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Abstract

Considering the finite-volume solution of multi-dimensional multi-species reactive flows with complex
chemistry, we concentrate on the numerical treatment of the chemical source terms in a fractional step
approach. For two air-hydrogen chemistry models, we compare the numerical efficiency of linearized
or totally implicit schemes, in both temperature-mass-fractions coupled and uncoupled formulations;
we also use two popular specialized solvers, LSODE and DASSL. The implicit schemes suffer from
very drastic stability criteria; they may even become unconditionaly unstable for some particular initial
conditions. Analysing several simplified models, we explain these instabilities. In particular, we show
why the linearized implicit methods, which are perfectly adequate for globally endothermic complex
chemistries, are limited in an exothermic situation by a stabilty condition which may even be worse
than the stability criterion of an explicit scheme.

COMPARAISON ET ANALYSE DE SCHEMAS NUMERIQUES
POUR LA RESOLUTION DE PROBLEMES
DE CINETIQUE CHIMIQUE COMPLEXE RAIDE

Résumé

On s’intéresse a la résolution par des méthodes de volumes finis décentrées des équations d’Euler multi-
dimensionnelles et multi-especes, comportant en outre des termes sources chimiques. Nous concentrant
sur le traitement des termes de réaction, nous comparons pour deux chimies air-hydrogéne 'efficacité
numérique de schémas implicites, linéarisés ou non, avec plusieurs formulations qui couplent ou décou-
plent partiellement la température et les fractions massiques; nous utilisons également deux solveurs
spécialisés;, LSODE et DASSL. Les schémas implicites s’avérent trés instables, voire inconditionnelle-
ment instables pour certaines conditions initiales. En analysant ensuite quelques modéles simplifiés, nous
expliquons ces instabilités. En particulier, nous montrons pourquoi les méthodes implicites linéarisées,
qui s’averent efficaces pour des chimies complexes globalement endothermiques, souffrent dans le cas
de chimies exothermiques de conditions de stabilité qui peuvent méme étre plus séveres que celle d'un

schéma explicite.
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1 Introduction

Numerical solution of inviscid flows is now quite achievable: a good deal of efficient algorithms have
appeared which make possible to solve the FEuler equations of motion for most practical cases. For
chemically reactive flows however, severe numerical difficulties may arise from the introduction of the
highly non-linear chemical source terms — in particular when the number of species and of reactions is
large — which generally lead to very stiff systems of differential equations.

In the case of hypersonic flows, the decomposition of the molecules of air (N2 and Os) only occur at
very high temperature and the chemical phenomenon is globally endothermic. For this kind of chemical
kinetics, a linearized implicit treatment of the chemical terms seems to be sufficiently efficient to solve
the flow and does not affect the C.F.L. condition by more than a factor of two, even in the case of a
complex chemistry model with 5 species and 18 reactions [2, 3, 8]. The extension of this method to a
globally exothermic kinetic model, such as the models arising in combustion, seems to lead to a very
different — and highly unstable ! — behaviour for this kind of linearized implicit methods. Moreover,
numerical instability may sometimes appear even when non-linearized implicit methods are applied.

It is precisely the aim of our work to investigate how implicit schemes behave and perform when
applied to kinetic models arising from complex chemical mechanisms. Indeed, although our ultimate
objective is the solution of multi-dimensional reactive flows, we will concentrate here on the treatment
of the reaction terms in a fractional step approach. After having briefly presented the flow equations,
we will focus on the integration of the chemical source terms, which we will describe in detail in the
next section. Then, we will describe various numerical methods, whose behaviours will be discussed and
compared by examining three numerical experiments, for two models of the hydrogen-air combustion.
These methods include the explicit Euler forward scheme, an explicit second-order Runge-Kutta scheme,
linearized or nonlinear implicit schemes, with two formulations coupling or uncoupling the temperature
and mass fractions, and two specialized O.D.E. solvers (LSODE and DASSL). The last section is then
devoted to the numerical analysis of the linearized implicit schemes, for several simpler kinetic mech-
anisms, including a one-step reversible equation and two global reversible one-reaction models for the
hydrogen-air combustion. In particular, these analyses will show why the linearized implicit schemes are
adequate for endothermic regimes (typically for the air chemistry, in hypersonic re-entry flows), while
they encounter extremely severe stability restrictions in exothermic situations, such as those arising in
combustion.

2 Governing equations

2.1 The two-dimensional reactive Euler equations

We are interested in the numerical simulation of multi-dimensional high-speed reactive flows, such as
those occuring in hypersonics, supersonic combustion or detonations. Neglecting therefore the viscous
and diffusive effects, we start from the following conservative form of the k-components two-dimensional
“reactive Fuler” equations: given by :

(pr)e + (prw)e + (prv)y = W(T1,Y, p) ,
(pu)e + (pu® + Po + (puv)y =0,

(p0)e + (puv)s + (pv? + P)y = 0,

ot (ule + P))o+ (v(e + P)), =0,

with pr = pY%, Y being the mass fraction of species y; and Y the vector of the Y3’s; Qp is the chemical
source term for the k-th species. The other notations are usual.
To close the system, we write two additional equations. The first one is the perfect gas law:
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and the second one is the equation of state giving the energy:
1
e = §p(u2—|—v2)—|—ph(T,pk)—P : (3)
We will be more specific later about the precise form of the specific enthalpy A(T,p;) for the -

components real-gas mixture.
We can also write the system in its classical vector form:

Wi+ F(W)e +GW)y + HW) =0, (4)
with:
Pk Pt PrY =
we| o= | M e = | B [ an = | )
e u(e + P) v(e+ P) 0

We consider the solution of system (4) using semi-implicit upwind finite-volume methods. Semi-
implicit means here that the convective (i.e., non reactive) part of the system is solved using a cheap
explicit solver, whereas the reactive terms are integrated point-wise with a (preferably) implicit method.
We write the global scheme as:

prtl

Wit —wr n i o Area(C;
Area(C) T+ 5 e W)+ 2 [ mnoyae=0. @
JEA;

Here, the superscripts n and n+1 refer to the number of time steps, At is the time step, Area(C;) is the
value of the area of the cell C;, A; is the set of neighbour nodes of vertex ¢, Lastly, ¢;; is the numerical

flux between cells C; and Cj; it depends on the two states W;* and W} and on the integrated normal on

the cell interface 7;; = / v; do. We evaluate these numerical fluxes for the real-gas mixture using
C,ﬂCj

an explicit second-order accurate multi-component Riemann solver, which has the property of preserving

the maximum principle for the mass fractions. We refer to e.g. [1, 7] for a complete description of such

numerical methods.

To be more specific, we have to consider the different possible ways of evaluating the integral
¢t prtt

H(W;(t))dt. For instance, if we wimply set / H(W;(t)dt = AtH(W]), we obtain a fully
tn tn
explicit scheme. But the timestep limitation for such an explicit scheme is usually very drastic in the

presence of complex chemistry. This is why we have to consider semi-implicit schemes. On the other
prtt

hand, writing / H(W;(t))dt = AtH(WT) leads to a nonlinear system in which all variables (at

n
all nodes) are fully coupled. In order to avoid the cost of such an approach, we will consider instead
a fractional step method, where the fluid—mechanics and the reactive part of the system are solved
separately. We write the two steps as:

Li2n+& __ngn n n -
Area(C’i)T + Z ¢ij (W] aVVj i) =0,
frtl 7€ (7)
Wt [ Hmd=0,
n

This fractional step approach does not match the physical coupling between chemistry and fluid me-
chanics into the same time step, but seems to be a quite cheap method to compute stationnary and
unstationnary chemically reacting flows.

In the sequel, concentrating on the second chemical step, we examine and compare various possible
schemes for the integration of the chemical source terms.



