
COMPARISON AND ANALYSISOF SOME NUMERICAL SCHEMESFOR STIFF COMPLEX CHEMISTRY PROBLEMSYves D'Angelo1 { Bernard LarrouturouCERMICS, INRIA, B.P. 93, 06902 Sophia{Antipolis CedexAbstractConsidering the �nite-volume solution of multi-dimensional multi-species reactive 
ows with complexchemistry, we concentrate on the numerical treatment of the chemical source terms in a fractional stepapproach. For two air-hydrogen chemistry models, we compare the numerical e�ciency of linearizedor totally implicit schemes, in both temperature-mass-fractions coupled and uncoupled formulations;we also use two popular specialized solvers, LSODE and DASSL. The implicit schemes su�er fromvery drastic stability criteria; they may even become unconditionaly unstable for some particular initialconditions. Analysing several simpli�ed models, we explain these instabilities. In particular, we showwhy the linearized implicit methods, which are perfectly adequate for globally endothermic complexchemistries, are limited in an exothermic situation by a stabilty condition which may even be worsethan the stability criterion of an explicit scheme.COMPARAISON ET ANALYSE DE SCHEMAS NUMERIQUESPOUR LA RESOLUTION DE PROBLEMESDE CINETIQUE CHIMIQUE COMPLEXE RAIDER�esum�eOn s'int�eresse �a la r�esolution par des m�ethodes de volumes �nis d�ecentr�ees des �equations d'Euler multi-dimensionnelles et multi-esp�eces, comportant en outre des termes sources chimiques. Nous concentrantsur le traitement des termes de r�eaction, nous comparons pour deux chimies air-hydrog�ene l'e�cacit�enum�erique de sch�emas implicites, lin�earis�es ou non, avec plusieurs formulations qui couplent ou d�ecou-plent partiellement la temp�erature et les fractions massiques; nous utilisons �egalement deux solveurssp�ecialis�es, LSODE et DASSL. Les sch�emas implicites s'av�erent tr�es instables, voire inconditionnelle-ment instables pour certaines conditions initiales. En analysant ensuite quelques mod�eles simpli��es, nousexpliquons ces instabilit�es. En particulier, nous montrons pourquoi les m�ethodes implicites lin�earis�ees,qui s'av�erent e�caces pour des chimies complexes globalement endothermiques, sou�rent dans le casde chimies exothermiques de conditions de stabilit�e qui peuvent même être plus s�ev�eres que celle d'unsch�ema explicite.1This author was supported by DRET under contract 92-1575A.



1 IntroductionNumerical solution of inviscid 
ows is now quite achievable: a good deal of e�cient algorithms haveappeared which make possible to solve the Euler equations of motion for most practical cases. Forchemically reactive 
ows however, severe numerical di�culties may arise from the introduction of thehighly non-linear chemical source terms { in particular when the number of species and of reactions islarge { which generally lead to very sti� systems of di�erential equations.In the case of hypersonic 
ows, the decomposition of the molecules of air (N2 and O2) only occur atvery high temperature and the chemical phenomenon is globally endothermic. For this kind of chemicalkinetics, a linearized implicit treatment of the chemical terms seems to be su�ciently e�cient to solvethe 
ow and does not a�ect the C.F.L. condition by more than a factor of two, even in the case of acomplex chemistry model with 5 species and 18 reactions [2, 3, 8]. The extension of this method to aglobally exothermic kinetic model, such as the models arising in combustion, seems to lead to a verydi�erent { and highly unstable ! { behaviour for this kind of linearized implicit methods. Moreover,numerical instability may sometimes appear even when non-linearized implicit methods are applied.It is precisely the aim of our work to investigate how implicit schemes behave and perform whenapplied to kinetic models arising from complex chemical mechanisms. Indeed, although our ultimateobjective is the solution of multi-dimensional reactive 
ows, we will concentrate here on the treatmentof the reaction terms in a fractional step approach. After having brie
y presented the 
ow equations,we will focus on the integration of the chemical source terms, which we will describe in detail in thenext section. Then, we will describe various numerical methods, whose behaviours will be discussed andcompared by examining three numerical experiments, for two models of the hydrogen-air combustion.These methods include the explicit Euler forward scheme, an explicit second-order Runge-Kutta scheme,linearized or nonlinear implicit schemes, with two formulations coupling or uncoupling the temperatureand mass fractions, and two specialized O.D.E. solvers (LSODE and DASSL). The last section is thendevoted to the numerical analysis of the linearized implicit schemes, for several simpler kinetic mech-anisms, including a one-step reversible equation and two global reversible one-reaction models for thehydrogen-air combustion. In particular, these analyses will show why the linearized implicit schemes areadequate for endothermic regimes (typically for the air chemistry, in hypersonic re-entry 
ows), whilethey encounter extremely severe stability restrictions in exothermic situations, such as those arising incombustion.2 Governing equations2.1 The two-dimensional reactive Euler equationsWe are interested in the numerical simulation of multi-dimensional high-speed reactive 
ows, such asthose occuring in hypersonics, supersonic combustion or detonations. Neglecting therefore the viscousand di�usive e�ects, we start from the following conservative form of the �-components two-dimensional\reactive Euler" equations: given by :8>>>>>>>><>>>>>>>>: (�k)t + (�ku)x + (�kv)y = 
k(T; Y; �) ;(�u)t + (�u2 + P )x + (�uv)y = 0 ;(�v)t + (�uv)x + (�v2 + P )y = 0 ;et + (u(e+ P ))x + (v(e + P ))y = 0 ; (1)with �k = �Yk, Yk being the mass fraction of species �k and Y the vector of the Yk's; 
k is the chemicalsource term for the k-th species. The other notations are usual.To close the system, we write two additional equations. The �rst one is the perfect gas law:P = �Xk=1�kRTMk ; (2)1



and the second one is the equation of state giving the energy:e = 12�(u2 + v2) + �h(T; �k)� P : (3)We will be more speci�c later about the precise form of the speci�c enthalpy h(T; �k) for the �-components real-gas mixture.We can also write the system in its classical vector form:Wt + F (W )x +G(W )y +H(W ) = 0 ; (4)with: W = 0BB@ �k�u�ve 1CCA ; F (W ) = 0BB@ �ku�u2 + P�uvu(e+ P ) 1CCA ; G(W ) = 0BB@ �kv�uv�v2 + Pv(e + P ) 1CCA ; H(W ) = 0BB@ �
k000 1CCA : (5)We consider the solution of system (4) using semi-implicit upwind �nite-volume methods. Semi-implicit means here that the convective (i.e., non reactive) part of the system is solved using a cheapexplicit solver, whereas the reactive terms are integrated point-wise with a (preferably) implicit method.We write the global scheme as:Area(Ci)Wn+1i �Wni�t + Xj2�i �ij(Wni ;Wnj ; ~�ij) + Area(Ci)�t Z tn+1tn H(Wi(t))dt = 0 : (6)Here, the superscripts n and n+1 refer to the number of time steps, �t is the time step, Area(Ci) is thevalue of the area of the cell Ci, �i is the set of neighbour nodes of vertex i, Lastly, �ij is the numerical
ux between cells Ci and Cj; it depends on the two states Wni andWnj and on the integrated normal onthe cell interface ~�ij = ZCi\Cj ~�i d�. We evaluate these numerical 
uxes for the real-gas mixture usingan explicit second-order accurate multi-component Riemann solver, which has the property of preservingthe maximum principle for the mass fractions. We refer to e.g. [1, 7] for a complete description of suchnumerical methods.To be more speci�c, we have to consider the di�erent possible ways of evaluating the integralZ tn+1tn H(Wi(t))dt. For instance, if we wimply set Z tn+1tn H(Wi(t))dt = �tH(Wni ), we obtain a fullyexplicit scheme. But the timestep limitation for such an explicit scheme is usually very drastic in thepresence of complex chemistry. This is why we have to consider semi-implicit schemes. On the otherhand, writing Z tn+1tn H(Wi(t))dt = �tH(Wn+1i ) leads to a nonlinear system in which all variables (atall nodes) are fully coupled. In order to avoid the cost of such an approach, we will consider insteada fractional step method, where the 
uid{mechanics and the reactive part of the system are solvedseparately. We write the two steps as:8>>><>>>: Area(Ci) �Wn+1i �Wni�t + Xj2�i �ij(Wni ;Wnj ; ~�ij) = 0 ;Wn+1i � �Wn+1i + Z tn+1tn H(Wi(t))dt = 0 ; (7)This fractional step approach does not match the physical coupling between chemistry and 
uid me-chanics into the same time step, but seems to be a quite cheap method to compute stationnary andunstationnary chemically reacting 
ows.In the sequel, concentrating on the second chemical step, we examine and compare various possibleschemes for the integration of the chemical source terms.2



