
STAGGERED TIME INTEGRATION METHODS FOR AONE-DIMENSIONAL EULER AEROELASTIC PROBLEMSerge PipernoCERMICSINRIA, B.P. 93, 06902 Sophia-Antipolis Cedex, France.AbstractIn this paper, we consider two one-dimensional aeroelastic model problems. We investigatestability characteristics of staggered procedures of time-integration for these coupled systems.The modularity of these staggered schemes allows the use of classical upwind schemes for the�uid part of the problem (possibly subcycled explicit scheme) and Newmark or generalized-�methods for the structure. Though these methods have well known decoupled stability limits,the stability of the coupled scheme for a non-linear problem is unknown. We �rst presentthe volume-continuous method and we show this very popular algorithm produces a violationof action-reaction principle at the �uid/structure interface. This default is corrected in thenew volume-discontinuous method, which is shown to have enhanced �exibility and stabilityproperties. Finally, the extension possibilities of this new method to multi-dimensional casesare discussed.METHODES D'INTEGRATION TEMPORELLE DECALEEPOUR UN PROBLEME AEROELASTIQUEMONO-DIMENSIONNEL NON LINEAIRERésuméDans ce rapport, nous présentons deux problèmes modèles aéroélastiques. Nous étudions lastabilité de méthodes d'intégration temporelle décalée pour ces problèmes couplés. Leur mod-ularité permet l'emploi de schémas décentrés explicites (éventuellement sous-cyclés) pour le�uide et implicites pour la structure dont les stabilités découplées sont connues. Cependant, lastabilité du schéma couplé reste inconnue. Nous présentons d'abord la méthode avec interfacesimple. Nous montrons que cette méthode très populaire viole le principe d'action et de réac-tion à l'interface �uide/structure. Ce défaut est corrigé dans la nouvelle méthode avec interfacedouble. Nous montrons que cette dernière est plus souple et plus stable. Pour �nir, l'extensionde cette nouvelle méthode à des cas multi-dimensionnels est envisagée.



1 IntroductionWe present in this paper some numerical methods that have been constructed for the numericalsimulation of �uid-structure interactions. This class of coupled problems and some classicalmethods used for their simulations have been reviewed in previous works [1]. Shortly, numericalmethods used for the simulation of aeroelastic problems should have the following qualities:accuracy, e�ciency and modularity. The accuracy of the methods used allows the interpretationof numerical results, which are the sum of the exact solution of the modelized problem and thenumerical errors (numerical damping and di�usion, dispersion). For example, the Euler �utteranalysis of an airfoil [2] can be done if the numerical di�usion does not make �utter disappear.E�ciency allows accurate computations with limited costs. In some cases, the characteristictimes of the �uid part and the structural part of the coupled system are very di�erent. Theirtime-integrations might require very di�erent time steps. E�ciency can be enhanced withthe use of subcycling [3]. Finaly, by the use of staggered schemes [4], modularity is achieved.Most popular existing modules for the separate resolutions of �uid and structural parts can becoupled. Each part can be dealt with separately, and even computed on separate heterogeneousmachines [3]. As a consequence, some particular coupling methods are required.The aim of this paper is to present some numerical methods constructed for the numericalsimulation of a one-dimensional Euler aeroelastic model problem. Though the problem isvery simple, we intend to only consider methods that could be extended to multidimensional,complex cases. This paper follows a preceding study on the linearization of the same modelproblem [5], and some proved stability results on numerical methods used for the simulation oflinear aeroelastic problems [3].The content of this report is as follows. In Section 2, we present the aeroelastic problemsconsidered. These two very similar problems are one-dimensional. The structure is linear witha single degree of freedom. The �uid satis�es 1D Euler equations (perfect �uid). They di�er bysome boundary conditions for the �uid. These problems were chosen because they are simple,and have the same characteristics as some other aeroelastic problems: the piston problem ismainly internal and acoustic, while the box problem is rather external (close to the �utter caseanalyzed in [6, 2]).In Section 3, we present the global resolution algorithm. We use staggered schemes, whichallow modularity. We then have to present the set of numerical methods used separately in the�uid (�nite volume method, Van Leer �ux splitting) and the structural (generalized-� method)part of the problem. We also present the methodology for the coupling of the previous methods,and the necessity of subcycling.In Sections 4, we show and analyze the volume-continuous method, which is currentlyused in industrial codes. Both �uid and structural mesh boundaries are matching (at leastthe continuous interfaces are matching before separate spatial discretizations). We explainwhy this method does not respect the action/reaction principle (and the conservation of themomentum), which might be the cause of its poor subcycling stability properties.In Section 5, we present the volume-discontinuous method. The boundaries of the �uidand structural meshes are di�erent. We show that this method allows the conservation of themomentum. The �exibility of the method is used with multiple prediction algorithms, in orderto enhance the stability and the accuracy of the method.Finally, we discuss in Section 6 the use of more complex time-interpolation schemes, andthe possibilities of extension to multi-dimensional cases.1