2.2 One——cell model

The new system to be solved now is a system of algebraic-differential equations consisting of the «
ordinary differential equations of chemical kinetics for the mass fractions and of the conservation of
energy. The unknowns are the temperature 7" and the vector of mass fractions Y. The system can be
written as:

dYk _ Qk(T, Y, p) _
at = P = wk(T,Y) s
(8)

K
«(T,Y) = ZYkek(T) = Constant .
k=1
Notice that p is constant in the first equation of (8). Note also that we use the equation of con-
. o o . dr ¢ .
servation of energy in its integral form and not in its differential form CUE = — Zwkek(T), with
:1

Cy = Zn:ykcvk

k=1
We now have to write in details the reactions terms appearing in (8). We consider that the com-
position of the mixture of k¥ gazeous species is influenced by [ reversible chemical reactions, which we

write as:
K K
Z ViiXk = Z VhiXk (9)
k=1 k=1
. dYy, .
for 1 < ¢ < I. The source terms w; = 5 e given by:
I
Wy = Z WivkiRi | (10)
i=1

where vy; = (v}, — vy;), Wi being the molar weight of species xz, and where R; denotes the global
advancement rate of the reaction 1.
The reaction rate of the i-th reaction is then given by:

Ri=K;; H Nl:;” o H N:;’, ’ (11)
k=1 k=1

Yi . . . . . .
where N = ?/V_k is the molar density of species x;. For third-body reactions (see Appendix B), the

k
expression for R; is modified as:

Ri=Bi (Kpi [[ N - Kot T N9 (12)
k=1 k=1

K
where B; = Z ag; Ni; the ayp;’s are the third-body-efficiency coefficients of species yj for the reaction
k=1
1.
The forward and reverse reaction rates K;; and K, ; are given by:

E; Ky
Kpi= AT exp (— ) o Kri = ;—f , (13)
Ve

where F; is the activation energy of the forward reaction, and where K ; is the equilibrium constant for
reaction ¢. These “constants” are given by the following expressions:
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where:

AI/Z' = ZI/]“' ; ASZO = ZI/]“S]S(T) ; AHZO = ZVMHIS(T) ; (15)
k=1 k=1 k=1

and where Py, 18 the value in Pascals of the atmospheric pressure: P,y = 101325,
n (15), SY(T) and H}(T') respectively denote the standard-state molar entropies and enthalpies for
species k; they are approximated using the relations:

sur
e(T) = a1z InT + as; T + 43k T% + 2k T+ Dok T +ar , (16)
R 2 3 4
HIS(T) a2k a3k 2 a4k 3 a5k g (¢33
= —T 4+ =T+ —T — T+ = 1
o = a1 =T R T (17)

where the aj;, coefficients are two sets of constants given for two intervals of temperatures, the “upper”
and the “lower” intervals, corresponding respectively to T > Tyrrp(k) and T < Tayrrp (k). We use the
CHEMKIN Fortran library [6] to compute all these thermodynamic data. The CHEMKIN package also
allows us to easily change the chemistry kinetic model (see Appendix B).

Lastly, the specific energy ¢(7,Y) = ZYkek(T) is evaluated from the relations:
k=1

0 _
o1y = 2D I
k

where the molar enthalpy H{(7") of species xy, is given by (17).

3 Numerical experiments

We will now consider several numerical methods for the solution of system (8), and compare them on
three typical numerical experiments.

We will see that the crucial point in all experiments, and for all methods, is the choice of the local
time step. In the numerical investigation presented here, we made this choice a prioriin a semi-empirical
manner; indeed, for the complete system (6), one ideally wishes to take for the chemistry the time step
coming from the stability criterion of the explicit finite-volume method for the fluid, so as to avoid
evaluating the own characteristic time for the complex chemical mechanism. But we will see that many
difficulties remain, and in fact that several of the methods under consideration behave very poorly for
the hydrogen-air combustion test case investigated below. Nevertheless, we found it necessary to present
these numerical results before we perform a detailed analysis of the numerical stability of some of the
schemes for some model situations in the next section.

For some stability reasons (see [1] for the details), we slightly modify the system (8) in our exper-
iments below: we impose the conservation of enthalpy instead of imposing the conservation of energy.
In fact, this modification does not qualitatively affect the results which will be presented and discussed
below.

3.1 The numerical methods

We begin by describing the methods in some details.

We will mainly consider implicit methods. The differences between the various methods considered
here lie in the size of the vector of unknowns. The first method is simply Newton’s method on the whole
system (8), i.e. with 7" and Y as simultaneous unknowns. In other words, we write (8) as:

Ci(X"H) = ZYkn+1€k(Tn+1) -"=0,
k=1 (19)

Ck+1(Xn+1) = Yk”‘H — At wk(T"+1,Y"+1) +Y;r=0,



with:
Tn+1
n+1

Xn-l—l — 1. (20)

Yn.+1
K

K
and €* = ZYkoek(To). The Newton iterations may then be written as:
k=1

G AX® = —C(X*) (21)

(a3
where G = (5—;) and AX®Y = Xt — X with X*=% = X" and X"*t! = X®=%maz The dimen-
sion of the unknown vector is k+1, and the linear system is inverted at each iteration by a direct GAUSS
method. The Jacobian matrix G is exactly computed at each iteration from its analytical expression
(see Appendix A). In practice, we limit the number of Newton iterations to ten, in order to obtain a not
too expensive method: we will call this method “coupled Newton” method (CN). If we choose amar = 1,
we obtain the “coupled linearized” implicit method (CL).

We can also slightly change this approach and uncouple the mass fractions system from the energy
equation in the resolution. We then only make Newton iterations on the mass fractions and solve
separately for the temperature by another scalar Newton method on the energy equation. More precisely,
we then write the mass fractions equations as:

U (2T = VP — At wp (T, YT + Y =0, (22)
with:
Y1n+1
Yﬁn+1

We now write the vector Newton iterations as:
JAZY = -U(ZY) (24)

. ou\*“ _ _
with J% = (6_Z) JAZY = gott g ge=0 = g7 and 27t = Z2=%maz and the new temperature

T+ is then computed by substituting the new mass fractions Yk”‘l'1 into the energy equation:

SVt (1) — =0, (25)
k=1

and solving it by a scalar Newton method. Limiting « to a4, = 10, we call this method the “uncoupled
Newton” method (UN). Again, if we take apmqy = 1, we simply obtain a linearized implicit method,
called the “uncoupled linearized” method (UL).

This uncoupled formulation allows us to also consider explicit methods. We will consider both the
forward Euler method and an explicit two-stage Runge-Kutta (RK2) method, namely Gill’s method
(see [12] and Appendix C for more details). But these methods will be a priori the “worst” methods in
terms of time step limitation.

Lastly, we can also use for the solution of (8) an O.D.E. solver as a (quasi) black box — and the most
popular one seems to be LSODE [5] — for the mass fractions equations, with a one-variable Newton
method for the temperature equation, as in the above “uncoupled” approaches. Or, in a very similar
manner, we can solve the whole system with an Algebraic-Differential-Equations solver — like DASSL
[9], for example.



Let us simply recall some features of the method used in LSODE. For the system of ordinary
differential equations § = f(¢,y), LSODE uses a backward differentiation formula :

q
Un = D jynj + AU B f(17,Y7) (26)

ji=1

q is the order of accuracy of the method (1 < ¢ < 5). The solution of the resulting non-linear system
is computed by modified Newton iterations, where the Jacobian matrix (either exact and supplied by
the user or approximated by internal difference quotients) is held constant during the iterations. The
whole efficiency of the package mainly relies on the optimization of the local time step, which involves
quite numerous failure tests and feedbacks. In particular, the initial time step is essentially determined

by the constraint (see [5]):
2

h ..
||7y||WRMS =1, (27)

N

. v . . .
with the norm ||v||wryms = | = (—)2, the numerical tolerances ¢;’s being supplied by the user.
€

n=1
Let us finally emphasize that, for all numerical experiments described below, we always use the
values from the previous time step as initial guess for the Newton method.

