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Abstract

In this paper, we consider two one-dimensional aeroelastic model problems. We investigate
stability characteristics of staggered procedures of time-integration for these coupled systems.
The modularity of these staggered schemes allows the use of classical upwind schemes for the
fluid part of the problem (possibly subcycled explicit scheme) and Newmark or generalized-a«
methods for the structure. Though these methods have well known decoupled stability limits,
the stability of the coupled scheme for a non-linear problem is unknown. We first present
the volume-continuous method and we show this very popular algorithm produces a violation
of action-reaction principle at the fluid/structure interface. This default is corrected in the
new volume-discontinuous method, which is shown to have enhanced flexibility and stability
properties. Finally, the extension possibilities of this new method to multi-dimensional cases
are discussed.

METHODES D’INTEGRATION TEMPORELLE DECALEE
POUR UN PROBLEME AEROELASTIQUE
MONO-DIMENSIONNEL NON LINEAIRE

Résumé

Dans ce rapport, nous présentons deux problémes modéles aéroélastiques. Nous étudions la
stabilité de méthodes d’intégration temporelle décalée pour ces problémes couplés. Leur mod-
ularité permet I’emploi de schémas décentrés explicites (éventuellement sous-cyclés) pour le
fluide et implicites pour la structure dont les stabilités découplées sont connues. Cependant, la
stabilité du schéma couplé reste inconnue. Nous présentons d’abord la méthode avec interface
simple. Nous montrons que cette méthode trés populaire viole le principe d’action et de réac-
tion a linterface fluide/structure. Ce défaut est corrigé dans la nouvelle méthode avec interface
double. Nous montrons que cette derniére est plus souple et plus stable. Pour finir, ’extension
de cette nouvelle méthode a des cas multi-dimensionnels est envisagée.



1 Introduction

We present in this paper some numerical methods that have been constructed for the numerical
simulation of fluid-structure interactions. This class of coupled problems and some classical
methods used for their simulations have been reviewed in previous works [1]. Shortly, numerical
methods used for the simulation of aeroelastic problems should have the following qualities:
accuracy, efficiency and modularity. The accuracy of the methods used allows the interpretation
of numerical results, which are the sum of the exact solution of the modelized problem and the
numerical errors (numerical damping and diffusion, dispersion). For example, the Euler flutter
analysis of an airfoil [2] can be done if the numerical diffusion does not make flutter disappear.
Efficiency allows accurate computations with limited costs. In some cases, the characteristic
times of the fluid part and the structural part of the coupled system are very different. Their
time-integrations might require very different time steps. Efficiency can be enhanced with
the use of subcycling [3]. Finaly, by the use of staggered schemes [4], modularity is achieved.
Most popular existing modules for the separate resolutions of fluid and structural parts can be
coupled. Each part can be dealt with separately, and even computed on separate heterogeneous
machines [3]. As a consequence, some particular coupling methods are required.

The aim of this paper is to present some numerical methods constructed for the numerical
simulation of a one-dimensional Euler aeroelastic model problem. Though the problem is
very simple, we intend to only consider methods that could be extended to multidimensional,
complex cases. This paper follows a preceding study on the linearization of the same model
problem [5], and some proved stability results on numerical methods used for the simulation of
linear aeroelastic problems [3].

The content of this report is as follows. In Section 2, we present the aeroelastic problems
considered. These two very similar problems are one-dimensional. The structure is linear with
a single degree of freedom. The fluid satisfies 1D Euler equations (perfect fluid). They differ by
some boundary conditions for the fluid. These problems were chosen because they are simple,
and have the same characteristics as some other aeroelastic problems: the piston problem is
mainly internal and acoustic, while the box problem is rather external (close to the flutter case
analyzed in [6, 2]).

In Section 3, we present the global resolution algorithm. We use staggered schemes, which
allow modularity. We then have to present the set of numerical methods used separately in the
fluid (finite volume method, Van Leer flux splitting) and the structural (generalized-a method)
part of the problem. We also present the methodology for the coupling of the previous methods,
and the necessity of subcycling.

In Sections 4, we show and analyze the volume-continuous method, which is currently
used in industrial codes. Both fluid and structural mesh boundaries are matching (at least
the continuous interfaces are matching before separate spatial discretizations). We explain
why this method does not respect the action/reaction principle (and the conservation of the
momentum), which might be the cause of its poor subcycling stability properties.

In Section 5, we present the volume-discontinuous method. The boundaries of the fluid
and structural meshes are different. We show that this method allows the conservation of the
momentum. The flexibility of the method is used with multiple prediction algorithms, in order
to enhance the stability and the accuracy of the method.

Finally, we discuss in Section 6 the use of more complex time-interpolation schemes, and
the possibilities of extension to multi-dimensional cases.



2 The model problems

In this section, we set the physical problems which will be studied in this paper. These two
problems were needed because of their different relations with well-known aeroelastic test-cases.
In the following, we first present the model problems. Then we set the corresponding mathe-
matical problems. Finally, we explain our choice, based on eigenfrequencies considerations and
similarities with cases of external flows and flows with strong compressibility effects.

2.1 The two one-dimensional problems

In this paper, we consider two one-dimensional problems which are quite close indeed. The
first one, which will be called the “piston” problem, is shown on Figure 1. A perfect gas flow
is contained in a chamber closed by a moving piston. The other end of the chamber is fixed.
The structural part of this problem - the piston - closes the fluid domain, which produces the
fluid /structure interaction. The problem will be set in more details in the following.
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Figure 1: The “piston” problem (fluid-filled 1D flexible chamber with one moving end)

The second problem we will consider is shown on Figure 2. In the “box” problem, both
ends of the chamber are moving. However, the length of the box remains constant (both ends
speeds are equal). Again, there is an interaction between the fluid and the box - the structural
part of the problem - because the box contains the fluid, which reciprocally exerts a pressure
force at both ends.

In both problems, we assume no point of the flow is transonic and structural speeds are
small compared to the average fluid sound speed. We will denote by X the displacement of the
right end of the chamber. We will write 1 and @ g for the abscissae of the left and right ends.
The origin of the X-axis is set at the left end of the chamber. The equilibrium length of the
chamber for the piston problem is set to L, which also is the fixed length of the box in the box
problem. We have zg = L+ X and o = 0 (resp. 1 = X) for the piston (resp. box) problem.
We assume the one-dimensional flow inside the chamber is governed by the compressible Euler
equations. In both cases, we will refer to the equilibrium state of the system as the state where:

e the flow is uniform, with no velocity. The pressure is equal to the external pressure Py

e the right end has no speed, and is at the equilibrium position.
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Figure 2: The “box” problem (rigid fluid-filled 1D moving box)

These problems have different characteristics. In the piston problem, the length of the
chamber is variable. Then strong compressibility effects occur. The behaviour of the flow
is close to a very rigid spring. As a matter of fact, this case is not far from an internal
fluid /structure interaction problem. Paradoxally, the problem of the box is close to an external
flow case. The fluid is not globally compressed since the length of the box is fixed. The fluid is
just displaced, like the flow around an airfoil in subsonic flight. These aspects will be verified
by the determination of first acoustic coupled eigenfrequencies.

2.2 Equations and boundary conditions

Mathematically, the problem is the following;:

e Euler equations for the fluid in the domain [z 1; zg]

pt+ (pu)s =0,
(pu)e + (pu* + P), = 0, (1)
E,+[u(E+ P),=0.

Here, p is the density, u is the velocity, P is the pressure and E is the total energy per
unit volume. The fluid is assumed to be perfect and the pressure is given by

1
P=(y=1)(E - 5o 2)
where v is set to 1.4.
e boundary conditions for the fluid are the following:

u(rr) = T
u(zgr) = g (3)

where dotted variables stand for corresponding time derivatives. They reduce to

. ) u(0) = 0

Piston problem: { WL+ X) = 5
| (4)

) u(X) = X

Box problem: { Wl +X) = 5



¢ the motion of the structure is given by
mX +dX +kX = F (5)

where m, d and k are respectively the mass, the internal damping and the stiffness of the
structure. The external force F' is given by

piston problem: F = P(zp)— Py=P(L+X)— P, (6)
box problem: F =[P(xzgr)— Py]— [P(zr) — Py))= P(L+ X) — P(X)

2.3 Coupled eigenfrequencies

We are interested in the numerical simulation of the two problems we just set. In both cases,
the unique source of energy dissipation is the damping in the structural part. Then, we control
the damping of the coupled system. For example, if we choose d = 0, we know that some
global energy is conserved. Like aircraft conceptors, we would like to know the discrepancies
between numerical simulations and physical experiments in the stability measured for the cou-
pled system. In our cases, we will just have to test if our numerical results are rather stable or
unstable, and to know what damping or amplification rates are numerically produced. We will
also be interested in phase errors, and we need an estimation of the coupled frequencies of our
problem.

