
Correctness properties in a control-parallelextension of FortranGilbert Caplainseptembre 1994N o 94-29

Correctness properties in a control-parallelextension of Fortran1Gilbert CaplainCERMICS, Ecole Nationale des Ponts et Chauss�eesF{93167 Noisy-le-Grand CedexAbstractWe study a correctness property of programs in a subset of Fortran X3H5, a control-parallelextension of Fortran. This property is a semantic equivalence between a parallel program andits sequential version. We present an extended version of the correctness property outlined inthe CERMICS report 93-18 [2].Propri�et�es de validit�e dans une extension�a parall�elisme de contrôle de FortranR�esum�eNous �etudions une propri�et�e de validit�e dans un sous-ensemble de Fortran X3H5, une ex-tension �a parall�elisme de contrôle de Fortran. Cette propri�et�e est une �equivalence s�emantiqueentre un programme parall�ele et sa version s�equentielle. Nous pr�esentons une version �etenduede la propri�et�e expos�ee dans le rapport de recherche CERMICS no 93-18 [2].1This work was supported by the French Department of Research and Industry, Contract no 90 S 0961,and developed within a project undertaken together with Ren�e Lalement and Thierry Salset (same address).I am grateful to both of them for helpful comments.

Contents1 Introduction 32 The language studied 32.1 A subset of ANSI X3H5 : 32.2 Execution model : 52.3 Serial semantics. The notion of semantic equivalence : : : : : : : : : : : : : : : : : : 73 Execution predicate 84 Precedences 94.1 Control precedence : 94.2 Precedence formula : 114.3 Synchronization precedence : 125 Dependences 146 Some preliminary results 146.1 Conservative approximations of predicates : 156.2 A lemma about execution predicates : 156.3 A notion of time step : 176.4 Notion of indirection order : 197 The theorem of semantic equivalence 198 Possible extensions 259 Conclusion 27
1

2

1 IntroductionIn [2], we studied conditions for correctness of parallel programs written in some parallel extension ofFortran. The parallel language we studied is a subset of Fortran-X3H5 [3]. We provided correctnessproofs under some restrictions, and showed how to apply these properties to e�ectively check thecorrectness of parallel programs in a whole range of cases.The aim of this paper is to extend these correctness results, and to make them more precise.The extension we consider mainly consists in allowing dynamic variable reference and dynamic loopbound evaluation, i.e. variables (other than loop indices and program parameters { see below) insubscript lists of arrays and in loop bounds.We begin with an outline of the language subset we study. Then, we set up the correctnessproblem : a parallel program and its sequential version, that we de�ne, must have the sameobservable behavior (semantic equivalence). Afterwards, we describe the precedence and dependencerelations, emphasizing the di�erences brought by the \dynamic" extensions considered here.Then, after deriving a few preliminary results, we prove our main theorem of semantic equiv-alence : assuming the preservation of dependences (along the well known \dependence impliesprecedence" pattern) as de�ned on the sequential version, and a few other assumptions dealingwith the sequential version too, we derive the semantic equivalence property for any possible runof the parallel program being considered.Finally, we give some hints towards possible extensions of these results.Although we consider a parallel extension of Fortran, these correctness results could straight-forwardly be extended to other parallel languages, however restricted along the lines we mention.2 The language studied2.1 A subset of ANSI X3H5The language we study is a subset of Fortran{77 extended by a subset of the X3H5 parallel con-structs. The extensions we include are the combined parallel and worksharing constructs paralleldo and parallel sections, and the event explicit synchronization (post/wait pairs) ; insidea worksharing construct, the new statement may be used. We do not consider the more generalparallel regions, nor the mutual exclusion mechanisms (structured critical section and un-structured lock synchronization), and the scommon statement. On the sequential side, we havestructured ifs and do loops, assignment, scalar and array references ; we exclude goto, procedurecall, data, equivalence and save statements.A detailed speci�cation of an abstract syntax for this subset has been given in [2].We allow for parameters under the form of scalars (or possibly arrays) that are not written.Thus, in our framework, a program in fact represents a \class of programs", di�ering from oneanother by the values of parameters.A program instance is obtained from a program by assigning constant values to the param-eters.Let us remind that loop indices cannot be written either.In what follows, parameters and loop indices will not be termed as \variables". A variable isa memory location other than a location assigned to a loop index or a parameter. A (variable)reference is a syntactic element pointing to a variable. For instance, in the statement :3

A = B(I)where B is not a vector of parameters, \A" and \B(I)" are variable references ; if I is a loopindex and this statement happens to be executed for I = 3, then, in this statement execution, thereference \B(I)" points to the variable B(3).In [2], some staticity conditions were assumed : subscript expressions in array references didnot involve variables, but only parameters and indices of enclosing loops (staticity of variablereferences) ; loop bounds did not involve variables either (loop staticity). Here, our subset languagewill be extended : we will consider programs in which variables are allowed in loop bounds as wellas in subscript expressions, however with a restriction : we retain the static reference assumptionfor event array references involved in wait statements.As regards the loop bounds, and consistently with the Fortran usage, we assume that theseloops are evaluated at the loop entry, and not reevaluated at every iteration.Loops are normalized, i.e. their increment is set to 1.Our language subset allows for explicit private variables (statement new). In [2], we describedin detail how these variables should be dealt with, especially as far as dependences are concerned.In what follows, we will not speci�cally consider these variables ; the extension of our results incase new variables are involved, would be straightforward.SynchronizationsWe consider a mechanism for explicit synchronization : the use of events. An event has one oftwo de�ned values : cleared and posted. Unde�ned when created, an event gets a value by one ofthe statements post and clear. The wait statement, when reached, tests the value of its event,continues if this value is posted, and repeats this step at a later time otherwise. In our languagesubset, only post and clear statements modify the value of events.In this paper, we will not consider ordinal synchronizations, but our results can be ratherstraightforwardly extended so as to contain them. Let us just mention that, in such an extension,an ordinal post virtually contains a wait, and would therefore be concerned by the restrictionsassumed here for the waits.In the parallel sections construct, our language subset provides for the possibility to specify,in a section header, that this section shall wait for one or several (lexically previous) speci�edsections to complete execution (this is the section wait feature). In this paper, and contrarily tothe point of view adopted in [2], it appeared convenient to treat these section waits as ordinarywaits : more precisely, in the developments presented here, every section wait clause will be treatedas though it were replaced by post/wait pairs so as to preserve the semantic properties we arestudying. It is straightforward to prove that this is possible ; moreover, in these post/wait pairsintroduced thus, the event references are static.Notion of statement instanceFor the sake of convenience, in what follows, the statements we will consider will be only simplestatements, not structured ones. Correlatively, we will consider as statements not only executablestatements in the usual sense, but also such features as : heads and ends of loops and parallelconstructs, ifs and endifs. 4

Considering loops leads us to de�ne a notion of statement instance. To every statementin the program, we will associate a set of statement instances, every instance corresponding to apossible execution of the statement, in such a way that two conditions are met : the set of statementinstances associated to every statement is de�ned statically ; a statement instance is executed atmost once in a given run (obviously, whether it is executed or not is not de�ned statically).To every statement in the program, will be associated a (possibly empty) index vector, everycomponent of which takes its values in the set of rational integers. A statement instance will thenbe obtained by assigning an integer value to every component of the index vector. The index vectoris recursively de�ned as follows. Let a be a statement :� If a is not contained in a loop, its index vector is empty : then, a generates one statementinstance.� If a is contained in a loop, let c be the header of the innermost loop containing a. Let idenote the index vector of c. The index vector of a is then obtained as the concatenation ofi and a component j, denoted i ::jThus, through the latter rule, every (executed or not) instance c(i) generates an in�nite (onboth sides) sequence of instances a(i ::j)Through this formalism, a statement contained in a loop generates a countable in�nity ofstatement instances but, in any given run, only a �nite number of them will come to be executed.2.2 Execution modelLet us outline the execution model of our language subset, as regards the process control. (Asregards variables, some features of the execution model will be outlined in Section 6, when weintroduce the notion of time step.)� The program execution begins, from the program start, with an initial process.� A process runs until one of these circumstances occurs :- it reaches the end of the program (normal termination { this may occur only to theinitial process) ;- it encounters a wait ;- it encounters a parallel construct ;- it encounters the end of a parallel construct.� When a process encounters a wait, it evaluates the event this wait statement instanceinvolves :- if the event is posted, the process continues ;- if it is not, the process repeats this step at a later time.� When a process encounters a parallel construct, it becomes the base process for this construct.This parallel construct speci�es a number of units of work : each iteration of a parallel doand each section of a parallel sections is a unit of work. A team of processes is created.5

