(which has a non negligible amount of numerical viscosity) to viscous �ow calculations atrelatively low Mach numbers. We may found however on [3] and [1] how to de�ne and usesuch limitation techniques.Viscous FluxesTo compute the numerical viscous �uxes, we use a classical Galerkin approximation:[Flux]vi = XT;ai2T Z Z ZT ~R(W):~r'Ti d![Flux]vi = vol(T) R1(T)@'Ti@x +R2(T)@'Ti@y + R3(T)@'Ti@z !Where R1(T), R2(T) and R3(T) are de�ned as follows:Rl(T) = 14 Xk2T Rl;k; l = 1; 3Rl:k is the value of Rl at vertex k of triangle T .Boundary ConditionsTo solve numerically system (1) one has to add some boundary conditions which are ingeneral of two types: a Dirichlet condition on the velocity and temperature on the wallin the case of external �ows around a body, and in-out conditions for internal �ows. Afree stream �ow condition is also considered for external �ows on the arti�cial boundary(in�nity). We refer to ([7], 89-97) for a detailed description of the boundary conditionsused and their numerical treatment. 4

Time IntegrationThe spatial approximation beeing de�ned, one obtains the following semi-discrete system:@W@t +	(W) = 0As in our previous works ([11],[5],[6]), we choose again explicit schemes for they are easyto parallelise and require a low storage of data. For second order computations we use a3-stage Runge-Kutta or a predictor-corrector scheme whereas RK1 (1-stage) is used whencomputing �rst-order accurate (in time and space) solutions.RK3 Scheme 8>>>>>><>>>>>>: W (0) = WnW (k) = W (0) � �t4� k	 �W (k�1)�W (n+1) = W (3)Predictor-Corrector SchemeAn alternative to Runge-Kutta schemes is a predictor-corrector scheme which is second-order accurate only and less stable than the RK3 but also much cheaper in terms of CPUcosts (this is often a requirement of industrial codes). The scheme used here was suggestedby Hancock and presented by Van Leer.First we predict a state ~Wn+ 12 using the Euler equations:~Wn+ 12i = ~Wni � �t2 @ ~FW (W)~� ~Wi)In the second phase (correction), the �uxes are evaluated using the predicted state:Wn+1i = Wni ��t�(~Wn+ 12ij ; ~Wn+ 12ji ; ~�ij) + [Flux]viLocal Time SteppingWe use a local time stepping technique to speed up the convergence when simulatingsteady �ows. This is achieved using a CFL-like condition on each cell Ci:�(k~V k+ c)hi + 2
��PrRe� �Th2i � 1where c is the local speed of sound, Pr is the Prandtl number and hi is the largest altitudein the elements surrounding the node i.AlgorithmThe method described above leads to an iterative algorithm which writes, when usingRK1, as follows:At each time step, Compute: 5

(1) Local or global Time-step(2) Gradients at Nodes(3) Di�usive Fluxes(4) Convective Fluxes(5) Update the SolutionIn a serial implementation, stages (1), (2) and (3) result in loops on tetrahedra, whilestep (4) and step (5) result in loops on edges and nodes respectively. This mixed datastructure comes from the mixed �nite element/�nite volume formulation.We recall that a vector mode implementation needs colouring techniques for the scattervector operations involved in the calculation above.2 MIMD PARALLELISATION2.1 Mesh decompositionWe chose to parallelise our code using a data partitioning approach. This leads to thedecomposition of the initial �nite element mesh into several submeshes, each of them beingassigned to a processor. This decomposition phase, as well as the generation of all thecommunication data which are used by the parallel code, is performed by a preprocessor.This preprocessor runs on a workstation.2.2 Overlapping of subdomainsThe best way to achieve one of our main goals, that is, make as little modi�cation to theoriginal serial code as possible, is to reduce as much as possible communications. This isdone by providing all the data indispensable to go through a whole time step locally, even ifthis induces extra memory storage and redundant computations. This leads to overlappingsubdomains, where all the information needed form the neighbours is fetched only once ateach time step. The size of the interface shared by two neighbouring subdomains dependon the order of the spatial approximation. This choice induces only tiny changes to theoriginal non-parallel code, at the cost of having some computations done twice.2.3 Parallel Algorithm and communicationsThe parallel algorithm is quite similar to the algorithm implemented on scalar machines.There is only a 6th stage added, which is :(6) Update the InterfaceThis stage requires communications between two subdomains sharing the same interface(for example: processor 1 sends the new values of its solution at its interface points toprocessor 2, and vice versa). However, there is also sometimes a need for global commu-nications. This happens if a global time step is used (unsteady calculations), or to makea global evaluation of the residue in order to analyse the convergence (such global residueevaluations are in practice performed only from time to time)6

