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1 INTRODUCTIONThe structure of a steady detonation wave, which consists of a shock wave travelling at supersonicvelocity followed by a reaction zone [11, 32, 36], is easily described analytically. Through theforward inert shock wave, the mixture is compressed and heated to the so-called Neumann state,and chemical reaction then begins in the heated gas; as the reaction proceeds, heat is released,pressure and density decrease, and this process goes on until the combustion is complete. Thesesteady ZND (Zeldovich-Neumann-D�oring) detonations waves are very di�erent from reaction-di�usion 
ames, in particular because the chemical reaction rates and above all the moleculartransports e�ects have little in
uence on the speed of the propagating wave.However, the behaviour of the time-dependent detonations, such as their instabilities andtheir initiation, are di�cult to describe analytically: they strongly depend on the interactionbetween the chemical reactions and gas dynamics. A full understanding of these time-dependentphenomena requires reliable and highly accurate numerical simulations of this coupled pheno-mena.The main di�culties of the numerical simulations of time-dependent detonations are relatedto the spatial sti�ness due to disparate length scales and to the inaccurate representation ofthe Neumann spike due to the inherent arti�cial di�usion of the numerical method. In contrastwith nonreactive compressible 
ows, reactive 
ows involving detonations have an intrinsic lengthscale, the so-called chemical reaction length which is approximately given as the product of thecharacteristic chemical reaction time multiplied by the characteristic 
ow velocity. This reactionlength typically ranges between 10�5 m and 10�2 m, which may be 105 times smaller thanthe characteristic length of the practical problem. In order to accurately treat the interactionbetween the chemical reactions and the gas dynamics, the numerical resolution scale (i.e., themesh size) must be smaller than the chemical reaction length scale. Using di�erent methods,Colella et al. [8], Ben-Artzi [2], LeVeque and Yee [25] have reported that non physical results canbe obtained for steady detonation propagations when the mesh size is larger than the reactionlength. This type of spatial sti�ness problem may be easily resolved for some problems, suchas the galloping detonations instabilities, because a computational domain of the order of tenreaction lengths moving with the front is su�cient to represent this phenomenon, and a uniformspatial discretization may be used adequately. The situation is completely di�erent for theinitiation of detonations: the length scale of the development of detonations is in general of theorder of magnitude of 104 reaction lengths, so that an adaptive mesh strategy must be used.Many e�cient shock capturing numerical methods have recently been developed for com-puting non reactive compressible 
ows. The methods currently in use are the Total-Variation-Diminishing (TVD) method [10, 15, 33, 34], the Essentially-Non-Oscillatory (ENO) method [16],the Flux-Corrected-Transport (FCT) method [3, 27], the Piecewise-Parabolic method (PPM)[9], the MUSCL method [31] and the Random-Choice method (RCM) [7]. These methods canbe made second-order accurate or even higher-order accurate in space and oscillation-free acrossdiscontinuities. However all these methods except RCM capture the shock wave over three orfour mesh points. When these methods are extended directly to reactive 
ows containing det-onations, the captured Neumann spike is then smeared; as a consequence, since the chemicalinduction time strongly depends on the temperature, the inaccurate representation of the Neu-mann state introduces important numerical errors. In particular, when a detailed chemistry isconsidered, inaccurate representation of the Neumann state may shorten very much the chem-44