Every unit of work is then assigned to some process in this team, in some order. Thus, fromthis point on, every process will have one or several units of work in charge. (Since nestedparallelism is allowed, this de�nition of units of work and process teams operates recursively :a unit of work may give place to subunits, a process team member may become itself a baseprocess, and so on.)� When a process has completed the execution of a unit of work, the execution passes to thenext unit of work this process has in charge, if any (we will say that the next unit of work isloaded) ; if this process has completed the execution of all the units of work it had in charge,it waits for the other processes in the team to complete their work.� If and when all processes in the team have completed their work, that means that all theunits of work in the parallel construct have been executed. Then, the team is dissolved andits base process continues execution. (Only then, we will say that the end parallel do orend parallel sections is executed.)A waiting statement is a statement on which the control may come to a wait, till some conditionis met. In our language subset, the waiting statements are the wait, the end parallel do andend parallel sections, the wait clause of a section.A unit of work which is waiting for an available process will be said to be pending. Moreprecisely, as regards statement instances, the �rst instance in such a unit of work will be said to bepending at that time (we will see later why only the �rst)1.It is straightforward to prove that our language does not allow in�nite loops (remember theabsence of gotos and the fact that loop bounds are evaluated once at the loop entry). All programscome to an end, either a normal termination, or a deadlock.A deadlock necessarily involves a wait statement the event of which persistently remainsunposted. In the (usual) case when this wait is located within a parallel construct, a deadlocksituation may be described as follows :� one or several wait statement instances are reached but not executed ; so, the correspondingunits of work remain uncompleted ;� as a consequence, the execution of the parallel construct cannot be completed ;� as a possible consequence too, some parallel units of work do not begin execution because theyare assigned to a process after a deadlocked unit of work, though they would be \executablein principle". The �rst statement instance in each of these units of work is thus \persistentlypending".� in case of nested parallel constructs, a deadlock in an inner construct brings similar deadlockfeatures in an outer construct.A parallel construct may have the ordered condition. The meaning of this condition dealswith the way units of work are assigned to the team of processes created when the execution arrives1In case such an instance is a wait, we will say that it is pending as long as it is not loaded ; it gets reached assoon as it is loaded, and waiting if its event is not posted yet.6

to the parallel construct. If this construct is ordered, this assignment is done sequentially : in theindex ordering for a parallel do, in the section ordering for a parallel sections. Otherwise,the assignment may be done in any order.As a consequence, in case a parallel construct is ordered, the order in which units of workare assigned to some process is necessarily compatible with the index or section ordering. In otherwords, no unit of work is assigned to some process after another unit of work whenever the formerunit ranks before the latter in the sequential order. As a matter of fact, this property of theordered condition will be su�cient for the proofs we will give, though the X3H5 proposal for theordered condition is more exacting.2.3 Serial semantics. The notion of semantic equivalenceBy de�nition, the sequential version of a parallel program is the result of the transformation ofparallel do into do, the deletion of parallel sections, section and end parallel sectionsstatements, the substitution of new names for names speci�ed in new statements within their scope(this last point has been expanded in [2]), and the disabling of post, wait and clear statements :by \disabling", we mean that, in the sequential version de�ned here, they will function like ordinarycontinue statements, but we retain the possibility, in the following developments, to keep trackof them, allowing ourselves to consider what occurs to event references as though they were indeedaddressed in a sequential run.In the framework we are considering here, the intended observable behavior of the parallel pro-gram is that of its sequential version, whose semantics is (admittedly) well-de�ned. The existenceof a serial semantics is a rather peculiar requirement which does not necessarily hold in any studydealing with parallel programs. For instance, the full X3H5 extensions allow to write a parallelprogram to search one possible solution to a constraint problem by proceeding in several directionsat once, and stopping as soon as one solution is found. Such a program gives non-deterministicoutputs and is not required to �nd the same solution as its sequential version (of some kind whichremains to be de�ned for the full language).Thus, in our framework, a correct parallel program can be seen as some kind of parallelizationof a sequential program, and not as a genuine parallel program. The improvement sought throughthe parallelization, in this context, lies only in the ability to run the program faster, by allowingseveral statements to be executed simultaneously, on several available processors.Our aim is to prove the correctness (or lack thereof) of a parallel program, in that sense.We would like to show that all variables coming to be computed must, in both versions, undergothe same computations and, therefore, display the same values.It is easy to prove (by a recurrence along the run of the sequential version) that this semanticequivalence requirement we are considering can be expressed as follows :� any statement instance executed in any parallel run is also executed in the sequential version,and conversely ;� any variable reference used by that statement instance as input points to the same variable,and that variable has been computed by the same other statement instance, in any parallelrun as in the sequential version. 7

To be more accurate, these properties imply the semantic equivalence under the extra conditionthat, in the sequential version, any variable used as input in a statement instance has been computedpreviously. (in other words, the sequential program does not use the random values the memorylocations may contain when allocated to the program at the beginning.) In our framework, thisdeterminacy condition will be considered as a prerequisite for correctness of the sequential version,assumed in our results.Checking the semantic equivalence, especially as regards variable computations, boils down tochecking that race conditions are avoided. Whenever two statement instances involve the samevariable location, at least one of them modifying (i.e. writing) it, we will say that they are ina dependence relation. Then, we will have to check that the program control structure and thesynchronizations preserve the order in which these statement instances will be executed { along thewell known \dependence implies precedence" pattern [1].3 Execution predicateAs long as we have not proved that there is no memory conict between parallel processes, it is notpossible to assume that an expression may be evaluated to a well-de�ned value. When the programis shown to be correct, the value of an expression in a statement instance is the value computed bythe sequential version.For every statement a, indexed by the (possibly empty) index vector i, we would like to use apredicate Exe(a(i)) meaning that the statement instance a(i) is executed. In the case of a waitingstatement (e.g. a wait), \being executed" will mean \being passed". An important fact must bepointed out: Exe(a(i)) is not \well-de�ned" in the sense that it is not de�ned through a formulainvolving only i and the program parameters. This predicate depends on the speci�c run of theprogram, and it should be used only when it is su�cient to know that it is \run-time de�ned",more accurately run-time valued.In order to avoid this problem, we will be interested in the condition Exes for a statement tobe executed in the sequential version. It is well-de�ned and its expression is rather straightforwardfor our language subset : it involves the boolean expressions of the embedding if statements andthe bounds of the embedding loops. Since arbitrary variables may occur in these if and loopstatements, this condition Exes depends on the whole data environment.For a statement a and an index vector i such that the instance a(i) is executed (in the sequentialversion), we may consider the environment curr env@a(i) in which the execution of a(i) takes place.So, for any expression exp which happens to be evaluated through the execution of statement a,its value [[exp]]@a(i) is de�ned as [[exp]](curr env@a(i)).Let us de�ne Exes(a(i)) when a is a statement of the parallel program, and i an index vectorfor a. Several cases have to be considered, depending on the nesting of a in a loop or in the bodyof a if statement. In case a is nested, we consider the innermost loop or if in the range of whicha is nested.� a is not contained in a loop nor an if: then, Exes(a) = true.� The innermost nesting of a is in an if statement c, of boolean expression c:bexp. Let i denotethe index vector of c and a :{ if a is in the then branch, Exes(a(i)) = Exes(c(i)) ^ [[c:bexp]]@c(i)8