3.2 The test-case: hydrogen-air combustion

In all numerical experiments below, we consider the combustion of a homogeneous mixture of hydrogen
and air. The initial molar fractions are assumed to be:

1 .
N 3.79

X(Hz)IX(Oz)Iﬁ, ( 2)=ﬁ,

(28)
and zero molar fractions for all other species. The initial values of temperature and pressure are
T; = 1615 K |, P; = 0.4 atm. These values may be seen as typical initial values behind the shock
when studying shock-induced hydrogen-air combustion, for instance in scramjets configurations. The
numerical tests use two kinetic models, given in Appendix B; the first mechanism involves 9 species and
19 reactions, the second one involves 10 species and 16 reactions. The final equilibrium temperature is
equal to 2637 K for both models. We assume that the mixture combustion has reached its equilibrium
before time t,,4, = 10™% s, which has been taken as the final time of our calculations.

We should keep in mind in the sequel that we have chosen here a quite severe test-case. It will indeed
appear that most numerical methods behave much better for globally endothermic chemical mechanisms
(such as the kinetic model describing the air chemistry) than for exothermic chemistries; moreover,
among the exothermic mechanisms, the combustion of hydrogen is more explosive and exothermic than
the combustion of heavier hydrocarbons.

3.3 First numerical experiment

As a first numerical experiment, we solve the above test-case with all methods presented in Section 3.1,
using the following simple strategy for choosing the variable time step.

As already said, the time step cannot be chosen in an arbitrary way, since some of the methods
suffer from severe stability condition (see Section 4). Here, we choose to reduce the time step during the
calculation, i.e. while the temperature increases, in the following simple and crude way. For all methods
(except for LSODE and DASSL which evaluate their own time steps), we take the initial time step to
be Aty = 107? 5. Then, for several values 6; of the temperature, we simply multiply the initial time
step Aty by some factor ¢; when the temperature 7' is exceeding the value 8;. The values of §; and ¢
are chosen to be a priori the same for all methods (after having tried quite a number of values...) and
are equal to:



0, 6 03 0,4 O s 07 fs
1650 | 1700 | 1800 | 1900 | 1950 | 2000 | 2100 2200
691 692 693 694 695 696 697 698

0.2 0.1 | 0.05 | 0.02 | 0.01 | 0.005 | 0.001 | 0.0005

Moreover, these empirical values can be changed during the numerical calculation: whenever the
code crashes, the current value of ¢; is then divided by two and the calculation proceeds.

The numerical results obtained in this way are very similar for all methods (the plotted profiles
are undistinguishable) and accurate. The time evolution of the temperature for both 9-19 and 10-16
chemistry models, presented on Figure 1, shows that the equilibrium temperature is reached slightly
earlier with the 10-16 mechanism than with the 9-19 model. The mass fractions profiles are shown on
Figure 2 for the 9-19 model, and on Figure 3 for the 10-16 mechanism (for the latter, we have omitted
the H» and O profiles; which look very much like those on Figure 2, but for the shorter equilibrium
time). Notice that, for the 10-16 model, the species Ny and NO have not reached equilibrium at the
final time 10~* s.

3000 T T T 3000 ‘ : :
2800 Temperature (9-19 Model) — | 2800 | Temperature (10-16 Model) — |
2600 2600
< 2400 < 2400
2 2
g 220 3 2200
2 o0 2 00
B 8
1800 1800
1600 1600
1400 - | | | | 1 1400 - | | | | 1
0 2e-05 4e-05 6e-05 8e-05 0.0001 0 2e-05 4e-05 6e-05 8e-05 0.0001
Time () Time ()

Figure 1: Temperature evolution for both 9-19 and 10-16 models.

But the most important output of this experiment concerns the comparison of the numbers of time
steps and of the CPU times needed by each of the methods. These figures are given in the Table below,
and are particularly dramatic (the calculations were performed on an IBM RS-6000 560 computer) !!

Methods CPU time Number of iterations
RK2 17 h 2.6 108
UL 1 h 30 mn 2.6 10°
CL 11 h 30 mn 3107
UN 50 A (1) 8 107
CN > 100 A (1) > 1108
LSODE 0.5s 144
DASSL 0.7 s 121

These results deserve several comments. First, they show undoubtedly that only the specialized
O.D.E. and D.A.E. solvers LSODE and DASSL can be used efficiently for such a complex and stiff
chemistry problem. Notice however that the above results do not bring any definite conclusion for the
comparison of LSODE and DASSL for this problem: the performances of both methods are very close;
moreover, when we also tried LSODE and DASSL methods on a SUN S510 computer, their respective
CPU times were 1.08 s for LSODE and 0.86 s for DASSL: the relative performances of LSODE and
DASSL are therefore machine-dependent.

Besides, all other methods behave very poorly. We may also say that the linearized implicit methods
seem (in each case, either coupled or uncoupled) to be less unstable than the Newton method, and
also that uncoupled methods seem to give better results than coupled ones. But the main conclusion is
certainly that all these methods need a considerable CPU time!

Before turning to our second numerical experiment, we should emphasize again two facts. On one
hand, the above results are very far from being optimal, because we used a very poor strategy for
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Figure 2: Mass fractions evolution for the 9-19 model.
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Figure 3: Mass fraction evolution for the 10-16 model.



adjusting the local time step; much better results will indeed be obtained in our third experiment
below. On the other hand, it is worth to keep in mind that our sole criterion for diminishing the time
step in this experiment was the crash of the code. We could have decided to decrease At whenever one
of the mass fraction(s) was becoming negative (this actually happened during the calculation, but very
slightly (~ 107 in absolute value for the greater ones); the code crashed when more negative values
were appearing). We will see in the next experiments that forcing the mass fractions to remain non
negative would have led to quite different results.

3.4 Second numerical experiment

We now investigate more closely the size of the time step with which each of the methods can adequately
operate. In our second experiment, we are going to determine, for each method except LSODE and
DASSL (but adding the forward Euler explicit method), and for both 9-19 and 10-16 kinetic models,
the maximal time step required so as to ensure that all mass fractions stay in the interval [0, 1]. This
will be done for an initial pressure equal to the atmospheric pressure, and for an initial temperature
increasing from 1300 K to 2300 K with a step of 20 K.

We will consider two different initial compositions. First, we take the same initial composition as
in the above section, i.e. with zero mass fractions for species other than Hy, Oy and No. We will call
this initial condition “zero composition” and the maximal allowed time step will be denoted At;'}zo.
Secondly, we leaded the same calculation by initiating the mass fractions with the values calculated by
LSODE at the time ¢t = 10757, where 7 is the ignition delay at the considered temperature; this initial
condition will be called “non-zero composition”, and the corresponding maximal time step is denoted
At;‘;>0. Let us make precise that we call here “ignition delay” the time where the temperature profile
changes its curvature (i.e. the inflexion point), starting from the zero-composition mixture; this is a
characteristic time for the combustion of this mixture at a given temperature (see Figure 4).

-2 T T T T T

Ignition Delay (9-19 Model) —
-25 Ignition Delay (10-16 Model) ---- T

Decimal Log. of Ignition Delay ()
N
T
1

1400 1600 1800 2000 2200
Initial Temperature (K)

Figure 4: Ignition delay as a function of the initial temperature.

The results are presented on Figures 5 to 10.

These results show for instance that using the “non-zero” initial mass fractions does not necessarily
increase the maximal usable time step, as we could expect: we sometimes have At;"}zo > At;'}>0 (and
even Atf_, > At;'}>0 for the UN method).

