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1 INTRODUCTIONThe modi�ed equation technique, which was introduced by Warming and Hyett [9], isa powerful tool for the analysis of the accuracy and stability of a numerical methodaimed at solving a time-dependent problem governed by an evolution partial di�erentialequation. For constant-coe�cients linear partial di�erential equations, it allows a detailedanalysis of the truncation error of the numerical methods. In particular, the e�ect, eitherdissipative or dispersive, of each error term can be interpreted using the modi�ed equation,so that it allows detailed comparisons between di�erent numerical methods; it may alsosometimes be used as a tool for designing new numerical schemes (see e.g. [1, 9]). Lastly,the modi�ed equation may also be used for the numerical analysis of some constant-coe�cients nonlinear equations (see e.g. [5, 6, 7]), although the interpretation of thetruncation error terms is less easy in the nonlinear case.Let us brie
y recall how the modi�ed equation is derived, on a very simple example.Consider the explicit �rst-order upwind scheme:un+1j � unj�t = �c unj � unj�1�x ; (1)for the solution of the wave equation wt = �cwx, with c > 0; in (1), j and n are thespatial and temporal indices respectively, �x and �t are the mesh size and the time step,so that unj is an approximation of w(j�x; n�t).The modi�ed equation for the scheme (1) is a formal partial di�erential equation,which is derived from the di�erence equation:u(x; t+�t)� u(x; t)�t = �c u(x; t)� u(x��x; t)�x ; (2)which mimics (1). Assuming that u is C1 in (2), one can deduce from (2) the followingTaylor expansions at point (x; t):ut + �t2 utt + �t26 uttt + � � � = �c ux � �x2 uxx + �x26 uxxx + � � �! : (3)We will call this equation the unresolved modi�ed equation. The goal is now to transformthis equation (3), for �t and �x small, by replacing the time derivatives, except the�rst one, by spatial derivatives, using successive di�erentiations and substitutions. Forinstance, taking the partial derivative of (3) with respect to t and x, we obtain:utt + �t2 uttt +O(�t2) = �c�uxt � �x2 uxxt +O(�x2)� ; (4)utx + �t2 uttx +O(�t2) = �c�uxx � �x2 uxxx +O(�x2)� ; (5)1



and we can eliminate the mixed derivative utx from these relations to get:utt = c2uxx + �t2 (cuttx � uttt) + �x2 �cuxxt � c2uxxx�+O(�t;�x)2 ; (6)from which, setting � = c�t�x , we deduce a �rst form of the modi�ed equation:ut = �cux + c�x2 (1� �)uxx +O(�t;�x)2 : (7)Di�erentiating again (4) and (5) with respect to time and space makes it possible tofurther eliminate the mixed time-space derivatives. After several steps, we �nally obtain:ut = �cux+ c�x2 (1� �)uxx � c�x26 (2�2 � 3� + 1)uxxx+c�x324 (6�3 � 12�2 + 7� � 1)uxxxx +O(�t;�x)4 : (8)This is the modi�ed equation, expanded up to order three in �t and �x. Formally, this isthe partial di�erential equation which is actually solved by the numericalmethod (1). Thisequation shows the di�erent terms of the truncation error of the numerical method andtheir interpretation (we see in (8) the dissipative �rst-order term, the dispersive second-order term and the dissipative third-order term); in particular, the modi�ed equation(8) shows that the scheme (1) is �rst-order accurate, and it gives a necessary condition(� � 1) for the stability of the method.If the �nal equation (8) is really of interest for the numerical analysis of the scheme (1),it appears however that its derivation is quite heavy and lengthy, even if the successivedi�erentiations and eliminations can be handled using a symbolic computer algebra systemas in [8]. In particular, the elimination process which leads from the unresolved equation(3) to the resolved modi�ed equation (8) may well become much more intricate thanin the above example when less simple schemes are considered, for instance in higherspace dimensions or with multistep time integration methods. In such cases, even writingthe di�erence equation (2) or the unresolved modi�ed equation (3) may become a nontrivial task: indeed, a spatially second order accurate scheme uses 5 points in one spacedimension, but 9 points in two dimensions, and 33 points with a second-order Runge-Kutta scheme !It is precisely the objective of this work to present a much simpler way of derivingthe modi�ed equation for a linear numerical method. Our method uses formal seriesexpansions, without any elimination step; moreover, it has the advantage of keeping thesame simplicitywhen multistepRunge-Kutta or predictor-corrector schemes are employed,and in any space dimensions. 2