2.2 One{cell modelThe new system to be solved now is a system of algebraic-di�erential equations consisting of the �ordinary di�erential equations of chemical kinetics for the mass fractions and of the conservation ofenergy. The unknowns are the temperature T and the vector of mass fractions Y . The system can bewritten as: 8>>>><>>>>: dYkdt = 
k(T; Y; �)� = !k(T; Y ) ;�(T; Y ) = �Xk=1Yk�k(T ) = Constant : (8)Notice that � is constant in the �rst equation of (8). Note also that we use the equation of con-servation of energy in its integral form and not in its di�erential form Cv dTdt = � �Xk=1!k�k(T ), withCv = �Xk=1YkCvk.We now have to write in details the reactions terms appearing in (8). We consider that the com-position of the mixture of � gazeous species is in
uenced by I reversible chemical reactions, which wewrite as: �Xk=1� 0ki�k *) �Xk=1�00ki�k ; (9)for 1 � i � I. The source terms !k = dYkdt are given by:!k = IXi=1Wk�kiRi ; (10)where �ki = (� 00ki � �0ki), Wk being the molar weight of species �k, and where Ri denotes the globaladvancement rate of the reaction i.The reaction rate of the i-th reaction is then given by:Ri = Kf;i �Yk=1N�0kik �Kr;i �Yk=1N�00kik ; (11)where Nk = �YkWk is the molar density of species �k. For third-body reactions (see Appendix B), theexpression for Ri is modi�ed as:Ri = Bi (Kf;i �Yk=1N�0kik �Kr;i �Yk=1N�00kik ) ; (12)where Bi = �Xk=1�kiNk; the �ki's are the third-body-e�ciency coe�cients of species �k for the reactioni. The forward and reverse reaction rates Kf;i and Kr;i are given by:Kf;i = AiT �i exp (� EiRT ) ; Kr;i = Kf;iKc;i ; (13)where Ei is the activation energy of the forward reaction, and where Kc;i is the equilibrium constant forreaction i. These \constants" are given by the following expressions:Kc;i = (PatmRT )��i exp (�S0iR � �H0iRT ) ; (14)3



where: ��i = �Xk=1 �ki ; �S0i = �Xk=1�kiS0k(T ) ; �H0i = �Xk=1�kiH0k(T ) ; (15)and where Patm is the value in Pascals of the atmospheric pressure: Patm = 101325.In (15), S0k(T ) and H0k(T ) respectively denote the standard-state molar entropies and enthalpies forspecies k; they are approximated using the relations:S0k(T )R = a1k lnT + a2kT + a3k2 T 2 + a4k3 T 3 + a5k4 T 4 + a7k ; (16)H0k(T )RT = a1k + a2k2 T + a3k3 T 2 + a4k4 T 3 + a5k5 T 4 + a6kT ; (17)where the alk coe�cients are two sets of constants given for two intervals of temperatures, the \upper"and the \lower" intervals, corresponding respectively to T � TMID(k) and T � TMID(k). We use theCHEMKIN Fortran library [6] to compute all these thermodynamic data. The CHEMKIN package alsoallows us to easily change the chemistry kinetic model (see Appendix B).Lastly, the speci�c energy �(T; Y ) = �Xk=1Yk�k(T ) is evaluated from the relations:�k(T ) = H0k(T )� RTWk ; (18)where the molar enthalpy H0k(T ) of species �k is given by (17).3 Numerical experimentsWe will now consider several numerical methods for the solution of system (8), and compare them onthree typical numerical experiments.We will see that the crucial point in all experiments, and for all methods, is the choice of the localtime step. In the numerical investigation presented here, we made this choice a priori in a semi-empiricalmanner; indeed, for the complete system (6), one ideally wishes to take for the chemistry the time stepcoming from the stability criterion of the explicit �nite-volume method for the 
uid, so as to avoidevaluating the own characteristic time for the complex chemical mechanism. But we will see that manydi�culties remain, and in fact that several of the methods under consideration behave very poorly forthe hydrogen-air combustion test case investigated below. Nevertheless, we found it necessary to presentthese numerical results before we perform a detailed analysis of the numerical stability of some of theschemes for some model situations in the next section.For some stability reasons (see [1] for the details), we slightly modify the system (8) in our exper-iments below: we impose the conservation of enthalpy instead of imposing the conservation of energy.In fact, this modi�cation does not qualitatively a�ect the results which will be presented and discussedbelow.3.1 The numerical methodsWe begin by describing the methods in some details.We will mainly consider implicit methods. The di�erences between the various methods consideredhere lie in the size of the vector of unknowns. The �rst method is simply Newton's method on the wholesystem (8), i.e. with T and Y as simultaneous unknowns. In other words, we write (8) as:8>>><>>>: C1(Xn+1) = �Xk=1Y n+1k �k(Tn+1)� �0 = 0 ;Ck+1(Xn+1) = Y n+1k ��t !k(Tn+1; Y n+1) + Y nk = 0 ; (19)4



with: Xn+1 = 0BBB@ Tn+1Y n+11...Y n+1� 1CCCA (20)and �0 = �Xk=1Y 0k �k(T 0). The Newton iterations may then be written as:G� �X� = �C(X�) ; (21)where G� = � @C@X�� and �X� = X�+1 �X�, with X�=0 = Xn and Xn+1 = X�=�max . The dimen-sion of the unknown vector is �+1, and the linear system is inverted at each iteration by a direct GAUSSmethod. The Jacobian matrix G is exactly computed at each iteration from its analytical expression(see Appendix A). In practice, we limit the number of Newton iterations to ten, in order to obtain a nottoo expensive method: we will call this method \coupled Newton" method (CN). If we choose �max = 1,we obtain the \coupled linearized" implicit method (CL).We can also slightly change this approach and uncouple the mass fractions system from the energyequation in the resolution. We then only make Newton iterations on the mass fractions and solveseparately for the temperature by another scalar Newton method on the energy equation. More precisely,we then write the mass fractions equations as:Uk(Zn+1) = Y n+1k ��t !k(Tn; Y n+1) + Y nk = 0 ; (22)with: Zn+1 = 0B@ Y n+11...Y n+1� 1CA : (23)We now write the vector Newton iterations as:J� �Z� = �U(Z�) ; (24)with J� = �@U@Z��, �Z� = Z�+1 � Z�, Z�=0 = Zn and Zn+1 = Z�=�max , and the new temperatureTn+1 is then computed by substituting the new mass fractions Y n+1k into the energy equation:�Xk=1Y n+1k �k(Tn+1) � �0 = 0 ; (25)and solving it by a scalar Newton method. Limiting� to �max = 10, we call this method the \uncoupledNewton" method (UN). Again, if we take �max = 1, we simply obtain a linearized implicit method,called the \uncoupled linearized" method (UL).This uncoupled formulation allows us to also consider explicit methods. We will consider both theforward Euler method and an explicit two-stage Runge-Kutta (RK2) method, namely Gill's method(see [12] and Appendix C for more details). But these methods will be a priori the \worst" methods interms of time step limitation.Lastly, we can also use for the solution of (8) an O.D.E. solver as a (quasi) black box { and the mostpopular one seems to be LSODE [5] { for the mass fractions equations, with a one-variable Newtonmethod for the temperature equation, as in the above \uncoupled" approaches. Or, in a very similarmanner, we can solve the whole system with an Algebraic-Di�erential-Equations solver { like DASSL[9], for example. 5