ical induction time due to the presence of radicals in the mixture at the Neumann state. Thenumerical solution may of course be improved at the Neumann spike by increasing the spatialresolution, but this makes the algorithm ine�cient.It is therefore crucial to reduce the numerical viscosity at the leading shock of a detonationwave. In [4, 5], this goal was achieved by using a numerical method combining the PPMmethod, the shock-tracking method of Chern and Collela [6] and a grid re�nement strategy. In[18], the �rst author used a TVD upwind method combined with a conservative variant of theshock tracking method of Mao [26]; this method has been used for the simulation of gallopingdetonation instabilities, and of detonation initiations [19]. Notice that these two series of works[4, 5] and [18, 19] use a �xed computational grid.In this paper, we propose a simpler numerical method for the high resolution of time-dependent detonation problems. This goal is achieved by incorporating moving grid methods toan upwind TVD approximation; no shock tracking algorithm is employed. The advantage of ourmethod is its simplicity and its accuracy. The numerical results presented below show indeedthat the developed algorithms very accurately simulate time-dependent detonations. In partic-ular, we will simulate the galloping detonation instabilities with a realistic chemical mechanismfor hydrogen combustion; to the best of our knowledge, this numerical experiment is the very�rst simulation of detonations involving complex chemistry.The outline of the paper is as follows: the governing equations are described in Section 2,whereas we describe the numerical methods in Section 3 and discuss the numerical results inSection 4.2 GOVERNING EQUATIONSFor the sake of simplicity, we present here the governing equations in the case of a single one-stepreaction A �! B, with constant speci�c heats. Neglecting the molecular transport e�ects, theconservation equations for mass, momentum and energy in planar geometry are written as:@W@t + @F (W )@x = 
(W ) ; (1)with: W = (�Y1; �Y2; �u; E)T ;F (W ) = ��uY1; �uY2; �u2 + p; u(E + p)�T ;
(W ) = (�!; !; 0; 0)T : (2)The ideal gas law is written as: p = �T ; (3)and the total energy E is given by:E = �� T
 � 1 +QY1 + 12u2� : (4)The consumption mass rate of the reactant A is modelled using the law of mass action and theArrhenius law: ! = B�Y1 exp���T � : (5)45



In these relations, �, p, T , Y1 and Y2 respectively denote the normalised density, pressure,temperature, total energy of the mixture and the reactant and product mass fractions. Thenormalisation involves a reference state, which will be speci�ed in the numerical examples below.In particular, the velocity u is normalised using the sound speed c at the reference state dividedby the square root of the speci�c heats ratio 
. The reference time t1=2 is the time needed fora 
uid particle to travel from the leading shock to a position where Y1 = 0:5. The referencelength scale is thus L1=2 = t1=2cp
 , which is typically of the same order as the thickness of thedetonation front.The other dimensionless parameters appearing in (4)-(5) are the speci�c heats ratio 
, thechemical heat release Q and the normalised activation energy �. Let us recall that the propaga-tion speed DCJ and the structure of a steady CJ detonation are fully determined by these threedimensionless parameters, and that the degree of overdrive of a strong detonation travelling withspeed D is measured by the parameter f = � DDCJ �2 > 1 [13].3 NUMERICAL METHODSLet us now describe the numerical methods. Following [5, 8], we use a time splitting method totreat separately the chemical reaction process and the hydrodynamical process. The ordinarydi�erential equations describing the chemical reaction are integrated implicitly. The emphasisis put in the description below on the resolution of the generalised Euler equations.3.1 Time splitting schemeSince the chemical reaction rate depends strongly on temperature, it is in general needed toresolve the chemical reaction term implicitly. In order to avoid costly matrix operations and touse the best (i.e., the least dissipative) method for the hyperbolic equations, we employ a timesplitting scheme, in which the chemical reaction process and hydrodynamical process are solvedindependently. We write: Wn+1 = L�t=2c L�tf L�t=2c Wn ; (6)where the operator L�t=2c represents the numerical solution of the purely chemical reactionsprocess @W@t = 
(W ) (7)over a half time step, and the operator L�tf represents the numerical solution for the hyperbolicequations @W@t + @F (W )@x = 0 (8)for the 
uid motion over a complete time step �t.Physically, the chemical process is a purely local constant-density evolution during whichtemperature and pressure are both increased; whereas the 
uid part (8) of the equations involvethe interaction between neighbouring cells. We now present the moving grid method used tosolve the latter. 46