In this paper, we will only consider small perturbations of the equilibrium states defined
previously. Thus we intend to perform a linear stability analysis around these equilibrium
states. We will use linearizations of our equations around these equilibrium states to obtain
coupled eigenfrequencies of the problems. However, we will solve non-linearized problems with
classical non-linear methods.

The linear stability analysis around equilibrium states can be found in details in [5]. We
give here a sketch of main parts of these analyses.

In the following, pp is the uniform density at equilibrium and ¢ is the sound speed (given
by vPy = poc?). We add a perturbation to all variables: a density perturbation Ap (Ap < py),
a velocity perturbation Au (Au < ¢). The pressure perturbation is given by

AP = cAp (7)

which is derived from the isentropic hypothesis we make. Finally, the energy perturbation can
be derived from the other perturbations. More, the linerization of the energy conservation
equation (third Euler equation) reduces to an equation which is always verified (when the
linearized forms of mass and momentum conservation equations are verified). Then, we get rid
of this equation under the isentropic hypothesis.

Using the notation W = (Ap, pUAu)t, both problems reduces to the following:

e acoustic fluid equations written

Wi + ( 002 (1) ) W, =0, on [0; L] for both problem, (8)



¢ with boundary conditions given by

piston problem: Au(0) =0 and Au(L) = X ()
box problem: Au(0) = Au(L) =X

¢ a structural equation which writes

piston problem: mX +dX + kX = Ap(L) (10)
box problem: mX +dX + kX = c*(Ap(L) — Ap(0))
The reader shoul notice that both linearized problems are set on [0; L]. Since W already is
a perturbation, the preceding approximation produces an error of the second order in pertur-
bations.

We now have to find the different modes of each linear problem. In the following, we
will limit our investigations to the cases where d = 0. When d > 0, the system is naturally
damped. When d < 0, the system is naturally undamped and unstable. The importance of
the case where d = 0 should be emphasized. In that case, the physical system is just stable.
Thus, the numerical qualities of the simulation are directly related to numerical properties of
the integration methods, particularly in terms of stability.

We first consider the piston problem. A solution of (8) with the “left” boundary condition
Au(0) =0 is given by

W = ( —l}c ) cos[w(t — %)] + ( —10 ) cos[w(t + %)] (with w € IR). (11)

If we assume a coupled mode of the preceding form exists, then for this mode we have:

2¢ wl

X = Au(L) = = sin(—) sin(wt) which gives (12)
PO c
.2 L
¥ = sin(w—) cos(wt) = —w?X (13)
PO c

On the other hand, the density perturbation at the right moving end of the piston is given by
wl
Ap(L) = 2 cos(—) cos(wt). (14)
c

Finally, the structural equation (10) for the piston is verified (with d = 0) if and only if the
following relation is true:

L L k L
Piston problem: (w_) tan (w_) <1 — ,)) e

C C mw*=

(15)

This formula deserves several comments. We see that when the piston is given an inifinite
mass (i.e. is fixed), we find an infinity of purely acoustic modes in the fluid part of the piston
problem. We also see that if the piston is given a fixed structural eigenfrequency, and if its
mass is big enough compared to pg, the coupled eigenfrequencies get closer to this structural



eigenfrequency. Finally, we can notice that the lowest coupled pulsation is greater than the
structural pulsation wy = /k/m (when the latter is smaller than the lowest purely acoustic
pulsation). In that case, the structure is not slowed by the fluid. On the contrary, the system
undergoes oscillations which are rather acoustic.

We now consider the box problem. A solution of (8) with the boundary condition for the
moving box Au(0) = Au(L) is given by

W = ( —:c ) cos[w(t — z ; L)] _ ( —1c > cos[w(t + %)] (with w € IR). (16)

We assume again a coupled mode of the preceding form exists. We then have:

X = Au(0) = Au(L) = p_cu (cos(wt) + cos|w(t + %)]) which gives (17)
. we [ . . L
X = o (sm(wt) + sinfw(t + ?)]) = —wX (18)

On the other hand, the density perturbations at the ends of the box are given by
L
Ap(0) = cos[w(t + —)] — cos(wt) = —Ap(L) (19)
c

Finally, after some short algebric transformations, we find the structural equation (10) for the
box problem is verified (with d = 0) if and only if the following relation is true:

L L L k
Box problem: PO% tan (w_) = (w_) <— — 1)
m 2c 2¢ ) \mw?

(20)

We should compare this formula to the preceding one. When the box is given an inifinite
mass, we find an infinity of purely acoustic modes (and their pulsation are doubled, because
both ends are now moving). As for the piston case, the coupled eigenfrequency gets close to
the structural eigenfrequency if the latter is fixed and the mass of the box tends to infinity.
Finally, we notice that the lowest coupled pulsation is smaller than the structural pulsation
ws = \/k/m (when the latter is smaller than the lowest purely acoustic pulsation). Contrary to
the piston case, the structure is slowed by the fluid. The system undergoes oscillations which
are not close to acoustic oscillations. These oscillations are closer to those met in buffetting or
flutter cases.

2.4 Data sets for test cases

In this section, we want to define a set of test cases for both problems. For a test case, the
geometry is set with the equilibrium length of the piston/box L; the fluid equilibrium state
definition requires the sound speed ¢ and the density pg; the structure is defined by giving
the mass m and the stiffness k£ (and possibly the damping d if it is not taken equal to zero).
However, we can derive from a dimensional analysis that, out of these five data, only two induce



independant variations of the aspect of the test case. In the following, we will set L = 1m,
po = 1.3kg/m and ¢ = 330.332m/s (this value was deduced from the equation poc®> = vPy with
v = 1.4 and Py = latm). A variation of these parameters would be considered as a change in
unities of time, length and mass. Test cases will be characterized by the two paramaters m
and w, (derived from k by mw? = k).

In the paper, we consider the following test cases:
e case 1: m = 0.8kg and w, = 100rad/s

e case 2: m = 2.1kg and w, = 100rad/s

e case 3: m = 40kg and w, = 30rad/s

Cases 1 and 2 are not far from data found in classical aeroelastic problems for a two-dimensional
two-degree of freedom NACA airfoil (see [6, 2]). The structure has a mass of the same order
of magnitude as the fluid mass involved in the system. The structural pulsation w, is rather
small compared to the lowest purely acoustic pulsation (which is given by 7L ~ 1038rad/s for
the piston problem). Case 3 is of a different type: the mass of the structure is very important,
and the structural pulsation is rather small. The system is strongly influenced by the structure
and rather weakly coupled. We should obtain greater performances of our numerical methods
for time integration.

3 Numerical methods

The numerical simulation of an aeroelastic problem is two-fold: it requires at least the simula-
tions of the fluid dynamics and the structural mechanics and the use of numerical methods in
both domains. On the one hand, the structure is generally discretized using a classical finite
element method. For our problems, the structure is reduced to something close to a single
material point, since it has only one degree of freedom (which is the displacement X). This
moving structure must be integrated in time. We will present in the following a well-known
family of time-integration methods used for the strcuture.

On the other hand, the fluid is enclosed in the moving/flexible box. The fluid domain,
which will be discretized, is also moving along with the piston or the box. Then, the numer-
ical simulation requires the use of moving grids (at least at fluid domain boundaries). As a
consequence, we will have to produce methods for moving the grid (theses methods are rather
straightforward for one-dimensional problems). We also have two consider ALE formulations
of Euler equations, i.e. formulations with imbedded non physical spatial coordinates. We will
have to use numerical methods for the resolution in time and space of these formulations.

Finally, we present in this section the specific numerical methods used for the coupled
integration in time and space of the coupled fluid/structure interaction problem. Actually,
the simulation of this coupled aeroelastic problem is not strictly reduced to the integration
of structural mechanics and of fluid dynamics in a moving domain. The coupling has to be
simulated. We will see it can not be simulated in a totally coupled way, because of the use of
implicit schemes, at least for the structure. We will then introduce staggering schemes, and
finally subcycling methods when the stability limits on the time step for the fluid and the
structure are very different.