Let us simply recall some features of the method used in LSODE. For the system of ordinarydi�erential equations _y = f(t; y), LSODE uses a backward di�erentiation formula :yn = qXj=1�jyn�j +�tn�0f(tn; yn) (26)q is the order of accuracy of the method (1 � q � 5). The solution of the resulting non-linear systemis computed by modi�ed Newton iterations, where the Jacobian matrix (either exact and supplied bythe user or approximated by internal di�erence quotients) is held constant during the iterations. Thewhole e�ciency of the package mainly relies on the optimization of the local time step, which involvesquite numerous failure tests and feedbacks. In particular, the initial time step is essentially determinedby the constraint (see [5]): kh22 �ykWRMS = 1 ; (27)with the norm kvkWRMS =vuut 1N NXn=1(vi�i )2, the numerical tolerances �i's being supplied by the user.Let us �nally emphasize that, for all numerical experiments described below, we always use thevalues from the previous time step as initial guess for the Newton method.3.2 The test-case: hydrogen-air combustionIn all numerical experiments below, we consider the combustion of a homogeneous mixture of hydrogenand air. The initial molar fractions are assumed to be:X(H2) = X(O2) = 15:79 ; X(N2) = 3:795:79 ; (28)and zero molar fractions for all other species. The initial values of temperature and pressure areTi = 1615 K ; Pi = 0:4 atm. These values may be seen as typical initial values behind the shockwhen studying shock-induced hydrogen-air combustion, for instance in scramjets con�gurations. Thenumerical tests use two kinetic models, given in Appendix B; the �rst mechanism involves 9 species and19 reactions, the second one involves 10 species and 16 reactions. The �nal equilibrium temperature isequal to 2637 K for both models. We assume that the mixture combustion has reached its equilibriumbefore time tmax = 10�4 s, which has been taken as the �nal time of our calculations.We should keep in mind in the sequel that we have chosen here a quite severe test-case. It will indeedappear that most numerical methods behave much better for globally endothermic chemical mechanisms(such as the kinetic model describing the air chemistry) than for exothermic chemistries; moreover,among the exothermic mechanisms, the combustion of hydrogen is more explosive and exothermic thanthe combustion of heavier hydrocarbons.3.3 First numerical experimentAs a �rst numerical experiment, we solve the above test-case with all methods presented in Section 3.1,using the following simple strategy for choosing the variable time step.As already said, the time step cannot be chosen in an arbitrary way, since some of the methodssu�er from severe stability condition (see Section 4). Here, we choose to reduce the time step during thecalculation, i.e. while the temperature increases, in the following simple and crude way. For all methods(except for LSODE and DASSL which evaluate their own time steps), we take the initial time step tobe �t0 = 10�9 s. Then, for several values �l of the temperature, we simply multiply the initial timestep �t0 by some factor �l when the temperature T is exceeding the value �l. The values of �l and �lare chosen to be a priori the same for all methods (after having tried quite a number of values...) andare equal to: 6



�1 �2 �3 �4 �5 �6 �7 �81650 1700 1800 1900 1950 2000 2100 2200��1 ��2 ��3 ��4 ��5 ��6 ��7 ��80:2 0:1 0:05 0:02 0:01 0:005 0:001 0:0005Moreover, these empirical values can be changed during the numerical calculation: whenever thecode crashes, the current value of �l is then divided by two and the calculation proceeds.The numerical results obtained in this way are very similar for all methods (the plotted pro�lesare undistinguishable) and accurate. The time evolution of the temperature for both 9-19 and 10-16chemistry models, presented on Figure 1, shows that the equilibrium temperature is reached slightlyearlier with the 10-16 mechanism than with the 9-19 model. The mass fractions pro�les are shown onFigure 2 for the 9-19 model, and on Figure 3 for the 10-16 mechanism (for the latter, we have omittedthe H2 and O2 pro�les, which look very much like those on Figure 2, but for the shorter equilibriumtime). Notice that, for the 10-16 model, the species N2 and NO have not reached equilibrium at the�nal time 10�4 s.
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Figure 1: Temperature evolution for both 9-19 and 10-16 models.But the most important output of this experiment concerns the comparison of the numbers of timesteps and of the CPU times needed by each of the methods. These �gures are given in the Table below,and are particularly dramatic (the calculations were performed on an IBM RS-6000 560 computer) !!Methods CPU time Number of iterationsRK2 17 h 2:6 108UL 1 h 30 mn 2:6 106CL 11 h 30 mn 3 107UN 50 h (!) 8 107CN > 100 h (!!!) > 1 108LSODE 0:5 s 144DASSL 0:7 s 121These results deserve several comments. First, they show undoubtedly that only the specializedO.D.E. and D.A.E. solvers LSODE and DASSL can be used e�ciently for such a complex and sti�chemistry problem. Notice however that the above results do not bring any de�nite conclusion for thecomparison of LSODE and DASSL for this problem: the performances of both methods are very close;moreover, when we also tried LSODE and DASSL methods on a SUN SS10 computer, their respectiveCPU times were 1:08 s for LSODE and 0:86 s for DASSL: the relative performances of LSODE andDASSL are therefore machine-dependent.Besides, all other methods behave very poorly. We may also say that the linearized implicit methodsseem (in each case, either coupled or uncoupled) to be less unstable than the Newton method, andalso that uncoupled methods seem to give better results than coupled ones. But the main conclusion iscertainly that all these methods need a considerable CPU time!Before turning to our second numerical experiment, we should emphasize again two facts. On onehand, the above results are very far from being optimal, because we used a very poor strategy for7
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Figure 2: Mass fractions evolution for the 9-19 model.8
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Figure 3: Mass fraction evolution for the 10-16 model.9