3.2 Roe's method on a moving gridThe generalised Euler equations (8) for a two-component mixture are known to be hyperbolic(see e.g. [22]), which allows us to use one of the available Godunov-type methods for the solutionsof this system. Among these methods, we choose here Roe's method because of its ability toperfectly resolve shocks, as we will see later. Actually, we will use Roe's method operating ona moving grid, as was done by Harten and Hyman [17] for single-component shock-tubes. Theextension to second-order accuracy will be done using the upwind TVD formulation developedby Harten and Yee (see e.g. [15, 35]).3.2.1 The moving grid formulationLet us consider a set of moving mesh points hXn1 ; Xn2 ; � � � ; Xnj ; � � � ; XnJ i, separated by movingcell interfaces h�n3=2; � � � ; �nj+1=2; � � � ; �nJ�1=2i, as shown on Figure 1; the superscript n denotes thenth time level. Initially, we take the midpoint of the Xj 's as the interfaces: �0j+1=2 = X0j +X0j+12 .An explicit conservative scheme for the 
uid system (8) on this variable mesh takes the form(see e.g. [17]):��n+1j+1=2 � �n+1j�1=2�Wn+1j � ��nj+1=2 � �nj�1=2�Wnj +�tn �Fnj+1=2 �Fnj�1=2� = 0 : (9)As usual, the Roe 
uxes Fnj+1=2 are based on a linearisation of the 
ux function F (W ). Theycan be obtained by writing a Godunov-type formulation on the trapezoidal space-time cells ofFigure 1, or equivallently by writing the usual (�xed-grid) 
uxes for the following linearizedsystem written in grid-attached coordinates:@W@t + � ~Anj+1=2 � _�nj+1=2� @W@x = 0 ; (10)here, ~Anj+1=2 = ~A �Wnj ;Wnj+1� is the multi-component Roe matrix of the states Wnj and Wnj+1,which satis�es the Roe relation:~A �Wnj ;Wnj+1��Wnj+1 �Wnj � = F �Wnj+1�� F �Wnj � ; (11)and _�nj+1=2 = �n+1j+1=2 � �nj+1=2�tn is the speed of the moving interface. The matrix ~A has foureigenvalues: �1 = ~u� ~c ; �2 = �3 = ~u ; �4 = ~u+ ~c ; (12)where ~c is the frozen sound velocity, and a complete set of real right eigenvectors; we denote~R the matrix whose collumns are these right eigenvectors of ~A. With these notations, the 
uxFnj+1=2 writes:Fnj+1=2 = 12 h�F (Wnj )� _�nj+1=2Wnj �+ �F (Wnj+1)� _�nj+1=2Wnj+1�+ ~Rnj+1=2�nj+1=2i ; (13)47



with: �nj+1=2 = 4Xk=1 	 ��k � _�nj+1=2���nj+1=2�k ; (14)	(z) = 8>><>>: jzj if jzj � � ;z2 + �22� if jzj � � ; (15)�nj+1=2 = � ~Rnj+1=2��1 �Wnj+1 �Wnj � : (16)In (15), we have used Harten's correction [14] in order to avoid entropy-violating shocks.The moving-grid second-order accurate upwind TVD extension of this scheme consists inmodifying the vector �nj+1=2 as follows in the above expressions:�nj+1=2 = 4Xk=1 �nj+1=2 ��k � _�nj+1=2��(Gj)k + (Gj+1)k2 ��	 ��k � _�nj+1=2 + (
j+1=2)k���nj+1=2�k ;(17)with: �nj+1=2(z) = 	(z)� 2�tn�nj+3=2 � �nj�1=2z2 ; (18)(
j+1=2)k = �nj+1=2 ��k � _�nj+1=2��8><>: (Gj+1)k � (Gj)k(�nj+1=2)k if (�nj+1=2)k 6= 0 ;0 if (�nj+1=2)k = 0 ; (19)(Gj)k = S max h0; min �2j(�nj+1=2)kj; S(�nj�1=2)k� ; min �j(�nj+1=2)kj; 2S(�nj�1=2)k�i : (20)In the relation (20) which involves Roe's superbee limiter [29], we used the notation S =sign �(�nj+1=2)k�.3.2.2 Moving grid strategiesIt remains to de�ne how to move the grid points. We will consider two simple moving gridstrategies. For the sake of simplicity, we now describe these two strategies for the particularcase of a solution to system (8) which involves only one shock wave propagating with speed s;this description will be adequate since our aim is to simulate planar detonation waves, whichcontain only one leading shock wave. Let us then temporarily assume that our initial datasimply is: W 0j = ( WL if j � j0 ;WR if j > j0 ; (21)for some integer j0, the two states WL and WR satisfying:F (WR)� F (WL) = s(WR �WL) : (22)A �rst simple method, which we will simply call the moving grid (MG) method, consistsin moving a �xed number of grid points around the shock with the shock speed. If the shock48