2 The model problemsIn this section, we set the physical problems which will be studied in this paper. These twoproblems were needed because of their di�erent relations with well-known aeroelastic test-cases.In the following, we �rst present the model problems. Then we set the corresponding mathe-matical problems. Finally, we explain our choice, based on eigenfrequencies considerations andsimilarities with cases of external �ows and �ows with strong compressibility e�ects.2.1 The two one-dimensional problemsIn this paper, we consider two one-dimensional problems which are quite close indeed. The�rst one, which will be called the �piston� problem, is shown on Figure 1. A perfect gas �owis contained in a chamber closed by a moving piston. The other end of the chamber is �xed.The structural part of this problem - the piston - closes the �uid domain, which produces the�uid/structure interaction. The problem will be set in more details in the following.
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Figure 1: The �piston� problem (�uid-�lled 1D �exible chamber with one moving end)The second problem we will consider is shown on Figure 2. In the �box� problem, bothends of the chamber are moving. However, the length of the box remains constant (both endsspeeds are equal). Again, there is an interaction between the �uid and the box - the structuralpart of the problem - because the box contains the �uid, which reciprocally exerts a pressureforce at both ends.In both problems, we assume no point of the �ow is transonic and structural speeds aresmall compared to the average �uid sound speed. We will denote by X the displacement of theright end of the chamber. We will write xL and xR for the abscissae of the left and right ends.The origin of the X-axis is set at the left end of the chamber. The equilibrium length of thechamber for the piston problem is set to L, which also is the �xed length of the box in the boxproblem. We have xR = L+X and xL = 0 (resp. xL = X) for the piston (resp. box) problem.We assume the one-dimensional �ow inside the chamber is governed by the compressible Eulerequations. In both cases, we will refer to the equilibrium state of the system as the state where:� the �ow is uniform, with no velocity. The pressure is equal to the external pressure P0� the right end has no speed, and is at the equilibrium position.2
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Figure 2: The �box� problem (rigid �uid-�lled 1D moving box)These problems have di�erent characteristics. In the piston problem, the length of thechamber is variable. Then strong compressibility e�ects occur. The behaviour of the �owis close to a very rigid spring. As a matter of fact, this case is not far from an internal�uid/structure interaction problem. Paradoxally, the problem of the box is close to an external�ow case. The �uid is not globally compressed since the length of the box is �xed. The �uid isjust displaced, like the �ow around an airfoil in subsonic �ight. These aspects will be veri�edby the determination of �rst acoustic coupled eigenfrequencies.2.2 Equations and boundary conditionsMathematically, the problem is the following:� Euler equations for the �uid in the domain [xL;xR]8><>: �t + (�u)x = 0 ;(�u)t + (�u2 + P )x = 0 ;Et + [u(E + P )]x = 0 : (1)Here, � is the density, u is the velocity, P is the pressure and E is the total energy perunit volume. The �uid is assumed to be perfect and the pressure is given byP = (
 � 1)(E � 12�u2) (2)where 
 is set to 1.4.� boundary conditions for the �uid are the following:����� u(xL) = _xLu(xR) = _xR (3)where dotted variables stand for corresponding time derivatives. They reduce toPiston problem: ( u(0) = 0u(L+X) = _XBox problem: ( u(X) = _Xu(L+X) = _X (4)3



� the motion of the structure is given bym �X + d _X + kX = F (5)where m, d and k are respectively the mass, the internal damping and the sti�ness of thestructure. The external force F is given bypiston problem: F = P (xR)� P0 = P (L+X)� P0box problem: F = [P (xR)� P0]� [P (xL)� P0] = P (L+X)� P (X) (6)2.3 Coupled eigenfrequenciesWe are interested in the numerical simulation of the two problems we just set. In both cases,the unique source of energy dissipation is the damping in the structural part. Then, we controlthe damping of the coupled system. For example, if we choose d = 0, we know that someglobal energy is conserved. Like aircraft conceptors, we would like to know the discrepanciesbetween numerical simulations and physical experiments in the stability measured for the cou-pled system. In our cases, we will just have to test if our numerical results are rather stable orunstable, and to know what damping or ampli�cation rates are numerically produced. We willalso be interested in phase errors, and we need an estimation of the coupled frequencies of ourproblem.In this paper, we will only consider small perturbations of the equilibrium states de�nedpreviously. Thus we intend to perform a linear stability analysis around these equilibriumstates. We will use linearizations of our equations around these equilibrium states to obtaincoupled eigenfrequencies of the problems. However, we will solve non-linearized problems withclassical non-linear methods.The linear stability analysis around equilibrium states can be found in details in [5]. Wegive here a sketch of main parts of these analyses.In the following, �0 is the uniform density at equilibrium and c is the sound speed (givenby 
P0 = �0c2). We add a perturbation to all variables: a density perturbation�� (��� �0),a velocity perturbation �u (�u� c). The pressure perturbation is given by�P = c2�� ; (7)which is derived from the isentropic hypothesis we make. Finally, the energy perturbation canbe derived from the other perturbations. More, the linerization of the energy conservationequation (third Euler equation) reduces to an equation which is always veri�ed (when thelinearized forms of mass and momentum conservation equations are veri�ed). Then, we get ridof this equation under the isentropic hypothesis.Using the notation W = (��; �0�u)t, both problems reduces to the following:� acoustic �uid equations writtenWt + 0 1c2 0 !Wx = 0; on [0;L] for both problem, (8)4



� with boundary conditions given bypiston problem: �u(0) = 0 and �u(L) = _Xbox problem: �u(0) = �u(L) = _X (9)� a structural equation which writespiston problem: m �X + d _X + kX = c2��(L)box problem: m �X + d _X + kX = c2(��(L)���(0)) (10)The reader shoul notice that both linearized problems are set on [0;L]. Since W already isa perturbation, the preceding approximation produces an error of the second order in pertur-bations.We now have to �nd the di�erent modes of each linear problem. In the following, wewill limit our investigations to the cases where d = 0. When d > 0, the system is naturallydamped. When d < 0, the system is naturally undamped and unstable. The importance ofthe case where d = 0 should be emphasized. In that case, the physical system is just stable.Thus, the numerical qualities of the simulation are directly related to numerical properties ofthe integration methods, particularly in terms of stability.We �rst consider the piston problem. A solution of (8) with the �left� boundary condition�u(0) = 0 is given byW =  1+c ! cos[!(t� xc )] + 1�c ! cos[!(t+ xc )] (with ! 2 IR): (11)If we assume a coupled mode of the preceding form exists, then for this mode we have:_X = �u(L) = 2c�0 sin(!Lc ) sin(!t) which gives (12)�X = 2c!�0 sin(!Lc ) cos(!t) = �!2X (13)On the other hand, the density perturbation at the right moving end of the piston is given by��(L) = 2 cos(!Lc ) cos(!t): (14)Finally, the structural equation (10) for the piston is veri�ed (with d = 0) if and only if thefollowing relation is true:Piston problem: �!Lc � tan�!Lc ��1� km!2� = �0Lm : (15)This formula deserves several comments. We see that when the piston is given an ini�nitemass (i.e. is �xed), we �nd an in�nity of purely acoustic modes in the �uid part of the pistonproblem. We also see that if the piston is given a �xed structural eigenfrequency, and if itsmass is big enough compared to �0, the coupled eigenfrequencies get closer to this structural5



