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Abstract

We describe in this paper a strategy for parallelising a 3D compressible Navier-
Stokes solver using unstructured meshes on a class of message-passing MIMD ma-
chines. The performance results obtained on two parallel machines, the Meiko Con-
certo and Intel iPSC860 are presented and compared to those obtained on CRAY.

Introduction

Defining a way to implement a given serial algorithm on a parallel machine, depends of
course on the level of parallelism of the algorithm as well as on some of the characteristics
of the selected machine, but also on some previously set objectives. As an example, in
some of our previous works ([6], [11], our goal was to reach a maximum efficiency, accept-
ing thus to introduce a large set of modifications in the existing algorithm and sometimes
to write the program again completely. This proved to be necessary for some machines
(the Connection Machine CM-2, for instance) and remains feasible for “small” programs
which correspond here to the one- and two-dimensional cases.

In the present paper, we deal with an existing industrial code, NSTC3D (3D Compress-
ible Navier-Stokes [7] which already runs on scalar and vector machines. A minimum of
modifications in the program source is required when building a parallel version, in order
to be able to easily maintain and upgrade this program. Moreover, we want the resulting
parallel program to be as little “machine-dependant” as possible. That is, it must run on
both serial and parallel machines (at least of the same kind) with no further modification.
From this viewpoint, the highest efficiency to be achieved on any particular machine is
left to an optimisation phase which will not be discussed here.

Only a certain kind of multi-processor machines will be addressed in this paper, although
the methodology we use also successfully applies to shared memory systems [10]. The
parallel machines addressed here are of MIMD distributed memory type with a message-
passing communication model. Such a choice is not so restrictive since a lot of existing
parallel machines belong to this class (Intel hypercube, Paragon, Meiko, Ncube, etc..).



The main characteristics of NSTC3D is that it is based on finite volume schemes using
finite element type grids (here tetrahedra), which results in complex data structures. A
simple way to achieve a parallel implementation is to split the mesh among the processor
memories. This is done here via a “preprocessor” which generates also all the necessary
data to perform communications between the split domains (ie the processors). A two-
dimensional version of this preprocessor with a set of experiment results may be found in
4,151
We recall in the first section of this paper the equations to be solved, and present briefly
the numerical method used. In the second section we describe the mesh-decomposition
software. Numerical solutions and performance comparisons are presented in the last
section .

1 The FEM/FVM Navier Stokes solver

In the sequel we shall describe briefly the method used here to solve numerically the
Navier-Stokes system. This method is based on a finite volume formulation applied to
finite element type discretisation of computational domains. For more details on the
method, one may refer to [2] and [7] and the references included.

The conservative form of the 3D Navier-Stokes system describing the compressible and
viscous flow of a perfect gas writes as follows:
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where W is the vector of the conservative variables which are respectively the density p,
the momentum vector pV and the total energy E. Re is the Reynolds number.
The pressure P is related to the other variables through the perfect gas state equation:

P=(r-1)(B=Jpz+e? +u?))

where « is the ratio of specific heats (1.4 for air).
The definition of the convective fluxes F and the viscous fluxes R may be found in
any classical fluid mechanics book and one may also refer to [7] for the model used here.

1.1 The Spatial Discretisation

Since we are interested in using finite volume approximations on unstructured meshes,
we have to construct a partition of the computational domain €2, made of control vol-
umes. Unstructured meshes result from a standard finite element triangulation (2D) or
tetrahedrisation (3D). The following figure (1) shows a control cell in 2D and 3D space
dimensions.

The main idea behind the mixed finite element /finite volume approximation used here
is the use of a different approach for each side of the system (1). The left hand side
(Euler part) is approximated by means of a finite volume Galerkin (FVG) approximation.
A description of such an approach in two space dimensions may be found in [3]. The
extension to the 3D case is straightforward. A classical finite element Galerkin (FEG)
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Figure 1: 2D cell (left) and contribution to 3D cell (right)

approximation is used to discretise the right hand side (viscous part) of (1).
This results in the following semi-discrete system:
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where 77 is the outward normal to the boundary dC; and @7 is the restriction to the element
T of the P; basis function of node <.