adjusting the local time step; much better results will indeed be obtained in our third experimentbelow. On the other hand, it is worth to keep in mind that our sole criterion for diminishing the timestep in this experiment was the crash of the code. We could have decided to decrease �t whenever oneof the mass fraction(s) was becoming negative (this actually happened during the calculation, but veryslightly (� 10�7 in absolute value for the greater ones); the code crashed when more negative valueswere appearing). We will see in the next experiments that forcing the mass fractions to remain nonnegative would have led to quite di�erent results.3.4 Second numerical experimentWe now investigate more closely the size of the time step with which each of the methods can adequatelyoperate. In our second experiment, we are going to determine, for each method except LSODE andDASSL (but adding the forward Euler explicit method), and for both 9-19 and 10-16 kinetic models,the maximal time step required so as to ensure that all mass fractions stay in the interval [0; 1]. Thiswill be done for an initial pressure equal to the atmospheric pressure, and for an initial temperatureincreasing from 1300 K to 2300 K with a step of 20 K.We will consider two di�erent initial compositions. First, we take the same initial composition asin the above section, i.e. with zero mass fractions for species other than H2, O2 and N2. We will callthis initial condition \zero composition" and the maximal allowed time step will be denoted �t+Y=0.Secondly, we leaded the same calculation by initiating the mass fractions with the values calculated byLSODE at the time t = 10�6� , where � is the ignition delay at the considered temperature; this initialcondition will be called \non-zero composition", and the corresponding maximal time step is denoted�t+Y>0. Let us make precise that we call here \ignition delay" the time where the temperature pro�lechanges its curvature (i.e. the in
exion point), starting from the zero-composition mixture; this is acharacteristic time for the combustion of this mixture at a given temperature (see Figure 4).
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Figure 4: Ignition delay as a function of the initial temperature.The results are presented on Figures 5 to 10.These results show for instance that using the \non-zero" initial mass fractions does not necessarilyincrease the maximal usable time step, as we could expect: we sometimes have �t+Y=0 > �t+Y>0 (andeven �t+Y=0 � �t+Y >0 for the UN method).But the most interesting result is that the initial time step �t+Y=0 actually vanishes to zero (withmachine accuracy) at some intial temperatures for some of the implicit methods(CL, UL and CN, forboth chemistry models). In other words, for this (not so particular !) initial condition, these methodscan never lead to non-negative mass fractions for this hydrogen-air combustion process. Moreover, theimprovement brought by using the \non-zero composition" is absolutely not su�cient in several cases,since �t+Y>0 is highly oscillating with the temperature; this is true for the CL and CN methods on the10-16 model. For most methods, the 9-19 mechanism gives worse results than the 10-16 model for the\zero composition", but the advantage from using the \non-zero" initial mass fractions seems bigger.10
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Figure 5: Maximal time steps for the �rst-order explicit method.
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Figure 6: Maximal time steps for the RK2 method.11
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Figure 7: Maximal time steps for the UL method.
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Figure 8: Maximal time steps for the CL method.12
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Figure 9: Maximal time steps for the UN method.
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Figure 10: Maximal time steps for the CN method.13



Another paradoxical result lies in the fact that the �rst-order explicit and explicit RK2 methods havethe larger allowed time step !! In fact, this is not too surprising since our choice of the time step onlydemands that mass fractions stay between 0 and 1, but does not necessarily give physically reasonableresults (see our third experiment below).Also, we need to add that, if instead of imposing non-negative mass fractions, we were requiring massfractions \not too far" from the interval [0; 1] (and above all that the code does not crash, as in our �rstexperiment), the linearized implicit methods would appear to allow larger time steps than the explicitor Newton methods. In all cases, we must admit that the Newton methods again behave surprinsinglypoorly.3.5 Third numerical experimentFor our last experiment, we again consider the test-case of Section 3.2. But we will use a more elaboratestategy for choosing the variable time step, while imposing the mass fractions to stay between 0 and 1.We carried out these calculations only for the 9-19 model (which seems harder than the 10-16 one, atleast at the beginning of the computation, from the previous section).Our (empirical) time step strategy goes as follows: starting with a given value of �t, we constantlycheck whether the mass fractions remain in the admissible interval. In case of failure, we multiply �t bya coe�cient � < 1. But we may also increase the time step using some �xed integers Nl and coe�cients�l > 1, as follows: if the computation remains successful during Nl iterations, we then multiply �tby �l. Also, after M > maxNl successful iterations, we multiply �t at each time step by a coe�cient
 > 1.For the �rst-order explicit and second-order explicit RK2 methods, the initial values of �t, the valuesof Nl, �, �l, M and 
 are given in the Table below, together with the total number of iterations andthe CPU time in seconds on an IBM RS-6000 560 computer (we always took �2 = �3 = �4).Methods Initial �t � N1 �1 N2 N3 N4 �2 M 
 � 1 Iter. CPUEXPL 1.2 10�9 0.9 15 1.002 100 500 1000 1.005 2000 5:10�5 790 000 260RK2 1.4 10�9 0.9 15 1.02 100 500 1000 1.05 2000 0.01 835 000 1093UN 1.0 10�11 0.9 15 1.002 100 500 1000 1.005 2000 5:10�5 2079 000 47323In agreement with the previous section, the same experiment cannot directly be run with the UL,CL and CN methods, since �t+Y=0 vanishes for these methods. Instead, we started with the \non-zero composition", i.e. with the mass fractions obtained by LSODE at a time of 7.852 10�11 seconds,corresponding to 10�6 times the ignition time of the reaction at T = 1615 K. The parameters andresults of the calculation are given below:Methods Initial �t � N1 �1 N2 N3 N4 �2 M 
 � 1 Iter. CPUUL 1.0 10�10 0.9 15 1.002 100 500 1000 1.005 2000 5:10�5 753 000 3543CL 1.0 10�10 0.9 15 1.002 100 500 1000 1.005 2000 5:10�5 738 000 7422CN 1.0 10�10 0.9 15 1.002 100 500 1000 1.005 2000 5:10�5 FailureFor the CN method, the calculation fails after 15500 iterations. The time step size required toconserve non-negative mass fractions �rst lies between 5:10�10 and 7:10�9 seconds, but then vanishesafter time t = 7:10�6 s. It seems hard to choose the initial composition so that the mass fractions neverbecome negative.The results of these calculations are shown on Figures 11 to 15. For each method, we show theevolution of the time step, and those pro�les (of temperature and mass fractions) where some particu-larities can be remarked. Indeed, in most cases, the temperature and mass fractions pro�les perfectlyagree with those of the �rst experiment, i.e. are perfectly acceptable.The �rst comment is that these results have been obtained with much shorter computational timesthan in our �rst experiment, i.e. we have used bigger time steps on the average, while preservingthe mass fractions positivity. The �rst-order explicit method performs surprisingly well; the linearizedimplicit methods, which need a little help (with the \non-zero" initialisation) to start the calculation,14
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Figure 11: Variable time step and HO2 mass fraction for the �rst-order explicit method.perform equally well in terms of time step size (and therefore wose in terms of CPU time). And again,the Newton methods perform very badly.However, the results present in general some oscillations for the mass fractions, in particular for therare species; therefore, requiring the mass fractions to remain non-negative does not insure accurate nonoscillatory results. In particular, the results of the RK2 method are fully unacceptable ! But a carefulexamination also shows that the results of the UN method (which are the most oscillatory among allother methods) are also false: we see indeed that the equilibrium temperature is reached much earlierthan in the �rst experiment (this wrong result is probably due to the oscillations which are producedbefore the equilibrium on the mass fractions pro�les).It is also worth noticing a rather surprising fact: all methods see their variable time step decreaseduring the calculation, and highly oscillate when they reach equilibrium. As a consequence, most ofthe computational time is employed to go from equilibrium to the �nal time. with a time step which ismore than ten times smaller than the average time step used before equilibrium!4 Numerical analysis of some simple modelsThe results of the numerical experiments presented above are surprising in several aspects, and requiresome explanation. This is the objective of this section, where we analyze several simpler models (thefull hydrogen-air mechanism being out of reach for an analytical investigation).Our numerical analyses will indeed explain several of the results observed above. In particular, wewill examine on several examples the stability limits of the coupled and uncoupled linearized implicitmethods; we will see why these methods behave much better for globally endothermic chemical mech-anisms than for exothermic chemistries, and that, in the latter case, they may su�er from stabilityrestrictions which are even more severe than the stability limit of the �rst-order explicit method !!In the analyses below, we will say that a numerical method is stable (for a given time step) if itpreserves the inequalities 0 � Yk � 1 for all species (in such a case, lower and upper bounds for thetemperature follow from the energy conservation).4.1 The simple reversible model4.1.1 Describing the modelWe begin by considering the simple reversible reaction:A *) B : (29)For the sake of simplicity, we will assume here that both species A and B have constant and equalspeci�c heats at constant pressure: CvA = CvB = Cv; they also have the same molar weight WA =WB = W . Using the notations of Section 2.2, we will assume that Q = H0A �H0B = �0A � �0B > 0, whichmeans that the forward reaction A �! B is exothermic. Lastly, let Y and Z denote the mass fractions15
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Figure 12: Variable time step, temperature and mass fractions pro�les for the RK2 method.16
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Figure 13: Variable time step and mass fractions pro�les for the UL method.
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Figure 14: Variable time step and mass fractions pro�les for the CL method.17
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Figure 15: Variable time step, temperature and mass fractions pro�les for the UN method.
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of A and B respectively. System (8) now takes the form:8>>>>>>><>>>>>>>: dYdt = �W� Y k1(T ) + W� Zk2(T ) def= �Y f1(T ) + Zf2(T ) ;dZdt = Y f1(T ) � Zf2(T ) ;�(T; Y; Z) = Y (�0A +WCvT ) + Z(�0B +WCvT ) = Constant ; (30)with: f1(T ) = A1T � exp�� E1RT � ; f2(T ) = A2T � exp�� E2RT � ; (31)the fact that the two reaction rates f1 and f2 involve the same exponent �, as well as the relation:E2 = E1 +Q ; (32)follow from the relations (13), (14) and (15).We recall that Cv and � are constant in system (30), and we set U = QWCv . Obviously, any solutionof this system satis�es the identities:Y + Z = 1 ; T + UY = Constant def= H0 : (33)Since all numerical methods considered below also preserve these relations, we may simply rewrite thesystem (30) as: 8><>: dYdt = �Y f1(T ) + (1� Y )f2(T ) ;T + UY = H0 : (34)This system is completed with initial conditions: Y = Y 0, T = T 0.Remark 4.1: Below, we will sometimes need to consider realistic values for the constants and variablesof the problem. These values are obtained form the the following estimates and relations: we haveY 2 [0; 1], T 2 [Tmin; Tmax], with Tmax = H0, (Tmax � Tmin) = U ; typically, we have TmaxTmin � 5 to 8and E1RTmax � 4 to 10. Also, from Mayer's relation, (
 � 1)WCv = R, where 
 is the speci�c heat ratioCpCv . �Now, the di�erential form of the temperature equation, consistent with (34), writes:dTdt = UY f1(T ) � U (1� Y )f2(T ) : (35)In view of these relations, the region:R� = f(Y; T ); Y f1(T ) � (1 � Y )f2(T ) < 0g (36)of the (Y; T ) plane will be called the endothermic domain, whereas the region:R+ = f(Y; T ); Y f1(T ) � (1� Y )f2(T ) > 0g (37)will be called the exothermic domain. Both domains are separated by the equilibrium curve, de�ned as:Y = f2(T )f1(T ) + f2(T ) def= Y eq(T ) (38)19