2 THE MAIN RESULTOur method for deriving the modi�ed equation applies to any constant-coe�cients linearnumerical method. Let us consider a linear evolution partial di�erential equation of thefollowing form, in one space dimension:ut = XK�0 
K @Ku@xK ; (9)where the right-hand-side summation is �nite, and assume that the equation (9) is ap-proximated on a uniform mesh using the explicit scheme:un+1j � unj�t =Xk Ak(�x)unj+k ; (10)(again with a �nite right-hand-side summation). Then, introducing the function:g�x(X) =Xk Ak(�x)ek�xX ; (11)we state our main result:PROPOSITION 1:Assume that the scheme (10) is consistent with equation (9) (in the classical �nite-di�erence sense).Then the modi�ed equation of the scheme (10) writes:ut = Xk�0�k(�t;�x) @ku@xk ; (12)where Xk�0�k(�t;�x)Xk is the formal series expansion of the function:F(X) = log (1 + �t g�x(X))�t : � (13)The proof starts with the following Lemma:LEMMA 1:Assume that the scheme (10) is consistent with equation (9), and set:g0(X) = XK�0 
KXK : (14)Then, the di�erence g�x(X)� g0(X) formally tends to 0 as �x tends to 0. �3



PROOF: The consistency of the scheme (10) implies that, formally:lim�x!00@Xk Ak(�x)v(x+ k�x)� XK�0 
K dKvdxK1A = 0 ; (15)for any C1 function v(x). For X 2 IR, we may take v(x) = eXx, so that (15) yields:lim�x!00@Xk Ak(�x)ek�xX � XK�0 
KXK1A = 0 ; (16)which ends the proof. �REMARK 1: It is also useful to see the above proof with a slightly di�erent pointof view, using formal series expansions. The consistency of the scheme (10) is usuallyexpressed through Taylor expansions, i.e. one writes the Taylor expansion:Xk Xp�0Ak(�x)(k�x)pp! dpvdxp (17)of the �rst term in (15), and one says that the scheme is consistent if:Xk Ak(�x)(k�x)KK! = 
K +O(�x) for all K : (18)But obviously, (18) allows us to write:Xk Xp�0Ak(�x)(k�xX)pp! = XK�0 
KXK +O(�x) ; (19)for any X, which yields (16). �We can now achieve the proof of Proposition 1; it relies on applying the Fouriertransform to the di�erence equation which mimics the numerical scheme;PROOF of Proposition 1: Assume that u(x; t) is bounded and satis�es the di�erenceequation: u(x; t+�t)� u(x; t)�t =Xk Ak(�x)u(x+ k�x; t) : (20)We may introduce the Fourier transform û(�; � ) of u(x; t), and we get from (11) and (20): ei��t � 1�t ! û(�; � ) = g�x(i�)û(�; � ) : (21)4