{ if a is in the else branch, Exes(a(i)) = Exes(c(i))^ :([[c:bexp]]@c(i))� The innermost nesting of a is in a loop c of lower and upper bound expressions c:lb and c:ubrespectively. Let i denote the index vector of c and i :: j denote the index vector of a. Wethen have: Exes(a(i ::j)) = Exes(c(i))^ ([[c:lb]]@c(i) � j � [[c:ub]]@c(i))4 PrecedencesThe sequencing of parallel programs is speci�ed by the sequential subset of the language and bythe synchronization primitives. It is a partial order, as opposed to the complete precedence orderwe are used to in sequential programs. It will be expressed through a \precedence" predicate, andits de�nition is split into a sequential precedence and a synchronization precedence.We wish to de�ne a predicate Pre(a(i); b(j)), expressing that: \If a(i) and b(j) are both exe-cuted, then the overall parallel program structure (sequential control and synchronization) impliesthat a(i) is executed before b(j)".It may be of interest to notice that there may be several non equivalent predicates correctlyexpressing a precedence relation. This comes from the following fact : through a predicate Pre(a; b),we wish to express that \in case a(i) and b(j) are executed, the former is executed before the latter ;but we are not interested in what is expressed if one of these instances is not executed."Considering two statement instances � and �, for any predicate P correctly expressing that �precedes � in case both are executed, any other predicate Q such that :Exe(�) ^ Exe(�) ^ P) Q) (Exe(�) ^ Exe(�) ^ P) _ (:Exe(�) _ :Exe(�))also correctly expresses this. Then, among these possible precedence predicates, it may be suitableto choose one instead of another. In what follows, we will be able to express control precedencesthrough predicates not depending on the speci�c run of the program.This same multiplicity of correct predicates will also hold for dependences ; furthermore, itwill be straightforward to check that the \dependence preservation" property we will consider is(fortunately...) invariant by any change of correct predicates.4.1 Control precedenceThe control precedence predicate, hereafter denoted Pre0, expresses precedence relations as theyresult from the control structure of the program, without considering the e�ect of synchronizations.As mentioned above, we will give expressions of Pre0 which do not depend on the speci�c runconsidered { in fact, expressions independent of any variables.Calculating precedences on index vectorsIn order to express Pre0, we have to express the precedence orders between index vectors in loops,denoted �. We remember that loops are normalized.Let i be the loop index vector of a statement ; let k be the innermost index in i ; let j be the(possibly empty) \remaining" index vector, such that i is the concatenation of j with k ; we denotei = j ::k. 9

� If k indexes a do loop :(i1 � i2) = (j1 � j2) _ ((j1 = j2) ^ (k1 < k2))� If k indexes a parallel do loop :(i1 � i2) = (j1 � j2)� (Starting the recurrence :) If j is empty { let us denote [] the empty index vector {, then weset :([]1 � []2) = false ; ([]1 = []2) = trueNow, we can express Pre0. Let a and b be two statements such that a comes before b in the textof the program. We will give expressions of Pre0(a; b) in the di�erent cases. In what follows, we donot need to single out the special case when a and b are in two alternative branches of an if since,due to the above remark (on multiplicity of correct predicates), the part of Pre0(a; b) correspondingto mutually exclusive instances of a and b will be superuous.The case when a and b are not in the same parallel sectionsThis includes the case when there are no parallel sections in the program.� a and b are not in the same loop. Then :Pre0(a; b) = true ; Pre0(b; a) = false� a and b are in the same loop : a indexed by i :: j ; b indexed by i ::k ; j and k disjoint (i.e.indexing distinct loops).Then :Pre0(a; b) = (ia � ib) _ (ia = ib)Pre0(b; a) = (ib � ia)The case when a and b are in the same parallel sectionsWhenever several nested parallel sections contain both a and b, we consider the innermost ofthem.Let c be the head of this parallel sections, and i the index of c.� a and b are in distinct sections of this parallel sections :Pre0(a; b) = (ia � ib)Pre0(b; a) = (ib � ia)� a and b are in the same section :a indexed by i ::j ::k ; b indexed by i ::j :: l ; k and l disjoint.Then :Pre0(a; b) = (ia ::ja � ib ::jb) _ (ia ::ja = ib ::jb)Pre0(b; a) = (ib ::jb � ia ::ja) 10

Moreover : expression of Pre0(a; a)a indexed by i.Pre0(a(1); a(2)) = (i(1) � i(2))4.2 Precedence formulaTo obtain the overall precedence relation, we have to combine the control precedence Pre0 and thesynchronization precedence relations realized through post/wait pairs. These synchronizationrelations will be considered in a moment ; they will be denoted Syncs. Since Syncs will be de�nedreferring to the sequential version, this overall precedence relation we will consider, denoted Pres,will represent the precedence relations which would stand in the parallel program, assuming that allvariables involved in the de�nition of these relations get their \sequential" values. As a consequence,in all further derivations where the use of Pre would be expected, we will have to check the validityof using Pres instead of Pre.As another consequence of this de�nition of Pres, the precedence relation expressed by Presobviously holds in the sequential version. In other words, for any statement instances � and �executed in the sequential version, Pres(�; �) implies that � is executed before � in the sequentialversion.In order to obtain Pres, we have to compose Pre0 with Syncs. This composition is not exactlya transitive closure, as might be expected ; Pres(a(i); b(j)) and Pres(b(j); c(k)) do not implyPres(a(i); c(k)). Let us consider for instance :parallel sections (ordered)sectionp: post(E)sectionif (B)thenw: wait(E)elseA=1endifa: A=2end parallel sectionsWe see that p precedes w, and w precedes a, but p does not precede a, because the else branchmay be taken, and without waiting for E, a is then executed concurrently with p. We can onlystate: if w is executed, then p precedes a.So, instead of transitivity, we have \transitivity modulo Exes" :Pres(a(i); b(j))^ Exes(b(j))^ Pres(b(j); c(k))) Pres(a(i); c(k))The relation Pres will therefore be obtained, through this transitive closure modulo Exes alongpaths, and by disjunction between alternate paths, in a \conjunction in series, disjunction in par-allel" manner, from Pre0 and Syncs. The transitive closure within Pre0 is taken care of by the11

previously given expressions of Pre0. Therefore, the precedence paths to consider in order to obtainPres alternate Pre0 and Syncs links, in the following way :�! �1 !1 ! �2 !2 ! : : :! �n !n ! �;where ! denotes the Pre0 relation, �i denotes a post, !i denotes a wait, and denotes thesynchronization relation Syncs. (In the special case when � is a post and/or � is a wait, we mustalso consider paths described by the above formula where \�! �1" is replaced by \� = �1" and/or\!n ! �" is replaced by \!n = �", respectively.)The corresponding computation of Pres will be realized through relations such as:Pre0(�; �1) ^ Exes(�1) ^ Syncs(�1; !1) ^ Exes(!1) ^ Pre0(!1; �2)^: : :^ Syncs(�n; !n) ^ Exes(!n) ^ Pre0(!n; �)) Pres(�; �)4.3 Synchronization precedenceThe elementary synchronization precedence relation between a post and a corresponding wait ismuch less straightforward to consider than the above Pre0.The �rst di�culty stems from the fact that we allow dynamic variable reference in post andclear statements. If we wished to consider synchronization relations in a parallel run of theprogram, we would meet the same problems of \unde�nedness" we have met above for the executionpredicate Exe.Therefore, as mentioned above, we will consider the synchronization precedence relation Syncs,corresponding to the synchronizations which occur provided that the variables involved in the eventreferences get their \sequential" values.The second di�culty is of a di�erent nature. Through a predicate Syncs(�; !), between a postinstance and a corresponding wait instance, we wish, here again, to express that \if � and !are both executed, then necessarily � is executed before !.". This supposes that no other postinstance � is susceptible to trigger the execution of !, by posting the same event. Indeed, in caseseveral non mutually exclusive post statement instances will seem able to trigger the execution ofone wait statement instance, no precedence relation will be guaranteed between any one of theseposts and this wait, and the case will be intractable within our \precedence" framework. (Noticethat, conversely, one post may very well post to several waits : this brings no problem in ourframework.)To the extent that one and only one post statement instance should be able to trigger a waitstatement instance, it is suitable to require that a clear statement instance, dealing with the sameevent, not be in a race condition with this post, nor with this wait.We will express these restrictions through two assumptions, which are not independent, dealingwith the use of synchronizations. These assumptions are rather general ; they will be su�cientfor the theorem we will prove later. However, they presuppose that the synchronization relationsSyncs are given, which is a weakness for two reasons : we do not provide a general expression ofthese relations Syncs ; moreover, these two assumptions contribute to the very existence of thesesynchronization relations, which brings a circularity.Afterwards, however, we will give expressions of Syncs and of these assumptions in a restricted(but still rather general) case. 12