3.1 Numerical methods used for the structure

In both the piston and the box problems, which are one-dimensional, the structure can be
considered as a single material point. Then, no discretization problem appears. However,
a classical finite element discretization could be used for more complex structures [1, 7.
Throughout this section, we assume the equation for the structure as presented in (5) holds.
In the following, we will present numerical methods that are also convenient when m, d and k
are square matrices, m and k being definite positive, and d simply positive.

We present here rapidly a general family of methods for the time-integration of structural
dynamics: the generalized-o method [8]. We suppose the applied force F' is known during
the integration of the structure. The generalized-a method depends on four coefficients: 8 and
v (which keep the same role as in Newmark methods [9, 10]), and oy and o, (time-shifting
coefficients). Superscripts will be reserved for time step ordinals. For any quantity z, for any
given parameter 6 (# € IR,0 < 0 < 1), and for any time step ordinal n, we use the notation

2 = (1—0)2" + 02",
The generalized-a method can be described as follows:

e assume at time ¢, X(t,) = d", X(tn) = v" and X(tn) = @™ are known

e assume d" 1 and v"*! are given by the following expressions, depending on the unknown

quantity a"*! (through o"+?* and a"*7):

At?
"t = d"+AtU"’+Ta”+2ﬁ (21)

" = % 4 Ata™ T (22)

e using the preceding assumptions, find a1 solution of the structural dynamics equation:
man«klfam + dvnﬁ»lfaf + kwn«l»lfocf — Fn«l»lfocf (23)

n+1

e using (21-22), compute the next time step computational values d"*! and v and set

X (tne1) = d" X (tpq1) = v and X (1) = a"T1

The family of generalized-a methods contains the Newmark methods (with «,, = af = 0),
the HHT-o methods (o, = 0) [11] and the WBZ-o methods (ay = 0) [12]. The accuracy,
the stability, the high-frequency and low-frequency dissipations of the method depends on the
parameters 3, v, an and ay.

It can be shown [8] that the method is second-order accurate when v = 1/2 + af — ap.
The method is unconditionnaly stable, provided o, < af < 1/2 and 26 > 1/2 + af — ap.
Finally, Chung and Hulbert describe an optimal choice of parameters for this method, which
is unconditionnally stable, second-order accurate, and has an optimal combination of high-
frequency and low-frequency dissipations. In function of the user-specified spectral radius in
the high-frequency limit p.., the method is written:

205 — 1 Poo

i ,
= =1/2 — Qyp, =-(1 — Q) 24
poc+]-,af poo"i‘l,,y / +Oéf o4 /6 4( +Oéf & ) ( )

Oy —



In this paper, we will use this method with different values of po € [0,1]. We will also
use the classical trapezoidal rule defined by v = 1/2, 8 = 1/4 and o, = af = 0. We
would like to put the emphasis on a particular point for more complex simulations: if you
consider a linear structure, and you use only linear schemes, like the trapezoidal rule or the
generalized-a method, the time integration of the structure requires the solution of a linear
system for each time step. If the structural time step At, remains fixed during the simulation,
all matrices involved remain constant and can be inverted once and for all. This advantage
should be conserved when the time-integration of the fluid part in the staggered methodology
is performed simultaneously.

3.2 Numerical methods used for the fluid

In the preceding section, we presented the structural part of the integration of the aeroelastic
interaction. The influence of the fluid on the structure is the aerodynamic external force F. In
this section, we deal with the fluid part of the simulation. The influence of the structure on
the fluid flow is the result of a two-fold boundary condition. From a physical point of view,
the structural boundary of the fluid domain matches exactly the boundary of the structure,
and the fluid normal velocity near the fluid/structure interface is equal to the interface normal
speed. As a consequence, we will present in this section numerical methods which can be used
for the simpler simulation of fluid dynamics in a moving domain.

The fluid domain is no longer considered as fixed. The spatial discretization will also be
moving, at least at the boundaries. Some numerical experiments have been made on “transpi-
ration” methods, where the grid is fixed everywhere, the fluid/structure interface included, and
where transpiration terms were added to compensate for the violation of the matching condi-
tion of both fluid and structure interfaces [5]. These kind of methods are efficient for simple
linearized cases, and are of lower interest for non-small displacement. However, they would
give good numerical estimates for the coupled linear eigenfrequencies of the physical system.

In this paper, we will consider numerical methods with moving fluid grids. The use of
this kind of methods is rather simple and general. They are known as Arbitrary Lagrangian-
Eulerian formulations. Although they have a general form [13], they can be applied on Euler
equations [1]. The latter take the following integral form:

i[/ de]—i—/ div, F dz = 0.
dt L/c, C.

(25)

where z is the spatial physical position of a point, C, is the geometric cell of integration. The
boundaries of this cell are assumed to move with the mesh local speed w (depending on ). W
is the vector of conservative variables (p, pu, E)' and F' is the ALE-modified flux vector given

by:

Pl
F=| puu +P and 4 =u—w. (26)
Eu +Pu

From (25), the deduction of a finite volume explicite scheme is straightforward. The



numerical method will be written:
AP — APW + AL (W, W) — (W, W) =0, (27)

where C' is the 0 cell at time ¢ (and C* = [33?‘_1/2, m?+1/2])7 W is the average of W on cell

C} at time t,,, A} is the area of cell C}' at time t,, At is the time step, and ® is a numerical
flux such that

_ t"FAL
ALB(WE, W) = /t F(a},y)dr (28)
The evolution of A} with the time is given by:
AP — AT+ At (=l w] ) =0, (29)

Since the grid points are updated according to

n+1 n n
%:1/2 =T 0 T Alwi )9, (30)
(29) is equivalent to
Al = 38?4—1/2 — az?_l/z, Vi, Vn (31)

The complete method will not be fully described till we give our choice for the numerical
flux ® in (27). Throughout this paper, the time integral of (28) is approximated using the
flux-vector splitting of Van Leer [14]. The approximation is only taken as first order
accurate for several reasons: it is quite simpler (though spatial second order accuracy can be
achieved with Van Leer fluxes [15] or with the flux-difference splitting of Roe in dynamic meshes
[16]), and it allows the use of much lighter first-order time-integration schemes without stability
problems. We could also argue that the main goal of the present paper is the investigation of
the coupling simulation, which still is complex, even when it is done with simple uncoupled
methods.

This splitting takes the following form on dynamic meshes [15, 17]:

(W, W) = T (W) + &~ (W})) (32)
with
1
- 2%
W) =+ (a+ o). Bt 4y (33)
dc —(=D@EAy=Duck2? | o2 _ w(aF2e)
7’-1 2 v
where we have taken
p = p; u = ul U = U—w
C2 _ w = w" (34)
= i+1/2

The preceding expressions for the extended Van Leer flux-vector splitting are always valid under
the condition |@| < ¢ (we limit this study to subsonic cases).

We now describe the treatment of boundary conditions (4). For both ends of the chamber,
the boundary condition is enforced in the following weak sense: the left end boundary flux is
taken equal to (0, P, Pyw;)" (we recall 1 in the index of the first left cell in the fluid). As well,
the right end boundary flux is taken equal to (0, Py, Pywar)® .

10



Finally, we must put the emphasis on a peculiar point. We do have a choice on the motion
of the mesh. The grid velocity at the fluid/structure interface may be fixed. However, we can
choose any mesh motion consistent with this condition. In general, the mesh can be considered
as a third field for the fluid /structure interaction simulation. It can be given any artificial mass
and damping matrices, and integrated like a structure [18]. For instance, Batina [19] proposed
a method for the smooth motion of the fluid mesh around a deforming airfoil, which was based
on a spring model. This method was compared to a simple change of frame of reference in the
case of a rigid motion of the structure [7] and gives good results efficiently.

Thoughout the whole paper, we chose to move the fluid mesh in order to have a uniform
cell size at any time. For the box problem, all points are given the same speed (and cells
keep the same contant size). Though the box is rigid in that case, we kept the dynamic mesh
formulation. Assuming we have M points in the mesh, the mesh motion is given by

Vi, 1<i<M, a'=-"1L4{X" and w’=X". (35)
M-1
For the piston problem, all grid speeds vary in proportion with the distance from the fixed left

end of the chamber:
1 .
Vi, 1<i<M, "= J&_I(LJFX") and  w! = J\Z/[—an (36)

3.3 Coupling numerical methods...

In this section, we deal with numerical methods which are needed for the simulation of coupled
fluid and structural fields. We presented in the two previous sections methods for the simu-
lation of structural dynamics and fluid dynamics on a moving domain, which are not coupled
systems. The goal of this section is two-fold: introduce methods directly needed by the coupling
phenomenon, and couple both sets of uncoupled methods presented earlier.