eigenfrequency. Finally, we can notice that the lowest coupled pulsation is greater than thestructural pulsation !s = pk=m (when the latter is smaller than the lowest purely acousticpulsation). In that case, the structure is not slowed by the �uid. On the contrary, the systemundergoes oscillations which are rather acoustic.We now consider the box problem. A solution of (8) with the boundary condition for themoving box �u(0) = �u(L) is given byW =  1+c ! cos[!(t� x� Lc )]�  1�c ! cos[!(t+ xc )] (with ! 2 IR): (16)We assume again a coupled mode of the preceding form exists. We then have:_X = �u(0) = �u(L) = c�0 �cos(!t) + cos[!(t+ Lc )]� which gives (17)�X = �!c�0 �sin(!t) + sin[!(t+ Lc )]� = �!2X (18)On the other hand, the density perturbations at the ends of the box are given by��(0) = cos[!(t+ Lc )]� cos(!t) = ���(L) (19)Finally, after some short algebric transformations, we �nd the structural equation (10) for thebox problem is veri�ed (with d = 0) if and only if the following relation is true:Box problem: �0Lm tan�!L2c � = �!L2c �� km!2 � 1� (20)We should compare this formula to the preceding one. When the box is given an ini�nitemass, we �nd an in�nity of purely acoustic modes (and their pulsation are doubled, becauseboth ends are now moving). As for the piston case, the coupled eigenfrequency gets close tothe structural eigenfrequency if the latter is �xed and the mass of the box tends to in�nity.Finally, we notice that the lowest coupled pulsation is smaller than the structural pulsation!s = pk=m (when the latter is smaller than the lowest purely acoustic pulsation). Contrary tothe piston case, the structure is slowed by the �uid. The system undergoes oscillations whichare not close to acoustic oscillations. These oscillations are closer to those met in bu�etting or�utter cases.2.4 Data sets for test casesIn this section, we want to de�ne a set of test cases for both problems. For a test case, thegeometry is set with the equilibrium length of the piston/box L; the �uid equilibrium statede�nition requires the sound speed c and the density �0; the structure is de�ned by givingthe mass m and the sti�ness k (and possibly the damping d if it is not taken equal to zero).However, we can derive from a dimensional analysis that, out of these �ve data, only two induce6



independant variations of the aspect of the test case. In the following, we will set L = 1m,�0 = 1:3kg/m and c = 330:332m/s (this value was deduced from the equation �0c2 = 
P0 with
 = 1:4 and P0 = 1atm). A variation of these parameters would be considered as a change inunities of time, length and mass. Test cases will be characterized by the two paramaters mand !s (derived from k by m!2s = k).In the paper, we consider the following test cases:� case 1: m = 0:8kg and !s = 100rad/s� case 2: m = 2:1kg and !s = 100rad/s� case 3: m = 40kg and !s = 30rad/sCases 1 and 2 are not far from data found in classical aeroelastic problems for a two-dimensionaltwo-degree of freedom NACA airfoil (see [6, 2]). The structure has a mass of the same orderof magnitude as the �uid mass involved in the system. The structural pulsation !s is rathersmall compared to the lowest purely acoustic pulsation (which is given by �L ' 1038rad/s forthe piston problem). Case 3 is of a di�erent type: the mass of the structure is very important,and the structural pulsation is rather small. The system is strongly in�uenced by the structureand rather weakly coupled. We should obtain greater performances of our numerical methodsfor time integration.3 Numerical methodsThe numerical simulation of an aeroelastic problem is two-fold: it requires at least the simula-tions of the �uid dynamics and the structural mechanics and the use of numerical methods inboth domains. On the one hand, the structure is generally discretized using a classical �niteelement method. For our problems, the structure is reduced to something close to a singlematerial point, since it has only one degree of freedom (which is the displacement X). Thismoving structure must be integrated in time. We will present in the following a well-knownfamily of time-integration methods used for the strcuture.On the other hand, the �uid is enclosed in the moving/�exible box. The �uid domain,which will be discretized, is also moving along with the piston or the box. Then, the numer-ical simulation requires the use of moving grids (at least at �uid domain boundaries). As aconsequence, we will have to produce methods for moving the grid (theses methods are ratherstraightforward for one-dimensional problems). We also have two consider ALE formulationsof Euler equations, i.e. formulations with imbedded non physical spatial coordinates. We willhave to use numerical methods for the resolution in time and space of these formulations.Finally, we present in this section the speci�c numerical methods used for the coupledintegration in time and space of the coupled �uid/structure interaction problem. Actually,the simulation of this coupled aeroelastic problem is not strictly reduced to the integrationof structural mechanics and of �uid dynamics in a moving domain. The coupling has to besimulated. We will see it can not be simulated in a totally coupled way, because of the use ofimplicit schemes, at least for the structure. We will then introduce staggering schemes, and�nally subcycling methods when the stability limits on the time step for the �uid and thestructure are very di�erent. 7



3.1 Numerical methods used for the structureIn both the piston and the box problems, which are one-dimensional, the structure can beconsidered as a single material point. Then, no discretization problem appears. However,a classical �nite element discretization could be used for more complex structures [1, 7].Throughout this section, we assume the equation for the structure as presented in (5) holds.In the following, we will present numerical methods that are also convenient when m, d and kare square matrices, m and k being de�nite positive, and d simply positive.We present here rapidly a general family of methods for the time-integration of structuraldynamics: the generalized-� method [8]. We suppose the applied force F is known duringthe integration of the structure. The generalized-� method depends on four coe�cients: � and
 (which keep the same role as in Newmark methods [9, 10]), and �f and �m (time-shiftingcoe�cients). Superscripts will be reserved for time step ordinals. For any quantity z, for anygiven parameter � (� 2 IR; 0 < � < 1), and for any time step ordinal n, we use the notationzn+� � (1� �)zn + �zn+1:The generalized-� method can be described as follows:� assume at time tn, X(tn) = dn, _X(tn) = vn and �X(tn) = an are known� assume dn+1 and vn+1 are given by the following expressions, depending on the unknownquantity an+1 (through an+2� and an+
):dn+1 = dn +�tvn + �t22 an+2� (21)vn+1 = vn +�tan+
 (22)� using the preceding assumptions, �nd an+1 solution of the structural dynamics equation:man+1��m + dvn+1��f + kxn+1��f = Fn+1��f (23)� using (21-22), compute the next time step computational values dn+1 and vn+1 and setX(tn+1) = dn+1, _X(tn+1) = vn+1 and �X(tn+1) = an+1The family of generalized-� methods contains the Newmark methods (with �m = �f = 0),the HHT-� methods (�m = 0) [11] and the WBZ-� methods (�f = 0) [12]. The accuracy,the stability, the high-frequency and low-frequency dissipations of the method depends on theparameters �, 
, �m and �f .It can be shown [8] that the method is second-order accurate when 
 = 1=2 + �f � �m.The method is unconditionnaly stable, provided �m � �f � 1=2 and 2� � 1=2 + �f � �m.Finally, Chung and Hulbert describe an optimal choice of parameters for this method, whichis unconditionnally stable, second-order accurate, and has an optimal combination of high-frequency and low-frequency dissipations. In function of the user-speci�ed spectral radius inthe high-frequency limit �1, the method is written:�m = 2�1 � 1�1 + 1 ; �f = �1�1 + 1 ; 
 = 1=2 + �f � �m; � = 14(1 + �f � �m)2 (24)8