Assumption S1 (No race condition between post/wait and clear) Consider a clearstatement instance �, and a post or wait statement instance !, both executed, and involving thesame event variable ", in the sequential version of a program instance. � and ! must be related in aprecedence relation Pres. Furthermore, in case ! is a wait instance and this precedence Pres goesfrom � to !, Pres(�; !) must be obtained without using a synchronization in which ! participates,i.e. through precedence paths ending with a Pre0 link, not with a synchronization link involving !.Comment This assumption seems obviously reasonable. Strangely, it does not seem to be arequirement of the X3H5 proposal. Basically, it boils down to a \no race condition" requirementinvolving event variables, if we consider thatwait statements read, and post and clear statementswrite such a variable.Assumption S2 (Ensured precedence from post to wait) Supposing Assumption S1, con-sider a wait statement instance executed in the sequential version of a program instance. Thereis at most one post statement instance �, executed in this sequential version, meeting the followingconditions :� � and involve the same event variable " in this sequential version.� there is no clear instance �, executed and involving " in this sequential version, such thatthe precedences Pres implied by Assumption S1 are from � to � and from � to .� we have not Pres(; �).Comment This expresses that at most one post statement instance is susceptible to triggerthe execution of the wait instance.We will now give expressions of these assumptions under a restriction : we will consider the casewhen the precedence relations referred to in Assumption S1 are control precedences Pre0, and notmerely generalized precedences Pres. First, let us introduce a few notations. For any post, wait orclear statement instance executed in the sequential version, we denote ["]S the event variablereference involves in the sequential version. The relation � between event variable referencesmeans that they refer to the same event variable.Under the mentioned restriction, Assumption S1 can be expressed thus :For any clear instance � and any post or wait instance ! :Exes(�) ^ Exes(!) ^ (["�]S � ["!]S)) Pre0(�; !) _ Pre0(!; �)Under Assumption S1 thus restricted, Assumption S2 can be expressed as follows. For a postinstance � and a wait instance , let us de�ne a predicate Sync? as follows :Sync?(�;) = Exes(�) ^ Exes()^ (["�]S � ["]S) ^ :Pres(; �)^(8clear instance �;Exes(�) ^ (["�]S � ["]S)) Pre0(�; �) _ Pre0(; �))Sync?(�;) expresses that � is susceptible to trigger , in our sense.13

With this notation, and still under restricted Assumption S1, Assumption S2 can be expressed asfollows : for any post instances �i and any wait instance :Sync?(�1;)^ Sync?(�2;)) �1 = �2in which case Sync? indeed expresses the synchronization relation Syncs we were looking for.The restriction we have just suggested { the required control precedence between event clearingand event use { seems to match a \sound" programming style, in which synchronization pairs arerequired to be rather clear-cut. On the other hand, it somewhat restricts the interest of allowingdynamic variable reference in post and clear statements.It is important to keep in mind that these assumptions, under both the \general" and the\restricted" forms, refer to the semantics of the sequential version and do not depend on somespeci�c parallel run.5 DependencesThe reader may refer to [2] for the formal calculation of dependences. Let us just make a fewreminders and further remarks.Considering two statements a and b, indexed by i and j respectively, a predicate Dep(a(i); b(j))will express that : \in case a(i) and b(j) are both executed in the sequential version, in this order,then they both access one same memory location, at least one of them writing it".The reference to the sequential version is crucial here, because we will always be interested inthe preservation, in the parallel version, of dependences as they appear in the sequential version. Inother words, the \dependence implies precedence" condition must be interpreted as : \dependence(as appears in the sequential version) implies precedence (ensured in the parallel version)" Thisfeature is quite classical, and we already considered it in [2].However, extending the de�nition of dependences to �t our dynamic variable reference assump-tion, i.e. the possibility for subscripts to contain variables, brings an extra point which must beemphasized : inputs in an assignment are not only variables involved in the right-hand side, butalso variables involved in the left-hand side subscript, if any. (This also holds for event arrays).Mainly due to this dynamic reference feature we are introducing, it will often be impossible tospecify exact dependence relations statically. Then, we will have to seek a conservative approxima-tion of these dependences, i.e. an approximation from above, as we will see below.6 Some preliminary resultsThe dependence preservation requirement (introduced in [1]) can be expressed as follows:If two statement instances a(i) and b(j) are in a dependence relation Dep(a(i); b(j)){ which implies that a(i) comes before b(j) in the sequential version {, and if bothinstances are executed, then the parallel program structure must ensure that a(i) isexecuted before b(j).Using the predicates we have introduced: for all statements a and b and for all parallel execu-tions, Exes(a) ^ Exes(b) ^ Dep(a; b)) Pres(a; b)14

The aim of this requirement is to avoid race conditions : situations when the value received by avariable depends on which of two concurrent statement instances happens to be executed �rst.Before proving our theorem in the next section, we will derive some preliminary results.6.1 Conservative approximations of predicatesIn many cases, it will be impossible (even in principle, sometimes) to statically produce exactexpressions of the predicates involved here. This is mainly due to the dynamic variable referenceand loop bound speci�cations we are introducing here. Then, we will have to seek conservativeapproximations of these predicates, i.e. approximations such that the use of them, instead of theunknown exact predicates, will never lead us to give a positive conclusion when the preservationproperty is not met { but may lead to a \don't know" answer in some cases when the property isindeed true.The direction of the above implication makes clear the kinds of approximations which will beconservative : these will be approximations from above for Exes and Dep, from below for Pres :we will then consider predicates Exes?, Dep? and Pres? such that Exes) Exes?, Dep) Dep? andPres?) Pres, respectively meaning that \a statement instance may be executed", \a dependencemay exist" and \a precedence must exist".The computation of a Pres relation involves predicates Pre0, Syncs and Exes, through \transitiveclosure modulo Exes along paths", as we have seen before. Pre0 will be rather easily computable ;Syncs is very vulnerable to any approximation. So, approximating Pres from below may involveapproximating Exes from below, by a predicate Exes? such that Exes?) Exes ; and considering onlysome of the precedence paths.6.2 A lemma about execution predicatesIt will be useful to derive in which cases, and in what sense, the execution of some statementinstance � in a parallel run, strictly depends on the execution of some statement instances � suchthat Pre0(�; �). This will be the object of the following lemma :Lemma 1 Considering a parallel program, for any run of this program, and for any statementinstance � of any statement except the �rst one, the condition, denoted (�), for � to be reachedor pending, is fully determined by the execution of one or several statement instances � such thatPre0(�; �). All or some of these instances � are speci�ed independently of the run considered ; theother ones, if any, are speci�ed by the execution of the former.As for the execution of �, we are in one of the following cases :� � is an instance of the �rst statement in a parallel do or in a section of a parallelsections : then, (�) expresses the condition for � to be executed or persistently pending ;the latter possibility may occur in case of a deadlock.� � is an instance of a wait w : then, (�) expresses the condition for � to be reached (or thecondition for � to be reached or pending, in case w is both a wait and the �rst statement ina parallel construct body). Under this condition, however, � may be persistently waiting (orpersistently pending), instead of �nally executing, in a deadlock situation.� In all other cases, Exe(�) = (�). 15