is located at the interface �nk+1=2 at the nth time level, then the shock speed snk+1=2 is deter-mined by the Roe method (for instance, it is easy to see from (11), (21), (22) that s0j0+1=2 = sis an eigenvalue of the Roe matrix ~A0j0+1=2). Thus, we make (Nl + Nr + 1) mesh points[Xk�Nl ; Xk�Nl+1; � � � ; Xk; � � � ; Xk+Nr ] and (Nl + Nr + 2) cell interfaces move with the shock(see Figure 2 for Nl = Nr = 1):( Xn+1j = Xnj + snk+1=2�tn for k �Nl � j � k +Nr ;�n+1j+1=2 = �nj+1=2 + snk+1=2�tn for k �Nl � 1 � j � k +Nr : (23)In order to avoid the collision of mesh points, or to avoid the formation of very small cells,we examine at each time level the smallest mesh size. Assuming that snk+1=2 > 0 for the sake ofclarity, we eliminate the mesh point Xk+Nr+1 and add a new mesh point between Xk�Nl�1 andXk�Nl if Xk+Nr�1 �Xk+Nr < �x2 (�x is the initial mesh spacing). In this way, if Nl and Nrare large enough, the pertubations due to projection and interpolation occur far away from theshock wave; we use a conservative interpolation [21].Our second moving mesh strategy is very close to the self-adjusting grid (SAG) methodproposed by Harten and Hyman [17]. In this method, the mesh points Xj are kept �xed, andthe speed of the moving cell interfaces is chosen so that the location of the shock coincides withone of the interfaces. Still assuming for the sake of clarity that the shock is located at theinterface �nk+1=2 at the nth time level and moves with the speed snk+1=2 � 0, we call �n+1shock =�nk+1=2 + snk+1=2�tn the new shock position; the motion of the interfaces is then determined asfollows: (a) If the new shock location stays in the kth interval, i.e. if Xk < �n+1shock < Xk+1, then:�n+1k+1=2 = �n+1shock ; �n+1j+1=2 = �nj+1=2 for j 6= k : (24)(b) If the shock is located in the next interval at time tn+1, i.e. ifXk+1 � �n+1shock < Xk+2,then:�n+1k+1=2 = Xk +Xk+12 ; �n+1k+3=2 = �n+1shock ; �n+1j+1=2 = �nj+1=2 for j 6= k; k+ 1 : (25)These two cases are shown on Figure 3. Notice that the distinction between cases (a) and(b) allows us to avoid too small cells. Also, case (a) is equivallent to the previous MG methodwith Nl = Nr = 0.It is a simple exercice on the Roe and Rankine-Hugoniot relations (11) and (22) to provethat, for the simple case (21)-(22), both MG and SAG methods provide the exact solution, thatis: �nshock = �0j0+1=2 + stn for all n � 0 ; (26)Wnj = ( WL if Xnj � �nshock ;WR if Xnj > �nshock : (27)Notice that these properties remain true even with case (b) of Figure 3, where no interface isactually following the shock path, but where the shock location still coincides at each time levelwith a cell interface.In view of this property, since the planar detonation waves contain only one leading shockwave, we expect to resolve perfectly this leading shock for the detonation problems using thesetwo moving grid strategies. It is precisely the objective of the next section to examine how thesemethods behave and to compare the MG and SAG strategies.49