In this paper, we will use this method with di�erent values of �1 2 [0; 1]. We will alsouse the classical trapezoidal rule de�ned by 
 = 1=2, � = 1=4 and �m = �f = 0. Wewould like to put the emphasis on a particular point for more complex simulations: if youconsider a linear structure, and you use only linear schemes, like the trapezoidal rule or thegeneralized-� method, the time integration of the structure requires the solution of a linearsystem for each time step. If the structural time step �ts remains �xed during the simulation,all matrices involved remain constant and can be inverted once and for all. This advantageshould be conserved when the time-integration of the �uid part in the staggered methodologyis performed simultaneously.3.2 Numerical methods used for the �uidIn the preceding section, we presented the structural part of the integration of the aeroelasticinteraction. The in�uence of the �uid on the structure is the aerodynamic external force F . Inthis section, we deal with the �uid part of the simulation. The in�uence of the structure onthe �uid �ow is the result of a two-fold boundary condition. From a physical point of view,the structural boundary of the �uid domain matches exactly the boundary of the structure,and the �uid normal velocity near the �uid/structure interface is equal to the interface normalspeed. As a consequence, we will present in this section numerical methods which can be usedfor the simpler simulation of �uid dynamics in a moving domain.The �uid domain is no longer considered as �xed. The spatial discretization will also bemoving, at least at the boundaries. Some numerical experiments have been made on �transpi-ration� methods, where the grid is �xed everywhere, the �uid/structure interface included, andwhere transpiration terms were added to compensate for the violation of the matching condi-tion of both �uid and structure interfaces [5]. These kind of methods are e�cient for simplelinearized cases, and are of lower interest for non-small displacement. However, they wouldgive good numerical estimates for the coupled linear eigenfrequencies of the physical system.In this paper, we will consider numerical methods with moving �uid grids. The use ofthis kind of methods is rather simple and general. They are known as Arbitrary Lagrangian-Eulerian formulations. Although they have a general form [13], they can be applied on Eulerequations [1]. The latter take the following integral form:ddt �ZCx W dx�+ ZCx divx �F dx = 0: (25)where x is the spatial physical position of a point, Cx is the geometric cell of integration. Theboundaries of this cell are assumed to move with the mesh local speed w (depending on x). Wis the vector of conservative variables (�; �u;E)t and �F is the ALE-modi�ed �ux vector givenby: �F = 0B@ ��u�u�u +PE�u +Pu 1CA and �u = u� w: (26)From (25), the deduction of a �nite volume explicite scheme is straightforward. The9



numerical method will be written:An+1i Wn+1i � Ani Wni +�t ���(Wni ;Wni+1)� ��(Wni�1;Wni )� = 0; (27)where Cni is the ith cell at time tn (and Cni = [xni�1=2; xni+1=2]), Wni is the average of W on cellCni at time tn, Ani is the area of cell Cni at time tn, �t is the time step, and �� is a numerical�ux such that �t��(Wni ;Wni+1) ' Z tn+�ttn �F (xni+1=2)d� (28)The evolution of Ani with the time is given by:An+1i �Ani +�t ��wni+1=2 + wni�1=2� = 0; (29)Since the grid points are updated according toxn+1i+1=2 = xni+1=2+�twni+1=2; (30)(29) is equivalent to Ani = xni+1=2� xni�1=2; 8i; 8n (31)The complete method will not be fully described till we give our choice for the numerical�ux �� in (27). Throughout this paper, the time integral of (28) is approximated using the�ux-vector splitting of Van Leer [14]. The approximation is only taken as �rst orderaccurate for several reasons: it is quite simpler (though spatial second order accuracy can beachieved with Van Leer �uxes [15] or with the �ux-di�erence splitting of Roe in dynamic meshes[16]), and it allows the use of much lighter �rst-order time-integration schemes without stabilityproblems. We could also argue that the main goal of the present paper is the investigation ofthe coupling simulation, which still is complex, even when it is done with simple uncoupledmethods.This splitting takes the following form on dynamic meshes [15, 17]:��(Wni ;Wni+1) = ��+(Wni ) + ���(Wni+1) (32)with ���(Wni ) = � �4c(�u� c)2:0B@ 1�2c��u
 + u�(
�1)�u2�2(
�1)�uc+2c2
2�1 + u22 � w(�u�2c)
 1CA (33)where we have taken����� � = �nic2 = 
Pni�ni ����� u = uniw = wni�1=2 ����� �u = u� w (34)The preceding expressions for the extended Van Leer �ux-vector splitting are always valid underthe condition j�uj < c (we limit this study to subsonic cases).We now describe the treatment of boundary conditions (4). For both ends of the chamber,the boundary condition is enforced in the following weak sense: the left end boundary �ux istaken equal to (0; P1; P1w1)t (we recall 1 in the index of the �rst left cell in the �uid). As well,the right end boundary �ux is taken equal to (0; PM ; PMwM )t .10