In this paper, we only consider staggering strategies. They consist in the successive decou-
pled integrations of the structure and the fluid. Each field is frozen during the time integration
of the other field. This kind of strategy has many advantages. First, the use of existing schemes,
programs and procedures for both separate fields can be advocated. It allows also to imagine
intra-field and inter-field parallel implementation of the schemes [3]. Second, the use of implicit
schemes in a totally coupled time integration scheme would induce a terrible computational
cost, because the grid position and velocity would be a numerical variable as well. On the
other hand, this kind of staggering scheme may not be stable, even if both the schemes used
for separate fields are used far under stability limits. However, the investigation of staggering
schemes for one-dimensional linear model problems has recently produced some results [3].

The basic line of a first family of staggering algorithms could be sketched as follows:

e assume you dispose of all computational values after the nth time step. They are the
structural displacements, speeds and possibly accelerations on all discretization points (or
elements), but also the location and speed of all fluid grid points, and, of course, the field
of conservative variables vector W in the whole fluid mesh. We will denote respectively
these computational values by S™ (all structural informations), M™ (for the fluid mesh)

and W™ for the fluid field.

11



e compute the distribution of forces and moments exerted by the fluid pressure on the
structure (through the fluid/structure interface)

e assume it is constant during the next time step and compute the state of the structure
after the next time step (getting S"*1).

e compute a possible fluid grid after the current time-step. The future grid M"*+! must
satisfy the condition that both fluid and structural boudaries are matching along the
interface at time "1,

e compute the average speed of each fluid grid point during the current time step.
e use this speed field for the time-integration of the fluid, and get F"t1,

This methodology is the most popular. All steps seem clear and natural. It is “volume-
continuous” in the following sense: even though the fluid and the structure may be discretized
in different ways, both continuous boundaries (boundaries before discretization) are spatially
matching; near the interface, the whole volume is occupied either by the fluid or by the struc-
ture. This kind of methods will be refered to as volume-continuous methods.

For these methods, all steps seem clear and natural. However, we will see in the next
section that important momentum and energy violations are induced, limiting the stability of
the global algorithm. The preceding algorithm can be understood as “integrate the structure
and then the fluid, and do it again...” But the symmetrical algorithm “integrate the fluid and
then the structure, and so on...” is also possible (the reader should note that the following
second methodology differs from the first one by more than an index change !):

e assume you dispose of all computational values after the nth time step S™, M™ ans W".

e make a prediction for the global state of the structure at time t"*1. This prediction could
be made with an actual integration of the structure under a constant pressure equal to
P". However, it could be done simply with a first-order explicit linear predictor.

e compute a possible mesh M"**1a time t"t1, the interface of which must be matching the
location for the fluid/structure interface at time t"*+1 just predicted.

e compute average speed of all fluid grid points during the current time-step.

e perform the time-integration of the fluid part of the problem with these mesh speeds
(getting Wnt1).

e compute a good approximation of the time integral of the pressure forces and moments
around the structure during the current time-step.

e perform the time-integration of the structure and get S"*1.

The most significative difference between both methodologies is the matching condition
on the fluid/structure interface. In the second method, there is no matching requirement for
the fluid and the structural boundaries after each time-step. With no consideration of spatial
discretizations of the fluid and the structure near their interface, we do not assume that both
continuous boundaries are matching any more. We have relaxed the matching hypothesis on
the continuous boundaries. This kind of methods will be refered to as volume-discontinuous
methods.
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This methodology seems to allow strong numerical errors at the interface. However, if the
prediction of the next location of the structure is accurate, the matching of the interfaces will
be achieved with a possibly satisfying accuracy. On the one hand, the matching condition is
relaxed, and satisfied with a limited accuracy. On the other hand, the time-integration of the
structure might be done with more accuracy, because the fluid pressure distribution at the
end of the current time-step (at time t"*!) is already known. Advantages and drawbacks of
these two methodologies will be further discussed in the following section. We should put the
emphasis on the fact that the volume conservation for the fluid will be written on the fluid
volume only, so that we can keep the conservation properties of our schemes.

Finally, we introduce here the principle of subcycling. The time integration of the structure
will be done with the generalized-a method or the classical trapezoidal rule (Newmark method
with v = 1/2 and § = 1/4) which are both unconditionnaly stable. However, if the lowest
coupled pulsation of the system w, can be estimated thanks to (15) and (20), the use of a time-
step greater than 1/w, will produce very inaccurate results. The limit Atls";"” = 1/w, corresponds
to six points per oscillations, which gives a rather poor representation of a sinusoidal curve.
In the same way, since we will use a simple forward-Euler first-order scheme for the time-
integration of the fluid, the time step At; will be limited by a CFL-like condition [7]:

Azx?

At™ = min ——— 37

where ¢! is the local sound speed (equal to (’)/Pi"/p;‘)l/Q). Throughout this paper, the chamber
is given in both problems a length unity. And the fluid grid was made of fifty points (and fifty
cells around these points). The experience proves that, for industrial cases like those discussed

in [6, 2], the limit time step for the structure integration Atlgm can be very large compared to
Atlim.
w

This gives the idea of subcycling the fluid. Since the integration of both fields is decoupled
in staggering schemes, there is no need to integrate them with the same time step. The only
constraint is to advance in time both fields with the same quantity, but not necessarily in the
same number of steps. Furthermore, the last step of the first methodology and the fifth step of
the second can be performed in a subcycled way: the grid points speeds are only needed. For
instance, they could be fixed for each group of subcycles without difficulties. The subcycling
can enhance the performance of a code, because it (usually) reduces the number of structural
integrations. It also enhances the accuracy of the time-integral of the fluid forces and moments
on the structure mentionned in the second methodology. This may be an additional advantage.
Last but not least, we already have advocated the use of a constant structural time step At
when we use linear schemes for the linear structures. Since the fluid equations are not linear,
and since the stability conditions for the corresponding schemes are not constant throughout
the computation (see (37) which is clearly time-dependant), the use of subcycling is necessary:
it allows to keep At, constant while At varies. Another solution would consist of the limitation
of the fluid time-step At; uniformly to a smaller value, in order to keep a constant time step
and verify (37). This would affect the efficiency of the method as well.

In the following sections, we describe and comment the results given by both methodologies.
They must be compared in terms of stability for the limit time-step Atlgm and the limit number
of subcycles for the fluid. We should also compare their accuracy (especially phase errors and
numerical damping). Finally, the possibilities of enhancements will be discussed.
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4 The volume-continuous method

In this section, we review in detail investigations on the first method presented above. Consid-
ering both fluid and structural interfaces as common and constantly matching (at least, bfore
spatial discretization), we mainly study the effects of subscycling and the numerical schemes
for grid speeds on the numerical simulations of our model problems.

4.1 Description of the algorithm

The volume-continuous method is the most direct and natural, and the most popular as well.
The basic idea is the following. Assuming we want to use a staggering scheme, and considering
we need to know the motion of the mesh for the time integration of fluid dynamics, we should
advance the structure, compute a new grid and the average grid speed during the time-step
and then advance the fluid in time. The subcycling process can be added to the general idea
of the method. We now give a precise sketch of the method:

e Compute the pressure Pj; on the structure at time ¢". There is no actual computation
for our two one-dimensional model problems. However, the external force distribution
should be computed at this step in more complex computations, like three-dimensional
computations with approximate matching grids [20],

¢ advance the structure using a generalized-a method or a simple trapezoidal rule using a
fixed time-step At, for the structure,

e get the displacement of the structure at time t"T! and compute a new fluid grid location
(this can be done directly in one dimension according to (35) or (36). However, more
complex methods have been reviewed for multi-dimensional cases in [7]),

e fix a motion law for the fluid grid points during the fluid subcycles: for each grid point,
the final location must be equal to the location previously computed,

e advance the fluid part of the problem with multiple subcycles, using average grid points
speed, depending on the previously defined law of motion. Thoughout this paper, we will
denote by N the approximate number of fluid subcycles. N is given by

N ~ Ats.
Atf

(38)

It is not necessarily an integer. However, we will assume throughout this paper, that N is
an integer. In actual numerical simulations, the last subscycle for the fluid is performed
with a time step Aty that can be smaller than Aty, so that we have

Aty = (N — 1) Aty + Aty (39)