Proof : We will refer to the previously speci�ed execution model. We will successively examineall possible cases in our language subset.We consider some statement instance �, an instance of a statement a other than the �rst one.� a is a wait : then, in all interesting cases, it is not true that the execution of � depends oninstances preceding � Pre0-wise. But the condition for � to be reached { not meaning that itis executed { will conform to everything we will derive now, as shown by �ctively inserting acontinue statement just before the wait statement, and considering which of the followingcases this continue statement �ts in.� a is the �rst statement in a parallel do body : then, let c be the loop header ; let j bethe (possibly empty) index vector of c and j ::k be the index vector of a. For any instance� = a(j ::k) to be executed, it is necessary that the corresponding instance c(j) be executed ;conversely, the execution of c(j), through the evaluation of its loop bounds, fully characterizeswhich instances a(j ::k) are reached or pending. Thus, (a(j ::k)) is fully characterized by theexecution of c(j) ; and we have Pre0(c(j); a(j ::k)). However, an instance a(j ::k) such that (a(j ::k)) may be persistently pending instead of �nally executing, in deadlock situations.� a is the �rst statement in a section body, within a parallel sections construct : then,let c be the parallel sections header ; let j be the (possibly empty) index vector of a andc. For any instance � = a(j) to be reached or pending, it is necessary and su�cient that c(j)be executed. So, (�) fully depends on other statement instances which precede it Pre0-wise.However, there again, � may be persistently pending, in deadlock situations.At this point, we have just examined the three cases when the execution of a statement instanceis not fully determined by the execution of statement instances which precede it Pre0-wise. However,such a full determination will stand for a wait instance to be reached { not meaning that it willbe executed { ; for an initial instance in a unit of work to be executed or pending { not meaningthat it will �nally be executed { ; and for an initial instance in a unit of work which happens to bea wait, to be pending or reached { not meaning that it will �nally get reached, or executed.Now, let us examine the other cases.� a is a end parallel sections. Then, let c be the corresponding head of the parallelconstruct, and j the index vector common to c and a. The execution of a(j) is fully determinedby the execution of the statement instances which end all the units of work in the parallelsection. All these instances precede a(j) Pre0-wise. They are speci�ed independently of therun.� a is a end parallel do. Then, let c be the corresponding loop head and j be the index vectorcommon to c and a. Then, the condition for a(j) to be executed is that c(j) be executed andthat, in case the index range is not empty (a circumstance determined by the execution ofc(j)), the statement instances which end all the parallel units of work be executed. All theseinstances precede a(j) Pre0-wise, and are speci�ed by the execution of c(j).� a is the �rst statement in a do loop body. Let c be the loop head, j be the index vector of cand j ::k be the index vector of a. Then, the execution of c(j) fully determines the range ofvalues of k which will be considered, and for any of these values k, the condition for a(j ::k)16

to be executed is the execution of c(j) and (for the iterations other than the �rst) of the laststatement instance in the loop body corresponding to the previous iteration. Both statementinstances precede a(j ::k) Pre0-wise, and the latter is speci�ed by the execution of the former.� a is a end do. Then, let c be the corresponding loop head and j be the index vector commonto c and a. Then, the condition for a(j) to be executed is that c(j) be executed and that, incase the index range is not empty (a circumstance determined by c(j)), the last loop bodyinstance (speci�ed by the execution of c(j)) be executed. Both statement instances precedea(j) Pre0-wise.� a is the �rst statement in the then or else part of a if. Let c be this if. The execution ofan instance of a is fully determined by the execution of the corresponding instance of c.� a is a end if. Let c be the corresponding if, and j be the index vector common to a andc. The condition for a(j) to be executed is the execution of c(j) and the execution of someinstance { ending the then part or the else part { speci�ed by the execution of c(j). Thesetwo instances precede a(j) Pre0-wise.� The remaining case is the most straightforward : a has an immediate predecessor b, of sameindex vector j, and the condition for a(j) to be executed is exactly that b(j) be executed.JThis lemma derives its main interest from the previously mentioned observation that Pre0is independent of the speci�c parallel run considered, contrarily to Sync. Its meaning can besummarized as follows : with the exception of the wait statements and some other ones susceptibleto be pending, the fact that some statement instance is executed in some run of the programdepends upon statement instances which are bound to execute before it (by the control structureof the program), and not just upon statement instances which merely happen to execute before itin some run being considered, as implied by plain causality.6.3 A notion of time stepIn order to derive our main result in the next section, we need to introduce a notion of time step.This will be the object of the following result :Discretized time step lemma : Considering a parallel program, for any run of this program, weassume the three following properties :i. For any statement instance � executed in this run, there exists a time lag]t�; t0�[(of physicaltime), with t0� > t�, within which the execution of � takes place.ii. For any statement instances � and � executed in this run, if Pre(�; �), then t� � t0�.iii. Whenever the execution time lags of two statement instances � and � overlap and � outputsa variable x which is an input of �, the value computed by � is not available as input for �.To every statement instance � executed in this run, may be associated a positive integer �(�),called the time step of execution of �, with the following properties :17

1. �(�) nondecreasingly depends on t�.2. For any two statement instances � and � executed, whenever Pre(�; �), we have �(�) < �(�) .3. � is causally de�ned, i.e. �(�) depends only on the execution time lags of � and the instancesbeginning execution before �.4. Computational causality : for any statement instances � and �, a value output by � cannotbe used as input by � unless �(�) > �(�).Comment : Before proving this lemma, let us mention that (iii) is implied by the execution modelassumed in the X3H5 proposal [3]. This lemma, and the theorem to follow, would not hold withina di�erent execution model in which a shared memory location could receive a value as soon as thisvalue is computed. We must also mention that, consistently with our de�nition of the \execution"in case of a wait instance, the execution time lag of such an instance does not contain the waitingtime ; it does not begin before the involved event has been detected to be posted.Proof : Considering a run of the parallel program, let us rank the (�nite) set of statement in-stances � executed in this run, in the increasing order of the initial times t�. In case several initialtimes are equal, we rank the corresponding instances arbitrarily. The sequence of instances ob-tained thus will be denoted �1; �2; : : :�N . For convenience, the execution time lag for �i will bedenoted]ti; t0i[.The time step function � will be de�ned by the following procedure :1. Set �(�1) = 1 and i = 1.2. For integers j following i, if any, such that �j exists and tj < min(t0k j i � k < j), set�(�j) = �(�i)3. If the sequence of instances � is not exhausted yet, let j be the index of the �rst remaining�. Set �(�j) = �(�i) + 1 ; set i = j and go to [2.].It is straightforward to check that the function � thus de�ned meets the required properties :we notice that instances associated to the same time step have execution time lags which mutuallyoverlap : hence, (iii) implies the computational causality feature ; moreover, any two instances theexecution time lags of which are disjoint { especially, any two instances which are in a precedencerelation Pre { have di�erent time steps. JAs far as program semantics will be concerned, statement instances associated to the same timestep will be considered as though they executed \at the same time". Thus, for convenience, we willsay that \some statement instance executes at some time step". The causality features (properties3 and 4) are crucial here : they ensure that the time step at which a statement instance is saidto execute does not depend on what may happen after this execution, and that the result of acomputation \made at some time step" is not available before the next time step.The reciprocal of the latter property is not true : having �(�) > �(�) does not imply that anoutput of � can be used as input by � (besides, the execution time lags of � and � may overlap).But we must point out that, under the execution model we are considering, this availability willstand if Pre(�; �) (provided, of course, that the variable is not computed again meanwhile).Let us emphasize that we will make use of the mere fact that a time step function exists ; wewill not need to be able to e�ectively compute it.18