 S O U S - D O M A I N E S

1

2
3 4

5
6 7
8

9
1011

12 1314

15 16

17

18
19

20

21
22 23 24

25
2627

28 2930

31 32Figure 2: 2D Inertia Axis decomposition into 32 subdomains - zoom close to the body -�rst order interface2.4 use of a portable communication library : PARMACSWe described above how an easy "migration", that is, port a serial code to a parallelmachine, was achieved. Another problem remains in an industrial context: port the codefrom one parallel platform to another. This is solved by using a portable message-passinglibrary such as PARMACS, which ensures maximum portability and provides mappingtools.2.5 Automatic mesh splittingAutomatic splitting algorithms are used in the preprocessor. They are based on e�cientheuristics, and achieve good load balance and e�cient communication graphs very fast.These algorithms may generally be used for both 2D and 3D meshes. They are based onthe coordinates (median, sector, inertia axis...) or on the connectivity (greedy). We mayrefer to [5] and [4] for more details about these algorithms.We give on �g.(2) and �g.(3) examples of 2D decompositions of a mesh representingthe computational domain around a naca0012 airfoil(�rst order interface); on �g.(4), (5)and �g.(6) are examples of 3D decompositions of a mesh representing the computationaldomain inside an engine combustion chamber (�rst order interface).3 Numerical resultsThis section consists of two parts. We give in the �rst part the results obtained for twocomputations: the �rst is the simulation of a 2D external �ow around a NACA0012 airfoil,the second is the simulation of a 3D internal �ow inside the combustion chamber of anengine.In the second part, performance results for both 2D and 3D computations are presentedfor a wide range of meshes, and discussed. Both the 2D and 3D codes used are fullyvectorised, by using whenever necessary colouring techniques.7

 S O U S - D O M A I N E S

1
2

3
456

7 8

Figure 3: 2D Sector decomposition into 8 subdomains - zoom close to the body - secondorder interface
 S O U S - D O M A I N E S

1 2 3 4
56 7 8

9 10 11 12
1314 1516

17 18 1920
21 2223 24

25 2627
28

29
3031 32Figure 4: 3D Inertia Axis decomposition into 32 subdomains - �rst order interface

 S O U S - D O M A I N E S

1234
5678
9101112
13141516

Figure 5: 3D front decomposition into 16 subdomains8

 S O U S - D O M A I N E S

1 2 3 4
56 7 8

9 10 11 12
1314 1516

17 18 1920
21 2223 24

25 2627
28

29
3031 32Figure 6: 3D Inertia Axis decomposition into 32 subdomains - zoom close to admissionpipe

Figure 7: Isomach lines at convergence - zoom close to the body3.1 2D Navier-Stokes resultsWe showed on �g. (3) the decomposition used for the second order calculation of theviscous �ow around a NACA0012 airfoil. This decomposition was selected because itreduces the number of neighbours to 2, and therefore the number of messages, and this ismost important for an explicit calculation. There are 8 processors used in this case. Themesh has 3114 vertices. The calculation was made with no incidence, and a free streamMach number of .85 . The Mach number is 500, and the body temperature 349 K (see �g.(7)).3.2 3D Navier-Stokes resultsWe showed on �g. (6) the decomposition used for the calculation of the viscous �ow insidea combustion chamber. The calculation was performed on a Meiko Concerto, with 16 i8609