(notice that Y eq(T ) 2 (0; 1) for any temperature T ). Using (31) and (32), it is easy to see that Y eq(T )is a monotone increasing function of T ; furthermore, the asymptotic solution of system (34) as t tendsto +1, which we denote as (Y1; T1), is uniquely determined by the system:Y1 = Y eq(T1) ; T1 + UY1 = H0 (39)(see Figure 16).
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T + U Y = HFigure 16: The equilibrium curve.We are going to carry out the numerical analysis of system (34) with the assumption that theactivation energies are high enough. More precisely, we will assume that:E2RTmax � 2 ; (40)and also that: � � 0 : (41)4.1.2 Numerical analysisWe can now analyse how several of the numerical methods considered in Section 3 behave when appliedto the simple reversible model (29).We begin with the following simple result for the UN and UL methods:Proposition 4.2:For the simple reversible reaction (29), the uncoupled Newton and uncoupled linearized methods areunconditionnally stable. �PROOF: Since system (34) is linear with respect to the mass fraction Y , the UN and UL methodscoincide in the present case. They take the form:8><>: Y n+1 � Y n�t = ��Y n+1f1(Tn) + (1� Y n+1)f2(Tn)� ;Tn+1 + UY n+1 = H0 : (42)20



Then, we get: Y n+1 = Y n�t + f2(Tn)1�t + (f1(Tn) + f2(Tn)) ; (43)and we easily see that Y n+1 lies between 0 and 1 as soon as Y n does. �The situation is more complex for the CL method. We will prove the following:Proposition 4.3:For the simple reversible reaction (29), the coupled linearized method is not unconditionnally stable.However, if the assumptions (40) and (41) hold, then the coupled linearized method is unconditionallystable in the endothermic domain R�. �More precise statements will be made below about the actual stability restrictions in the cases whereunconditional stability does not hold, i.e. in some parts of the exothermic domain.The proof of Proposition 4.3 consists of three Lemmas:Lemma 4.4:Let (Y n; Tn) be the discrete temperature and mass fraction computed with the coupled linearizedmethod.There exists a C1 monotone increasing curve Y = Y �(T ), with:Y eq(T ) < Y �(T ) < 1 ; (44)such that 0 � Y n+1 � 1 for any �t > 0 as soon as 0 � Y n � Y �(Tn). �PROOF: The CL scheme takes the form:8>>><>>>: Y n+1 � Y n�t = ��Y n+1f1(Tn) + (1� Y n+1)f2(Tn)�Y nf 01(Tn)(Tn+1 � Tn) + (1� Y n)f 02(Tn)(Tn+1 � Tn)� ;Tn+1 + UY n+1 = H0 ; (45)from which we get:Y n+1 = Y n�t + f2(Tn) + UY n (�Y nf 01(Tn) + (1� Y n)f 02(Tn))1�t + (f1(Tn) + f2(Tn)) + U (�Y nf 01(Tn) + (1� Y n)f 02(Tn)) : (46)Assume now that Y n 2 [0; 1]. If the term �Y nf 01(Tn) + (1 � Y n)f 02(Tn) is non-negative, it is thenclear that 0 � Y n+1 � 1 for any �t > 0. This condition writes:Y n � f 02(Tn)f 01(Tn) + f 02(Tn) def= Y �(Tn) : (47)From the form (31) of f1 and f2, we get:f 0i(T ) = �� + EiRT � fi(T )T ; (48)for i = 1; 2. From (32), this shows that, for any T :f 01(T )f 02(T ) > f1(T )f2(T ) ; (49)21