6.4 Notion of indirection orderThe extension to dynamic variable references we are considering here makes it useful to introduce thenotion of indirection order. A variable reference will be said to be of indirection order 0 whenever itis a scalar or an array the subscript list of which involves only loop indices and program parameters.Thus, in [2], we restricted ourselves to considering references of indirection order 0.A reference will be said to be of indirection order n > 0 whenever it is an array the subscriptlist of which involves variable references whose indirection orders are less than or equal to n � 1,with equality for at least one of them.In everyday programs, the indirection order is seldom greater than 2.7 The theorem of semantic equivalenceWe will now derive our result of semantic equivalence. We will make use of Lemma 1 we havederived in the previous section, and Assumptions S1 and S2 dealing with synchronizations. We willalso use the notion of time step we have just introduced { therefore, we will assume the hypotheses(regarding the physical time lags of execution) of the discretized time step lemma.We will also assume another hypothesis, which may be termed as follows :Assumption A1 All parallel constructs in which there are synchronization statements (i.e. post,wait, clear statements and/or section wait clauses) are ordered.Comment This assumption, though not a requirement of the X3H5 proposal, is suggested init, as a hint towards \good" programming. It can easily be checked at compile time.A straightforward consequence of Assumption A1 deals with deadlocks. As we already know,a deadlock always involves a wait statement the event of which persistently remains unposted.When this wait occurs in a parallel construct (which is the usual deadlock case), it preventsthe completion of this construct ; it may then happen that some pending statement instances,i.e. instances waiting for an available process, turn out to be persistently pending. Now, underAssumption A1, this parallel construct is necessarily ordered ; hence, any persistently pendingstatement instance is ranked after some deadlocking wait statement instance, in the sequentialorder.Another simple consequence of Assumption A1 deals with section waits. The X3H5 proposalrequires that a section waiting for another section be lexically ranked after the latter. Under thiscondition, which can easily be checked at compile time, Assumption A1 implies that a section waitcannot trigger a deadlock. More precisely, a section wait can indeed be involved in a deadlocksituation, whenever some waited for section cannot complete, but such a situation can originateonly in an \ordinary" wait deadlock.A single process run is a run of the parallel program, obtained when there is only one processavailable. The X3H5 proposal requires that a compliant parallel program not deadlock whateverthe number of available processes. Therefore, a single process run should not deadlock.We will be interested in the \ordered single process run", de�ned as the single process run whichtreats all parallel constructs as if they were ordered. Under the assumption that this orderedsingle process run does not deadlock { an assumption in the theorem below { its behavior matches19

the one of the sequential version exactly, not only from the point of view of semantic equivalence,but also referring to the execution order of the statement instances. The only di�erence betweenthe sequential version run and the ordered single process run will be that, in the latter, events areindeed dealt with ; but, due to the assumed absence of deadlock, this does not bring any signi�cantbehavioral change. Hence we will refer to the ordered single process run as \sequential run" below.Theorem 1 Under the following hypotheses:i. Assumption A1 ;ii. Assumptions S1 and S2 ;iii. No deadlock in the ordered single process run ;iv. For all statements a and b, Exes(a) ^ Exes(b) ^ Dep(a; b)) Pres(a; b) ;the execution predicate Exe is well-de�ned and equals Exes, and the parallel program is semanticallyequivalent to its sequential version. Especially, no parallel run can deadlock.Proof : We consider a program instance, by giving values to the parameters. Then, there isonly one sequential run (in the sense de�ned above) of this program instance, whereas there aregenerally several possible runs of the parallel version. We consider one of them. We will �rst derivethe semantic equivalence extended to all statement instances executed in this parallel run and allvariables involved in them (points 1 to 4) ; �nally, we will prove that, conversely, all instancesexecuted in the sequential run are executed in this parallel run (point 5).1) We will consider the time step function associated to the parallel run we are considering.Let � be a time step such that the following recurrence assumption holds:Semantic equivalence up to time step � : for any statement instance � executedstrictly before � in this parallel run, � is also executed in the sequential run ; moreover,any variable reference involved in � as input (including the event references) points tothe same variable in both runs, and that variable underwent the same computations,due to the same statement instances, in both runs up to the point reached, in theparallel run, just before time step � .We wish to prove that this semantic equivalence extends to time step � . Considering that itobviously applies to the program start, that will ensure the semantic equivalence along all theparallel run.We have to show that, for any statement instance which happens to be executed at time step� , the semantic equivalence propagates to . First, we will prove that the semantic equivalenceextends to the inputs of , in case is not a wait (point 2), and in the special case when it is (point3). Then, we will easily show that the semantic equivalence extends to the outputs of (point 4).2) In case a statement instance , coming to be executed at time step � , is not a wait, according toLemma 1, the fact that is reached or pending (not implying that it is executed) is fully determinedby some statement instance(s) � such that Pre0(�;), and which have all been executed (therefore,before �). Due to the recurrence hypothesis of semantic equivalence up to time step � , these samestatement instances � execute in the sequential run, and identically determine that is reached or20

pending in the sequential run. Therefore, is executed in the sequential run (due to hypothesis(iii), no instance remains pending in the sequential run) : we have Exes().Let us consider some variable reference � used by as input. In order to ensure the semanticequivalence for this input, since we assume the semantic equivalence up to time step � , we justneed to rule out two possibilities :1. the possibility that the reference � in does not point to the same variable in the sequentialrun ; or, in case it does (let then x be the variable � points to in both runs),2. the possibility that the value of x used by as input is not obtained by the same computationsin both runs.We will �rst show, by a recurrence on the indirection order of �, that ruling out Possibility 1reduces to ruling out Possibility 2. Possibility 1 cannot arise if � is of indirection order 0, since sucha reference statically points to the same variable (i.e. memory location) in any run. Now, if � is ofindirection order n > 0, let us suppose that possibilities 1 and 2 have been ruled out for all inputsof of indirection order less than n. Then, the semantic equivalence extends to all such inputs,and especially to all variable references contained in the subscript list of �. Therefore, � points tothe same variable x in both runs, and it is then su�cient to rule out Possibility 2 for this input x.So, considering a variable reference � pointing to the same variable x in both runs, we have torule out Possibility 2 by making sure that the value of x used by as input has been similarlycomputed in both runs.Let � be the statement instance which computes the value of x used by as input in thesequential run. � exists, due to the determinacy condition. We will �rst show that Exe(�) andPre(�;), which will imply that � is executed in this parallel run before � . The recurrence hy-pothesis of semantic equivalence will then imply that x is similarly computed by � in both runs,and the precedence thus obtained will imply that this value of x is available as input for in theparallel run, unless some other computation of x interferes between � and , a circumstance thatwe will rule out afterwards.We have Exes(�) because it is � which computes x for in the sequential run; we have Exes()as we have seen ; we have Dep(�;) because � computes a variable used by in the sequential runon which Dep is de�ned. Therefore, according to (iv), we get Pres(�;). This is not su�cient forimmediately implying that � be executed before time step � , because we must remember that Presis de�ned referring to the sequential run. (We do not even know, as yet, whether � is executed atall in this parallel run...) However, a closer look will allow us such an implication, which will resultfrom the following, more general, lemma.Lemma 2 We assume the hypothesis of semantic equivalence up to time step � , and a statementinstance executed at � , as above. For any statement instance � such that Exes(�) and Pre0(�;),we have Exe(�) and Pre(�;). More generally, for any statement instance � such that Exes(�)and Pres(�;), we have Exe(�) and Pre(�;), with the following restriction : if is a waitinstance, the precedence Pres(�;) must be obtained without using a synchronization Syncs inwhich participates.These results also hold if we replace here by any statement instance executed before � in thisrun. 21