V e l o c i t y f i e l d
VISEE : -45 .0 ELEVATION : 30 .0
CAS DE CHARGE : 1 / 1 INC. : 2 / 7
VALEUR MAXIMUM : 34 .78

S I M U L O G l o g i c i e l T I G R E

 5 . 9 9 5 7 E - 0 2

 2 . 1 4 3

 3 . 5 3 2

 5 . 6 1 5

 7 . 6 9 9

 9 . 0 8 7

 1 1 . 1 7

 1 3 . 2 5

 1 4 . 6 4

 1 6 . 7 3

 1 8 . 8 1

 2 0 . 2 0

 2 2 . 2 8

 2 4 . 3 6

 2 5 . 7 5

 2 7 . 8 4

 2 9 . 9 2

 3 1 . 3 1

 3 3 . 3 9

 3 4 . 0 9 Figure 8: Velocity �eld at convergence - zoom close to the bodyprocessors used in this case. The grid contains 43,592 vertices and 237,963 tetrahedra.The calculation was made with a incoming Mach number of .05. Temperature on the wallsis 294 K, �ow rate is imposed for the incoming �ow, and the pressure for the outcoming�ow is of :37:105 Pa . We show on �g. (8) a zoom close to the admission pipe.It is interesting to notice that the preprocessing phase for this computation (includingdecomposition, regularisation, load balance optimisation and communication map gener-ation) took only 15 minutes on a Sun Sparc 2, the major part of this time (75 %) beingtaken by the mesh and data structure �le I/O.3.3 Performance resultsWe give here the performance results for the Navier-Stokes solver. The computationsmade are second order in time and space accurate, and performed in 32 bit and 64 bitprecision.We compared the performance obtained on the three following machines: a CRAY-YMPand CRay 2 both with one processor, a Meiko-CS1 (Concerto) with 16 i860 processors,and an Intel iPSC860 with 128 i860 processors (only up to 64 processors were used). Wewill give here only results in single precision, since double precision results on both theMeiko and the iPSC860 may be obtained directly by applying a loss of 30 % in CPUperformance to the single precision results.All the �gures given below include the idle and communication times of the processors. Allperformances were obtained when using the VAST vectorizer and the Greenhills compiler(g860apx) with the -OMA options on the Meiko, and the Portland compiler with the -vector -noieee -O4 on the iPSC860.PARMACS was used in all the computations as the message passing library.3.3.1 2D caseFor the 2D case, the meshes represent the computational domain around a NACA0012airfoil. The decomposition algorithms used vary depending on the number of subdomainsof the decomposition.The global grid size varies from 8119 to 68877 vertices. We give on �g. (9) detailedresults in CPU time, percentage of communication and performance in terms of M�ops(including communications). One may observe that for a �xed grid size, the global CPU10

Nb Machine Nb M�ops total CPU time %points procs s/iter commuc.8119 Meiko CS1 16 126.9 0.383 4.7 %8119 iPSC860 16 97.5 0.499 8.8 %8119 Cray 2 1 79.22 0.41 0 %8119 Cray YMP 1 163 0.2 0 %16116 Meiko CS1 16 128.4 0.655 4.6 %16116 iPSC860 16 101.5 0.828 4.4 %16116 Cray 2 1 81.7 0.774 0 %16116 Cray YMP 1 164 0.386 0 %32236 Meiko CS1 16 132.4 1.21 2.2 %32236 iPSC860 16 101 1.59 2.7 %32236 Cray 2 1 80.3 1.61 0 %32236 Cray YMP 1 163 0.80 0 %68877 Meiko CS1 16 132.6 2.43 1.6 %68877 iPSC860 16 99.4 3.25 1.9 %68877 iPSC860 32 196 1.59 5 %68877 iPSC860 64 386 0.85 6.7 %68877 Cray 2 1 77.7 3.57 0 %68877 Cray YMP 1 163.4 1.70 0 %Figure 9: Compared 2D Performance results with single-precisiontime decreases as the number of processors increases at approximatively the same rate.The part due to the communications is small (around 5 %). These results show that thecost of the three-element wide overlapping is also very small (10 % of CPU time in the caseof 32 processors, 15 % for 64 processors) when comparing the CPU times to the M�ops,and that one needs a 32-processor hypercube to go faster than a one-processor CRAYYMP when only single precision is needed (however we recall that the Cray uses 64 bitprecision)3.3.2 3D caseFor the 3D case, the meshes represent the computational domain inside a rectanguler closedcavity. We chose this simple geometry in order to have an easy scalability for the numberof mesh vertices. The global grid size varies from 10,000 to 80,000 vertices. We give on11

