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Abstract

The modified equation is a powerful tool for the error analysis of the numerical solution of
partial differential equations. We present here a method which considerably simplifies the
derivation of this equation in the linear case. Our method uses formal expansions, with
no elimination step; it keeps the same simplicity when multistep Runge-Kutta schemes
are used and in any space dimensions.

UNE METHODE DE CALCUL
DES EQUATIONS EQUIVALENTES
POUR IANALYSE
DES METHODES NUMERIQUES LINEAIRES

Résumé

L’équation équivalente est un outil puissant d’analyse d’erreur pour la résolution numé-
rique d’équations aux dérivées partielles. Nous présentons une méthode qui simplifie
considérablement 'obtention de cette équation dans le cas linéaire. La méthode présentée
utilise des séries formelles et ne nécessite aucune étape d’élimination; elle garde la méme
simplicité lorsque 1'on utilise des schémas de Runge-Kutta et quelque soit la dimension
spatiale.
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1 INTRODUCTION

The modified equation technique, which was introduced by Warming and Hyett [9], is
a powerful tool for the analysis of the accuracy and stability of a numerical method
aimed at solving a time-dependent problem governed by an evolution partial differential
equation. For constant-coefficients linear partial differential equations, it allows a detailed
analysis of the truncation error of the numerical methods. In particular, the effect, either
dissipative or dispersive, of each error term can be interpreted using the modified equation,
so that it allows detailed comparisons between different numerical methods; it may also
sometimes be used as a tool for designing new numerical schemes (see e.g. [1, 9]). Lastly,
the modified equation may also be used for the numerical analysis of some constant-
coefficients nonlinear equations (see e.g. [5, 6, 7]), although the interpretation of the
truncation error terms is less easy in the nonlinear case.

Let us briefly recall how the modified equation is derived, on a very simple example.
Consider the explicit first-order upwind scheme:

n+1 n n n
R N B | (1)
At Ax ’
for the solution of the wave equation w; = —cw,, with ¢ > 0; in (1), 7 and n are the

spatial and temporal indices respectively, Az and At are the mesh size and the time step,
so that u? is an approximation of w(jAz,nAt).

The modified equation for the scheme (1) is a formal partial differential equation,
which is derived from the difference equation:

u(x,t+ At) — u(x,t) u(x,t) —u(x — A, t)

At - C A ) (2)

which mimics (1). Assuming that v is C* in (2), one can deduce from (2) the following
Taylor expansions at point (x,1):

(3)
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We will call this equation the unresolved modified equation. The goal is now to transtform

this equation (3), for At and Az small, by replacing the time derivatives, except the

first one, by spatial derivatives, using successive differentiations and substitutions. For

instance, taking the partial derivative of (3) with respect to ¢t and x, we obtain:

At A

Upt + 7uttt + O(Atz) == ¢ (ul’t - Qx Uaat O(sz)) ’ “
At A

Ugye + 7Uttx + O(Atz) = —C (uxx - Qx Uggr + O(sz)) ’ (5)



and we can eliminate the mixed derivative uy, from these relations to get:

At Az (

2
Uy = C Ugpy + 5 (cupy — upe) + —

I p—— czuxm,) + O(At, A:L')2 , (6)

cA
from which, setting v = ——, we deduce a first form of the modified equation:

cAzx

(1 — v)use + O(AL, Az)? . (7)

Uy = —Cty +

Differentiating again (4) and (5) with respect to time and space makes it possible to
further eliminate the mixed time-space derivatives. After several steps, we finally obtain:

A Ax?
Uy = —Cup+ 02:1;(1 — V) Ugy — ar (21/2 — 3+ gy
8
cAx? &
51 (61° —120% 4+ Tv — Dtgmrs + O(AL, Az)* .