Proof (of the lemma). We will prove the result involving ; the latter extension will be straight-forward. After giving a preliminary remark, we will prove the part involving Pre0 ; then, we willderive the extension to Pres.Preliminary remark. In a deadlock situation, let � be a persistently waiting or pending statementinstance. No instance � such that Pre0(�; �) can be executed. This straightforwardly results fromthe execution model and the de�nition of Pre0.Considering Pre0. We straightforwardly have Pre(�;), because the control precedence Pre0 iscommon to all runs. Suppose that some instance � executed in the sequential run and such thatPre0(�;), is not executed in this parallel run (then, � is clearly not the �rst statement in theprogram : Lemma 1 applies to �). We will derive that, in this case, some other instance �1 suchthat Pre0(�1; �) is also executed in the sequential run but not in this parallel run, which will thenlead to a contradiction.In case � is not await, according to Lemma 1, Exes(�) depends on some instance(s) �i executedin the sequential run, and such that Pre0(�i; �), hence Pre0(�i;) (here, remember that, accordingto (iii), there is no persistently pending statement instance in the sequential run). Therefore, ifall these �i were executed in this parallel run, they would be executed before time step � , hencethe semantic equivalence, which would imply that � be reached or pending. So, in the parallelrun, the non execution of � would imply one of two things. Either all �i are indeed executed inthis parallel run but � is persistently pending, thus participating in a deadlock situation. Thispossibility is ruled out by the above preliminary remark : having Pre0(�;) would prevent frombeing executed, as it is assumed to. There remains the possibility that at least one of these �i isnot executed in this run : let it be denoted �1.In case � is await, there are two possibilities. If � is not reached, we apply the above reasoning,making use of Lemma 1, and similarly �nd a \preceding" �1. If � is reached, the fact that it is notexecuted means that there is a deadlock on �. This possibility is ruled out by the above preliminaryremark : having Pre0(�;) would prevent from being executed, as it is assumed to.Thus, assuming that � is not executed in this parallel run implies that some other instance, �1,preceding � Pre0-wise, is also not executed in this run, though it is in the sequential run.This argument may be repeated for �1 : thus, we would �nd an in�nite sequence (�0 = �, �1,�2,...) such that every �i would be executed in the sequential run and preceded (Pre0-wise) by thenext one in the sequence. This contradicts the simple fact that there are a �nite number of timesteps between the program start and any step it reaches, in any run2.Extending to Pres, with the mentioned restriction. Suppose that some instance � such thatPres(�;) and not Pre0(�;) is executed in the sequential run. Pres(�;) is realized throughsynchronizations, i.e., as previously explained, through one or several paths of the form:�! �1 or � = �1�1 !1 ! �2 !2 ! � � � ! �n !n!n ! where, again, ! denotes a Pre0 relation, �i denotes a post, !i denotes a wait, and denotesa synchronization link Syncs ; moreover, all the �i and !i are executed in the sequential run2In this reasoning, it is crucial to have Exes(�i), together with Pre0(�i+1; �i), to obtain the contradiction, sincethe ordering Pre0 is not well-founded (because of the in�nity of statement instances generated in loops).22

(remember the \transitive closure modulo Exes " involved in Pres). We have !n ! and not!n = because of the restriction we introduce : we exclude the case when is a wait instanceand participates in a relation Syncs involved in Pres.We have !n ! , i.e. Pre0(!n;) ; therefore, according to the �rst part of this lemma, !n isexecuted before time step � in this run. By upward recurrence, we will prove that all �i and !i,and �nally �, are executed before � in this run. Let us assume that !i is executed before � . Then,the recurrence hypothesis applies to !i and any variable involved in !i, i.e. in the event involvedin !i, "!i : all the past computations of "!i at and before the execution of !i are identical in bothruns. So, since Syncs(�i; !i), �i was executed in this parallel run before !i and posted this sameevent for !i, and we have Pre(�i; !i).Let us now consider the case i > 1 and derive the execution of !i�1. Since Pre0(!i�1; �i), andExes(!i�1), according to the �rst part of the lemma, !i�1 was executed before �i, hence before timestep � , in this run. Thus, we conclude that !1 is executed before � in this run. The above reasoningthen ensures that �1 too is executed before � in this run. Now, we have either Pre0(�; �1) (andExes(�)), or � = �1, which implies that � is indeed executed before � in this run ; furthermore, wehave Pre(�;), by transitive closure modulo Exe. JSo, having Exes(�) and Pres(�;), together with the fact that is not a wait, implies that �is executed in this run, and that Pre(�;). This is what we had to prove. Now, in order to con�rmthat the semantic equivalence extends to the input x of , we need to prove that, in the parallel run,the statement instance which computes x for is indeed �, and not some other statement instance� interfering between � and . � would execute before � , so that its output x would be availablefor ; so, due to the semantic equivalence hypothesis, � would execute in the sequential run too,after �, and compute the same variable x. Since � indeed computes x for in the sequential run,this would imply that � executes after in the sequential run. If this were the case, we would haveDep(; �), which, together with Exes(�) and Exes(), would imply Pres(; �). � executes in theparallel run before � , so the latter extension of Lemma 2 applies to � : noticing that � is not a wait(because it has an output), Exes()^Pres(; �) would imply Pre(; �), which would contradict thefact that executes no earlier than � .3) In case a statement instance , coming to be executed at time step � , is a wait, accordingto Lemma 1, the fact that is reached or pending (not implying that it is executed) depends oninstance(s) � such that Pre0(�;), and which have been executed, therefore before � . Due to therecurrence hypothesis, is also reached in the sequential run { and executed, because of hypothesis(iii). So, we have Exes().Let " be the event involved in in the parallel run. Due to the assumption of static referencein wait statements, this same event is also involved in the sequential run, and it is the only variableinput to . Due to the semantic equivalence hypothesis, all computations of " before � are identicalin both runs. Let � be the statement instance which last wrote the variable " in this past commonhistory. Since is executed at time step � in the parallel run, � exists and is a post (and not aclear).Let � be the statement instance which writes " for in the sequential run. Since is executed,� is a post and (�;) is a synchronization pair : we have Syncs(�;).We have to show that � is �. If this were not the case, Assumptions S1 and S2 would implythat, either Pres(; �) (then, � would execute after in the sequential run), or there would be a23

clear instance � involving event " in the sequential run, such that Pres(�; �)^Pres(�;). Let ussuccessively rule out these two cases.The case Pres(; �). Since � executes before � in the parallel run, Lemma 2 applies : noticingthat � is not a wait, Exes()^Pres(; �) would imply Pre(; �), which would contradict thefact that � executes before in this parallel run.The case Pres(�; �) ^ Pres(�;). Assumption S1 would furthermore imply that Pres(�;) isobtained without using a synchronization involving . So, according to Lemma 2, havingExes(�) and Pres(�;), with this restriction, would imply that � is executed before in theparallel run. Then, the fact that Pres(�; �) would imply a similar precedence in the parallelrun (due to Lemma 2 applied to �) : " would be cleared by � between � and in this parallelrun, which would contradict the fact that � is the last statement instance writing " before� .4) At this point, we have proved that, given the recurrence hypothesis of semantic equivalence upto time step � and a statement instance executed at � in the parallel run being considered, isalso executed in the sequential run and the semantic equivalence extends to all the input referencesof : any such reference � points to the same variable (denoted x) in both runs, and x containsthe same value, similarly computed, at the execution of , in both runs.This input equivalence implies that any output reference � of points to the same variable(denoted y) in both runs. To make sure that the semantic equivalence extends to the output yjust after time step � , it is su�cient to check that there is no conict, i.e. no dependence relation,among the statement instances i coming to be executed at time step � in the parallel run. Due tothe semantic equivalence of all input references, input variables and output references of these i,such a dependence would also stand in the sequential run, as a Dep relation, which, according to(iv), would imply a precedence Pres between two instances i, say Pres(1; 2). If 2 is not a wait,Lemma 2 applies : having Exes(1) and Pres(1; 2) would imply Pre(1; 2), which contradictsthe fact that 1 and 2 execute at time step � . If 2 is a wait involving an event reference", Dep(1; 2) means that 1 is a post or clear writing " (in both runs, due to the semanticequivalence of references). Then, Pres(1; 2) implies that 1 executes in the sequential run before2. However, we have just seen (point 3) that some post �, executing before � in this run (hencedistinct from 1), is the last statement instance writing " before 2, in both runs. So, � executesafter 1 in the sequential run. This contradicts the recurrence hypothesis, that " undergoes thesame computations, due to the same instances, in both runs up to the execution of �.5) We have thus proved that any statement instance executed in some parallel run is also executedin the sequential run, and that any variable involved in this statement instance undergoes the samecomputations (and therefore receives the same values) in both runs up to the last point reached inthis parallel run.There remains to prove that, conversely, any statement instance executed in the sequential runis also executed in any parallel run. Let us suppose by contradiction that there are statementinstances which are executed in the sequential run and not in some parallel run we are considering,and let � be the earliest one, in the sequential order.In case � is not a wait, according to Lemma 1, the execution of � in the sequential run is de-pendent on statement instances � which precede � Pre0-wise and are all executed in the sequential24