whence Y �(T ) > Y eq(T ) from (38) and (47). �Now, the endothermic domainR� is a subset of the region f(Y; T ) ; 0 � Y � Y �(T )g from (44), asshown on Figure 17.
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Let us therefore prove that g is convex in the endothermic region. For the sake of simplicity, wedenote TH(Y ) = H0 � UY . The �rst derivative of g is given by:g0(Y ) = �f1 �TH (Y )�� f2 �TH(Y )�� U ��Y f 01 �TH (Y )� + (1� Y )f 02 �TH (Y )�� : (54)In the endothermic region, we have Y < Y � �TH(Y )� from (44) and the monotonicity of Y � (see Figure17), which shows that the term between brackets in (54) is positive. Therefore, g0(Y ) < 0 for Y < Y1.A second di�erentiation yields, after some algebra:g00(Y ) = 2U �f 01 �TH(Y )�+ f 02 �TH (Y )��+� UTH(Y )�2 ��Y f1 �TH(Y )���21 � �1 � E1RTH(Y )�+(1 � Y )f2 �TH (Y )���22 � �2 � E2RTH(Y )�� ; (55)with �i = � + EiRTH(Y ) for i = 1; 2. Using (32), we can rewrite this as:g00(Y ) = 2U �f 01 �TH (Y )�+ f 02 �TH(Y )��+ � UTH (Y )�2 Q�Y f1 �TH (Y )�RTH (Y ) !+� UTH (Y )�2 ���22 � �2 � E2RTH(Y )���Y f1 �TH(Y )�+ (1� Y )f2 �TH(Y )��� ; (56)with � = QRTH(Y ) + 2�� � 1 + E1RTH(Y )�.In the endothermic domain, we know that �Y f1 �TH(Y )�+ (1� Y )f2 �TH(Y )� > 0. Therefore,g00(Y ) will be proved to be positive if we show that:� � 0 and �22 � �2 � E2RTH (Y ) � 0 : (57)Regarding the second expression in (57) as a second-order polynomial in the variable �2, we can rewritethese two conditions as:2E1 + Q2RTH(Y ) � 1� � and �2 = � + E2RTH(Y ) � 12 +s E2RTH(Y ) + 14 : (58)After some simple algebra, using the assumption (41) on �, one easily checks that the last condition in(58) is equivallent to: 2RTH(Y ) � E2. Both conditions (58) are then ful�lled from (40), which ends theproof. �Remark 4.6: It is easy to see from the above proof that the same conclusions can be reached evenif � < 0, but with a stronger hypothesis than (40) on the activation energies. For instance, the aboveresults remain true if the conditions (40)-(41) are replaced by:� � �3 and 2RTmax � min�E1 + E24 ; E23 � : � (59)Remark 4.7: In fact, the preceding proofs show that the CL method is unconditionally stable as soonas the initial condition satis�es Y 0 � Y �(T 0). Indeed, if the initial data lies above the curve Y = Y �(T )but in the exothermic domain, we know that 0 � Y n+1 � 1 for any �t > 0, and (50) shows thatY n+1 < Y n. This means that the sequence (Y n) is decreasing for n small enough. Then, either thissequence always decreases, which means that (Y n; Tn) 2 R+ and Y n < Y �(Tn) for all n, and thescheme is unconditionally stable from Lemma 4.4; or there exists n0 such that (Y n0 ; Tn0) 2 R� and,23



for n > n0, the sequence (Y n) increases but (Y n; Tn) remains in the endothermic domain from Lemma4.5. In both cases, we have: limn%+1Y n = Y 1 ; limn%+1Tn = T1 : � (60)To conclude our analysis, it remains to examine why the CL method is not unconditionally stable inthe whole exothermic domain. This is the object of the next Lemma:Lemma 4.8:The coupled linearized method is not always unconditionnally stable for the simple reversible reaction(29). �PROOF: In Lemma 4.4, we have written only a su�cient condition for the stability of the method.Now, returning to (46) and assuming that 0 � Y n � 1, it is easy to see that the property:0 � Y n+1 � 1 8�t > 0 (61)is achieved if the following two necessary and su�cient conditions are satis�ed:8<: f2(Tn) + UY n (�Y nf 01(Tn) + (1� Y n)f 02(Tn)) � 0 ;f1(Tn) + U (1� Y n) (�Y nf 01(Tn) + (1� Y n)f 02(Tn)) � 0 : (62)Writing the �rst inequality as �1(Y ) = (f 01 + f 02)Y 2 � f 02Y � f2U � 0, we see that the discriminant of�1, �(�1) = f 022 + 4f2U (f 01 + f 02), is always positive, and that �1 has exactly one positive root. The �rstcondition in (62) may therefore be written under the form:Y n � Y1(Tn) : (63)With realistic values for E1, Q and T (see Remark 4.1), �1(1) is positive, which means that 0 < Y1(T ) <1 and that (63) introduces an actual restriction.The second inequality in (62) leads to:�2(Y ) = (f 01 + f 02)Y 2 � (2f 02 + f 01)Y + f1U + f 02 � 0 : (64)The discriminant of �2 is �(�2) = f 021 � 4f1U (f 01 + f 02). Again, with realistic values for E1, Q and T ,this expression is positive. Examining the values of �2(0), �02(0), �2(1), �02(1), it is easy to see that �2has two roots inside the interval [0; 1], which means that the second condition in (62) is equivallent toa condition of the form: Y n 62 [Y2(Tn);Y3(Tn)] ; (65)with 0 < Y2(T ) < Y3(T ) < 1.The two conditions (63)-(65) show that the CL scheme is not unconditionally stable. �We will not try to exploit any further the conditions (63)-(65), which are quite heavy to handle with.Instead, we will now examine the simpler case of a non-reversible reaction.4.2 The one-step reactionFor the sake of simplicity, let us now consider the simplest case of a single one-step reaction A �! B.Keeping the same notations as above, we will simply assume that A2 = 0 in (31). Our aim here is tocompare the stability restrictions for the linearized implicit schemes and the �rst-order explicit scheme.24



We easily have: Y n+1 = Y n (1��tf1(Tn)) (66)for the explicit forward Euler scheme, Y n+1 = Y n1 + �tf1(Tn) (67)for the UL method, which is still unconditionally stable, and:Y n+1 = Y n�t � U (Y n)2f 01(Tn)1�t + f1(Tn)� UY nf 01(Tn) (68)for the CL scheme. It is then easy to see that the explicit method (66) is stable under the condition:�t � �tEXP = 1f1(Tn) ; (69)whereas the CL method is stable under the following condition (if Y n > 0):�t � �tCL = 1UY nf 01(Tn) : (70)Then, the ratio of these two limiting values of the time step is:�tCL�tEXP = f1(Tn)UY nf 01(Tn) = TnTmax � Tmin 1Y n 1� + E1RTn ; (71)we have used Remark 4.1 and (48). It is then clear that this ratio can be substantially smaller than1: the stability restriction of the coupled linearized implicit method is then strictly more severe than thestability limit of the explicit Euler forward scheme !!4.3 Global hydrogen-oxygen reactionsWe will now analyse further the UL method, which we found to be unconditionnally stable for the simplereversible model (29), for two global formulations of the hydrogen-oxygen combustion. In fact, we willconsider the two following reversible models:2H2 + O2 *) 2H2O ; (72)and: H2 + 12O2 *)H2O ; (73)and we will show that, surprisingly, the application of the uncoupled linearized method to (72) and (73)leads to very di�erent stability limits.4.3.1 The model with integer stoechiometric coe�cientsLet us begin with the �rst model (72).Calling X, Y and Z the mass fractions of H2, O2 and H2O respectively, and f1(T ) and f2(T ) theforward and reverse reaction rates, we are led to the system:8<: _X = �2WH2 �X2Y f1 � Z2f2� ;_Y = �WO2 �X2Y f1 � Z2f2� ;_Z = 2WH2O �X2Y f1 � Z2f2� : (74)25