Convective Fluxes

The approximation of the Euler part of the system is done in two stages: first we apply
any monotonic upwind scheme extended to the case of unstructured meshes [3] and then
perform the second order accuracy using a linear interpolation around each grid vertex.

First Order Explicit Upwind Fluzes
We split the boubondary of an internal cell C; into an union of boundary interfaces
0C; U 0C; where j denotes a neighbouring node of i:
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where K (i) is the set of neighbouring nodes of node 1.
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The upwind numerical approximation selected here is based on van Leer’s Flux function
([9]). One may use however any other upwind centered scheme such as Roe’s or Osher’s
scheme for example.

®;; = FH (W) + F~ (W)



The definition of the split fluxes may be found in [9].
Second order extension

Following the MUSCL (Monotonic Upwind Scheme for Conservation Laws) introduced
by van Leer ([8]), one may use, to enhance the accuracy, the same numerical flux function
(as in the first order scheme) applied now to certain values W;j;, Wj; of the vector W at
the interface of cells C; and Cj.
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The gradient of W at node 7 may be defined as follows:
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We shall not use here any limitation technique for we apply the van Leer scheme
(which has a non negligible amount of numerical viscosity) to viscous flow calculations at

relatively low Mach numbers. We may found however on [3] and [1] how to define and use

such limitation techniques.

Viscous Fluxes

To compute the numerical viscous fluxes, we use a classical Galerkin approximation:
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Where R1(T'), R2(T) and R3(T) are defined as follows:
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R; 1 is the value of Ry at vertex k of triangle T

Boundary Conditions

To solve numerically system (1) one has to add some boundary conditions which are in
general of two types: a Dirichlet condition on the velocity and temperature on the wall
in the case of external flows around a body, and in-out conditions for internal flows. A
free stream flow condition is also considered for external flows on the artificial boundary
(infinity). We refer to ([7], 89-97) for a detailed description of the boundary conditions
used and their numerical treatment.



Time Integration
The spatial approximation beeing defined, one obtains the following semi-discrete system:
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As in our previous works ([11],[5],[6]), we choose again explicit schemes for they are easy
to parallelise and require a low storage of data. For second order computations we use a
3-stage Runge-Kutta or a predictor-corrector scheme whereas RK1 (1-stage) is used when
computing first-order accurate (in time and space) solutions.

RK3 Scheme
W(O) = W

At
w k) —wo _ =% wk=1)
4 k‘ll ( )

W(?H‘l) — W(S)

Predictor-Corrector Scheme

An alternative to Runge-Kutta schemes is a predictor-corrector scheme which is second-
order accurate only and less stable than the RK3 but also much cheaper in terms of CPU
costs (this is often a requirement of industrial codes). The scheme used here was suggested
by Hancock and presented by Van Leer.

First we predict a state Wwrts using the Kuler equations:
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In the second phase (correction), the fluxes are evaluated using the predicted state:
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Local Time Stepping
We use a local time stepping technique to speed up the convergence when simulating
steady flows. This is achieved using a CFL-like condition on each cell C;:
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where c is the local speed of sound, Pr is the Prandtl number and h; is the largest altitude
in the elements surrounding the node <.

Algorithm

The method described above leads to an iterative algorithm which writes, when using
RK1, as follows:

At each time step, Compute:



(1) Local or global Time-step
(2) Gradients at Nodes

(3) Diffusive Fluzes

(4) Convective Fluzes

(5) Update the Solution

In a serial implementation, stages (1), (2) and (3) result in loops on tetrahedra, while
step (4) and step (5) result in loops on edges and nodes respectively. This mixed data
structure comes from the mixed finite element/finite volume formulation.

We recall that a vector mode implementation needs colouring techniques for the scatter
vector operations involved in the calculation above.