Nb Machine Nb M�ops total CPU time %points procs s/iter comm.10000 Meiko CS1 16 95 1.0 4.8 %10000 iPSC860 16 78.6 1.2 4.3 %10000 Cray 2 1 66.6 0.9 0 %10000 Cray YMP 1 140.7 0.45 0 %20280 Meiko CS1 16 98.5 1.85 3.2 %20280 iPSC860 16 79.8 2.3 3.3 %20280 Cray 2 1 66.5 1.9 0 %20280 Cray YMP 1 140.6 0.9 0 %40500 Meiko CS1 16 99.9 3.3 3.2 %40500 iPSC860 16 79.1 4.2 3.9 %40500 Cray 2 1 65.4 4.0 0 %40500 Cray YMP 1 139.7 1.9 0 %80000 Meiko CS1 16 101 6.5 2.8 %80000 iPSC860 16 80.1 8.3 3.2 %80000 iPSC860 32 147 5.4 8.3 %80000 iPSC860 64 251 3.7 15 %80000 Cray 2 1 60.6 8.7 0 %80000 Cray YMP 1 - - -Figure 10: Compared 3D Performance results with single-precision�g. (10) detailed results in CPU time, percentage of communication and performance interms of M�ops (including communications). No result was available on the CRAY-YMPfor the large mesh due to memory shortage.These performance results show that in the 3D case, the cost of the overlapping is muchhigher than in 2D. We already get a 20 % extra cost when comparing the M�ops andCPU time for the 40500 node mesh, and this would probably reach 40 % for 64 processors.However, we must point out that we did not try to use an optimal decomposition, nor loadbalance optimisation in the case of 64 processors, in order to be in a realistic �industrialenvironment�. We could probably improve these results by taking an optimal number ofprocessors for a given problem.Here again, the cost of communications is relatively low (less than 15 %)12

Performance ComparisonsWe give below on �g. (11) and �g. (12) charts allowing comparisons between the super-computers used. We must point out that the code used (NSTC3D) was rigorously thesame on the MIMD computers, and only a few communication lines were commented outin order to run the code in sequential mode on the CRAY machines. Only the parallelresults obtained with 16 processors are shown, since the others were available only for thelargest mesh. Let us emphasize the fact that these results were made in 32-bit precisionon the parallel machines, and that the use of 64-bit precision, such as the one used onCRAY machines, induces a loss of 30 % in CPU time on these machines.

13

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

8119 16116 32236 63168

S
e
c
/
i
t
e
r

Number of points

PERFORMANCES

Meiko CS1 (16 i860) + VAST
iPSC860 (16 i860)

CRAY 2
CRAY YMP

Figure 11: Comparison of CPU times for the 2D computations

0

2

4

6

8

10

10000 20280 40000 80000

S
e
c
/
i
t
e
r

Number of points

PERFORMANCES

Meiko CS1 (16 i860) + VAST
iPSC860 (16 i860)