4 NUMERICAL RESULTSWe now present some numerical results, obtained with the second-order accurate TVD Roescheme described above. Our test problems include an inert 
ow, namely Lax's shock tubeproblem, the simulation of galloping instabilities of planar detonations and self-similar CJ det-onations, with simple chemistry. Lastly, we will investigate galloping detonation instabilitieswith a realistic hydrogen-oxygen chemical model.4.1 Lax's shock tube problemLet us �rst show the behaviour of the numerical methods for an inert 
ow. We consider Lax'sshock tube problem [23]. Using a �xed reference state, the initial conditions are given as:( p = 3:582 ; T = 7:928 ; u = 0:698 if x < 0:5 ;p = 0:571 ; T = 1:142 ; u = 0 if x > 0:5 : (28)The speci�c heats ratio 
 is equal to 1:4. The initial discontinuity splits into a rarefactionwave, a contact discontinuity and a shock wave, and the exact self-similar solution can be easilycomputed.For the numerical results presented here, a set of 100 equally spaced nodes is used in theinterval [0; 1], with a CFL number of 0:5. Here and in all calculations below, the small parameter� in the entropy correction (15) is taken equal to 10�7.The density and pressure pro�les obtained at time t = 0:4 on a �xed grid and with the MGmethod are shown on Figure 4, together with the exact solution. We used the MG methodwith Nr = 5 and Nl = 5, 10 or 15, but the numerical results were insensitive to our choiceof Nl among these three values. Also, the results obtained with the SAG method are almostindistinguishable from those of the MG method: both moving grid methods perfectly resolve theshock wave, whereas the captured shock wave is spread over four mesh points when the TVDmethod operates on a �xed grid. Notice that we applied the moving mesh strategies only tothe shock, and not to the contact discontinuity: this is why the latter remains smeared by thenumerical di�usion in all cases on Figure 4.4.2 Galloping instabilities of one-dimensional detonationsLet us now investigate the problem of longitudinal detonation instability, with the simple one-step chemical model described in Section 2. Choosing the pre-shock state as the reference state,following Fickett and Davis [13], we take the following values of the non-dimensional parameters:
 = 1:2 ; Q = 50 ; � = 50 : (29)The longitudinal detonation instability was �rst shown by Erpenbeck [12]. It was foundthat the propagating detonation becomes unstable when the overdrive degree f of a strongdetonation is smaller than some critical value. For the above parameters (29), the critical valuegiven by Lee and Stewart [24] is f c = 1:73, which is obtained by resolving a system of linearisedODE equations: the propagating detonations are stable for all values of f larger than f c, and50