We can observe here that expanding both sides of (21) in formal series gives:Xp�1(i� )p�tp�1p! û(�:� ) =Xk Xp�0Ak(�x)(k�x)pp! (i�)pû(�:� ) ; (22)whose inverse Fourier transform yields the unresolved modi�ed equation:Xp�1 �tp�1p! @pu@tp =Xk Xp�0Ak(�x)(k�x)pp! @pu@xp : (23)However, the resolution is now elementary (and writing the expansions (22) and (23)is not even useful): (21) tells us that the distribution û(�; � ) vanishes except on the man-ifold V de�ned by the relation ei��t � 1�t = g�x(i�). Since we show below that the term�tg�x(i�) is small when �t and �x are small, and since the exponential function is bijec-tive in the neighbourhood of 0, the manifold V is also de�ned for �t and �x small by therelation i� = log (1 + �t g�x(i�))�t = F(i�), where log denotes here the local inverse of theexponential function, which implies that the classical expansion log(1 + �) = Xp�1(�1)p�1�ppholds true. We then get:i� û(�; � ) �F(i�)û(�; � ) = i� û(�; � )�Xk �k(�t;�x)(i�)kû(�; � ) = 0 ; (24)and the inverse Fourier transform immediately gives the resolved modi�ed equation (12).It only remains to explain why the expansion in formal series is valid in (24), i.e. whythe term �t g�x(i�) is formally small when �t and �x are small (notice indeed that thescheme coe�cients Ak(�x) involve negative powers of the mesh spacing �x, as in (1),so that di�culties may arise for small �x). It follows indeed from (19) that g�x(X) canbe expanded in formal series under the form g�x(X) = g0(X) +Xp�1�xpgp(X), where thegp(X) are polynomials in X. The fraction F(X) then takes the form:F(X) = log0@1 + �tg0(X) + �tXp�1�xpgp(X)1A�t ; (25)and it is perfectly valid to expand it when �t and �x are small under the form:F(X) = g0(X) + Xp + q � 1r � 0 �p;q;r�xp�tqXr def= Xk�0�k(�t;�x)Xk : � (26)REMARK 2: The proof of Proposition 1 is both more rigorous and more constructivethan the elimination method described in Section 1. In particular, it clearly gives the5



truncation error of the numerical scheme (10), since the modi�ed equation (12) �nallytakes the form: ut = XK�0 
K @Ku@xK + Xp+ q � 1r � 0 �p;q;r�xp�tq@ru@xr : � (27)3 SOME EXTENSIONSThe result of Proposition 1, which deals with explicit schemes in one-space dimension,using �rst-order accurate time integration, can be easily extended in several directions,which we now describe.3.1 Multi-dimensional schemesProposition 1 can be extended with no di�culty to linear constant-coe�cients numericalmethods in two or three space dimensions. For instance, let us consider the followingpartial di�erential equation, in two space dimensions:ut = XK;M�0 
K;M @K+Mu@xK@yM ; (28)approximated with the explicit scheme:un+1j;l � unj;l�t =Xk;mAk;m(�x;�y)unj+k;l+m : (29)We can then state (omitting the proof):PROPOSITION 2:Assume that the scheme (29) is consistent with equation (28). Then, its modi�edequation writes: ut = Xk;m�0�k;m(�t;�x;�y) @k+mu@xk@ym ; (30)where Xk;m�0�k;m(�t;�x;�y)XkY m is the formal series expansion of the function:F(X) = log (1 + �t g�x;�y(X;Y ))�t ; (31)6



where g�x;�y(X;Y ) is the following functions of two variables:g�x;�y(X;Y ) =Xk;mAk;m(�x;�y)ek�xXem�yY : � (32)REMARK 3: The method equally well extends to �nite-element schemes, with a nondiagonal mass matrix. For instance, the modi�ed equation of the scheme:Xk;mBk;mun+1j+k;l+m � unj+k;l+m�t =Xk;mAk;m(�x;�y)unj+k;l+m (33)(with, say, Xk;mBk;m = 1) takes the form (30), where Xk;m�0�k;m(�t;�x;�y)XkY m is theformal series expansion of the function:F(X) = log  1 + �t g�x;�y(X;Y )h�x;�y(X;Y )!�t ; (34)with (32) and: h�x;�y(X;Y ) =Xk;mBk;mek�xXem�yY : � (35)3.2 Implicit schemesThe extension of Proposition 1 to implicit schemes is also straightforward. We can state:PROPOSITION 3:Assume that the scheme (10) is consistent with equation (9).Then the modi�ed equation of the implicit scheme:un+1j � unj�t =Xk Ak(�x)un+1j+k (36)writes: ut = Xk�0�k(�t;�x)@ku@xk ; (37)where Xk�0�k(�t;�x)Xk is the formal series expansion of the function:F(X) = log (1��t g�x(X))(��t) : � (38)7