But the most interesting result is that the initial time step At;'}zo actually vanishes to zero (with
machine accuracy) at some intial temperatures for some of the implicit methods(CL, UL and CN, for
both chemistry models). In other words, for this (not so particular !) initial condition, these methods
can never lead to non-negative mass fractions for this hydrogen-air combustion process. Moreover, the
improvement brought by using the “non-zero composition” is absolutely not sufficient in several cases,
since At;'}>0 is highly oscillating with the temperature; this is true for the CL and CN methods on the
10-16 model. For most methods, the 9-19 mechanism gives worse results than the 10-16 model for the
“zero composition”, but the advantage from using the “non-zero” initial mass fractions seems bigger.
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Figure 5: Maximal time steps for the first-order explicit method.
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Another paradoxical result lies in the fact that the first-order explicit and explicit RK2 methods have
the larger allowed time step !! In fact, this is not too surprising since our choice of the time step only
demands that mass fractions stay between 0 and 1, but does not necessarily give physically reasonable
results (see our third experiment below).

Also, we need to add that, if instead of imposing non-negative mass fractions, we were requiring mass
fractions “not too far” from the interval [0, 1] (and above all that the code does not crash, as in our first
experiment), the linearized implicit methods would appear to allow larger time steps than the explicit
or Newton methods. In all cases, we must admit that the Newton methods again behave surprinsingly
poorly.

3.5 Third numerical experiment

For our last experiment, we again consider the test-case of Section 3.2. But we will use a more elaborate
stategy for choosing the variable time step, while imposing the mass fractions to stay between 0 and 1.
We carried out these calculations only for the 9-19 model (which seems harder than the 10-16 one, at
least at the beginning of the computation, from the previous section).

Our (empirical) time step strategy goes as follows: starting with a given value of At we constantly
check whether the mass fractions remain in the admissible interval. In case of failure, we multiply At by
a coeflicient & < 1. But we may also increase the time step using some fixed integers N; and coefficients
Gi > 1, as follows: if the computation remains successful during N; iterations, we then multiply At
by Fi. Also, after M > max N; successful iterations, we multiply At at each time step by a coefficient
v > 1.

For the first-order explicit and second-order explicit RK2 methods, the initial values of At, the values
of Ni, a, By, M and ~ are given in the Table below, together with the total number of iterations and
the CPU time in seconds on an IBM RS-6000 560 computer (we always took 32 = f5 = §4).

Methods | Initial At | o | N3 51 Ns | N3 Ny 67 M v —1 Iter. CPU
EXPL 1.2107° 1 0.9 ] 15 | 1.002 | 100 | 500 | 1000 | 1.005 | 2000 | 5.10=® | 790 000 260

RK2 141077 0.9 15 | 1.02 | 100 | 500 | 1000 | 1.05 | 2000 0.01 835 000 1093
UN 1.010~" [ 0.9 | 15 | 1.002 | 100 | 500 | 1000 | 1.005 | 2000 | 5.10~> | 2079 000 | 47323

In agreement with the previous section, the same experiment cannot directly be run with the UL,
CL and CN methods, since At;'}zo vanishes for these methods. Instead, we started with the “non-
zero composition”, i.e. with the mass fractions obtained by LSODE at a time of 7.852 10~ seconds,
corresponding to 107° times the ignition time of the reaction at T = 1615 K. The parameters and
results of the calculation are given below:

Methods | Initial At | o | N3 51 Ns | N3 Ny 67 M v —1 Iter. CPU
UL 1.010~" [ 0.9 | 15 | 1.002 | 100 | 500 | 1000 | 1.005 | 2000 | 5.10~> | 753 000 | 3543
CL 1.010~™ [ 0.9 | 15 | 1.002 | 100 | 500 | 1000 | 1.005 | 2000 | 5.10~> | 738 000 | 7422
CN 1.010~" [ 0.9 | 15 | 1.002 | 100 | 500 | 1000 | 1.005 | 2000 | 5.10~° | Failure

For the CN method, the calculation fails after 15500 iterations. The time step size required to
conserve non-negative mass fractions first lies between 5.1071% and 7.107° seconds, but then vanishes
after time t = 7.107% 5. It seems hard to choose the initial composition so that the mass fractions never
become negative.

The results of these calculations are shown on Figures 11 to 15. For each method, we show the
evolution of the time step, and those profiles (of temperature and mass fractions) where some particu-
larities can be remarked. Indeed, in most cases, the temperature and mass fractions profiles perfectly
agree with those of the first experiment, 1.e. are perfectly acceptable.

The first comment 1s that these results have been obtained with much shorter computational times
than in our first experiment, 1.e. we have used bigger time steps on the average, while preserving
the mass fractions positivity. The first-order explicit method performs surprisingly well; the linearized
implicit methods, which need a little help (with the “non-zero” initialisation) to start the calculation,
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Figure 11: Variable time step and HO» mass fraction for the first-order explicit method.

perform equally well in terms of time step size (and therefore wose in terms of CPU time). And again,
the Newton methods perform very badly.

However, the results present in general some oscillations for the mass fractions, in particular for the
rare species; therefore, requiring the mass fractions to remain non-negative does not insure accurate non
oscillatory results. In particular, the results of the RK2 method are fully unacceptable ! But a careful
examination also shows that the results of the UN method (which are the most oscillatory among all
other methods) are also false: we see indeed that the equilibrium temperature is reached much earlier
than in the first experiment (this wrong result is probably due to the oscillations which are produced
before the equilibrium on the mass fractions profiles).

It is also worth noticing a rather surprising fact: all methods see their variable time step decrease
during the calculation, and highly oscillate when they reach equilibrium. As a consequence, most of
the computational time is employed to go from equilibrium to the final time. with a time step which is
more than ten times smaller than the average time step used before equilibrium!

4 Numerical analysis of some simple models

The results of the numerical experiments presented above are surprising in several aspects, and require
some explanation. This is the objective of this section, where we analyze several simpler models (the
full hydrogen-air mechanism being out of reach for an analytical investigation).

Our numerical analyses will indeed explain several of the results observed above. In particular, we
will examine on several examples the stability limits of the coupled and uncoupled linearized implicit
methods; we will see why these methods behave much better for globally endothermic chemical mech-
anisms than for exothermic chemistries, and that, in the latter case, they may suffer from stability
restrictions which are even more severe than the stability limit of the first-order explicit method !!

In the analyses below, we will say that a numerical method is stable (for a given time step) if it
preserves the inequalities 0 < Y3 < 1 for all species (in such a case, lower and upper bounds for the
temperature follow from the energy conservation).

4.1 The simple reversible model
4.1.1 Describing the model

We begin by considering the simple reversible reaction:
A= B. (29)

For the sake of simplicity, we will assume here that both species A and B have constant and equal
specific heats at constant pressure: Cy,4 = Cyp = Cy; they also have the same molar weight W4 =
Wpg = W. Using the notations of Section 2.2, we will assume that @ = H} — HY = €% — €% > 0, which
means that the forward reaction A — B is exothermic. Lastly, let Y and Z denote the mass fractions

15



H-Mass Fraction Variable Time Step (s)

OH-Mass Fraction

H20-Mass Fraction

1e-08

1e-09

1e-10

le-11

le-12

le-13

0.005
0.0045
0.004
0.0035
0.003
0.0025
0.002
0.0015
0.001
0.0005

0.12

0.1

0.08

0.06

0.04

0.02

Figure 12: Variable time step, temperature and

0
0

2e-05

4e-05 6e-05 8e-05
Time(s)

0.0001

2e-05

4e-05 6e-05 8e-05

Time(s)

0.0001

2e-05

4e-05 6e-05
Time(s)

8e-05

0.0001

2e-05

4e-05 6e-05
Time(s)

8e-05

0.0001

HO2-Mass Fraction O-Mass Fraction Temperature (K)

H202-Mass Fraction

3000
2800
2600
2400
2200
2000
1800
1600
1400

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

0.004
0.0035
0.003
0.0025
0.002
0.0015
0.001

0.0005

1.2e-05

1e-05

8e-06

T T T T
B Temperature — |
L 1 1 1 1 1
0 2e-05 4e-05 6e-05 8e-05 0.0001
Time(s)
T T T T
1 1
0 2e-05 4e-05 6e-05 8e-05 0.0001
Time(s)
T T T T
1
0 2e-05 4e-05 6e-05 8e-05 0.0001
Time(s)
1 1 I
0 2e-05 4e-05 6e-05 8e-05 0.0001
Time(s)

16

mass fractions profiles for the RK2 method.