unstable for all values of f smaller than f c; in the unstable case, oscillations of the type of aHopf bifurcation appear. This test-case has been used in several works [1, 4, 5, 8], which we canuse to validate our numerical results.In the computations reported below, the corresponding steady ZND detonation structure isused as the initial condition; the perturbation generated by the truncation error of the numericalmethod is large enough to lead to the physical instability. Since we are interested in the intrinsicregular oscillation of the detonation front, we prescribe the steady solution at the rear boundary:the piston e�ect which may cause irregular oscillations is thus eliminated in our simulations.Instead of directly simulating the whole 
ow driven by the piston, we take a computationaldomain whose length is thirty times the half-reaction length L1=2 of the corresponding steadyZND detonation, and which continually sweeps in order to follow the detonation front; ourexperiments have shown that this type of reduction of the computational domain does notin
uence the results, provided that the boundaries, where we add and eliminate mesh points,are far enough from the detonation front. As the taken computational domain is relatively small,a local re�nement procedure is not needed and we simply use a set of initially equally spacedmesh points. For the MG method. we take 51 points moving with the front (Nl = 40, Nr = 10).The CFL number is taken equal to 0.5.4.2.1 Stable detonationsLet us �rst consider a stable propagation case, with f = 1:8. Figures 5 to 7 show the thehistory of the Neumann spike pressure obtained on a �xed grid and with the MG and SAGmethods. Three spatial resolutions are used: �x = L1=2=2, L1=2=5 and L1=2=10. For the sakeof comparison, the exact solution of the corresponding steady ZND detonation is also shown inthese �gures. Due to the truncation error of the numerical method, oscillations �rst appear andthen damp out with time.The detonations simulated with the three algorithms are all stable. The long-time pressureobtained on a �xed grid is slightly smaller than the exact value (with a �ve percent error on thecoarsest mesh): this is a consequence of the numerical di�usion, which again spreads the leadingshock over four mesh points. With the MG method, the leading shock is always maintainedto one cell, and the obtained pressure at the Neumann spike corresponds very well with theexact solution, even on the coarsest mesh. The solutions obtained with the SAG method on thetwo �ne grids are in good agreement with the exact solution; however, the long-time pressure isabout two percent larger than the exact value on the coarse mesh. We therefore see that the MGmethod seem to give better results than the SAG method; this advantage of the MG methodover the SAG technique is probably due to the fact that the MG method keeps a uniformlymeshed region in the neighbourhood of the shock wave.4.2.2 Unstable detonationsNext, we consider an unstable propagation case with f = 1:6. Figures 8 to 10 show the numericalsolutions obtained by the same three algorithms, and with the same three spatial resolutions:�x = L1=2=2, L1=2=5 and L1=2=10.On the coarsest mesh, the detonation front obtained on a �xed grid is stable, the dynamical51



behaviour of the front is not correctly described. As the mesh size is decreased, oscillationsappear, and their period is close to 8 times the half-reaction time, in good agreement with theexisting results [1, 4, 5, 13]. However, due to the numerical di�usion, the maximum pressureobtained on a �xed grid with �x = L1=2=5 is about ten percent smaller than that obtainedby the MG method with the same mesh spacing. On the �nest mesh, this numerical error isdecreased to four percent. The MG produces very good results: its results with �x = L1=2=5 aremuch better than those obtained on a �xed grid with �x = L1=2=10. It is also very interestingto notice that the MG method on the coarsest grid already shows the instability, with a periodvery close to the exact period. Lastly, the SAG method produces very good results on the two�ne meshes, but fails to show the instability on the coarsest mesh, where a nonphysical stablebehaviour is obtained.We can conclude here that the MG method improves very much the quality of the numericalresults, with in particular a very �ne resolution of the Neumann spike. The results produces byour simple MG method are equally good as the results obtained by Bourlioux et al. [5] with amore complex shock tracking algorithm. On �ne enough mesh, the SAG method also improvesa lot the quality of the resolution of the detonation front.Let us add that, on an even coarser mesh with �x = L1=2, none of the algorithms givesacceptable results. The fact that the simulations cannot correctly represent the physical time-dependent behaviour of these unstable detonations when the mesh size is larger than or equal tothe half-reaction length can be easily understood on the basis of the following consideration: itis known that the instability results from the interaction between the sound waves, the leadingshock wave and the chemical reaction, and that the most unstable acoustic wavelength is typi-cally of the order of the half-reaction length; on a too coarse grid, such waves are very poorlyresolved and highly damped, so that the simulations cannot produce correct results.4.2.3 At the stability thresholdLastly, we examine the performance of the algorithms for simulations near the stability limit.Figure 11 shows the numerical results obtained with the MG method, for f = 1:76, 1.74 and1.72, using 10 points in the half-reaction length. For f = 1:76, the amplitude of oscillations dueto the initiation damps out with time and the propagating detonation is stable after time t = 40.For f = 1:74, the amplitude of oscillations damps very slowly with time and the propagatingdetonation is also stable. While for f = 1:72, the amplitude of oscillations slowly increases withtime and the propagating detonation is unstable. The resulting critical value is about f c = 1:73,in perfect agreement with that reported by Lee and Stewart [24].It seems that, for computations near the instability limit, the developed MG algorithmbehaves better than the combination of PPM method with front tracking used by Bourliouxet al. [5]: these authors have to use a very �ne mesh with �x = L1=2=20 in order to get thestability limit f c; on the mesh with �x = L1=2=10, oscillations appear again after t = 100 ontheir numerical solution for f = 1:76.Figure 12 shows the corresponding numerical results obtained with the SAG method on thesame mesh. We can see that, for f = 1:76, the amplitude of the oscillations becomes very smallat t = 100, the propagating detonation is stable. On the opposite, the observed detonation isunstable for f = 1:72. However, for f = 1:74, it is di�cult to know from the numerical resultwhether the propagating detonation is stable or not. Using a very �ne mesh with �x = L1=2=20,52