This is the modified equation, expanded up to order three in At and Az. Formally, this is
the partial differential equation which is actually solved by the numerical method (1). This
equation shows the different terms of the truncation error of the numerical method and
their interpretation (we see in (8) the dissipative first-order term, the dispersive second-
order term and the dissipative third-order term); in particular, the modified equation
(8) shows that the scheme (1) is first-order accurate, and it gives a necessary condition
(v < 1) for the stability of the method.

If the final equation (8) is really of interest for the numerical analysis of the scheme (1),
it appears however that its derivation is quite heavy and lengthy, even if the successive
differentiations and eliminations can be handled using a symbolic computer algebra system
as in [8]. In particular, the elimination process which leads from the unresolved equation
(3) to the resolved modified equation (8) may well become much more intricate than
in the above example when less simple schemes are considered, for instance in higher
space dimensions or with multistep time integration methods. In such cases, even writing
the difference equation (2) or the unresolved modified equation (3) may become a non
trivial task: indeed, a spatially second order accurate scheme uses 5 points in one space
dimension, but 9 points in two dimensions, and 33 points with a second-order Runge-
Kutta scheme !

It is precisely the objective of this work to present a much simpler way of deriving
the modified equation for a linear numerical method. Our method uses formal series
expansions, without any elimination step; moreover, it has the advantage of keeping the
same simplicity when multistep Runge-Kutta or predictor-corrector schemes are employed,
and in any space dimensions.



2 THE MAIN RESULT

Our method for deriving the modified equation applies to any constant-coefficients linear
numerical method. Let us consider a linear evolution partial differential equation of the
following form, in one space dimension:

oK u

Uy = Z 7]&”? ) (9)

K>0

where the right-hand-side summation is finite, and assume that the equation (9) is ap-
proximated on a uniform mesh using the explicit scheme:

uttt — ul

]T = Zk: Ak(Ax)u?+k ) (10)

(again with a finite right-hand-side summation). Then, introducing the function:

gAx(X) - ZAk(Ax)ekAxX ) (11)
k
we state our main result:

PROPOSITION 1:

Assume that the scheme (10) is consistent with equation (9) (in the classical finite-
difference sense).

Then the modified equation of the scheme (10) writes:

S ax(arAr) O (12)
U=y « ) —
t =~ k ) Ok ’
where Z Oék(At,Al')Xk is the formal series expansion of the function:
k>0
log (1 + At ga(X
At
The proof starts with the following Lemma:
LEMMA 1:
Assume that the scheme (10) is consistent with equation (9), and set:
go(X) =D Xt (14)

K>0

Then, the difference gar(X) — go(X) formally tends to 0 as Ax tends to 0. e
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PROOF: The consistency of the scheme (10) implies that, formally:

JK
lim (Z Ar(Ax)v(x + kAx) Z gL I‘) =0, (15)
k

Azx—0 K>0

for any C* function v(z). For X € IR, we may take v(z) = X%, so that (15) yields:
Jim, (Z (AR -5 vx) s (16)

which ends the proof. e

REMARK 1: It is also useful to see the above proof with a slightly different point
of view, using formal series expansions. The consistency of the scheme (10) is usually
expressed through Taylor expansions, i.e. one writes the Taylor expansion:

(kAz) dPo

Ap(Az) (17)
Zk:g% pl daP
of the first term in (15), and one says that the scheme is consistent if:
LA K
ZAk(A:L')% = vk + O(Az) for all K . (18)
. !
But obviously, (18) allows us to write:
(kA X
S5 Ak A:z; ’ ) = Y XK 4 0(Ar), (19)
k p>0 K>0

for any X, which yields (16). e

We can now achieve the proof of Proposition 1; it relies on applying the Fourier
transform to the difference equation which mimics the numerical scheme;

PROOF of Proposition 1: Assume that u(x,?) is bounded and satisfies the difference
equation:

t+ At) — t
ur, Ai u, = S Au(Baule + kA1), (20)

We may introduce the Fourier transform @(&, 7) of u(x, 1), and we get from (11) and (20):

(T—l) G(E,7) = gas(i€)i(€. ) | (21)



We can observe here that expanding both sides of (21) in formal series gives:
-1
A kAx)?