We then have the following result:Proposition 4.9:For the global reversible reaction (72), the uncoupled linearized method is unconditionnally stable: ifXn, Y n, Zn � 0 and Xn + Y n + Zn = 1, then Xn+1, Y n+1, Zn+1 � 0 and Xn+1 + Y n+1 + Zn+1 = 1for any �t. �PROOF: Writing �F = Fn+1 � Fn for F = X, Y or Z, we may write the UL method for the massfraction X as: �X�t = �2WH2 ��X2Y f1 � Z2f2�+ 2XY f1�X +X2f1�Y � 2Zf2�Z� : (75)We have omitted the superscripts n for Xn, Y n and Zn in the right-hand side of this relation. Moreover,we have �Y = WO22WH2 �X and �Z = �WH2OWH2 �X from (74). After a straightforward calculation, we obtain:8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>: Xn+1 = X�t + �WO2X3 + 2WH2X2Y � f1 + �4WH2OXZ + 2WH2Z2�f21�t + �4WH2XY +WO2X2� f1 + 4WH2OZf2 ;Y n+1 = Y�t + 4WH2XY 2f1 + �4WH2OY Z +WO2Z2� f21�t + �4WH2XY +WO2X2� f1 + 4WH2OZf2 ;Zn+1 = Z�t + �2WH2OX2Y +WO2X2Z + 4WH2XY Z� f1 + �2WH2OZ2� f21�t + �4WH2XY +WO2X2� f1 + 4WH2OZf2 : (76)Now, assume that Xn, Y n, Zn � 0 and that Xn + Y n + Zn = 1. It is then obvious that Xn+1,Y n+1, Zn+1 � 0 for any �t > 0. Moreover, using the relation 2WH2 +WO2 = 2WH2O, it is easy tocheck that Xn+1 + Y n+1 + Zn+1 = 1, which completes the proof. �4.3.2 The model with non-integer stoechiometric coe�cientsConsidering now the second model (73) and using the same notations, we obtain the system:8>>>>>>><>>>>>>>: _X = �WH2 �XpY f1 � Zf2� ;_Y = �WO22 �XpY f1 � Zf2� ;_Z = WH2O �XpY f1 � Zf2� : (77)We then have the following result, which says that the UL method is not unconditionnally stable forthis model:Proposition 4.10:For the global reversible reaction (73), the uncoupled linearized method is not unconditionally stable.The stability condition writes:1�t � �WO2X4pY �WH2pY � f1 � �WO2Z2Y +WH2O�f2 ; (78)26



for Y > 0. �PROOF: After some algebra, we �nd that the application of the UL method to (77) leads to:8>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>:
Xn+1 = X�t + X2WO24pY f1 + (XWH2O + ZWH2 ) f21�t +�WH2pY + WO2X4pY � f1 +WH2Of2 ;Y n+1 = Y�t +  WH2YpY � WO2XpY4 ! f1 +�WH2OY + ZWO22 � f21�t + �WH2pY + WO2X4pY � f1 +WH2Of2 ;Zn+1 = Z�t + �ZpY WH2 + WO2XZ4py +XpYWH2O� f11�t + �WH2pY + WO2X4pY � f1 +WH2Of2 : (79)The arguments are then the same as in the preceding proof: assuming that Xn, Y n, Zn � 0 andthat Xn + Y n + Zn = 1, it is obvious that, for any �t > 0, we have Xn+1 � 0, Zn+1 � 0 andXn+1+Y n+1+Zn+1 = 1. Also, it is clear that Y n+1 � 0 if and only if (78) holds, which completes theproof. �Remark 4.11: Let us comment about the stability condition (78). It is clear that, if X is small enough,i.e. for su�ciently lean mixtures, the UL scheme is unconditionnally stable (the right-hand side of (78)is then negative). On the other hand, for rich mixtures, i.e for Y small enough, there is an actuallimitation on �t, which takes the form (at the leading order):�t � �tUL = 4pYXWO2f1 : (80)On the other hand, it is readily seen in this case that the stability limit of the explicit forward Eulerscheme reads: �t � �tEXP = 2pYXWO2f1 : (81)Thus, for very rich mixtures, the uncoupled linearized method may operate with time steps which areonly twice greater than the time step allowed for the explicit method. �4.4 A remark about the fractional-step approachThe previous sections show on the basis of the analysis of several tractable models that the linearizedimplicit methods su�er from very severe stability restrictions for the integration of the chemical model(8). One may then wonder whether this result is not due, at least partly, to our fractional-step ap-proach. In other words, may the linearized implicit schemes operate with larger time steps if, insteadof considering the sole chemical source terms, we simultaneously integrate the convective (and possiblythe di�usive) terms together with the chemical terms ?The answer to this question is negative: the stability limit of the linearized implicit methods forthe coupled convective-reactive system is not any greater than the stability limit of these schemes forthe purely chemical system (8). This fact is illustrated by the following example, where we considerthe most simple convective-reactive system for a one-step reaction A �! B, with constant velocity andconstant energy: Yt + u0Yx = �Y f1(H0 � UY ) : (82)27



Assuming for the sake of clarity that u0 > 0 and setting again TH(Y ) = H0 � UY , we have (comparewith (70)):Lemma 4.12:For the solution of (82), the upwind linearized implicit scheme:Y n+1j � Y nj�t + u0Y n+1j � Y n+1j�1�x = �Y n+1j f1 �TH(Y nj )� + UY nj f 01 �TH(Y nj )� �Y n+1j � Y nj � (83)is stable under the condition: �t � 1maxj UY nj f 01 �TH (Y nj )� : � (84)PROOF: The scheme (83) can be written in matrix form as AY n+1 = BY n, with:Aj;j = 1�t + f1 �H0 � UY nj �� UY nj f 01 �H0 � UY nj �+ u0�x ; Aj;j�1 = � u0�x ; (85)Bj;j = 1�t � UY nj f 01 �H0 � UY nj � ; (86)all other terms being zero. Clearly, if (84) holds, then B � 0, and A is an M-matrix (Aj;j > 0 for all j,Aj;k � 0 for j 6= k and Xk Aj;k > 0 for all j; see [11]). As a consequence, A�1 � 0, whence Y n+1 � 0as soon as Y n � 0.If (84) holds, we may also set C = B�1A and write the scheme (83) as CY n+1 = Y n. Then, C is anM-matrix and, denoting 1 the vector whose components are all equal to unity, we easily see that C1 � 1.Thus, C�1 � 0 and we have C�11 � 1. Assuming that Y n � 1, we see that Y n+1 = C�1Y n � 1, whichends the proof: the inequalities 0 � Y n+1j � 1 hold for all j. �5 ConclusionsWe have investigated in this paper the use of the nonlinear implicit and linearized implicit methods forthe time integration of exothermic complex chemistry models.We have enlightened the ine�ciency of these methods through three numerical experiments, whichshowed (i) that a straightforward use of these methods leads to prohibitive computation times forthe simulation of hydrogen combustion, (ii) that, for some initial conditions, several of these methodsare unable to preserve the mass fractions positivity, even with extremely small time steps, and, moreimportantly and more surprisingly, (iii) that monitoring the time step for these calculations by onlyrequiring the preservation of the mass fractions positivity may lead to physically unacceptable results.We explained these observations by analysing the behaviour of the linearized implicit methods forseveral (not too complex) tractable chemical mechanisms. These analyses show that the stability limit ofthe linearized implicit methods strongly depend on the detailed form of the chemical model. Also, theyexplain in a convincing way that the linearized implicit methods are not suitable for the time integrationof exothermic chemical mechanisms, whereas they are known to be adequate for endothermic chemistries(see [2, 3, 8]).Remark 5.1: The nonlinear implicit methods deserve some further comments. Following the argumentsused in [4], it can indeed be shown that, for any time step �t, as soon as the nonlinear discrete systemto be solved in these methods has a solution (Yk)n+1, Tn+1, then this solution satis�es the maximumprinciple: 0 � Y n+1k � 1 (and this remains true if convective and di�usive terms are added; see [4]).Therefore, the instabilities observed for these methods in our experiments should be interpreted as thedivergence of the Newton iterations for the solution of the nonlinear discrete problem, not as an intrinsicinstability of the nonlinear formulation itself. It might in fact be the case that this situation can be28