the result obtained by the SAG method shows that the detonation is stable. These observationsshow that this simple SAG algorithm behaves as well as the PPM method with front trackingused in [5].4.3 Self-similar solutionsWe now consider a di�erent physical situation. When a detonation wave departs from a �xedclosed end of a tube, the propagating detonation is a CJ detonation (for the stable case) followedby a time-dependent rarefaction wave. Neglecting the thickness of the detonation front, one canobtain analytically the spatial distribution of velocity and pressure as a self-similar solution.This is the situation which we now investigate.For such simulations, the use of a non uniform grid is required to overcome the problem ofspatial sti�ness, since the boundary of the computational domain is to coincide with the �xedend of the tube. We will employ the MG method combined with local mesh re�nement. A�nely gridded region is placed around the detonation front and a coarse grid is placed elsewhere;medium-sized meshes are introduced between these two types of grids in order to avoid a brutalvariation of the mesh size. The ratio of the coarse and �ne grid sizes may vary from 1 to 50. The�ne grid and the moderate grids move with the front of the shock wave, following the principleof the MG method.Choosing a reactive mixture at room temperature (300 K) and ambient pressure (1 atm.)as the reference state, we assume that the non-dimensional parameters now take the values:
 = 1:4 ; Q = 20 ; � = 40 : (30)When these parameters are �xed, the stability of the detonation depends on the temperatureT0 of the reactive mixture ahead of the leading shock wave. We consider �rst a case of stablepropagation, with T0 = 2. The length of the computational domain is 1000 times the half-reaction length. The �ne cell size is L1=2=10, and the �ne cells cover a domain of ten timesthe half-reaction length, moving with the detonation front. The calculation starts from anapproximate self-similar solution consisting of a steady CJ detonation followed by a rarefactionwave. The calculated pressure and velocity pro�les at t = 218, shown on Figure 13, are in verygood agreement with the analytical self-similar solutions.Decreasing the temperature T0, we may also observe the longitudinal instability of the un-supported CJ detonation. A series of computations have been carried out by varying the tem-perature T0, and the results are shown on Figure 14 for T0 = 1:4, 1.5 and 2.0. The stabilitylimit given by these numerical results lies between T0 = 1:4 and T0 = 1:5.These observations rise the problem of knowing whether the stability of this type of unsup-ported detonation is the same as that of the supported CJ detonation. The same computationshave been done using the same spatial resolutions for the supported CJ detonations, and the re-sults are shown on Figure 15 for the same values of T0. Comparing these results with those shownin Figure 14, we see that the di�erence of the dynamical behaviours between the supported CJdetonations and the unsupported CJ detonations is very small. The detonation stability appearsto depend intrinsically on the detonation front itself.53