Sy —aler) = ¥ 3 a0 P et (22)

!
pz1 p: k p>0

whose inverse Fourier transform yields the unresolved modified equation:

AP~ gry B (kAz)? 0Pu
> o = > D Ap(Az) N (23)

!
p>1 P k p>0

However, the resolution is now elementary (and writing the expansions (22) and (23)

is not even useful): (21) tells us that the distribution @(&, 7) vanishes except on the man-
iTAL 1
ifold V defined by the relation eT = gaz(1€). Since we show below that the term

Atga,(2€) is small when At and Az are small, and since the exponential function is bijec-
tive in the neighbourhood of 0, the manifold V is also defined for At and Ax small by the
log (1 + At gar(1€))

relation 17 = A7 = F(i£), where log denotes here the local inverse of the
5P

exponential function, which implies that the classical expansion log(1 4 &) = > _(—1)"""—
pz1 p

holds true. We then get:
ira(é, ) — Fi)a(¢,7) = ira(¢,7) = D an(At, Aw)(i€) a(é, 7) = 0, (24)

%
and the inverse Fourier transform immediately gives the resolved modified equation (12).
It only remains to explain why the expansion in formal series is valid in (24), i.e. why
the term At ga,(¢€) is formally small when At and Az are small (notice indeed that the
scheme coefficients A;(Ax) involve negative powers of the mesh spacing Az, as in (1),
so that difficulties may arise for small Az). It follows indeed from (19) that ga,(X) can

be expanded in formal series under the form ga,(X) = go(X) 4+ >_ Aa”g,(X), where the
pz1
gp(X) are polynomials in X. The fraction F(X) then takes the form:

log (1 + Atgo(X) + At Z A:Jcpgp(X))
F(X) =

pz1
At ’

and it is perfectly valid to expand it when At and Az are small under the form:

(25)

FX)=g(X)+ 3 BogrAePAPX E S ap(At, Az) X e (26)
pt+q>1 k20
r>0

REMARK 2: The proof of Proposition 1 is both more rigorous and more constructive
than the elimination method described in Section 1. In particular, it clearly gives the
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truncation error of the numerical scheme (10), since the modified equation (12) finally
takes the form:

Ky 0"u
up = Z Vi S + Z ﬂp7q7TA:1;pAtqa
K>0 z p_l_ 1
”

. e (27)

x’/’

o IV

q
2

3 SOME EXTENSIONS

The result of Proposition 1, which deals with explicit schemes in one-space dimension,
using first-order accurate time integration, can be easily extended in several directions,
which we now describe.

3.1 Multi-dimensional schemes

Proposition 1 can be extended with no difficulty to linear constant-coefficients numerical
methods in two or three space dimensions. For instance, let us consider the following
partial differential equation, in two space dimensions:

S s 29
Uy = VKM 5 00 a7
K, M>0 QK gyM
approximated with the explicit scheme:
n-I—l n
Yl T Ui n
]Tt] = ZAk,m(Am Ay)uj+k,l+m . (29)

k,m

We can then state (omitting the proof):

PROPOSITION 2:
Assume that the scheme (29) is consistent with equation (28). Then, its modified
equation writes:

5 an(An Ar, Ag) L (30
Uy = (AL Az, Ay ) m—7— 30
! b0 k dxkoym™
where Z o (AL, Az, Ay)XFY™ s the formal series expansion of the function:
k,m>0
log (1 + At gazay(X,Y

At ’



where gaz.ay(X,Y) is the following functions of two variables:

Jaway(X,Y) = Z Apm (A, Ay)ekAxXemAyY .o (32)

k,m

REMARK 3: The method equally well extends to finite-element schemes, with a non
diagonal mass matrix. For instance, the modified equation of the scheme:

un—l—l o
Jtkl+m
Z Bk,m
k,m

u’ El4+m "