improved by using another iterative technique instead of Newton method (such as damped Newton,GMRES, ...), or by coupling the convective or di�usive terms with the chemical source terms within theiterations (see e.g. [10]). �
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APPENDIX AWe give here the expression of the Jacobian matrix of the chemical terms.Using the notations of Section 3.1, we wish to evaluate G = @C@X . We �rst obtain:@C1@T jYk = �Xk=1YkCvk(T ) ; @C1@Yk jT;Ym (m6=k) = �k(T ) :For k � 0, we have: @Ck+1@T jYm = �Wk �t IXi=1 �ki@Ri@T jNm ;with: @Ri@T jNm = Bi "Kf;i �Yk=1N�0kik ��iT + EiRcT 2��Kr;i �Yk=1N�00kik  �i +��iT + EiRcT 2 � �Xk=1�ki Gk(T ) !# ;Nk = �YkWk ; Bi = �Xk=1�kiNk ;Gk(T ) = a6kT 2 + a1kT + a2k2 + a3k3 T + a4k4 T 2 + a5k5 T 3 ;hk(T ) = RWk � a6k + a1kT + a2k2 T 2 + a3k3 T 3 + a4k4 T 4 + a5k5 T 5 � ;Cpk(T ) = ddT hk(T ) = RWk � a1k + a2kT + a3kT 2 + a4kT 3 + a5kT 4 � ;Cvk(T ) = ddT �k(T ) = Cpk(T )� RWk :Lastly, we have (�km denoting the Kronecker delta):@Ck+1@Ym jT;Yl (l6=m) = �km ��t Wk IXi=1 �ki @Ri@Ym jT;Yl (l6=m) ;with :@Ri@Ym jT;Yl (l6=m) = ��miRiWmBi +Bi 0@Kf;i Yl6=mN�0lil ��0miWm N�0mi�1m �Kr;i Yl6=mN�00lil ��00miWm N�00mi�1m 1A :In the case of chemical reactions not including a colliding third body, the above expressions are stillvalid with Bi = 1 and removing the terms involving �mi in the last relation.
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APPENDIX BWe now write down the two hydrogen-air combustion models, in CHEMKIN format (i.e. with C.G.S.units, activation energies Ei in cal:mol�1).The model with 9 species and 19 reactions writes: Ai �i Ei1 H2 + O2 *) 2OH 1:70E13 0: 47780:2 H2 + OH *) H2O +H 1:17E09 1:3 3626:3 H +O2 *) OH + O 5:13E16 �0:816 16507:4 O +H2 *) OH +H 1:80E10 1: 8826:5 H +O2 +M *) HO2 +M 2:10E18 �1: 0:6 H +O2 +O2 *) HO2 +O2 6:70E19 �1:42 0:7 H +O2 +N2 *) HO2 +N2 6:70E19 �1:42 0:8 OH +HO2 *) H2O + O2 5:00E13 0: 1000:9 H +HO2 *) 2OH 2:50E14 0: 1900:10 O +HO2 *) O2 +OH 4:80E13 0: 1000:11 2OH *) O +H2O 6:00E08 1:3 0:12 H2 +M *) 2H +M 2:23E12 0:5 92600:13 O2 +M *) 2O +M 1:85E11 0:5 95560:14 H +OH +M *) H2O +M 7:50E23 �2:6 0:15 H +HO2 *) H2 +O2 2:50E13 0: 700:16 2HO2 *) H2O2 +O2 2:00E12 0: 0:17 H2O2 +M *) 2OH +M 1:30E17 0: 45500:18 H2O2 +H *) HO2 +H2 1:60E12 0: 3800:19 H2O2 + OH *) H2O +HO2 1:00E13 0: 1800:For reactions 5, 12 and 14, the third-body-e�ciency coe�cients of �ki's are given by:�H2O;5 = 21 ; �H2;5 = 3:3 ;�H2O;12 = 6 ; �H;12 = 2 ; �H2;12 = 3 ;�H2O;14 = 20 :
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The model with 10 species and 16 reactions is the following:Ai �i Ei1 H2 + O2 *) 2OH 1:70E13 0: 47780:2 H2 + OH *) H2O +H 5:20E13 0:0 6500:3 H + O2 *) OH + O 1:22E17 �0:907 16620:4 O +H2 *) OH +H 1:80E10 1: 8826:5 H + O2 +M *) HO2 +M 2:00E15 0: �870:6 OH +HO2 *) H2O +O2 1:20E13 0: 0:7 H +HO2 *) 2OH 6:00E13 0: 0:8 O +HO2 *) O2 +OH 1:00E13 0: 0:9 2OH *) O +H2O 1:70E06 2:03 �1190:10 H2 +M *) 2H +M 2:23E12 0:5 92600:11 O2 +M *) 2O +M 1:85E11 0:5 95560:12 H + OH +M *) H2O +M 7:50E23 �2:6 0:13 H +HO2 *) H2 +O2 1:30E13 0: 0:14 O + N2 *) NO + N 1:40E14 0: 75800:15 N + O2 *) NO + O 6:40E09 1: 6280:16 OH +N *) NO +H 4:00E13 0: 0:For reactions 5, 10 and 12, the third-body-e�ciency coe�cients of �ki's are given by:�H2O;5 = 20 ; �H2O;10 = 5 ; �H2O;12 = 20 :
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APPENDIX CLastly, we give here the FORTRAN Routine for Gill's Runge-Kutta 2 method, taken from [12].SUBROUTINE GILLS(N,C,F,X,H,M,K)CC THIS ROUTINE PERFORMS RK CALCULATION BY GILLS METHODCC INPUTC N = NUMBER OF VARIABLESC C = ARRAY OF N DEPENDENT VARIABLESC F = ARRAY OF N DERIVATIVES OF C W.R.T. XC X = INDEPENDENT VARIABLEC H = INCREMENT OF XC M = INDEX USED IN THE ROUTINE (INITIALIZED TO ZEROC BEFORE THE FIRST CALL)C OUTPUTC X,CC K = TEST INTEGERC = 1 CONTINUEC = 2 RETURNIMPLICIT REAL*8 (A-H,O-Z)DIMENSION C(10),F(10),Q(10)ONESIX = 1.D0/6.D0ONETHI = 1.D0/3.D0M = M +1GOTO(1,4,5,3,7),M1 DO 2 I = 1,N2 Q(I)= 0.D0A=0.5D0GOTO 93 A = 1.7071067811865475244D04 X = X + 0.5D0 * H5 DO 6 I=1,NC(I) = C(I) + A * ( F(I)*H - Q(I) )6 Q(I) = 2.D0 * A * H * F(I) + (1.D0 - 3.D0*A)*Q(I)A = 0.2928932188134524756D0GOTO 97 DO 8 I=1,N8 C(I) = C(I) + H*F(I)*ONESIX - Q(I) * ONETHIM=0K=2GOTO 109 K=110 RETURNEND 33
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