Variable Time Step (s)

H-Mass Fraction

Variable Time Step (s)

H-Mass Fraction

1e-07

1e-08

1e-09

1e-10

le-1l

le-12

1e-07

1e-08

1e-09

1e-10

le-1l

le-12

0.0001

Figure 13: Variable time step and mass fractions profiles for the UL method.

0.0001

0.0001

Figure 14: Variable time step and mass fractions profiles for the CL method.

1 1 1 1
0 2e-05 4e-05 6e-05 8e-05
Time(s)
T T T T
1 1 1
0 2e-05 4e-05 6e-05 8e-05
Time(s)
T T T T
TimeStep —
1 1 1 1
0 2e-05 4e-05 6e-05 8e-05
Time(s)
T T T T
1 1 1
0 2e-05 4e-05 6e-05 8e-05
Time(s)

0.0001

HO2-Mass Fraction

H202-Mass Fraction

HO2-Mass Fraction

H202-Mass Fraction

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

Y_HO2 —

2e-05

4e-05

6e-05

Time(s)

8e-05

0.0001

2e-05

4605

6e-05

Time(s)

8e-05

0.0001

Y_HO2 —

2e-05

4e-05

6e-05

Time(s)

8e-05

2e-05

4605

6e-05

8e-05

Time(s)

0.0001



Variable Time Step ()

H-Mass Fraction

HO2-Mass Fraction

1e-08

1e-09

1e-10

le-11
0

0.0016

0.0014

0.0012

0.001

0.0008

0.0006

0.0004

0.0002

Figure 15: Variable time step, temperature and mass fractions profiles for the UN method.
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of A and B respectively. System (8) now takes the form:

dY w W e
T = )+ k(1) LY () + 25T
C;—fIYﬁ(T)—Zfz(T) , Y

((T,Y, 2) = Y(Y + WC,T) + Z(e% + WC,T) = Constant |

with:

B B
f1(T) = Ay TP exp <_R_}) , foT) = ATP exp (—R—;) ; (31)
the fact that the two reaction rates f; and f5 involve the same exponent [, as well as the relation:
Ey=F1+ @, (32)
follow from the relations (13), (14) and (15).
We recall that €, and p are constant in system (30), and we set U = WQC' . Obviously, any solution
of this system satisfies the identities: ’
Y4+Z=1, T+UY = Constant 2 H° (33)

Since all numerical methods considered below also preserve these relations, we may simply rewrite the
system (30) as:

% = YA + (1= Y)fo(T)
(34)
T+UY =H.

This system is completed with initial conditions: ¥ = Y9 7 = T°.

Remark 4.1: Below, we will sometimes need to consider realistic values for the constants and variables
of the problem. These values are obtained form the the following estimates and relations: we have

Tmal‘
Y € [0,1], T € [Tmin, Tmaz], With Trge = HY, (Tmae — Tmin) = U; typically, we have . ~bto8

and ~ 4 to 10. Also, from Mayer’s relation, (y — )W, = R, where v is the specific heat ratio
% .
Cy

Now, the differential form of the temperature equation, consistent with (34), writes:

= 0y f(r) = U1 = V() (35)
In view of these relations, the region:
Ro = {(Y,T), Y Ai(T) = (1 = ¥) o(T) < 0} (36)

of the (Y, T) plane will be called the endothermic domain, whereas the region:
Ry ={V\T), YA(T) = (1 =Y) fo(T) > 0} (37)
will be called the exothermic domain. Both domains are separated by the equiltbrium curve, defined as:

_ fZ(T) dﬁf eq
Y = 7f1(T) AT YeUT) (38)
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(notice that Y*U(T) € (0,1) for any temperature T'). Using (31) and (32), it is easy to see that Y*4(T)
is a monotone increasing function of T'; furthermore, the asymptotic solution of system (34) as ¢ tends
to 400, which we denote as (Y°°,7°), is uniquely determined by the system:

Y =YeYT®), T4 UY>® =H° (39)
(see Figure 16).
T
Endothermic
Region e (T)
@

Region T+UY= HO

|
|
|
Exothermic II
|

Van Y

Figure 16: The equilibrium curve.

We are going to carry out the numerical analysis of system (34) with the assumption that the
activation energies are high enough. More precisely, we will assume that:

E
2 >9,
RTmax -

and also that:
f=0. (41)

4.1.2 Numerical analysis

We can now analyse how several of the numerical methods considered in Section 3 behave when applied
to the simple reversible model (29).
We begin with the following simple result for the UN and UL methods:

Proposition 4.2:
For the simple reversible reaction (29), the uncoupled Newton and uncoupled linearized methods are
unconditionnally stable. o

PROOF: Since system (34) is linear with respect to the mass fraction YV, the UN and UL methods
coincide in the present case. They take the form:

yrtl —yr n+1 n n+1 n
— = YTTAT (=YY B(T) )

Tn+1 + Uyn+1 — HO .
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Then, we get:
Yn-l—l _ At 2
N 1 n n ’
AT ((TT) + fo(1T7))

and we easily see that Y?*! lies between 0 and 1 as soon as Y does. o

The situation 1s more complex for the CL method. We will prove the following:

Proposition 4.3:

For the simple reversible reaction (29), the coupled linearized method is not unconditionnally stable.

However, if the assumptions (40) and (41) hold, then the coupled linearized method is unconditionally
stable in the endothermic domain R_. e

More precise statements will be made below about the actual stability restrictions in the cases where
unconditional stability does not hold, i.e. in some parts of the exothermic domain.
The proof of Proposition 4.3 consists of three Lemmas:

Lemma 4.4:

Let (Y™, T") be the discrete temperature and mass fraction computed with the coupled linearized
method.

There exists a Ct monotone increasing curve Y = Y*(T), with:

YUT) < YHT) < 1, (44)

such that 0 < Y"1 <1 for any At > 0 as soon as 0 <Y" < Y*(T"). o

PROOF: The CL scheme takes the form:
Yn+1 _yn
—7 = (YA + (A=Y (T
=Y (T =T + (L= Y (T )T = T™)) (45)
Tn+1 + Uyn+1 — HO ,

from which we get:

e R TR AU YT (12 Y ) "
o () 4 BT™) + U (<Y FI7) 4 (L= Y I7))

Assume now that Y € [0, 1]. If the term =Y f{(T™) + (1 — Y™)fA(T™) is non-negative, it is then
clear that 0 < Y?*! < 1 for any At > 0. This condition writes:

n fé(Tn) def * n
Y"< —m————— = YT . 47
Sqanrpan o
From the form (31) of f; and fa, we get:
FE; (T
ﬁ@?=<ﬁ+RT)f;), (48)

for i = 1,2. From (32), this shows that, for any 7"

Si(T) S SJi(T)
5(T) ~ f(T) 7

(49)
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whence Y*(T') > Y*4T) from (38) and (47). e

Now, the endothermic domain R_ is a subset of the region {(Y,7T), 0 <Y <Y™*(T)} from (44), as
shown on Figure 17.

T

Endothermic

/
Exothermic | T+Uuy=H°
Region :
v® Y

Figure 17: The equilibrium curve and the curve Y = Y*(T)).