Finally, we must put the emphasis on a peculiar point. We do have a choice on the motionof the mesh. The grid velocity at the �uid/structure interface may be �xed. However, we canchoose any mesh motion consistent with this condition. In general, the mesh can be consideredas a third �eld for the �uid/structure interaction simulation. It can be given any arti�cial massand damping matrices, and integrated like a structure [18]. For instance, Batina [19] proposeda method for the smooth motion of the �uid mesh around a deforming airfoil, which was basedon a spring model. This method was compared to a simple change of frame of reference in thecase of a rigid motion of the structure [7] and gives good results e�ciently.Thoughout the whole paper, we chose to move the �uid mesh in order to have a uniformcell size at any time. For the box problem, all points are given the same speed (and cellskeep the same contant size). Though the box is rigid in that case, we kept the dynamic meshformulation. Assuming we have M points in the mesh, the mesh motion is given by8i; 1 � i �M; xni = i� 1M � 1L+Xn and wni = _Xn: (35)For the piston problem, all grid speeds vary in proportion with the distance from the �xed leftend of the chamber:8i; 1 � i �M; xni = i� 1M � 1(L+Xn) and wni = i� 1M � 1 _Xn (36)3.3 Coupling numerical methods...In this section, we deal with numerical methods which are needed for the simulation of coupled�uid and structural �elds. We presented in the two previous sections methods for the simu-lation of structural dynamics and �uid dynamics on a moving domain, which are not coupledsystems. The goal of this section is two-fold: introduce methods directly needed by the couplingphenomenon, and couple both sets of uncoupled methods presented earlier.In this paper, we only consider staggering strategies. They consist in the successive decou-pled integrations of the structure and the �uid. Each �eld is frozen during the time integrationof the other �eld. This kind of strategy has many advantages. First, the use of existing schemes,programs and procedures for both separate �elds can be advocated. It allows also to imagineintra-�eld and inter-�eld parallel implementation of the schemes [3]. Second, the use of implicitschemes in a totally coupled time integration scheme would induce a terrible computationalcost, because the grid position and velocity would be a numerical variable as well. On theother hand, this kind of staggering scheme may not be stable, even if both the schemes usedfor separate �elds are used far under stability limits. However, the investigation of staggeringschemes for one-dimensional linear model problems has recently produced some results [3].The basic line of a �rst family of staggering algorithms could be sketched as follows:� assume you dispose of all computational values after the nth time step. They are thestructural displacements, speeds and possibly accelerations on all discretization points (orelements), but also the location and speed of all �uid grid points, and, of course, the �eldof conservative variables vector W in the whole �uid mesh. We will denote respectivelythese computational values by Sn (all structural informations), Mn (for the �uid mesh)and Wn for the �uid �eld. 11



� compute the distribution of forces and moments exerted by the �uid pressure on thestructure (through the �uid/structure interface)� assume it is constant during the next time step and compute the state of the structureafter the next time step (getting Sn+1).� compute a possible �uid grid after the current time-step. The future grid Mn+1 mustsatisfy the condition that both �uid and structural boudaries are matching along theinterface at time tn+1.� compute the average speed of each �uid grid point during the current time step.� use this speed �eld for the time-integration of the �uid, and get Fn+1.This methodology is the most popular. All steps seem clear and natural. It is �volume-continuous� in the following sense: even though the �uid and the structure may be discretizedin di�erent ways, both continuous boundaries (boundaries before discretization) are spatiallymatching; near the interface, the whole volume is occupied either by the �uid or by the struc-ture. This kind of methods will be refered to as volume-continuous methods.For these methods, all steps seem clear and natural. However, we will see in the nextsection that important momentum and energy violations are induced, limiting the stability ofthe global algorithm. The preceding algorithm can be understood as �integrate the structureand then the �uid, and do it again...� But the symmetrical algorithm �integrate the �uid andthen the structure, and so on...� is also possible (the reader should note that the followingsecond methodology di�ers from the �rst one by more than an index change !):� assume you dispose of all computational values after the nth time step Sn, Mn ans Wn.� make a prediction for the global state of the structure at time tn+1. This prediction couldbe made with an actual integration of the structure under a constant pressure equal toPn. However, it could be done simply with a �rst-order explicit linear predictor.� compute a possible mesh Mn+1a time tn+1, the interface of which must be matching thelocation for the �uid/structure interface at time tn+1 just predicted.� compute average speed of all �uid grid points during the current time-step.� perform the time-integration of the �uid part of the problem with these mesh speeds(getting Wn+1).� compute a good approximation of the time integral of the pressure forces and momentsaround the structure during the current time-step.� perform the time-integration of the structure and get Sn+1.The most signi�cative di�erence between both methodologies is the matching conditionon the �uid/structure interface. In the second method, there is no matching requirement forthe �uid and the structural boundaries after each time-step. With no consideration of spatialdiscretizations of the �uid and the structure near their interface, we do not assume that bothcontinuous boundaries are matching any more. We have relaxed the matching hypothesis onthe continuous boundaries. This kind of methods will be refered to as volume-discontinuousmethods. 12



This methodology seems to allow strong numerical errors at the interface. However, if theprediction of the next location of the structure is accurate, the matching of the interfaces willbe achieved with a possibly satisfying accuracy. On the one hand, the matching condition isrelaxed, and satis�ed with a limited accuracy. On the other hand, the time-integration of thestructure might be done with more accuracy, because the �uid pressure distribution at theend of the current time-step (at time tn+1) is already known. Advantages and drawbacks ofthese two methodologies will be further discussed in the following section. We should put theemphasis on the fact that the volume conservation for the �uid will be written on the �uidvolume only, so that we can keep the conservation properties of our schemes.Finally, we introduce here the principle of subcycling. The time integration of the structurewill be done with the generalized-� method or the classical trapezoidal rule (Newmark methodwith 
 = 1=2 and � = 1=4) which are both unconditionnaly stable. However, if the lowestcoupled pulsation of the system !c can be estimated thanks to (15) and (20), the use of a time-step greater than 1=!c will produce very inaccurate results. The limit�tlimS = 1=!c correspondsto six points per oscillations, which gives a rather poor representation of a sinusoidal curve.In the same way, since we will use a simple forward-Euler �rst-order scheme for the time-integration of the �uid, the time step �tf will be limited by a CFL-like condition [7]:�tlimf = mini �xnij�uni j+ cni ; (37)where cni is the local sound speed (equal to (
Pni =�ni )1=2). Throughout this paper, the chamberis given in both problems a length unity. And the �uid grid was made of �fty points (and �ftycells around these points). The experience proves that, for industrial cases like those discussedin [6, 2], the limit time step for the structure integration �tlimS can be very large compared to�tlimW .This gives the idea of subcycling the �uid. Since the integration of both �elds is decoupledin staggering schemes, there is no need to integrate them with the same time step. The onlyconstraint is to advance in time both �elds with the same quantity, but not necessarily in thesame number of steps. Furthermore, the last step of the �rst methodology and the �fth step ofthe second can be performed in a subcycled way: the grid points speeds are only needed. Forinstance, they could be �xed for each group of subcycles without di�culties. The subcyclingcan enhance the performance of a code, because it (usually) reduces the number of structuralintegrations. It also enhances the accuracy of the time-integral of the �uid forces and momentson the structure mentionned in the second methodology. This may be an additional advantage.Last but not least, we already have advocated the use of a constant structural time step �tswhen we use linear schemes for the linear structures. Since the �uid equations are not linear,and since the stability conditions for the corresponding schemes are not constant throughoutthe computation (see (37) which is clearly time-dependant), the use of subcycling is necessary:it allows to keep�ts constant while�tf varies. Another solution would consist of the limitationof the �uid time-step �tf uniformly to a smaller value, in order to keep a constant time stepand verify (37). This would a�ect the e�ciency of the method as well.In the following sections, we describe and comment the results given by both methodologies.They must be compared in terms of stability for the limit time-step�tlimS and the limit numberof subcycles for the �uid. We should also compare their accuracy (especially phase errors andnumerical damping). Finally, the possibilities of enhancements will be discussed.13