We will also denote by W™* the fluid state after the kt* subcycle. We use the convention
tha,t W7L’0 = W’”’ and W7L5N — W"L‘I‘l.
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Figure 3: X (t) for the piston problem, case 1, At, = 10~*

4.2 Numerical results

For the first numerical tests, we took for the two last steps the following natural law of motion

for the fluid grid points: assuming both displacements zj, and a:}fj‘l are already known, we

use:

X3 - X,
At#

which gives a constant average speed for the last grid point wys during subcycles Aty equal to

() = Xip + (t—t") for te [t @ H=e+AL)  (40)

n+1 n
_Xu Xk

Ap (41)

wpp
All remaining fluid grid points locations and speeds were computed according to the simple
algorithms (35) or (36). We first applied this algorithm to the piston problem (case 1). The
structural displacement is presented as a function of time on Figure 3. The structural time step
used was At, = 10~* which corresponds to an approximate number of subcycles N equal to 4.
The result is quite satisfying. The system, which is genuinely physically stable, is added a light
numerical viscosity (due to the first order upwind scheme used in the fluid part). However,
when we use a bigger time step for the structure, the global scheme becomes unstable. A
typical result is showed on Figure 4. The time step At, = 2.6 10~ corresponds to N = 10.
This result for the piston problem is not specific. We have made the same numerical
tests with the box problem (with case 2). We present on Figure 5 (resp. Figure 6) the box
displacement in function of time for At, = 2 % 10™* (resp. At, = 3 * 10™%), which corresponds
to N =8 (resp. N =11).
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Figure 4: X (t) for the piston problem, case 1, At, = 2.6 + 10~*
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Figure 5: X (t) for the box problem, case 2, At, = 2% 10~*

16



0.015 ! ! ! ! ! ! ! ! !

.0.015 | | | | | | | | |

Figure 6: X (t) for the box problem, case 2, At, = 3% 10~*

They were also described in [3]. We intend to give an simple explanation of the unstability
induced by the staggering subcycled algorithm we used. We present on Figure 7 the relative
variation of the total energy of the system for the same numerical test as in Figure 6. We

can see it increases exponentially. We will show in the following that this algorithm does not

conserve the global energy, though we use a conservative scheme for the fluid.

4.3 Discussion on conservation

For instance, let us consider the box problem. We consider the global energy E of the system.

We also denote by Ef and Eg respectively the energy of the fluid and the structure.

spatial discretization, these energies can be written as:

E(t) Eq(t)

L+X(t) 1 . 9 1 o
E() =/ E(t,2)da+ =mX(1)" + =k X (1)
X(t) 2 2

After spatial discretization, we define all corresponding discrete energies by:

Ef‘n E."
: 'y
M 1 s 1.
E" = APE" - —m X" ZEX™
; i H EgmaAT g
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Figure 7: E(t) for the box problem, case 2, At, = 3% 10~*

We assume we use a trapezoidal rule for the time-integration of the structure. During the time
step At,, the fluid exerts a pressure at both ends taken as constant on the structure, and equal
to P* and Pj;. Thus, it is easily showed that the energy variation for the box is given by:

Xn + X’n+l

E,""! — E," = At, (P}, — PP") 5

The trapezoidal rule has the property that the preceding equation reduces to
B, - By = (P - P (X7 - x7) (44)

On the other hand, the energy variation for the fluid during each subcycle Aty depends
only on the boundary fluxes given on page 10, because we use the conservative scheme (27).
This variation is given by:

Efn,,k7+1 _ Efn"k — —Atf (P;ikw}?\,l,k _ P{?,,k,w:?lv,,k)

Since the mesh velocity is constant and equal to (X"t — X™)/At,, we have:

1

B _ Bk — -+ (Pj\}k _ prr) (Xn+1 _ Xn) : (45)

Finally, the total energy variation for the fluid through all subcycles is given by:

Ef’ﬂ+1 —E¢" = _% [Nz_:l <P]7\Z,k — Pln’k)] ()("Jrl - X”) . (46)
k=0
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Since the pressure distribution varies during the fluid subcycles, we have as a consequence:

R [NZ (Pt = Pyi*) - (Pr - P{"k)}] (x=t-x")#0 )

The preceding equation should be interpreted the following way. Though the physical
system receives no external work (fixed end of the spring, and equal external pressure on both
ends of the box, which are moving at the same speed), the total energy is not conserved. It
means that the respective works of the force exerted by the fluid on the structure and the
force exerted by the structure on the fluid were not computed as opposite. The careful reader
should already have noticed that these forces themselves were not computed as opposite but
respectively as:

Force[Fluid — Box| N (Pyr — Pr) (48)
and N1
. 1 . as Ats — n.k n.k
Force[Box — Fluid] "= T [Z (PM - Py )] . (49)

The preceding results hold for a general Newmark method, not necessarily equal to the trape-
zoidal rule, provided it is unconditionnaly stable (which is achieved when 25 > v > 1/2).
The difference is a simple numerical dissipation in the structural part of the integration. This
remark holds also for the generalized-a method.

The unstability of the staggered subcycled scheme can be explained the following way.
The discrepancy between exchanged works or exchanged forces at the fluid/structure interface
increases as the number N of subcycles (and At,) gets bigger. This difference induces variations
on the eigenvalues of the transformation matrix (matrix operating on numerical values at time
" to obtain numerical values at time ¢"*1). When the time step At, is small enough, these
eigenvalues have a modulus less than one (because of numerical viscosity, the scheme is stable
at least for a small N). As N increases, the perturbation increases, and a modulus greater
than one appears when N increases.

On Figure 4 and Figure 6, we showed two results of unstable simulations where the subcycle
factor N was beyond stability (respectively N = 10 and N = 11). But there is no explicit
expression for the stability limit on N (such as “N < 12”7 or whatever). The limit is rather
put on the dimensionless numbers w.Ats or w;Ats which have to be small compared to unity
(we write ws = \/k/m for the eigenpulsation of the structure and we recall w. is the lowest
coupled eigenpulsation of the physical system). For example, we show on Figure 8 a simulation
of the box problem with case 3 where we obtain a stable simulation with At, = 3% 1072 which
corresponds to N = 109. Though N is huge, we have w.At, = 0.09 < 1.

We show on Table 1 the set of stability limits we found for both problems in the first two
cases. We can notice the order of magnitude of the non-dimensionalized time step w.At, where
the method becomes unstable is near 1% which corresponds to six hundred points per period
of oscillation (which is a lot too much!). This also holds for case 3 where a lot of points per
coupled period of oscillation was needed. We were not able to produce the lines corresponding to
the last case in the preceding table, because the structural mass is so important that the energy
production described earlier (inducing unstability) has a visible effect after a huge number of
time-step. However, we know the method is certainly less stable that it seems to be.

As a conclusion, we emphasize the fact that the volume-continuous method, has a very low

stability limit, since for most cases, it requires the use of several hundreds of elementary time-
integrations for each period of coupled oscillation. This method is currently used in all industrial
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Figure 8: X (t) for the box problem, case 3, At, = 3% 1073
Table 1: Stability limits on At, for both problems in cases 1 and 2.

‘ problem ‘ test case ‘ ws (rad/s) ‘ we (rad/s) ‘ At (s) ‘ N ‘ weAt, ‘ weAt, ‘
piston | case 1 100 344 1.5%107* | 6 | 1.5%1072 | 5.20 % 1072
piston | case 2 100 253 1.3%x107% | 5 [1.3%x1072 | 3.29% 102

box case 1 100 61.7 15104 6 [1.5%10 2] 0.93x10 2
box case 2 100 78.5 2.6%107% | 10 | 2.6 x 1072 | 2.04 x 10~
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aeroelastic computations. We intend to present in the next section a new method where the
matching condition on interfaces is relaxed. We will show that this method is not perfect (it is
not unconditionnaly stable), but has reduced drawbacks compared to the method presented in
this section. At this point, the reader should remember that the volume-conitunuous method
produces a violation of the principle of action and reaction (for the contact forces at the
fluid /structure interface) in terms of momentum and energy. In the following section, we
present a new method with relaxation of the matching condition for interfaces. We show that
this method preserves in a more satisfying way the momentum and energy conservation through
the fluid/structure interaction.

5 Volume-discontinuous method

In this section, we present a new method for the numerical simulation of a one-dimensional
aeroelastic model problem. We show the enhancement proposed and discuss numerical results of
the method. We also present some complementary tests based on classical ideas, like predictor-
corrector loops and numerical auto-adaptive filters.