Therefore, in order to show that the CL method is unconditionally stable in the endothermic region,
it remains to prove the following:

Lemma 4.5:

Let (Y™, T") be the discrete temperature and mass fraction computed with the coupled linearized
method.

Assume that the technical assumptions (40) and (41) hold, and that (Y™, T") € R_. Then, (Y"1 T+ €
R_. e

PROOF: Assume that (Y, 77) € R_. We rewrite (46) as:
yntl _ yn + : (—Y”fl(T”) + (1 — Y”)fz(Tn))

5+ AT 4 Fo(T7) 4 U (Y (T 4 (1= YD) (™)

The right-hand side of (50) is a bounded monotone increasing function of the time step, which we will
denote as Y"*t1(At). Therefore, for any At > 0, we have:

(50)

YAl < lim YA E oyt (51)
At /400

But, introducing the function g(Y") defined as:
gV)==YAH -UY)+(1-Y)f (H =UY) , (52)
it is easy to check that Y+ satisfies:
g(Y™) + %(Y")(Y”“ -Y")=0. (53)

Since g is non-negative and satisfies g(Y*°) = 0, the proof of Lemma 4.5 will be complete if we show
that g is convex in the endothermic region, i.e. for Y < Y°°; we will then have Y < Y7+ « Y,
whence (Y + Tn+1) € R_ for any At (see Figure 17).
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Let us therefore prove that g i1s convex in the endothermic region. For the sake of simplicity, we
denote TH(Y) = H® —UY. The first derivative of g is given by:

S() = —fi (T(Y)) = o (TH(Y)) = U [-Y (TP () + L=V (TP )] . (54)

In the endothermic region, we have ¥ < Y™ (TH(Y)) from (44) and the monotonicity of Y* (see Figure
17), which shows that the term between brackets in (54) is positive. Therefore, ¢/(Y) < 0 for ¥ < V*°.
A second differentiation yields, after some algebra:

g'(Y)= 2U (fi (THOQ ) + £ (TH(Y)))

U E
+<TH(Y)) [_Yfl (T (v)) (X% —X1— RTHl(y)) (55)
HL=NR ) (= - gy )|
with v, = 8+ — L fori= 1,2. Using (32), we can rewrite this as:

RTH(Y)

g"(Y)= 20 (F (T"(V)) + f5 (17 (V))) + <THU<Y>) (QXZ%TYEY))) (56)

. Q £y
thy= ——+2 14 =
with x =z V20~ U mrmen
In the endothermic domain, we know that —Y f; (TH(Y)) +(1=-Y)fs (TH(Y)) > 0. Therefore,
¢" (V) will be proved to be positive if we show that:
B
x>0 and Xg—Xz—RTTz(Y)ZU (57)
Regarding the second expression in (57) as a second-order polynomial in the variable x2, we can rewrite
these two conditions as:

2E1 + Q fo 1 [ B 1
—_— > 1 - = _— = [ — - .
srrA(yy = LT ad e =0 prmas 2 5 mrreyy T a (58)

After some simple algebra, using the assumption (41) on f, one easily checks that the last condition in
(58) is equivallent to: 2RTH(Y') < E,. Both conditions (58) are then fulfilled from (40), which ends the
proof. e

Remark 4.6: It is easy to see from the above proof that the same conclusions can be reached even
if 4 < 0, but with a stronger hypothesis than (40) on the activation energies. For instance, the above
results remain true if the conditions (40)-(41) are replaced by:

(59)

Ei+FE E
8> -3 and 2RI1;4: < min (g —2) . e

4 "3

Remark 4.7: In fact, the preceding proofs show that the CL method is unconditionally stable as soon
as the initial condition satisfies Y < Y*(7?). Indeed, if the initial data lies above the curve Y = Y*(7)
but in the exothermic domain, we know that 0 < Y"*! < 1 for any At > 0, and (50) shows that
Yn*tl < Y. This means that the sequence (Y") is decreasing for n small enough. Then, either this
sequence always decreases, which means that (Y",7") € Ry and Y < Y*(T™) for all n, and the
scheme is unconditionally stable from Lemma 4.4; or there exists ng such that (Y"°,7"°) € R_ and,
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for n > ng, the sequence (Y™) increases but (Y, 7™) remains in the endothermic domain from Lemma
4.5. In both cases, we have:

lim Y"=Y*, lim T" =T . e (60)
n /' +oo n /' +oo

To conclude our analysis, it remains to examine why the CL method is not unconditionally stable in
the whole exothermic domain. This is the object of the next Lemma:

Lemma 4.8:
The coupled linearized method is not always unconditionnally stable for the simple reversible reaction

(29). o

PROOF: In Lemma 4.4, we have written only a sufficient condition for the stability of the method.
Now, returning to (46) and assuming that 0 < Y™ < 1, it is easy to see that the property:

0<Y™ <1 VAL >0 (61)
is achieved if the following two necessary and sufficient conditions are satisfied:

LAT") + UV (=Y FU(T™) + (1= Y") [5(T7) 20,

(62)
AT+ UQA=Y") (=Y f{(T) + (1 =Y") f5(T7)) > 0.
Writing the first inequality as A1 (Y) = (f] + f5)Y? — £4Y — % < 0, we see that the discriminant of

4
Ay, A(A) = éz + %(ﬁ + f}), is always positive, and that A; has exactly one positive root. The first

condition in (62) may therefore be written under the form:
Y? < V(T . (63)

With realistic values for £y, @ and T (see Remark 4.1), A;(1) is positive, which means that 0 < Y1(T) <
1 and that (63) introduces an actual restriction.
The second inequality in (62) leads to:

fi

As(Y) = (FL+ F)Y? = Qfs+ )Y + 5+ 220 (64)

4
The discriminant of Ay is A(Ag) = f1% — %(ﬁ + f4). Again, with realistic values for E, @ and T,

this expression is positive. Examining the values of A2(0), A5(0), A2(1), AL(1), it is easy to see that Ay
has two roots inside the interval [0, 1], which means that the second condition in (62) is equivallent to
a condition of the form:

Y [Va(1T7), Vs(T7)] (65)
with 0 < Yo(T) < Y3(T') < 1.
The two conditions (63)-(65) show that the CL scheme is not unconditionally stable. o

We will not try to exploit any further the conditions (63)-(65), which are quite heavy to handle with.
Instead, we will now examine the simpler case of a non-reversible reaction.

4.2 The one-step reaction

For the sake of simplicity, let us now consider the simplest case of a single one-step reaction A — B.
Keeping the same notations as above, we will simply assume that As = 0 in (31). Our aim here is to
compare the stability restrictions for the linearized implicit schemes and the first-order explicit scheme.
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We easily have:
Yol =y (1 - Atf(T™)) (66)

for the explicit forward Euler scheme,

Yﬂ

yrtl = 67
1+ AtfL(TT) (67)
for the UL method, which is still unconditionally stable, and:
Yn
~ —UY™ (I
Yn+1 — 1 At (68)
A = UYL

for the CL scheme. Tt is then easy to see that the explicit method (66) is stable under the condition:

1

At < Atgxp= ——, 69
whereas the CL method is stable under the following condition (if ¥ > 0):
At<Atep= —b (70)
=TT Uy Ty
Then, the ratio of these two limiting values of the time step is:
Atep Fi(T™) AL 1 1
AtEXP UY”f{ (Tn) Tmax - Tmin yn El
A+ o

we have used Remark 4.1 and (48). Tt is then clear that this ratio can be substantially smaller than
1: the stability restriction of the coupled linearized implicit method is then strictly more severe than the
stability limit of the explicit Fuler forward scheme !/

4.3 Global hydrogen-oxygen reactions

We will now analyse further the UL method, which we found to be unconditionnally stable for the simple
reversible model (29), for two global formulations of the hydrogen-oxygen combustion. In fact, we will
consider the two following reversible models:

2Hy + Oy = 2H50 s (72)
and: )

H2+502$H20 , (73)
and we will show that, surprisingly, the application of the uncoupled linearized method to (72) and (73)
leads to very different stability limits.