2 MIMD PARALLELISATION

2.1 Mesh decomposition

We chose to parallelise our code using a data partitioning approach. This leads to the
decomposition of the initial finite element mesh into several submeshes, each of them being
assigned to a processor. This decomposition phase, as well as the generation of all the
communication data which are used by the parallel code, is performed by a preprocessor.
This preprocessor runs on a workstation.

2.2 Overlapping of subdomains

The best way to achieve one of our main goals, that is, make as little modification to the
original serial code as possible, is to reduce as much as possible communications. This is
done by providing all the data indispensable to go through a whole time step locally, even if
this induces extra memory storage and redundant computations. This leads to overlapping
subdomains, where all the information needed form the neighbours is fetched only once at
each time step. The size of the interface shared by two neighbouring subdomains depend
on the order of the spatial approximation. This choice induces only tiny changes to the
original non-parallel code, at the cost of having some computations done twice.

2.3 Parallel Algorithm and communications

The parallel algorithm is quite similar to the algorithm implemented on scalar machines.
There is only a 6" stage added, which is :

(6) Update the Interface

This stage requires communications between two subdomains sharing the same interface
(for example: processor 1 sends the new values of its solution at its interface points to
processor 2, and vice versa). However, there is also sometimes a need for global commu-
nications. This happens if a global time step is used (unsteady calculations), or to make
a global evaluation of the residue in order to analyse the convergence (such global residue
evaluations are in practice performed only from time to time)



NrERE ELBENTS . t5808 -

50US-0MAINES
Tariat
eI 2,
o1 Tanass w0
BmEN. 4&3  <x< 797 w7 <v< um

Figure 2: 2D Inertia Axis decomposition into 32 subdomains - zoom close to the body -
first order interface

2.4 use of a portable communication library : PARMACS

We described above how an easy "migration", that is, port a serial code to a parallel
machine, was achieved. Another problem remains in an industrial context: port the code
from one parallel platform to another. This is solved by using a portable message-passing
library such as PARMACS, which ensures maximum portability and provides mapping
tools.

2.5 Automatic mesh splitting

Automatic splitting algorithms are used in the preprocessor. They are based on efficient
heuristics, and achieve good load balance and efficient communication graphs very fast.
These algorithms may generally be used for both 2D and 3D meshes. They are based on
the coordinates (median, sector, inertia axis...) or on the connectivity (greedy). We may
refer to [5] and [4] for more details about these algorithms.

We give on fig.(2) and fig.(3) examples of 2D decompositions of a mesh representing
the computational domain around a naca0012 airfoil(first order interface); on fig.(4), (5)
and fig.(6) are examples of 3D decompositions of a mesh representing the computational
domain inside an engine combustion chamber (first order interface).

3 Numerical results

This section consists of two parts. We give in the first part the results obtained for two
computations: the first is the simulation of a 2D external flow around a NACAQ012 airfoil,
the second is the simulation of a 3D internal flow inside the combustion chamber of an
engine.

In the second part, performance results for both 2D and 3D computations are presented
for a wide range of meshes, and discussed. Both the 2D and 3D codes used are fully
vectorised, by using whenever necessary colouring techniques.



Figure 3: 2D Sector decomposition into 8 subdomains - zoom close to the body - second

order interface

Figure 4: 3D Inertia Axis decomposition into 32 subdomains - first order interface
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Figure 6: 3D Inertia Axis decomposition into 32 subdomains - zoom close to admission
pipe
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Figure 7: Isomach lines at convergence - zoom close to the body

3.1 2D Navier-Stokes results

We showed on fig. (3) the decomposition used for the second order calculation of the
viscous flow around a NACAO0012 airfoil. This decomposition was selected because it
reduces the number of neighbours to 2, and therefore the number of messages, and this is
most important for an explicit calculation. There are 8 processors used in this case. The
mesh has 3114 vertices. The calculation was made with no incidence, and a free stream
Mach number of .85 . The Mach number is 500, and the body temperature 349 K (see fig.