4 The volume-continuous methodIn this section, we review in detail investigations on the �rst method presented above. Consid-ering both �uid and structural interfaces as common and constantly matching (at least, bforespatial discretization), we mainly study the e�ects of subscycling and the numerical schemesfor grid speeds on the numerical simulations of our model problems.4.1 Description of the algorithmThe volume-continuous method is the most direct and natural, and the most popular as well.The basic idea is the following. Assuming we want to use a staggering scheme, and consideringwe need to know the motion of the mesh for the time integration of �uid dynamics, we shouldadvance the structure, compute a new grid and the average grid speed during the time-stepand then advance the �uid in time. The subcycling process can be added to the general ideaof the method. We now give a precise sketch of the method:� Compute the pressure PnM on the structure at time tn. There is no actual computationfor our two one-dimensional model problems. However, the external force distributionshould be computed at this step in more complex computations, like three-dimensionalcomputations with approximate matching grids [20],� advance the structure using a generalized-� method or a simple trapezoidal rule using a�xed time-step �ts for the structure,� get the displacement of the structure at time tn+1 and compute a new �uid grid location(this can be done directly in one dimension according to (35) or (36). However, morecomplex methods have been reviewed for multi-dimensional cases in [7]),� �x a motion law for the �uid grid points during the �uid subcycles: for each grid point,the �nal location must be equal to the location previously computed,� advance the �uid part of the problem with multiple subcycles, using average grid pointsspeed, depending on the previously de�ned law of motion. Thoughout this paper, we willdenote by N the approximate number of �uid subcycles. N is given byN ' �ts�tf : (38)It is not necessarily an integer. However, we will assume throughout this paper, that N isan integer. In actual numerical simulations, the last subscycle for the �uid is performedwith a time step g�tf that can be smaller than �tf , so that we have�ts = (N � 1)�tf + g�tf (39)We will also denote by Wn;k the �uid state after the kth subcycle. We use the conventionthat Wn;0 = Wn and Wn;N = Wn+1. 14
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Figure 3: X(t) for the piston problem, case 1, �ts = 10�44.2 Numerical resultsFor the �rst numerical tests, we took for the two last steps the following natural law of motionfor the �uid grid points: assuming both displacements xnM and xn+1M are already known, weuse: xM(t) = XnM + Xn+1M �XnM�ts (t� tn) for t 2 htn; tn+1i (tn+1 � tn +�ts) (40)which gives a constant average speed for the last grid point wM during subcycles �tf equal towM = Xn+1M �XnM�ts : (41)All remaining �uid grid points locations and speeds were computed according to the simplealgorithms (35) or (36). We �rst applied this algorithm to the piston problem (case 1). Thestructural displacement is presented as a function of time on Figure 3. The structural time stepused was �ts = 10�4 which corresponds to an approximate number of subcycles N equal to 4.The result is quite satisfying. The system, which is genuinely physically stable, is added a lightnumerical viscosity (due to the �rst order upwind scheme used in the �uid part). However,when we use a bigger time step for the structure, the global scheme becomes unstable. Atypical result is showed on Figure 4. The time step �ts = 2:6 10�4 corresponds to N = 10.This result for the piston problem is not speci�c. We have made the same numericaltests with the box problem (with case 2). We present on Figure 5 (resp. Figure 6) the boxdisplacement in function of time for �ts = 2 � 10�4 (resp. �ts = 3 � 10�4), which correspondsto N = 8 (resp. N = 11). 15
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Figure 4: X(t) for the piston problem, case 1, �ts = 2:6 � 10�4
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Figure 5: X(t) for the box problem, case 2, �ts = 2 � 10�416
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Figure 6: X(t) for the box problem, case 2, �ts = 3 � 10�4They were also described in [3]. We intend to give an simple explanation of the unstabilityinduced by the staggering subcycled algorithm we used. We present on Figure 7 the relativevariation of the total energy of the system for the same numerical test as in Figure 6. Wecan see it increases exponentially. We will show in the following that this algorithm does notconserve the global energy, though we use a conservative scheme for the �uid.4.3 Discussion on conservationFor instance, let us consider the box problem. We consider the global energy E of the system.We also denote by Ef and Es respectively the energy of the �uid and the structure. Beforespatial discretization, these energies can be written as:E(t) = Ef (t)z }| {Z L+X(t)X(t) E(t; x)dx+ Es(t)z }| {12m _X(t)2 + 12kX(t)2 (42)After spatial discretization, we de�ne all corresponding discrete energies by:En = Efnz }| {MXi=1Ani Eni + Esnz }| {12m _Xn2 + 12kXn2 (43)17
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Figure 7: E(t) for the box problem, case 2, �ts = 3 � 10�4We assume we use a trapezoidal rule for the time-integration of the structure. During the timestep �ts, the �uid exerts a pressure at both ends taken as constant on the structure, and equalto Pn1 and PnM . Thus, it is easily showed that the energy variation for the box is given by:Esn+1 � Esn = �ts (PnM � Pn1 ) _Xn + _Xn+12The trapezoidal rule has the property that the preceding equation reduces toEsn+1 � Esn = (PnM � Pn1 )�Xn+1 �Xn� (44)On the other hand, the energy variation for the �uid during each subcycle �tf dependsonly on the boundary �uxes given on page 10, because we use the conservative scheme (27).This variation is given by:Efn;k+1 � Efn;k = ��tf �Pn;kM wn;kM � Pn;k1 wn;k1 �Since the mesh velocity is constant and equal to (Xn+1�Xn)=�ts, we have:Efn;k+1 � Efn;k = � 1N �Pn;kM � Pn;k1 � �Xn+1 �Xn� : (45)Finally, the total energy variation for the �uid through all subcycles is given by:Efn+1 �Efn = � 1N "N�1Xk=0 �Pn;kM � Pn;k1 �# �Xn+1�Xn� : (46)18