At DS = ZAk,m(AmAy)ujJrk,Hm (33)
k,m

(with, say, Y By, = 1) takes the form (30), where »_ Qe (AL, Az, Ay) XFY™ is the
k,m k,m>0

formal series expansion of the function:

log (1 1AL —ZM’A@’(();’ 3)
Az,A 9
F(X)= NI : (34)

with (32) and:
hazay(X,Y) = ZBk,mekMXeMAyY . (35)

k,m
3.2 Implicit schemes

The extension of Proposition 1 to implicit schemes is also straightforward. We can state:

PROPOSITION 3:
Assume that the scheme (10) is consistent with equation (9).
Then the modified equation of the implicit scheme:

u?-l—l B u? _ n+1
t k
writes: ot
U
Uy = Z Oék(Athx)W ) (37)
k>0 x

where Z Oék(At,Al')Xk is the formal series expansion of the function:
k>0

F(X) = log (1 _(—Ait%M(X))

(38)



PROOF': From the difference equation:

u(x,t) —u(x,t — At)

A = Zk:Ak(Ax)u(x + kAz, 1), (39)
we get: |
i) (L~ anstio)) =0, (10
log (1 — At gaz(2€))

so that (&, 7) vanishes except on the manifold V defined by ir = —AY)

REMARK 4: Extending the statement of Proposition 3 to semi-implicit schemes, it is
easy to see that the modified equation of the following semi-implicit method:

ut Tt
g = Zk:Ak(Ax)u?Jrk + Zk:Bk(Ax)u?E 7 (41)
takes the form (37), where » o (At, Az)X* is the formal series expansion of the function:
k>0
1 1 + At gAx(X)
X)y=—1 42
F =5 Og(l—AthM(X) ’ (42)
with ga, and ha, defined as:
gAx(X) = ZAk(Aw)ekAwX 5 hAl,(X) == ZBk(Aw)ekAwX . (43)
% %

The proof of this fact uses the existence of two polynomials go(X) and ho(X) such that
both differences ga,(X) — go(X) and ha.(X) — ho(X) formally tend to 0 as Az tends to
0; the existence of these polynomials can be shown to follow from the consistency of the
scheme (41). o

3.3 Multistep schemes

Let us lastly show that the method can be extended while keeping its simplicity to Runge-
Kutta schemes. We state here:

PROPOSITION 4:
Assume that the scheme (10) is consistent with equation (9). When the N'"-order
Runge-Kutta method is applied to the scheme (10), the modified equation writes:
k
u =3 a(At, A2t (44)

k 2
>0 Oz



where Z ar(AL, Az) X is the formal series expansion of the function:

k>0
[At gar (X)]E
K=1 A’

F(X) = — e (45)

L gn
PROOF: Let us write the scheme (10) in condensed form as % = (G(u"));. For
the sake of simplicity, we will only consider the second-order Runge-Kutta scheme, which

writes:

't —

; o Al .
= (G + S (G G), (46)

Proposition 4 is then a consequence of the next Lemma. e

LEMMA 2:
Let G' and G* be two linear schemes, defined by ( u) ZAk ulyy, and

( ) ZA2 U, and let g (X) and g3, (X) be the correspondmg functions

associated wzth G and G* respectively using (11).
Then, the function associated by (11) with the composed scheme G* o G* is simply the

product g, (X)g3,(X). o
PROOF: It suffices to realize that (Gl o G*(u" ) ZZAI Wit ki, 50 that the as-

sociated function is ga,(X) = Z Z ALAZ e (ktm)az X and Lemma 2 readily follows. e

k. m
REMARK 5: We can also write (45) under the form:

log (exp (At gaz (X)) — i M)

- K!
K=N+1
X) = . 4
F(X) ~ (47)
Therefore, the expansion up to order N writes:
N
F(X) = go(X) + Y Aa’g,(X) + O(At, Ax)™ . (48)

p=1
This shows not only that the time error is of order N when using the N** order Runge-