4.3.1 The model with integer stoechiometric coefficients

Let us begin with the first model (72).
Calling X, ¥ and Z the mass fractions of H3, Oy and H30 respectively, and f1(T) and fo(7") the
forward and reverse reaction rates, we are led to the system:

X = —2WH2 <X2Yf1 - Z2f2) )
Y = —Wo, (XY f1 = Z2%f2) (74)
Z =2Wp,o (X?Y fi — Z%f5) .
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We then have the following result:

Proposition 4.9:

For the global reversible reaction (72), the uncoupled linearized method is unconditionnally stable: if
X, Y", Z7>0and X"+ Y™+ 27 =1, then X", Yo+l Zn4l > 0 gpd X7+ 4yt 4 774+l =
for any At. e

PROOF: Writing 6F = F*t! — F* for F = X, Y or Z, we may write the UL method for the mass
fraction X as:

56X
A= —2Wh, [(X?Y i = 27 f2) + 2XY f16X + X?f16Y — 22 f267] . (75)

We have omitted the superscripts n for X, Y™ and Z” in the right-hand side of this relation. Moreover,

we have §Y = Wo, 60X and 67 = — @6)( from (74). After a straightforward calculation, we obtain:
Ho Hs
X 3 2 2
o ot (Wo, X2 4+ 2Wi, X?Y) fi + (4Wi,0 X Z + 2Wg, Z%) fo
X+ =
1 )
~t (AWg, XY + Wo,X?) fi + AWn0Z f>
Y 2 2
— + AW, XY fi + (AWh0Y Z + Wo,2%) fo
yntl _ Al (76)
1 )
~t (AW, XY + Wo,X?) fi + 4Wn,0Z f-
A
o g @WoXPY £ Wo, X2Z +AWg, XY Z) i + (Wi 02%) [
Zﬂ — .
I
— + (AW, XY + Wo, X?) fi + 4Wi,02 fo

At

Now, assume that X7, YY" Z" > 0 and that X” + YY" 4+ Z% = 1. It is then obvious that X7+!
yntl Zntl > 0 for any At > 0. Moreover, using the relation 2Wg, + Wo, = 2Wg, 0, it is easy to
check that X?t1 + Y7+l 4 77+1 = 1 which completes the proof. e

4.3.2 The model with non-integer stoechiometric coefficients

Considering now the second model (73) and using the same notations, we obtain the system:

X = —Wh, (X\/?ﬁ —Zfz) )

Y:—%(X\/?fl—Zfz) , (77)

7 =Wu,o (X\/?fl - Zfz) .

We then have the following result, which says that the UL method is not unconditionnally stable for
this model:

Proposition 4.10:
For the global reversible reaction (73), the uncoupled linearized method is not unconditionally stable.
The stability condition writes:

1 [/]/O X Ie) A
s (Tt - (B0 gy
2 ( Noa H. )fl ( 5y + HQO) fa, (78)
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forY >0. e

PROOF: After some algebra, we find that the application of the UL method to (77) leads to:

X X2Wo,
Xn+1 — At 4\/}7

1 Wo, X
R \/Y 2
At+<WH2 + 4\/}7)f1+WH20f2

L+ (X W0+ ZWi,) fo

bl

Y Wo, XY ZWo,
~ (WHQY\/_— Of) fi+ (WHQOY + TO) J2

~ T (WHQ\/?-F 4(\)/2? ) fi+Wa,ofe
A Wo, X7
ot (Zﬁwfh + 227 + XJ?WHQO) f1
Zn+1 —

1 Wo, X
R \/Y 2
At+<WH2 + 4\/}7)f1+WH20f2

The arguments are then the same as in the preceding proof: assuming that X™, Y? Z” > 0 and
that X” +Y" 4+ Z" = 1, it is obvious that, for any At > 0, we have X7t > 0, Z?*t! > 0 and
Xt pyntl g zntl — 1. Also, it is clear that Y™+ > 0 if and only if (78) holds, which completes the
proof. e

Remark 4.11: Let us comment about the stability condition (78). Tt is clear that, if X is small enough,
i.e. for sufficiently lean mixtures, the UL scheme is unconditionnally stable (the right-hand side of (78)
is then negative). On the other hand, for rich mixtures, i.e for ¥ small enough, there is an actual
limitation on At, which takes the form (at the leading order):

WY

At <Aty = ——— .
< Alyg XWo.

(80)

On the other hand, it is readily seen in this case that the stability limit of the explicit forward Euler

scheme reads:
VY
VY . (81)
XWo, f1

Thus, for very rich mixtures, the uncoupled linearized method may operate with time steps which are
only twice greater than the time step allowed for the explicit method. e

At < Atgxp =

4.4 A remark about the fractional-step approach

The previous sections show on the basis of the analysis of several tractable models that the linearized
implicit methods suffer from very severe stability restrictions for the integration of the chemical model
(8). Omne may then wonder whether this result is not due, at least partly, to our fractional-step ap-
proach. In other words, may the linearized implicit schemes operate with larger time steps if, instead
of considering the sole chemical source terms, we simultaneously integrate the convective (and possibly
the diffusive) terms together with the chemical terms 7

The answer to this question is negative: the stability limit of the linearized implicit methods for
the coupled convective-reactive system is not any greater than the stability limit of these schemes for
the purely chemical system (8). This fact is illustrated by the following example, where we consider
the most simple convective-reactive system for a one-step reaction A — B, with constant velocity and
constant energy:

Yy +ugYy = =Y fL(H = UY) . (82)
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Assuming for the sake of clarity that ug > 0 and setting again TH#(Y) = HY — UY, we have (compare
with (70)):

Lemma 4.12:
For the solution of (82), the upwind linearized implicit scheme:

ynrtt _yn yrtt oyt
- n+1 H n n H n n+1 n
N G I v (e ) 0P (0O (7T ) (89)
1s stable under the condition: )
At < — — . ® (84)
max UV (TH(V]"))
PROOF: The scheme (83) can be written in matrix form as AY"+1 = BY" with:
Ay = (HY = UY?) —UYPFL(H —UY?) + 2 Ay g = — 85
],]_E—i_fl =UY}") =UY"fi -V R ML T TR, (85)
1 n n
Bjj =~ VYA (H = UY}) (86)

all other terms being zero. Clearly, if (84) holds, then B> 0, and A is an M-matrix (A; ; > 0 for all j,
Ajr <0 for j #k and ZAM > 0 for all j; see [11]). As a consequence, A~1 > 0, whence Y"+1 >0
k

as soon as Y" > 0.

If (84) holds, we may also set C = B~1.A and write the scheme (83) as CY"*! = Y. Then, C is an
M-matrix and, denoting 1 the vector whose components are all equal to unity, we easily see that C1 > 1.
Thus, C~! > 0 and we have C7'1 < 1. Assuming that Y” < 1, we see that Y?*! = ¢~'Y” < 1, which
ends the proof: the inequalities 0 < an‘l'1 < 1 hold for all 5. e

5 Conclusions

We have investigated in this paper the use of the nonlinear implicit and linearized implicit methods for
the time integration of exothermic complex chemistry models.

We have enlightened the inefficiency of these methods through three numerical experiments, which
showed (i) that a straightforward use of these methods leads to prohibitive computation times for
the simulation of hydrogen combustion, (77} that, for some initial conditions, several of these methods
are unable to preserve the mass fractions positivity, even with extremely small time steps, and, more
importantly and more surprisingly, (7i) that monitoring the time step for these calculations by only
requiring the preservation of the mass fractions positivity may lead to physically unacceptable results.