Since the pressure distribution varies during the �uid subcycles, we have as a consequence:En+1 �En = 1N "N�1Xk=0 h�PnM � Pn;kM �� �Pn1 � Pn;k1 �i# �Xn+1 �Xn� 6= 0 (47)The preceding equation should be interpreted the following way. Though the physicalsystem receives no external work (�xed end of the spring, and equal external pressure on bothends of the box, which are moving at the same speed), the total energy is not conserved. Itmeans that the respective works of the force exerted by the �uid on the structure and theforce exerted by the structure on the �uid were not computed as opposite. The careful readershould already have noticed that these forces themselves were not computed as opposite butrespectively as: Force[Fluid! Box] comp. as===== �ts (PnM � Pn1 ) (48)and Force[Box ! Fluid] comp. as===== ��tsN "N�1Xk=0 �Pn;kM � Pn;k1 �# : (49)The preceding results hold for a general Newmark method, not necessarily equal to the trape-zoidal rule, provided it is unconditionnaly stable (which is achieved when 2� � 
 � 1=2).The di�erence is a simple numerical dissipation in the structural part of the integration. Thisremark holds also for the generalized-� method.The unstability of the staggered subcycled scheme can be explained the following way.The discrepancy between exchanged works or exchanged forces at the �uid/structure interfaceincreases as the numberN of subcycles (and�ts) gets bigger. This di�erence induces variationson the eigenvalues of the transformation matrix (matrix operating on numerical values at timetn to obtain numerical values at time tn+1). When the time step �ts is small enough, theseeigenvalues have a modulus less than one (because of numerical viscosity, the scheme is stableat least for a small N). As N increases, the perturbation increases, and a modulus greaterthan one appears when N increases.On Figure 4 and Figure 6, we showed two results of unstable simulations where the subcyclefactor N was beyond stability (respectively N = 10 and N = 11). But there is no explicitexpression for the stability limit on N (such as �N < 12� or whatever). The limit is ratherput on the dimensionless numbers !c�ts or !s�ts which have to be small compared to unity(we write !s � pk=m for the eigenpulsation of the structure and we recall !c is the lowestcoupled eigenpulsation of the physical system). For example, we show on Figure 8 a simulationof the box problem with case 3 where we obtain a stable simulation with �ts = 3�10�3 whichcorresponds to N = 109. Though N is huge, we have !c�ts = 0:09� 1.We show on Table 1 the set of stability limits we found for both problems in the �rst twocases. We can notice the order of magnitude of the non-dimensionalized time step !c�ts wherethe method becomes unstable is near 1% which corresponds to six hundred points per periodof oscillation (which is a lot too much!). This also holds for case 3 where a lot of points percoupled period of oscillation was needed. We were not able to produce the lines corresponding tothe last case in the preceding table, because the structural mass is so important that the energyproduction described earlier (inducing unstability) has a visible e�ect after a huge number oftime-step. However, we know the method is certainly less stable that it seems to be.As a conclusion, we emphasize the fact that the volume-continuous method, has a very lowstability limit, since for most cases, it requires the use of several hundreds of elementary time-integrations for each period of coupled oscillation. This method is currently used in all industrial19
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Figure 8: X(t) for the box problem, case 3, �ts = 3 � 10�3
Table 1: Stability limits on �ts for both problems in cases 1 and 2.problem test case !s (rad=s) !c (rad=s) �ts (s) N !s�ts !c�tspiston case 1 100 344 1:5 � 10�4 6 1:5 � 10�2 5:20 � 10�2piston case 2 100 253 1:3 � 10�4 5 1:3 � 10�2 3:29 � 10�2box case 1 100 61:7 1:5 � 10�4 6 1:5 � 10�2 0:93 � 10�2box case 2 100 78:5 2:6 � 10�4 10 2:6 � 10�2 2:04 � 10�2
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aeroelastic computations. We intend to present in the next section a new method where thematching condition on interfaces is relaxed. We will show that this method is not perfect (it isnot unconditionnaly stable), but has reduced drawbacks compared to the method presented inthis section. At this point, the reader should remember that the volume-conitunuous methodproduces a violation of the principle of action and reaction (for the contact forces at the�uid/structure interface) in terms of momentum and energy. In the following section, wepresent a new method with relaxation of the matching condition for interfaces. We show thatthis method preserves in a more satisfying way the momentum and energy conservation throughthe �uid/structure interaction.5 Volume-discontinuous methodIn this section, we present a new method for the numerical simulation of a one-dimensionalaeroelastic model problem. We show the enhancement proposed and discuss numerical results ofthe method. We also present some complementary tests based on classical ideas, like predictor-corrector loops and numerical auto-adaptive �lters.5.1 Description of the algorithmThe basic idea of this method is the relaxation of the matching condition on the �uid/structureinterface. This idea might seem surprising, since all coupling phenomena take place at thispoint. However, we intend to relax the matching condition up to a limited point. We willassume and investigate that the non-matching �uid and structural interfaces remain closeduring the numerical simulation. We will see that this method allows us to get rid of thediscomfort of staggering schemes, where the integration in time of a �rst �eld is done using avery unaccurate information coming from the other �eld.The principle of the method is simple. We assume we do not require that both intefacesmatch exactly (with no consideration of spatial discretizations of both boundaries), but thatthey remain close throughout the computation. For each structural time-step (that can be alsosubcycled for the �uid part), we make a prediction of the state of the structure at the end ofthe time step. We imagine a �uid mesh motion during the current time step which matchesthe prediction at the end of the time step. Then we advance the �uid (possibly in a subcycledway). We store the �uid pressure forces on the structure during this integration, and use thispressure distribution for the structural part of the integration. The method is now describedwith more accuracy:� compute a prediction of the state of the structure at the end of the current time step �ts.This prediction can be more or less complex. The more accurate this prediction is, themore accurate the coupling should be. This prediction will be discussed in this section.� from the predicted displacement of the structure at time tn+1, compute a new �uidgrid location (again, this can be done in a very simple way in one-dimensional problemsaccording to (35) or (36)). 21