PROOF: From the di�erence equation:u(x; t)� u(x; t��t)�t =Xk Ak(�x)u(x+ k�x; t) ; (39)we get: û(�; � ) 1� e�i��t�t � g�x(i�)! = 0 ; (40)so that û(�; � ) vanishes except on the manifold V de�ned by i� = log (1 ��t g�x(i�))(��t) . �REMARK 4: Extending the statement of Proposition 3 to semi-implicit schemes, it iseasy to see that the modi�ed equation of the following semi-implicit method:un+1j � unj�t =Xk Ak(�x)unj+k +Xk Bk(�x)un+1j+k ; (41)takes the form (37), whereXk�0�k(�t;�x)Xk is the formal series expansion of the function:F(X) = 1�t log  1 + �t g�x(X)1 ��t h�x(X)! ; (42)with g�x and h�x de�ned as:g�x(X) =Xk Ak(�x)ek�xX ; h�x(X) =Xk Bk(�x)ek�xX : (43)The proof of this fact uses the existence of two polynomials g0(X) and h0(X) such thatboth di�erences g�x(X)� g0(X) and h�x(X)� h0(X) formally tend to 0 as �x tends to0; the existence of these polynomials can be shown to follow from the consistency of thescheme (41). �3.3 Multistep schemesLet us lastly show that the method can be extended while keeping its simplicity to Runge-Kutta schemes. We state here:PROPOSITION 4:Assume that the scheme (10) is consistent with equation (9). When the N th-orderRunge-Kutta method is applied to the scheme (10), the modi�ed equation writes:ut = Xk�0�k(�t;�x)@ku@xk ; (44)8



where Xk�0�k(�t;�x)Xk is the formal series expansion of the function:F(X) = log 1 + NXK=1 [�t g�x(X)]KK! !�t : � (45)PROOF: Let us write the scheme (10) in condensed form as un+1j � unj�t = (G(un))j. Forthe sake of simplicity, we will only consider the second-order Runge-Kutta scheme, whichwrites: un+1j � unj�t = (G(un))j + �t2 (G �G(un))j : (46)Proposition 4 is then a consequence of the next Lemma. �LEMMA 2:Let G1 and G2 be two linear schemes, de�ned by �G1(u)�nj =Xk A1k(�x)unj+k and�G2(u)�nj =Xk A2k(�x)unj+k, and let g1�x(X) and g2�x(X) be the corresponding functionsassociated with G1 and G2 respectively using (11).Then, the function associated by (11) with the composed scheme G1 �G2 is simply theproduct g1�x(X)g2�x(X). �PROOF: It su�ces to realize that �G1 �G2(un)�j =Xk Xm A1kA2munj+k+m, so that the as-sociated function is g�x(X) =Xk Xm A1kA2me(k+m)�xX , and Lemma 2 readily follows. �REMARK 5: We can also write (45) under the form:F(X) = log0@exp (�t g�x(X))� 1XK=N+1 [�t g�x(X)]KK! 1A�t : (47)Therefore, the expansion up to order N writes:F(X) = g0(X) + NXp=1�xpgp(X) +O(�t;�x)N : (48)This shows not only that the time error is of order N when using the N th order Runge-Kutta scheme, but also that the expansion of the truncation error up to order p reduceswhen p � N to the expansion at the same order of g�x(X) � g0(X). �REMARK 6: Notice that Lemma 2 allows us to consider not only Runke-Kutta schemes,but also predictor-corrector two-steps methods, where di�erent spatial schemes are usedin each of the two steps. � 9