5.1 Description of the algorithm

The basic idea of this method is the relaxation of the matching condition on the fluid/structure
interface. This idea might seem surprising, since all coupling phenomena take place at this
point. However, we intend to relax the matching condition up to a limited point. We will
assume and investigate that the non-matching fluid and structural interfaces remain close
during the numerical simulation. We will see that this method allows us to get rid of the
discomfort of staggering schemes, where the integration in time of a first field is done using a
very unaccurate information coming from the other field.

The principle of the method is simple. We assume we do not require that both intefaces
match exactly (with no consideration of spatial discretizations of both boundaries), but that
they remain close throughout the computation. For each structural time-step (that can be also
subcycled for the fluid part), we make a prediction of the state of the structure at the end of
the time step. We imagine a fluid mesh motion during the current time step which matches
the prediction at the end of the time step. Then we advance the fluid (possibly in a subcycled
way). We store the fluid pressure forces on the structure during this integration, and use this
pressure distribution for the structural part of the integration. The method is now described
with more accuracy:

e compute a prediction of the state of the structure at the end of the current time step At,.
This prediction can be more or less complex. The more accurate this prediction is, the
more accurate the coupling should be. This prediction will be discussed in this section.

e from the predicted displacement of the structure at time t"T!, compute a new fluid
grid location (again, this can be done in a very simple way in one-dimensional problems
according to (35) or (36)).
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¢ fix a motion law for the fluid grid points during the fluid subcycles: for each grid point,
the final location must be equal to the location previously computed (which matches the
location of the structure at the end of the current time step we first predicted).

e advance the fluid part of the problem with multiple subcycles, using average grid points
speed, depending on the previously defined law of motion. We will again denote by W"*
the fluid state after the k** subcycle (we recall W™ = W™ and W™ = W"*!). During
each of these fluid time steps, some numerical boundary fluxes are used: (0, Pf“’k, Pf"kw’f‘)t

and (0, PJ"\Z,’]“, P]'\j‘,kw?/[)t for both problems.

In the previous expressions, the terms wi’ and wf; do not depend of the integer k, the
corresponding index of the subcycle when the mesh speeds have been assumed constant
during the subcycles. However, it would not be the case for any different law of motion
for the fluid grid points. Anyway, the momentum terms P{l”k and Pz\q/‘,k appear in the
momentum equations (5) and (6). For the piston problem, these terms can be seen as
the actual force exerted on the fluid and the first term is the force exerted by the fluid on
the support of the left fixed end of the chamber. For the box problem, both terms can
be interpreted as the forces exerted on the fluid.

Thus, we can compute the sum of all these momentum terms during the N subcycles (for
simplicity reasons, we assume here that At,/Ats is an integer; all following equations
could be rewritten with a non-integer fraction At,/Ats as in (39)). The force exerted on
the fluid by the box per unit time writes

N-1

> - as 1 n,Kk K

Force[Box — Fluid] “=2=2° N [Z (P]\/fk - P L)] (50)
k=0

which is simply deduced from (49), and the force exerted on the fluid by the piston per
unit time writes

N-1
Las 1 :
Force[Piston — Fluid] o N [ E Pﬂk] (51)
k=0

e advance the structure using a generalized-o@ method or a simple trapezoidal rule using
the fixed time-step At, and an external force, which is the opposite of the force we just
computed. The great advantage of this method appears clearly. We have enforced the
“action and reaction” condition

comp. as

Force[Structure — Fluid] 4+ Force[Fluid — Structure] 0. (52)

5.2 Conservation enhancements

We would like to add a few remarks concerning this volume-discontinuous method. We first
notice that the method depends of the prediction used in the first step of the algorithm. We
have a wide choice for this prediction. Since smaller characteritic times correspond to the
structure, the prediction will be rather easy. The error in the predictor will certainly be less
important than the error on the external pressure in the first method. We understand also
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that the accuracy, or the possible stabilization properties of this prediction enhance the global
accuracy and stability of the method.

Second, we have noticed that the global momentum is conserved concerning the interaction
(52). We now investigate the conservation of the global energy. Considering the box problem
with constant grid points speeds during the subcycles, and using notations defined in (42) and
(43), we have again for each subcycle

k41 k n.k  nk n.k  nk

Since the mesh velocity is constant and equal to (XTJ/Fl — 5(?";)/At3, we have:

Efn,k—l—l _ Efn’k — _%

(Pt = PIF) (xn1 = X)) (53)
where X7 is the predicted position of the structure after the n'* time step. Finally, the fluid
energy variation through all subcycles is given by:

B - B = _% lszl (P]ﬁ,’k _ P{%Jv‘)] (Xml - ﬁ) . (54)
k=0

On the other hand, assuming we use a simple trapezoidal rule for the structure, with an external
force satisfying (52), the energy variation through one time step writes

Esn+1 - E" = % [NEEI (PJI\LJk B PILk)] <X”+l B X”) ’ (55)
k=0

If we write €” for the mismatching error at time " (" = X" — ﬁi), the system total energy
variation through one time step of this method is given by

Ertl g — % [IVZ:I (P;?[’k _ P{L,k)‘| (6n+1 o en) ) (56)
k=0

If the matching error remains small, then the global energy of the system will be conserved
with a good accuracy. The preceding equation should be compared to (47). In the preceding
equation, the order of magnitude of the energy error depends on the quality of the prediction.
Then the error can be reduced not only with a time step reduction (which is not the aim
of this paper), but with enhancement of the order of accuracy of the prediction for example.
This characteristic induces the great flexibility of the method. On the contrary, (47) proves
that the energy conservation error could only be reduced with the use of a prediction of the
time-averaged fluid pressure force, which is certainly very difficult to perform (it would require
an investigation of the fluid state throughout a thick band of finite volumes cells along the
fluid /structure interface). However, the momentum conservation is exactly performed with the
second method, and can only be approximately done with the first method coupled with any
prediction.

As a second remark, we emphasize here that both interfaces are not matching either at
the beginning or at the end of a time step. For our one-dimensional model problems, this
characteristic does not make the algorithm more complex. However, the resolution would not
be so simple for two- or three-dimensional problems. As a matter of act, fluid pressure forces
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on a given fluid interface point should be transmitted to some “corresponding” point of the
structural interface. The correspondance could simply be point-to-point, but more complex
geometrical methods should be tested.

5.3 Numerical tests

We begin with numerical tests where we have given a constant fluid grid points speed thoughout
the subcycles. The mesh locations are given by (40). We note Y the position of the right
end mesh point after the n'* time step (Y = Xn # X™). As stated earlier, the volume-
discontinuous method is flexible, since several types of predictions can be used. We review in
the following some methods of prediction, which could not have been simply coupled with the
volume-continuous method.

5.3.1 Explicit first-order prediction (constant speed)

We first try to use the most simple and natural prediction for the structure, which writes
Xl = X" 4 At X" (57)

This prediction is only first order accurate, but has the advantage of the simplicity (it can
be applied to complex multi-dimensional structures with no computational costs). For each
numerical test, we may present two curves, which are the structural displacement X and the
mesh displacement (its right end) Y in function of the time. These curves will be compared to
those of the preceding section.

We present on Figure 9 these curves for the piston problem in case 1. The structural
response is correct (same as in Figure 3) at the beginning, but is quite overdamped. The time
step used was At, = 0.9 x 10~2 which is far beyond the time step used in Figure 4 or Figure 5.
Figure 10 shows that the scheme is conditionnally stable, and that At, = 1.15% 1073 is beyond
the stability limit (which was found to be close to At, = 1.1%1073). The volume-discontinuous
method made possible the use of a time-step (and a subcycling factor N) seven times bigger.

On Figure 11 and Figure 12 are presented the structural displacements in function of time
for two numerical simulations of the box problem (case 2). When At, = 0.8 %1073, the scheme
is stable and gives a result close to Figure 5. In that case, the signal is not overdamped. For
At, = 0.86%1073, the scheme has reached unstability. Spurious mesh oscillations appear. If we
look at Figure 13, where the relative variation of the total energy of the system is presented in
function of time, we see the global energy relative error increases exponentially like in Figure 7
for the volume-continuous method. However, the stability limit for this case is At, = 0.83%1073,
which is three times bigger than for the first method.

Comparing with the volume-continuous method, we see that this method has an enhanced
stability, even when the first one had good results. We present on Figure 14 the structural
displacement for the box problem in case 3. We see the scheme is stable for a bigger time step
(At, = 1. % 1072 which corresponds to a subcycling factor N = 357 and w.At, = 0.01!).