(7))-

3.2 3D Navier-Stokes results

We showed on fig. (6) the decomposition used for the calculation of the viscous flow inside
a combustion chamber. The calculation was performed on a Meiko Concerto, with 16 i860
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Figure 8: Velocity field at convergence - zoom close to the body

processors used in this case. The grid contains 43,592 vertices and 237,963 tetrahedra.
The calculation was made with a incoming Mach number of .05. Temperature on the walls
is 294 K, flow rate is imposed for the incoming flow, and the pressure for the outcoming
flow is of .37.10° Pa . We show on fig. (8) a zoom close to the admission pipe.

It is interesting to notice that the preprocessing phase for this computation (including
decomposition, regularisation, load balance optimisation and communication map gener-
ation) took only 15 minutes on a Sun Sparc 2, the major part of this time (75 %) being
taken by the mesh and data structure file I/O.

3.3 Performance results

We give here the performance results for the Navier-Stokes solver. The computations
made are second order in time and space accurate, and performed in 32 bit and 64 bit
precision.

We compared the performance obtained on the three following machines: a CRAY-YMP
and CRay 2 both with one processor, a Meiko-CS1 (Concerto) with 16 i860 processors,
and an Intel iPSC860 with 128 1860 processors (only up to 64 processors were used). We
will give here only results in single precision, since double precision results on both the
Meiko and the iPSC860 may be obtained directly by applying a loss of 30 % in CPU
performance to the single precision results.

All the figures given below include the idle and communication times of the processors. All
performances were obtained when using the VAST vectorizer and the Greenhills compiler
(g860apx) with the -OMA options on the Meiko, and the Portland compiler with the -
vector -noieee -O4 on the iPSC860.

PARMACS was used in all the computations as the message passing library.

3.3.1 2D case

For the 2D case, the meshes represent the computational domain around a NACAQ0012
airfoil. The decomposition algorithms used vary depending on the number of subdomains
of the decomposition.

The global grid size varies from 8119 to 68877 vertices. We give on fig. (9) detailed
results in CPU time, percentage of communication and performance in terms of Mflops
(including communications). One may observe that for a fixed grid size, the global CPU

10



Nb Machine Nb | Mflops | total CPU time %
points procs s/iter commuc.
8119 Meiko CS1 16 126.9 0.383 4.7 %
8119 iPSC860 16 97.5 0.499 8.8 %
8119 Cray 2 1 79.22 0.41 0%
8119 Cray YMP 1 163 0.2 0%
16116 | Meiko CS1 16 128.4 0.655 4.6 %
16116 iPSC860 16 101.5 0.828 4.4 %
16116 Cray 2 1 81.7 0.774 0%
16116 | Cray YMP 1 164 0.386 0%
32236 | Meiko CS1 16 132.4 1.21 22 %
32236 iPSC860 16 101 1.59 2.7 %
32236 Cray 2 1 80.3 1.61 0%
32236 | Cray YMP 1 163 0.80 0%
68877 | Meiko CS1 16 132.6 2.43 1.6 %
68877 iPSC860 16 99.4 3.25 1.9 %
68877 iPSC860 32 196 1.59 5 %
68877 iPSC860 64 386 0.85 6.7 %
68877 Cray 2 1 7.7 3.57 0%
68877 | Cray YMP 1 163.4 1.70 0%

Figure 9: Compared 2D Performance results with single-precision

time decreases as the number of processors increases at approximatively the same rate.
The part due to the communications is small (around 5 %). These results show that the
cost of the three-element wide overlapping is also very small (10 % of CPU time in the case
of 32 processors, 15 % for 64 processors) when comparing the CPU times to the Mflops,
and that one needs a 32-processor hypercube to go faster than a one-processor CRAY
YMP when only single precision is needed (however we recall that the Cray uses 64 bit

precision)

3.3.2 3D case

For the 3D case, the meshes represent the computational domain inside a rectanguler closed
cavity. We chose this simple geometry in order to have an easy scalability for the number
of mesh vertices. The global grid size varies from 10,000 to 80,000 vertices. We give on