4 EXAMPLES4.1 Runge-Kutta schemesTo illustrate the above results, let us examine how the modi�ed equation is in
uencedwhen Runge-Kutta schemes are used, for a given spatial scheme.We are going to write the expansion of F(X) = Xk�0�kXk which gives the modi�edequation, for the best-used Runge-Kutta (i.e., for 1 � N � 4). Once a spatial scheme isgiven, we expand the function g�x(X) under the form g�x(X) = g0(X) +Xp�1�xpgp(X)(with for instance g1 = 0 if the scheme is spatially second-order accurate). In two spacedimensions, a similar expansion can also be written: assuming that the aspect ratio �y�x isconstant, one may indeed write g�x;�y(X;Y ) = g0(X;Y ) +Xp�1�xpgp(X;Y ), where the gpare now polynomials of two variables. Then, the expansion giving the modi�ed equationtakes the following forms, up to third order in �t and �x, for the Runge-Kutta schemesup to fourth-order:F(N=1) = g0 +�xg1 � �t2 g20+�x2g2 ��t�xg0g1 + �t23 g30+�x3g3 � �t�x22 g21 ��t�x2g0g2 +�t2�xg20g1 � �t34 g40+O(�t;�x)4 : (49)F(N=2) = g0 +�xg1 +�x2g2 � �t26 g30+�x3g3 � �t2�x2 g20g1 + �t38 g40+O(�t;�x)4 : (50)F(N=3) = g0 +�xg1 +�x2g2 +�x3g3 � �t324 g40+O(�t;�x)4 : (51)F(N=4) = g0 +�xg1 +�x2g2 +�x3g3+O(�t;�x)4 : (52)Also, we know from Proposition 3 that the expansion giving the modi�ed equation for thebackward Euler implicit scheme is simply obtained by substituting ��t instead of �t in(49). 10



4.2 Analysing the truncation errorLet us consider again the example of Section 1. For the upwind scheme (1), we havewritten in (7) and (8) the modi�ed equation expanded up to �rst order and up to thirdorder respectively. Comparing these two relations, we notice that the �rst error term,which involves the second derivative uxx, keeps the same coe�cient in both expansions.In the same way, we could observe that the coe�cients of the third and fourth derivativesin (8) would not be a�ected by expanding further the modi�ed equation.This is a particularly nice situation, in particular for the usual substitution-eliminationmethod, since the coe�cients of the �rst derivatives of u are obtained as the �rst termsin the expansion in �t and �x of the modi�ed equation. This property is rather general:writing again the modi�ed equation as in Remark 2:ut = XK�0 
K @Ku@xK + Xp+ q � 1r � 0 �p;q;r�xp�tq @ru@xr ; (53)it is easy to see from (25) that, if g0(0) = g�x(0) = 01, then r � q for all non zero termsin (53), so that the complete coe�cient of the error term involving the derivative @qu@xq isobtained by expanding the modi�ed equation only up to order q in �t. The situation iseven better for the scheme (1), where g�x(X) has the form g�x(X) = Xp�1 ap�xpXp+1: itcan indeed be shown from (25) that r = p + q + 1 for all non zero terms in (53), as onecould guess from (8).On the opposite, when g0(0) 6= 0, obtaining the coe�cients of the low-order derivativesin the modi�ed equation is not as simple. Consider for instance the equation wt =aw � cwx, approximated using the explicit scheme:un+1j � unj�t = aunj � c unj � unj�1�x : (54)The substitution-elimination process of Section 1 is particularly tedious and lengthyin this case (see e.g. [3, 4]). Up to �rst order in �x and �t, one obtains the followingexpansion of the modi�ed equation:ut = au� cux � a2�t2 u+ ac�tux+  c�x2 � c2�t2 !uxx +O(�x;�t)2 ; (55)1Notice that, in contrats with what is usually claimed (see e.g. [2, 9]), the relation g�x(0) = 0 doesnot necessary follow from the consistency of the numerical scheme as soon as g0(0) = 0. For instance,when g0(X) = �cX, i.e. for the wave equation, the (somewhat strange) scheme:un+1j � unj�t = �c (1 +�x2)unj � unj�1�xis consistent in the usual sense (see Remark 1 or the proof of Lemma 1), but it satis�es g�x(0) = �c�x.11