We explained these observations by analysing the behaviour of the linearized implicit methods for
several (not too complex) tractable chemical mechanisms. These analyses show that the stability limit of
the linearized implicit methods strongly depend on the detailed form of the chemical model. Also, they
explain in a convincing way that the linearized implicit methods are not suitable for the time integration
of exothermic chemical mechanisms, whereas they are known to be adequate for endothermic chemistries

(see [2, 3, 8]).

Remark 5.1: The nonlinear implicit methods deserve some further comments. Following the arguments
used in [4], it can indeed be shown that, for any time step At, as soon as the nonlinear discrete system
to be solved in these methods has a solution (Y} )"*!, Tm+1 then this solution satisfies the maximum
principle: 0 < Yk”‘l'1 < 1 (and this remains true if convective and diffusive terms are added; see [4]).
Therefore, the instabilities observed for these methods in our experiments should be interpreted as the
divergence of the Newton iterations for the solution of the nonlinear discrete problem, not as an intrinsic
instability of the nonlinear formulation itself. It might in fact be the case that this situation can be
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improved by using another iterative technique instead of Newton method (such as damped Newton,
GMRES, ...), or by coupling the convective or diffusive terms with the chemical source terms within the
iterations (see e.g. [10]). @
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APPENDIX A

We give here the expression of the Jacobian matrix of the chemical terms
ac

Using the notations of Section 3.1, we wish to evaluate G = —. We first obtain

861 ZYkak ’ g&cfl 7Y () = (1) -
For k > 0, we have: I
8?@;1 v = —W; At ;yki%mm ;
with:
%| . =Bi AszNVM (T REZ;2)

bl

Bi + AVZ
( T R T2 Zvlm Gr(T )

K V”
—Kpi [T V0

k=1
Y
Nk- p—k ) B —ZakZNk‘ )

A a1k [¢3:73 asg A4k 2 ask 3
Ty = ok L Gk | @2k @Bk | Gk o | 95k g
Gk()T2+T‘|‘2+3+4 + ;
R asg 4 asg
hT:—( T4 Ll Bhps | Gk T5)
w(T) W agr + a1pd + 9 + 3 —1-4 + 5 ,
d R 2 3 4
Cor(T) = ﬁhk(T) =W (arp + aogT + aspT? + aarT° + a5y T )
d R
Cop(T) = —€x(T) = Cpop (T) — — .
(1) = (1) = Cpr(T) "
Lastly, we have (63m denoting the Kronecker delta)
6Ck+1 6RZ
Y, IT.¥, (gmy = Okm — AL Wy kaiﬂh,m m)
i=1
with :
1 // 1
6R pOZmsz + B [\fz H NV”pVII//mZN mi—l [(ryi H lehpvl;/ml N:@m’_l
I#£m m

oY, 7% ey = W, Bi
l#m

In the case of chemical reactions not including a colliding third body, the above expressions are still

valid with B; = 1 and removing the terms involving «,,; in the last relation
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APPENDIX B

We now write down the two hydrogen-air combustion models, in CHEMKIN format (i.e. with C.G.S.
units, activation energies F; in cal.mol™1).
The model with 9 species and 19 reactions writes:

Ay Bi B
1 Ho+ Oy = 20H 1.70E13 0. 47780.
2 Ho+OH = HO+ H 1.17E09 1.3 3626.
3 H+0- = OH+O 5.13E16 —0.816 16507.
4 O+ H, = OH+H 1.80E£10 1. 8826.
5} H+0,+M = HO,+M 2.10E'18 —1. 0.
6 H+0,+0y = HOs+0+ 6.70E19 —1.42 0.
7 H+0Os+Ny, = HOs+ No 6.70E19 —1.42 0.
8 OH+HO, = H->0+ 0> 5.00E13 0. 1000.
9 H+ HO, = 20H 2.50F14 0. 1900.
10 O+ HO» = 0+ 0H 4.80E13 0. 1000.
11 20H = 0+ H50 6.00E£08 1.3 0.
12 Hs+ M = 2H+ M 2.23E12 0.5 92600.
13 O+ M = 204+ M 1.85F11 0.5 95560.
14 H+OH+M = HO+M 7.50E23 —2.6 0.
15 H+ HO+ = Hy+4+ 0y 2.50E13 0. 700.
16 2HO, = H-y09+ 0y 2.00E12 0. 0.
17 H0,+ M = 20H+ M 1.30E17 0. 45500.
18 H-O0,+ H = HO5+ Ho 1.60E12 0. 3800.
19 H>0,+OH = HO+ HO, 1.00E13 0. 1800.

For reactions 5, 12 and 14, the third-body-efficiency coefficients of ay;’s are given by:
OZHQO,S = 21 ; OzH275 = 33 ;

ap,012=0, agi2=2, ag,12=3,

OzH20714 = 20 .
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The model with 10 species and 16 reactions is the following:

Ay Bi B
1 Ho+ Oy = 20H 1.70E13 0. 47780.
2 Ho+OH = HO+ H 5.20E13 0.0 6500.
3 H+0, = OH+O 1.22E17 —0.907 16620.
4 O+ H, = OH+H 1.80E£10 1. 8826.
5 H+O0,+M = HOs+M 2.00E15 0. —870.
6 OH + HO> = H->0+ 0> 1.20E13 0. 0.
7 H+ HO> = 20H 6.00E13 0. 0.
8 O+ HO, = 0+ 0H 1.00E13 0. 0.
9 20H = 0+ H50 1.70E06 2.03 —1190.
10 Hs+ M = 2H+ M 2.23E12 0.5 92600.
11 O+ M = 204+ M 1.85F11 0.5 95560.
12 H4+OH+M = HO+M 7.50E23 —2.6 0.
13 H+ HO = Hy+4+ 0y 1.30E13 0. 0.
14 O+ N5 = NO+N 1.40E14 0. 75800.
15 N+ 02 = NO+O 6.40E09 1. 6280.
16 OH+ N = NO+H 4.00E13 0 0.

For reactions 5, 10 and 12, the third-body-efficiency coefficients of ay;’s are given by:

ag,05 =20, ag,010=5, am,0,12=20.
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APPENDIX C

Lastly, we give here the FORTRAN Routine for Gill’s Runge-Kutta 2 method, taken from [12].
SUBROUTINE GILLS(N,C,F,X,H,M,K)

THIS ROUTINE PERFORMS RK CALCULATION BY GILLS METHOD

INPUT
N = NUMBER OF VARIABLES
C = ARRAY OF N DEPENDENT VARIABLES
F = ARRAY OF N DERIVATIVES OF C W.R.T. X
X = INDEPENDENT VARIABLE
H = INCREMENT OF X
M = INDEX USED IN THE ROUTINE (INITIALIZED TO ZERO
BEFORE THE FIRST CALL)
OUTPUT
X,C
K = TEST INTEGER
= 1 CONTINUE
= 2 RETURN

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION C(10),F(10),Q(10)
ONESIX = 1.D0/6.DO

ONETHI = 1.D0/3.DO

M= M +1

GOTO(1,4,5,3,7),M

DO2I=1,N

Q(I)= 0.DO

A=0.5D0

GOTO 9

A = 1.7071067811865475244D0
X=X+ 0.5D0 * H

DO 6 I=1,N

C(I) = C(I) + A x ( F(I)*H - Q(I) )
Q(I) = 2.D0 * 4 * H * F(I) + (1.DO — 3.DO*A)*Q(I)
A = 0.2928932188134524756D0

GOTO 9

DO 8 I=1,N

C(I) = C(I) + H*F(I)*ONESIX - Q(I) * ONETHI
M=0

K=2

GOTO 10

K=1

RETURN

END
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