run, before �. By de�nition of �, these � are executed in this parallel run, with semantic equiv-alence, as shown previously. Therefore, � is executed in this parallel run, unless it is persistentlypending. The latter possibility is ruled out by Assumption A1 : we have previously mentioned thata statement instance may be persistently pending only if some wait instance !, ranking before itin the sequential order, is reached and deadlocks in the parallel run. Being reached, ! is reachedtoo, and executes, in the sequential run. Its deadlock in the parallel run, and its preceding � inthe sequential run, would contradict the de�nition of �.The case when � is a persistently pending or unreached wait is ruled out by the same argument.There remains the case when � is a reached and deadlocking wait. Let "� be the eventinvolved in � (this event is the same in both runs, due to the assumption of static reference inwait statements). All instances previous to � in the sequential run are executed { with semanticequivalence { in this parallel run. This is the case, therefore, for the post instance � which sets"� for � in the sequential run. So, the deadlock on � would imply that, in the parallel run, someclear statement instance � executes and clears "� after �, and before � used it. � also executesin the sequential run and clears the same event (as shown above, about the semantic equivalenceextended to all instances executed in the parallel run).Assumption S1 implies that there is a relation Pres between � and �, and between � and �. Wecannot have Pres(�; �) because this would imply (Lemma 2 applied to �) that � executes before� in the parallel run. So, we have Pres(�; �). We cannot have Pres(�; �) because, together withPres(�; �), this would imply an execution order in the sequential run : � before � before �, and �would not post for �, as it is supposed to. So, we have Pres(�; �).� executes in the parallel run, so Lemma 2 applies to � : � executes in the sequential run andwe have Pres(�; �) ; furthermore � is not a wait ; so, � executes in the parallel run, before �, whichcontradicts the deadlock on �.This ends the derivation of our theorem. J8 Possible extensionsExtending dynamic reference to the waits ?When considering synchronization precedences and the predicate Syncs, we noticed that the as-sumption of dynamic variable reference in post and clear statements turns out not to be sointeresting as one could believe, for reasons linked with the necessity to check that Assumptions S1and S2 are met. For this reason, it is not necessarily interesting to extend this dynamic variablereference to wait instances. Such an extension would besides bring problems illustrated by thefollowing example :n1: N=1parallel sections (ordered)section...n2: N=2p: post(E(N))... 25

section...w: wait(E(N))...end parallel sectionsThe underlying intention is to have a synchronization from p to w. Indeed, referring to ourde�nitions, we have Pres(n2; w), i.e. a precedence between n2 and w assuming that variables gettheir \sequential" values ; however, the dependence Dep(n2; w) is not preserved, because N mayhave value 1 when w is reached. Extending dynamic variable reference to wait statements wouldrequire an extra condition : whenever a dependence involves a subscript variable reference in await, it must be preserved through a precedence which does not involve a synchronization in whichthis wait participates. Such an extension would also require that another point be speci�ed in thesemantics of wait statements : when a wait statement instance is reached, are subscript variables(if any) evaluated only once, or reevaluated each time the instance is tried again ? In the lattercase, under the extra condition that event E(1) is not posted in the above example and N is notwritten otherwise than indicated, the semantic equivalence is preserved here. Dealing with suchcomplexities does not seem interesting in our framework.Introducing while featuresThough the while construct does not exist in standard Fortran, it may be interesting to considersuch a feature, because it exists in many other languages and it allows for the possibility of in�niteloops. A Fortran equivalent of a while may be constructed as follows :C Fortran equivalent of a while1 if(B) then...B=......goto 1endifExtending our language subset so as to include this construct would boil down to allowing gotosin the special case exempli�ed here { adding the requirement that there would be no synchronizationlink between the while construct and the rest of the program. In this extension, it would berather straightforward to prove an extended theorem of semantic equivalence : provided that thesequential run terminates (i.e. no in�nite loop in the while constructs), so does any parallel run.This is done by applying the previous recurrence derivation, considering that every statement in thewhile construct, including the if, is instanciated in an in�nite sequence of instances (numbered1, 2, 3,...), only a �nite number of them coming to be executed in a given run. The semanticequivalence propagates along the considered parallel run, thus ensuring that every while constructterminates similarly in both the given parallel run and the sequential run.Introducing subroutines and functionsIntroducing subroutine and function calls would be rather straightforward, provided that we canspecify exactly what are the inputs, and the outputs, of every call. Then, every call may be treated26

as a statement. This requires that all variables within the subroutine, except the speci�ed inputsand outputs, are strictly local. Especially, there must be no synchronization link between thesubroutine and the rest of the program. However, parallelization within the subroutine is thenallowed.9 ConclusionIn this report, we have presented a semantic analysis of a subset of Fortran X3H5. Especially, wehave derived a theorem of semantic equivalence which extends, and makes more precise, a resultoutlined in a previous report [2]. This result states the semantic equivalence (i.e. similarity inobservable behavior) between a parallel program and its sequential version, that we de�ne, undera few assumptions (mainly preservation of dependences) referring to the semantic behavior of thesequential version (more accurately, of a one-process execution of the program).Though presented in the speci�c framework of Fortran X3H5, this analysis could apply to otherparallel shared-memory languages, however under such restrictions as those we have described. Themain restriction is the existence of a \sequential version" whose well-de�ned semantics provides thereference for the observable behavior we wish the parallel program to display. Another importantrestriction deals with the explicit synchronizations we allow in our language subset, and especiallywith the requirement that some assumptions about them be checkable. In case the synchroniza-tions are used in some program in an intricate way, this intricacy may make it impossible to checkthe required assumptions within our framework. However, we feel that introducing such complex-ities in synchronization handling does not match a \sound" programming style, and that futuree�orts at extending our results should not address synchronization handling in intricate cases, butrather handling other kinds of synchronization not addressed here, such as critical sections, locks,rendezvous synchronizations.Future e�orts should also aim at developing a formalism, for the expression of parallel executionmodels, within which such correctness results could be made more rigorous and more general.References[1] D. Callahan, K. Kennedy, and J. Subhlok. Analysis of event synchronization in a parallelprogramming tool. In 2nd ACM SIGPLAN Symp. on Principles and Practice of Parallel Pro-gramming, pages 21{30, Seattle, march 1990. ACM Press.[2] G. Caplain, R. Lalement, and T. Salset. Semantic analysis of a control-parallel extension ofFortran. Technical Report 93-18, CERMICS, 1993.[3] X3H5. FORTRAN 77 Binding of X3H5 Model for Parallel Programming Constructs. ANSI,September 1992. (draft version). 27