Finally, we present in Table 2 the stability limits we found for both problems in cases 1 and
2 for the volume-discontinuous method. If we compare this table with Table 1, we see a general
enhancement for the structural time step At, (and the subcycling factor). The relaxation of
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Table 2: Stability limits on At, for both problems in cases 1 and 2.

problem | test case ‘ ws (rad/s) ‘ we (rad/s) ‘ Aty (s) ‘ N ‘ ws At weAL
piston | case 1 100 344 11%103 [ 39 [ 1.1%x10°1 [ 3.78 %107 !
piston | case 2 100 253 131073 | 52 | 1.3x 107! | 3.29 10!
box case 1 100 61.7 70%107% 26 | 7.0%1072 | 4.32 %102
box case 2 100 78.5 83%107* [ 32| 83%x1072 | 6.52 %1072

the matching condition allowed a better conservation of the energy through the interaction,
and an exact conservation for the momentum. The consequence is the gain in stability, though
we used the elementary prediction (57).

5.3.2 Explicit second-order prediction (constant acceleration)

In this section, we present a family of prediction method depending of the real parameter 8

defined by o
Xl = X" 4 At, [(1 +O)X" — 9)'("—1] (58)

This prediction is at least first order accurate, and second-order accurate when 6 = 1/2. We
show on Figure 15 the displacement for the box problem in case 2. It is similar to the result
given on Figure 11. However, this new method is less stable: the new stability limit is close
to At, = 0.78 %+ 1073. We have clearly observed that the enhancement of the accuracy in the
prediction method (when it is done in an uncoupled way, independant of the fluid flow) reduces
the stability domain of the method. This remark was also valid for other predictions of the
following type: o

Xntl = X" + At, X" + 0/ AtZ X" (59)

The limited stability of these kinds of predictions is a consequence of their uncoupled nature.
For example, the method (58) means the average acceleration during the previous time step has
the same value in the current time step. This is equivalent in a certain sense to an assumption
on the fluid pressure during the current time step. This aspect could possibly be eliminated
with coupled predictions. They will be investigated in the following.

5.3.3 Prediction iterations

We can obtain a coupled method of prediction by iterating the procedure described in 5.3.1.
We propose the following algorithm:

-0- at time t" (i.e. after the n** time step) store the fluid state, the fluid grid and the
structural state. set ipc =0

-1- compute a prediction of the structural displacement at time "' according to (57)

28



0.01 ! ! ! ! ! ! ! ! !
0. 008
0. 006

0. 004

0. 002

-0.002

-0.004

-0. 006

-0.008

001 i i i i i i i i i

Figure 15: X (¢) for the box problem, case 2, At, = 0.75 + 103

-2- using this prediction for the structure, compute a fluid mesh at time t"*! and average
mesh speeds for the current time step. Using subcycles, advance the fluid in time and
store the time-averaged fluid pressure on the structure according to (50-51).

-3- advance the structure till #"*! with the preceding external pressure.

-4- If ipc < IPC, use the structural displacement at time #"*! as a prediction, reset all

computational values to the values stored at step 0. ipc = ipc+ 1 and go to step 2.

We notice that for each time step, the computational cost is I PC times bigger, since I PC
steps of the regular volume-discontinuous method are done. The storage for this method is
also double, since we have to store all computational values before each prediction cycle. We
show on Figure 16 the performance of this method for the piston problem in case 1. We used
IPC = 2, with At, = 1.8 %+ 1073, which is the double of the time step used in Figure 9. Then
computational costs are comparable for the structural part. For the fluid part of the problem,
the time step is fixed by a CFL-like condition and in all cases, the computational cost is I PC
times bigger. The method is stable. We have increased its stability domain. We emphasize
the fact that the preceding time step corresponds to w.At, = 0.756 which is a rather poor
resolution for each coupled period. This explains why the solution is so much damped. The
same test for I PC' = 4 and At, = 3.6*1073, (which gives w.Ats = 1.51 and means we have only
four points per period) which induces again a comparable computational cost for the structure,
produced an even more damped solution.

For the box problem (in case 2), the result is more interesting. The present iterated method
with IPC = 2 does not show unstability for At, = 3.2 % 1073 (a time step four times bigger
than the time step used for the test of Table 2). The displacement for this test is shown on
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Figure 16: X (t) for the piston problem, case 1, IPC = 2 and At, = 1.8 x 103

Figure 17. The solution is a little more damped, maybe because we have only 25 time steps
per coupled period instead of 100 as in Figure 15. For this method, with I PC' = 2, unstability
does not appear before At, = 8. % 1073, which corresponds to 10 time steps per period and
N = 285, as shown on Figure 18.

Our conclusion is the following. We have tried to increase the stability domain of our
method by repeated prediction cycles. This was done successfully, but we got some overdamped
solutions when we used too few time steps per coupled period of oscillations. However, we
noticed that the predictor for the structural displacement at the end of the current time step was
depending on the step ordinal ipc. More precisely, there is a slow and oscillating convergence
towards a limit. This remark is the starting point for our next prediction method.

5.3.4 Assumed convergence of prediction iterations

The basic idea of this method is the same as peviously. We intend to perform prediction cycles.
We have noticed, that for a number of prediction cycles greater than one, the computational
cost for the fluid part is at least doubled, for any time step At,. Our goal is to cut down this
computational cost. An efficient way would be the following method: for every other P time
steps At,, perform actually two prediction cycles. For other time steps, use some information
and perform only one cycle with a more efficient prediction. However, this is a little bit
idealistic. Indeed, we first try to perform something easier. We first answer the following
question: is there a simple way to enhance the performance of the method with IPC =2 7
For each time step, we lose information, which is the difference between our first prediction,
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Figure 18: X () for the box problem, case 2, IPC = 2 and At, = 8. x 1073
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and the final displacement of the structure. -
For each prediction cycle, we use a prediction X"+ for the structural displacement at the
end of the current time step in step 2, and we get a displacement X"+ in step 3. Then X" 1!

is a function of X"*+1. We make the assumption that this function is linear, i.e.
Xn—l—l — _an—l—lX;_;_l + bn+1. (60)

where a”"*! and b"*! are some step dependant coefficients. We know that, for the preceding
method, stability increases with the number of prediction cycles. We also know that for an
infinite number of prediction cycles, when convergence is achieved, we have X"t! = Xn+1,
and according to (56) the global energy of the system is conserved. We deduce the following
method:

— 1
e for the first prediction cycle, use the predictor (57). We write X™*+1 for this first predic-
tion. We get the structural displacement X”*! after the first prediction cycle.

e for the second cycle: compute the value of b"*! assuming a is constant by
bt = XrT 4 qrxtt! (61)

— 2
and use as the second prediction X®»*1 the fixed point of the the function defined by
coefficients a” and b"t!, which writes

o n+1
ot o P
1+an

(62)

Finally, since we have computed two evaluations of our assumed linear function, we can
update both coefficients in order to satisfy the system

X'n+l — _an«l»lXﬁll_‘_bn«I»l
Xn+1 — _an+1X;:,;12+bn+1 (63)

We present on Figure 19 the results of this method for the piston problem in case 1. We
show the structural displacements for a time step At, = 1.8%1073 for this assumed convergence
method and for the simple prediction iteration method (Figure 16). The result is less damped
and the coupled pulsation is more accurately approximated (33251 instead of 31751, the exact
value being 344s~1). We show on Figure 20 the corresponding results for At, = 0.9 % 1073.
Both results are really close. However, though the coupled pulsation is correctly simulated,
both solutions are quite overdamped.

We conclude that the errors of the simple prediction iterations method were not corrected
by our assumed convergence approach. The method produces disappointing results, and gives
no hope about its ability to reduce computational costs, by reducing the proportion of time
steps where actual prediction iterations are made as stated at the beginning of this section.
This method is elementary. We investigate in the following section the use of numerical filters,
which may be well fitted to the natural flexibility of the volume-discontinuous method.
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Figure 19: X (t) for the piston problem, case 1, IPC = 2 and At, = 1.8 x 103
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Figure 20: X (t) for the piston problem, case 1, IPC = 2 and At, = 0.9 + 103
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5.3.5 Predictions using filters

If we observe numerical results presented on Figures 6-10-12, we notice that the unstability is
first met by some high-frequency mode, that we could call a grid mode. As stated earlier, the
volume-discontinuous method has great flexibility. We can use a smoothing prediction for the
structural displacement, without applying this smoothing procedure directly to the structure,
which could not have been possible with the volume-continuous method.