whereas the expansion up to second order in �x and �t yields:ut = au� cux � a2�t2 � a3�t23 !u+ �ac�t� a2c�t2�ux+ c�x2 � c2�t2 + ac2�t2 � ac�x�t2 !uxx+ c2�t�x2 � c3�t23 !uxxx +O(�x;�t)3 : (56)We therefore see that the coe�cients of each derivative (including the \zero-th orderderivative") is in
uenced by a further expansion of the modi�ed equation (and this iscon�rmed by the expression (25), which for instance shows in this case that �0;q;0 6= 0for all q in the expansion (53)). Thus, the elimination process is unable to give the fullcoe�cients of the �rst derivatives in the modi�ed equation of the scheme (54), whereasthe expression of these coe�cients readily follows from Proposition 1. Indeed, we havehere: F(X) = 1�t log "1 + �t a� c 1 � e��xX�x !!# ; (57)and the coe�cients �0, �1 and �2 in (12) are simply given as:�0 = F(0) ; �1 = F 0(0) ; �2 = F 00(0)2 ; (58)so that a straightforward calculation leads to the following form of the modi�ed equation:ut = log(1 + a�t)�t u� c1 + a�tux + 12  c�x1 + a�t � c2�t(1 + a�t)2!uxx+ c2�t�x2 � c3�t23 !uxxx +O(�x;�t)3 ; (59)where the rest O(�x;�t)3 now involves only the third and higher order derivatives of u.This shows therefore another advantage of the method presented in this paper: (59) givesthe complete form of the �rst derivative terms in the truncation error.5 CONCLUSIONSWe have presented a very simple method for the derivation of the modi�ed equation of anylinear numerical method solving an evolution constant-coe�cients linear partial di�eren-tial equation. The method is much simpler than the usual technique, which derives themodi�ed equation through Taylor expansions by a lengthy substitution and elimination12



process. The modi�ed equation can be explicitly derived using our method for any linearscheme involving two time levels, in any space dimensions and for various time integrationmethods, either by hand or using a computer system for symbolic algebra.As a conclusion, it is useful to summarize our method by exhibiting its relation withthe Von Neumann stability analysis. The above method is indeed as simple as, andvery close to the method for evaluating the ampli�cation factor in the stability anal-ysis: inserting unj = G(i�)neij��x in the scheme (10), one obtains with our notationsG(i�) = 1 + �t g�x(i�), that is:G(i�) = exp (�tF(i�)) or F(i�) = log[G(i�)]�t : (60)These relations, which hold more generally for all linear numerical methods examined inthe previous sections, summarize our \recipe" for deriving the modi�ed equation. Notealso that they imply the known fact that jG(i�)j � 1 for all � (i.e. the scheme (10) isstable) if and only if the coe�cients of the modi�ed equation satisfy:Xk�0(�1)k�2k�2k � 0 for all � in IR : (61)REMARK 7: After completion of this work, we were made aware that Chang [2] al-ready noticed that the modi�ed equation can be obtained from a function F satisfyinge�tF(i�) = 1 +�t g�x(i�). Chang rigorously proved the existence of such a function F un-der the restrictive assumptions that g0(0) = g�x(0) = 0. But he used the existence of Ffor analysis purposes only, and not as a practical tool for deriving the modi�ed equation,which he still constructed using the elimination method. �References[1] D. A. ANDERSON, J. C. TANNEHILL & R. H. PLETCHER, \Computational 
uidmechanics and heat transfer", Hemisphere, Mc Graw-Hill, (1984).[2] S. C. CHANG, \A critical analysis of the modi�ed equation technique of Warmingand Hyett", J. Comp. Phys., 86, pp. 107-126, (1990).[3] D. CHARGY, \Etude num�erique d'�ecoulements r�eactifs transsoniques", Thesis,ENPC, Paris, (1991).[4] N. GLINSKY, \Simulation num�erique d'�ecoulements hypersoniques r�eactifs hors-�equilibre chimique, Thesis, Universit�e de Nice, (1990).[5] J. GOODMAN & A. MAJDA, \The validity of the modi�ed equation for nonlinearshock waves", J. Comp. Phys., 58, pp. 336-348, (1985).13
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