Kutta scheme, but also that the expansion of the truncation error up to order p reduces
when p < N to the expansion at the same order of ga,(X) — go(X). @

REMARK 6: Notice that Lemma 2 allows us to consider not only Runke-Kutta schemes,
but also predictor-corrector two-steps methods, where different spatial schemes are used
in each of the two steps. o



4 EXAMPLES

4.1 Runge-Kutta schemes

To illustrate the above results, let us examine how the modified equation is influenced
when Runge-Kutta schemes are used, for a given spatial scheme.

We are going to write the expansion of F(X) = Z o, X* which gives the modified

k>0
equation, for the best-used Runge-Kutta (i.e., for I < N < 4). Once a spatial scheme is
given, we expand the function ga,(X) under the form ga.(X) = go(X) 4+ >_ Aa’g,(X)
pz1

(with for instance g1 = 0 if the scheme is spatially second-order accurate). In two space

dimensions, a similar expansion can also be written: assuming that the aspect ratio — is
x

constant, one may indeed write gaz ay(X,Y) = go(X,Y) + > Aafg,(X,Y), where the g,
pz1
are now polynomials of two variables. Then, the expansion giving the modified equation

takes the following forms, up to third order in At and Az, for the Runge-Kutta schemes
up to fourth-order:

At
Fin=1) = go +Axgs — 793
At?
+Az%gy — AtAzgogs + ?93 (49)
AtAz? A3
+A:1;3g3 — < g% — AtAx2g092 + AtzA:chggl — ng
+O(At, Azt .
At?
Fin=2) = g0 +Azg + Ax’g; — ng
At?Ax A3 50
+Az’gs — nggl + ?93 (50)
+O(At, Azt .
2 3 AL,
Fin=s) = go +Argi + Ax’gy + Ax’gz — 51 %o (51)
+O(At, Azt .
Fin=a)y=go +Azgi+ Ax’gy + Ax’gs (52)
+O(At, Azt .

Also, we know from Proposition 3 that the expansion giving the modified equation for the
backward Euler implicit scheme is simply obtained by substituting —At instead of At in
(49).
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4.2 Analysing the truncation error

Let us consider again the example of Section 1. For the upwind scheme (1), we have
written in (7) and (8) the modified equation expanded up to first order and up to third
order respectively. Comparing these two relations, we notice that the first error term,
which involves the second derivative u,,, keeps the same coefficient in both expansions.
In the same way, we could observe that the coefficients of the third and fourth derivatives
in (8) would not be affected by expanding further the modified equation.

This is a particularly nice situation, in particular for the usual substitution-elimination
method, since the coefficients of the first derivatives of u are obtained as the first terms
in the expansion in At and Az of the modified equation. This property is rather general:
writing again the modified equation as in Remark 2:

J"u
oz’

Oy
Uy = Z VK 5K + Z BparAxP ALl
K>0 x
p+ 1
’

(53)

o IV

q
2

it is easy to see from (25) that, if go(0) = gas(0) = 0', then r > ¢ for all non zero terms
. . . . .. 0,
in (53), so that the complete coefficient of the error term involving the derivative 8—1: is
x
obtained by expanding the modified equation only up to order ¢ in At. The situation is

even better for the scheme (1), where ga,(X) has the form ga,(X) = Z a, Az? XP1: it
p>1
can indeed be shown from (25) that » = p 4 ¢ + 1 for all non zero terms in (53), as one
could guess from (8).
On the opposite, when ¢o(0) # 0, obtaining the coefficients of the low-order derivatives
in the modified equation is not as simple. Consider for instance the equation w;, =
aw — cw,, approximated using the explicit scheme:

n+1 n n n
Uy Y n Uy — Uy
- @@ ¢ = S— _— 54:
Al YTOTTAG (54)
The substitution-elimination process of Section 1 is particularly tedious and lengthy
in this case (see e.g. [3, 4]). Up to first order in Az and At, one obtains the following

expansion of the modified equation:

a’ At cAx ANt

2 2

U = AU — Cly — U+ acAtu, + ( ) Upr + O(Az, AL)? (55)