In order to conserve the generality of the algorithm, we base a new method on adaptive
numerical filters, which are able to detect and filter some modes, without defining a prior: the
frequency. In the following, we quickly present adaptive numerical filters, and show their use
to provide smooth predictions in our model problems.

Looking at Figure 12, we see that our prediction carries an increasing amount of noise. The
transformation of this prediction into something smoother is a typical task of signal processing.
Throughout the computation, the prediction (57) gives successive values, which are seen as
a signal. A nice course on signal processing can be found in [21]. We are interested in the
suppression of high-frequency modes in our incoming signal, and this can be done with nu-
merical filters [22]. However, though we know the structural eigenfrequency, we do not assume
we know the coupled eigenfrequency of the system. Then, we have to use adaptive numerical
filters, which are able to detect and filter low-frequency modes [23].

In this work, we have used gradient-type adaptive numerical filters. We present now their
very simple principle. Let us assume we dispose of a mono-dimensional signal we would like to
filter, because we know it is the sum of a sinusoidal signal and a “white” noise (denoted by ¢),
for example

" = sin(nw.At,) + €" (64)

For a sinusoidal signal, second order adaptive filters (depending on the two previous data ="
and " 1) are well fitted because of the following remark:

" =0= "1 _2 cos(w.Aty) ™ + 2l = (65)

The idea of gradient-type adaptive filters is to consider the left term of the preceding
equation as an error on the signal, since it only depends on the noise sequence €. The algorithm
is the following:

en«l»l — wn«l»l _ a’iLx‘IL _ a'gwnfl
n+1 n n (66)
ay ) _ O I entl
ag"" al "1

The reader should notice that the algorithm depends only on a user-fixed parameter 6. No
approximation of the term w.At, is used. We will see in the following how the parameter § is
fixed.

The result sequence e” is an approximation of the noise sequence ¢". If we dispose of the
input sequence ", the output filtered sequence will be ™ — e”. The stability of the algorithm
is approximately proved under the assumption that the error e”! has no correlation with the
previous input data (which is fairly true at convergence). Then, stability is achieved when the
a’717«+1m’rL

a posteriori error "1 — — a3+1az"“1 has a smaller expected value than the a prior:

(P n

error "1 — atx™ — aj 2" 1. Thus, we have stability when

s02 <1 (67)
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Figure 21: a priori error for " = sin(0.75 * n) 4+ 0.01 % " (6 = 0.05)

where § is the parameter used in (66) and o2 is the squared magnitude of the input noise
sequence €”. Usually, the parameter § is set far below the limit defined by (67), because
convergence of sequences a1 and a2 might be achieved quicker [23]. We show on Figure 21 the
a priori error sequence e” for a typical numerical test (the noise has a unity squared magnitude

and we used § = 0.05).

These filtering methods were coupled to our volume-discontinuous method in the prediction
part of our algorithm (the first step; see page 21). The multiple steps of the method can be
desdcribed as follows:

e the input for the method is the sequence of piston displacements X”. When unstability
is reached for the simple volume-discontinuous method, we assume some numerical noise
increases. We want to get rid of this noise.

e we compute the sequence Y1 = X+l _2Xx" 4 X"~1 The high-frequency noise (see for
example Figure 14) will be smoothed, and the modulus of X is used for the evaluation
of the squared magnitude response of Y. Actually, the parameter ¢ is fixed according to
6= # where o is the sliding maximum of X", Coeflicients a; and a2 for the sequence
Y are deduced from the filtering.

o these elements could be sufficient to provide a prediction for the next value of Y, and
then for X. However, a general characteristic of the gradient adaptive scheme presented
in (66) is that it is not efficient for a typical signal (64) when the parameter w At is too
small. Thus, we filter a subsequence of Y in order to obtain a greater accuracy on the
signal Y, and its parameters (w.At, and the possible damping). In that step, we have to
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Figure 22: X (t) for the box problem, case 2, At, = 1.0 1073

give an estimate for the coupled pulsation of the system. We use the structural lowest
eigenpulsation, and this is the only problem dependant parameter in the method.

e finally, a prediction of X" is computed using the assumption that it is the real part of
a complex exponential function of the time (or equivalently, of n).

We now present some results for the box problems in case 2. We show on Figure 22 the
structural displacement for a time step At, = 1073 and N = 36 (which is to be compared to
Figure 12). The method is stable, and produces a very weak numerical damping. A result with
At, = 3.2% 1073 and N = 116 is presented on Figure 23. In comparison with Figure 17, the
result is very satisfying, since the coupled pulsation and the damping numerically observed are
very close to those of Figure 17, but the cost of the simulation and the computational storage
have been halved.

As a conclusion, we can say that the flexibility of the volume-discontinuous method can
be and has been well used. With more or less complex predictions, we have been able to
enhance subcycling stability to a satisfying point, since for the case of Figure 23, we have used
approximately twenty time steps per coupled period of oscillation, which is a reasonable limit.
We would like to put again the emphasis on the fact that the use of the set of predictions
presented should not be used for the volume-continuous method, since it would directly affect
the structural displacement.
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Figure 23: X (t) for the box problem, case 2, At, = 3.2% 1073

6 Discussion

In this section, we intend to discuss the possibilities of enhancements of the previous methods
and their possible extensions to multi-dimensional aeroelastic problems. We first present some
time-interpolation aspects for the previous methods. Then we consider the space-interpolation
difficulties that may be encountered for multi-dimensional extensions.

As stated earlier, we have considered subcycled schemes in sections 4 and 5 where the time
variation of the fluid mesh was given by (40). This method is not accurate, particularly when
the structural time step At increases. Thus, we first investigate in the following the influence
of the time interpolation of the fluid grid motion on the numerical results. Throughout this
paper, we have used the linear law of motion (40)for the fluid mesh during subcycles. This law
of motion could be more accurate. However, in most cases, like computations corresponding to
Figures 18-20, we tried with no success to reduce numerical damping. Actually, the numerical
damping was caused by the use of a big structural time step At,, which gave us a quite
unaccurate prediction for the structural displacement at the end of the step. The unaccuracy
of the linear motion of the fluid mesh was covered by the unaccuracy of the prediction.

However, some work has been done on time-interpolation aspects in cases where we disposed
of a very accurate prediction of the structural displacement. For example, adaptive numerical
filtering produces as an output informations on the pulsation and phase of the processed signal.
These informations can be easily used to construct some accurate law of motion for the fluid
mesh. This was done successfully, as shown on Figure 24, which presents another result for the
same test case as Figure 23.
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Figure 24: X (t) for the box problem, case 2, At, = 3.2 % 1073 (non-linear mesh motion)

The structural displacement is very slightly damped. This damping was produced by the
numerical viscosity added in the fluid by the explicit first-order numerical scheme. The pre-
ceding result is quite optimal, since damping and pulsation are well simulated, and stability
is conserved though w.Ats = 0.25 (which corresponds to 25 time steps per coupled period of
oscillations).

We also tested the generalized-a method we presented in (21-23). This method was con-
structed to control and possibly reduce high-frequency modes by using a user-specified high-
frequency dissipation. However, the generalized-a method is used for the structure only. In
the test cases we considered in this paper, the structure is reduced to a point and the only
eigenfrequency is low. Then the generalized-a method may not have any influence on high-
frequency coupled modes. This was numerically confirmed. The generalized-a method will be
used in future works for complex structures.

As said before, our structure is reduced to a material point (one degree of freedom). We then
have not mentionned any spatial interpolation problem at the fluid/structure interface. This
might be the least straightforward part of the extension of the methods to multi-dimensional
cases. In the case where the fluid and the structural meshes are conforming (same vertices
at the common interface), the extension of the volume-continuous method is easy. For the
volume-discontinuous method, and for the volume-continuous method when both grids are not
conforming, the extension is a little more complex. Both methods should be added a procedure
allowing the transfer of pressure forces and structural displacements between the fluid and the
structure. Because the most part of industrial test cases are non-conforming - usually, fluid
and structural spatial discretizations are different - this kind of procedure has already been
implemented (see [20] for example).
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We will focus our future work on the extension of the methods presented in this paper to
two-dimensional problems, and particularly, to the Euler flutter analysis of a classical NACA
airfoil, first with two and then with a great number of degrees of freedom. Our aim will be
the use of subcycling schemes, which allow a limited number of structural time-integrations
(optimal would be twenty-five like the box problem seen previously) per coupled period of
oscillations.
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