CRAY 2
CRAY YMP

Figure 12: Comparison of CPU times for the 3D computations14

4 ConclusionThe presented strategy of parallelisation, based on overlapping mesh decompositions,proved to be a good one to reach the preliminary �xed objectives which were : �rstto keep the same source code for both serial and parallel codes, secondly : ensure thatthe resulting program would still run on serial machines (scalar or vector) with no lossin e�ciency. The �rst goal was completely achieved through our strategy since less than0:05% of the overall program was modi�ed. Concerning the second objective, one onlyhas to comment out the communication statements in the parallel program to get back toa serial version. The use of a portable communication library such as PARMACS helpsthe porting of the program from one parallel machine to another. However the presentedresults show that the use of a three element-wide overlapping is much more costly in3D than in 2D. Let us point out that no optimisation was performed wich could be inopposition with our �rst goal. Further optimisation would indeed induce other changesin the code (another communication phase would then have to be added) Nevertheless,the preliminary results presented here show that the communications are not costly sincethey constitute only 5% of the global CPU time in 2D and reach a maximum of 15% in3D cases. Let us emphasise that these results may be viewed as excellent ones since theprogram has a complex data structure (�nite volumes with unstructured meshes) and isused for undustrial applications. Moreover, this methodology enables easy modi�cationsin terms of physical models and easy migration: it took indeed with this technique oneday to migrate a 2D serial Maxwell solver , and two days to migrate an industrial productsuch as NSTC3D to parallel machines.AcknowledgmentsThe authors wish to thank Pierre Leca from ONERA for providing access to the hyper-cube, and Armel De la Bourdonnaye from CERMICS/ONERA and Didier Chargy fromSIMULOG, for their kind help.References[1] A. Dervieux, Steady Euler Simulations Using Unstructured Meshes Von Karmann InsituteLecture Series, 1985.[2] L. Fezoui, S. Lantéri, B. Larrouturou, C. Olivier, Résolution numérique des équations deNavier-Stokes pour un �uide compressible en maillage triangulaire Rapport de RechercheInria N0 1033, mai 1989[3] L. Fezoui and B. Stou�et, A class of implicit upwind schemes for Euler simulations withunstructured meshes, J. of Comp. Phys. vol 84, pp. 174-206, (1989).[4] M. Loriot, L. Fezoui, FEM/FVM Calculations of compressible �ows on a Meiko system BE-CAUSE European wokshop - Sophia-Antipolis - France 14-16 Oct. (1992)[5] L. Fezoui, F. Loriot, M. Loriot and J. Régère, 2-D Finite Volume / Finite Element EulerSolver on a MIMD Parallel Machine, �High Performance Computing II�, Montpellier 1991,M. Durand and F. El Dabaghi Ed., Elsevier Science Publishers, North-Holland, (1991).15

[6] L. Fezoui and S. Lantéri, Parallel Upwind FEM for Compressible Flows, �Parallel CFD Con-ference�, Stuttgart 1991, K.G. Reinsch et al. Ed., North-Holland (1992).[7] SIMULOG, NSTC3D, Manuel Theorique, Vrsion I.1, 1992.[8] B. Van Leer, Towards the Ultimate Conservative Di�erence V: a Second-Order Sequel toGodunov's Method, J. Comp. Phys., Vol. 32, p. 361-370 (1970).[9] B. Van Leer, Flux-Vector Splitting for the Euler Equations, Lectures Notes in Phys., Vol. 170,p. 507-512, (1982).[10] S. Lantéri, C. Farhat, Viscous �ow computations on MPP systems: implementational issuesand performance results for unstructured grids, Sixth SIAMConference on Parallel Processingfor Scienti�c Computing, Norfolk, Virginia, (1993).[11] C. Farhat, L. Fezoui and S. Lantéri, Two-dimensional viscous �ow computations on the CM-2:Unstructured Meshes, Upwind Scheme and Massively Parallel Computations, Comp. Meth.in Appl. Mech. and Eng.,Vol. 102, No. 1, pp. 61-88 (1993).

16