11




Nb Machine Nb | Mflops | total CPU time %
points procs s/iter comm.
10000 | Meiko CS1 16 95 1.0 4.8 %
10000 iPSC860 16 78.6 1.2 4.3 %
10000 Cray 2 1 66.6 0.9 0%
10000 | Cray YMP 1 140.7 0.45 0%
20280 | Meiko CS1 16 98.5 1.85 3.2 %
20280 iPSC860 16 79.8 2.3 3.3 %
20280 Cray 2 1 66.5 1.9 0%
20280 | Cray YMP 1 140.6 0.9 0%
40500 | Meiko CS1 16 99.9 3.3 32 %
40500 iPSC860 16 79.1 4.2 3.9 %
40500 Cray 2 1 65.4 4.0 0%
40500 | Cray YMP 1 139.7 1.9 0%
80000 | Meiko CS1 16 101 6.5 28 %
80000 iPSC860 16 80.1 8.3 3.2 %
80000 iPSC860 32 147 5.4 8.3 %
80000 iPSC860 64 251 3.7 15 %
80000 Cray 2 1 60.6 8.7 0%
80000 | Cray YMP 1 - - -

Figure 10: Compared 3D Performance results with single-precision

fig. (10) detailed results in CPU time, percentage of communication and performance in
terms of Mflops (including communications). No result was available on the CRAY-YMP

for the large mesh due to memory shortage.

These performance results show that in the 3D case, the cost of the overlapping is much
higher than in 2D. We already get a 20 % extra cost when comparing the Mflops and
CPU time for the 40500 node mesh, and this would probably reach 40 % for 64 processors.
However, we must point out that we did not try to use an optimal decomposition, nor load
balance optimisation in the case of 64 processors, in order to be in a realistic “industrial
environment”. We could probably improve these results by taking an optimal number of

processors for a given problem.

Here again, the cost of communications is relatively low (less than 15 %)

12




Performance Comparisons

We give below on fig. (11) and fig. (12) charts allowing comparisons between the super-
computers used. We must point out that the code used (NSTC3D) was rigorously the
same on the MIMD computers, and only a few communication lines were commented out
in order to run the code in sequential mode on the CRAY machines. Only the parallel
results obtained with 16 processors are shown, since the others were available only for the
largest mesh. Let us emphasize the fact that these results were made in 32-bit precision
on the parallel machines, and that the use of 64-bit precision, such as the one used on
CRAY machines, induces a loss of 30 % in CPU time on these machines.

13
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Figure 11: Comparison of CPU times for the 2D computations
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Figure 12: Comparison of CPU times for the 3D computations

14



4 Conclusion

The presented strategy of parallelisation, based on overlapping mesh decompositions,
proved to be a good one to reach the preliminary fixed objectives which were : first
to keep the same source code for both serial and parallel codes, secondly : ensure that
the resulting program would still run on serial machines (scalar or vector) with no loss
in efficiency. The first goal was completely achieved through our strategy since less than
0.05% of the overall program was modified. Concerning the second objective, one only
has to comment out the communication statements in the parallel program to get back to
a serial version. The use of a portable communication library such as PARMACS helps
the porting of the program from one parallel machine to another. However the presented
results show that the use of a three element-wide overlapping is much more costly in
3D than in 2D. Let us point out that no optimisation was performed wich could be in
opposition with our first goal. Further optimisation would indeed induce other changes
in the code (another communication phase would then have to be added) Nevertheless,
the preliminary results presented here show that the communications are not costly since
they constitute only 5% of the global CPU time in 2D and reach a maximum of 15% in
3D cases. Let us emphasise that these results may be viewed as excellent ones since the
program has a complex data structure (finite volumes with unstructured meshes) and is
used for undustrial applications. Moreover, this methodology enables easy modifications
in terms of physical models and easy migration: it took indeed with this technique one
day to migrate a 2D serial Maxwell solver , and two days to migrate an industrial product
such as NSTC3D to parallel machines.
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