4.4 Galloping instability in an hydrogen-oxygen mixtureLastly, we show the result of a simulation of a detonation propagating in an hydrogen-oxygenmixture. The physical model now involves a complete chemical mechanism for the hydrogen-oxygen combustion, with 8 species and 37 reactions; thermodynamical data, such as the valuesof the speci�c heats of each species as a function of temperature, are taken from the CHEMKINpackage [20]. We consider overdriven detonations propagating in a stoechiometric mixture atatmospheric pressure and ambient temperature (300 K).In our numerical experiments, the computational domain has a few centimeters in length,and 500 mesh points, among which 200 �ne meshes around the front (the �ne mesh size is1:5 10�4 cm, so that more than 10 nodes are located within the detonation front). We use theRoe matrix proposed by Shuen et al. [30] for the non-perfect gaseous mixture.In these conditions, the propagation speed of the CJ detonation is 2900 m/s. We have simu-lated three overdriven detonations with speeds 3100, 3300 and 3600 m/s respectively, using theSAG method. The results are shown on Figure 16, which shows that the two fastest detonationwaves are stable, whereas the detonation propagating at 3100 m/s is unstable. These calcula-tions involving complex chemistry are of course much more expensive than those of Section 4.2:one of them takes 5 hours on a SUN Sparc 10 workstation.5 CONCLUSIONSWe have described a simple but e�cient numerical method operating on a moving grid for thesimulation of time-dependent planar detonation waves. Detailed comparisons reveal that, forthe same spatial resolution, our method behaves as well as (or in some cases even better than)the more complex method of Bourlioux et al. [5], which involves a shock tracking technique. Inparticular, our simple method allowed us to simulate stable and unstable detonations propagat-ing in an hydrogen-oxygen mixture, with detailed thermodynamics and chemistry, which is, tothe best of our knowledge, the very �rst simulation of detonations involving complex chemistry.Our method is therefore a very good candidate for further computations of planar detona-tions (and such simulations are for instance needed in order to investigate reduced chemicalmechanisms which are appropriate for detonations). Besides, it remains to investigate how ourmoving grid method could be extended to two space dimensions, to see whether it could beapplied to the simulation of non planar detonations.Let us also add a word on the comparison of our methods with the front tracking methodin terms of CPU time. For the shock tube problem, the moving grid methods are about 15%faster than the front tracking technique on a scalar machine (but this advantage may well bemore important on a vector computer). However, when realistic chemistry is involved, solvingthe chemistry takes around 90% of the whole CPU time, so that the di�erences between thevarious methods almost vanish.ACKNOWLEDGEMENTS: This work was supported by DRET under contract 90-103.54
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Figure 4: Density and pressure pro�les for Lax's shock tube problem, on a �xed grid (top)and with the MG or SAG methods (bottom).59



Figure 5: Pressure at the Neumann spike as a function of time for a stable detonation,with 2, 5 or 10 mesh points per half-reaction length on a �xed grid.60



Figure 6: Pressure at the Neumann spike as a function of time for a stable detonation,with 2, 5 or 10 mesh points per half-reaction length using the MG method.61



Figure 7: Pressure at the Neumann spike as a function of time for a stable detonation,with 2, 5 or 10 mesh points per half-reaction length using the SAG method.62



Figure 8: Pressure at the Neumann spike as a function of time for an unstable detonation,with 2, 5 or 10 mesh points per half-reaction length on a �xed grid.63



Figure 9: Pressure at the Neumann spike as a function of time for an unstable detonation,with 2, 5 or 10 mesh points per half-reaction length using the MG method.64



Figure 10: Pressure at the Neumann spike as a function of time for an unstable detonation,with 2, 5 or 10 mesh points per half-reaction length using the SAG method.65



Figure 11: Pressure at the Neumann spike as a function of time for three values of theoverdrive parameter in the neighbourhood of the stability threshold, using the MG method.66



Figure 12: Pressure at the Neumann spike as a function of time for three values of theoverdrive parameter in the neighbourhood of the stability threshold, using the SAG method.67



Figure 13: Pressure and velocity pro�les for unsupported detonations.68



Figure 14: Pressure at the Neumann spike as a function of time for unsupported detonations,with three di�erent values of the unburnt temperature T0.69



Figure 15: Pressure at the Neumann spike as a function of time for supported detonations,with three di�erent values of the unburnt temperature T0.70



Figure 16: Pressure at the Neumann spike as a function of timefor overdriven detonations in an hydrogen-oxygen mixture.71