!Notice that, in contrats with what is usually claimed (see e.g. [2, 9]), the relation ga,(0) = 0 does
not necessary follow from the consistency of the numerical scheme as soon as ¢go(0) = 0. For instance,

when ¢o(X) = —cX, i.e. for the wave equation, the (somewhat strange) scheme:
+1
u;l —uj _ (1+ Aajz)u? —uj_4
At Az
is consistent in the usual sense (see Remark 1 or the proof of Lemma 1), but it satisfies ga,(0) = —cAx.
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whereas the expansion up to second order in Az and At yields:

a’At  aPA?
Ut = QU — CUy — ( 5~ 3 ) u -+ (acAt - achtZ) Uy
A AL Az At
(C N wear T) (56)

AAtAx  SA?
2 3

— ) Upew + O(Az, A1) .

We therefore see that the coefficients of each derivative (including the “zero-th order
derivative”) is influenced by a further expansion of the modified equation (and this is
confirmed by the expression (25), which for instance shows in this case that fy,0 # 0
for all ¢ in the expansion (53)). Thus, the elimination process is unable to give the full
coefficients of the first derivatives in the modified equation of the scheme (54), whereas
the expression of these coefficients readily follows from Proposition 1. Indeed, we have

FIX) = 4 log ll—l—At (a—c(#))] , (57)

and the coefficients ap, oy and ay in (12) are simply given as:

here:

B f”(())
= 5 ,

ag=F(0), ar=F(0), a (58)

so that a straightforward calculation leads to the following form of the modified equation:

Uy =

log(1 4+ aAt) c N l cAx AL
At T Tqaat T2\ 11 aAt (Ltanrp)
(59)

2ALA SAL?
(C 2 * — ¢ 3 ) Urzrr ‘I’ O(Ax,At)S R

where the rest O(Az, At)* now involves only the third and higher order derivatives of w.
This shows therefore another advantage of the method presented in this paper: (59) gives
the complete form of the first derivative terms in the truncation error.

5 CONCLUSIONS

We have presented a very simple method for the derivation of the modified equation of any
linear numerical method solving an evolution constant-coefficients linear partial differen-
tial equation. The method is much simpler than the usual technique, which derives the
modified equation through Taylor expansions by a lengthy substitution and elimination
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process. The modified equation can be explicitly derived using our method for any linear
scheme involving two time levels, in any space dimensions and for various time integration
methods, either by hand or using a computer system for symbolic algebra.

As a conclusion, it is useful to summarize our method by exhibiting its relation with
the Von Neumann stability analysis. The above method is indeed as simple as, and
very close to the method for evaluating the amplification factor in the stability anal-
ysis: inserting u = G(1£)"e¥¢2% in the scheme (10), one obtains with our notations

G(i€) =1+ At ga,(i€), that is:

. . . log|G(2
G(i€) = exp (ALF(i€)) or F(i&) = w : (60)
These relations, which hold more generally for all linear numerical methods examined in
the previous sections, summarize our “recipe” for deriving the modified equation. Note
also that they imply the known fact that |G(i£)] < 1 for all £ (i.e. the scheme (10) is

stable) if and only if the coefficients of the modified equation satisfy:

S (=1 gk <0 forall € in IR . (61)

k>0

REMARK 7: After completion of this work, we were made aware that Chang [2] al-
ready noticed that the modified equation can be obtained from a function F satisfying
AU — 1 4 At gaz(2€). Chang rigorously proved the existence of such a function F un-
der the restrictive assumptions that go(0) = ga,(0) = 0. But he used the existence of F
for analysis purposes only, and not as a practical tool for deriving the modified equation,
which he still constructed using the elimination method. e
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