� �x a motion law for the �uid grid points during the �uid subcycles: for each grid point,the �nal location must be equal to the location previously computed (which matches thelocation of the structure at the end of the current time step we �rst predicted).� advance the �uid part of the problem with multiple subcycles, using average grid pointsspeed, depending on the previously de�ned law of motion. We will again denote by Wn;kthe �uid state after the kth subcycle (we recall Wn;0 = Wn and Wn;N = Wn+1). Duringeach of these �uid time steps, some numerical boundary �uxes are used: (0; Pn;k1 ; Pn;k1 wn1 )tand (0; Pn;kM ; Pn;kM wnM )t for both problems.In the previous expressions, the terms wn1 and wnM do not depend of the integer k, thecorresponding index of the subcycle when the mesh speeds have been assumed constantduring the subcycles. However, it would not be the case for any di�erent law of motionfor the �uid grid points. Anyway, the momentum terms Pn;k1 and Pn;kM appear in themomentum equations (5) and (6). For the piston problem, these terms can be seen asthe actual force exerted on the �uid and the �rst term is the force exerted by the �uid onthe support of the left �xed end of the chamber. For the box problem, both terms canbe interpreted as the forces exerted on the �uid.Thus, we can compute the sum of all these momentum terms during the N subcycles (forsimplicity reasons, we assume here that �ts=�tf is an integer; all following equationscould be rewritten with a non-integer fraction �ts=�tf as in (39)). The force exerted onthe �uid by the box per unit time writesForce[Box ! Fluid] comp. as===== � 1N "N�1Xk=0 �Pn;kM � Pn;k1 �# (50)which is simply deduced from (49), and the force exerted on the �uid by the piston perunit time writes Force[Piston! Fluid] comp. as===== � 1N "N�1Xk=0 Pn;kM # (51)� advance the structure using a generalized-� method or a simple trapezoidal rule usingthe �xed time-step �ts and an external force, which is the opposite of the force we justcomputed. The great advantage of this method appears clearly. We have enforced the�action and reaction� conditionForce[Structure! Fluid] + Force[Fluid! Structure] comp. as===== 0: (52)5.2 Conservation enhancementsWe would like to add a few remarks concerning this volume-discontinuous method. We �rstnotice that the method depends of the prediction used in the �rst step of the algorithm. Wehave a wide choice for this prediction. Since smaller characteritic times correspond to thestructure, the prediction will be rather easy. The error in the predictor will certainly be lessimportant than the error on the external pressure in the �rst method. We understand also22



that the accuracy, or the possible stabilization properties of this prediction enhance the globalaccuracy and stability of the method.Second, we have noticed that the global momentum is conserved concerning the interaction(52). We now investigate the conservation of the global energy. Considering the box problemwith constant grid points speeds during the subcycles, and using notations de�ned in (42) and(43), we have again for each subcycleEfn;k+1 � Efn;k = ��tf �Pn;kM wn;kM � Pn;k1 wn;k1 � :Since the mesh velocity is constant and equal to ( gXn+1�gXn)=�ts, we have:Efn;k+1 � Efn;k = � 1N �Pn;kM � Pn;k1 � � gXn+1 �gXn� : (53)where gXn is the predicted position of the structure after the nth time step. Finally, the �uidenergy variation through all subcycles is given by:Efn+1 �Efn = � 1N "N�1Xk=0 �Pn;kM � Pn;k1 �# � gXn+1�gXn� : (54)On the other hand, assuming we use a simple trapezoidal rule for the structure, with an externalforce satisfying (52), the energy variation through one time step writesEsn+1 � Esn = 1N "N�1Xk=0 �Pn;kM � Pn;k1 �# �Xn+1�Xn� : (55)If we write �n for the mismatching error at time tn (�n = Xn �gXn), the system total energyvariation through one time step of this method is given byEn+1 �En = 1N "N�1Xk=0 �Pn;kM � Pn;k1 �# ��n+1� �n� : (56)If the matching error remains small, then the global energy of the system will be conservedwith a good accuracy. The preceding equation should be compared to (47). In the precedingequation, the order of magnitude of the energy error depends on the quality of the prediction.Then the error can be reduced not only with a time step reduction (which is not the aimof this paper), but with enhancement of the order of accuracy of the prediction for example.This characteristic induces the great �exibility of the method. On the contrary, (47) provesthat the energy conservation error could only be reduced with the use of a prediction of thetime-averaged �uid pressure force, which is certainly very di�cult to perform (it would requirean investigation of the �uid state throughout a thick band of �nite volumes cells along the�uid/structure interface). However, the momentum conservation is exactly performed with thesecond method, and can only be approximately done with the �rst method coupled with anyprediction.As a second remark, we emphasize here that both interfaces are not matching either atthe beginning or at the end of a time step. For our one-dimensional model problems, thischaracteristic does not make the algorithm more complex. However, the resolution would notbe so simple for two- or three-dimensional problems. As a matter of act, �uid pressure forces23



on a given �uid interface point should be transmitted to some �corresponding� point of thestructural interface. The correspondance could simply be point-to-point, but more complexgeometrical methods should be tested.5.3 Numerical testsWe begin with numerical tests where we have given a constant �uid grid points speed thoughoutthe subcycles. The mesh locations are given by (40). We note Y n the position of the rightend mesh point after the nth time step (Y n = gXn 6= Xn). As stated earlier, the volume-discontinuous method is �exible, since several types of predictions can be used. We review inthe following some methods of prediction, which could not have been simply coupled with thevolume-continuous method.5.3.1 Explicit �rst-order prediction (constant speed)We �rst try to use the most simple and natural prediction for the structure, which writesgXn+1 = Xn +�ts _Xn (57)This prediction is only �rst order accurate, but has the advantage of the simplicity (it canbe applied to complex multi-dimensional structures with no computational costs). For eachnumerical test, we may present two curves, which are the structural displacement X and themesh displacement (its right end) Y in function of the time. These curves will be compared tothose of the preceding section.We present on Figure 9 these curves for the piston problem in case 1. The structuralresponse is correct (same as in Figure 3) at the beginning, but is quite overdamped. The timestep used was �ts = 0:9 � 10�3 which is far beyond the time step used in Figure 4 or Figure 5.Figure 10 shows that the scheme is conditionnally stable, and that �ts = 1:15�10�3 is beyondthe stability limit (which was found to be close to �ts = 1:1�10�3). The volume-discontinuousmethod made possible the use of a time-step (and a subcycling factor N) seven times bigger.On Figure 11 and Figure 12 are presented the structural displacements in function of timefor two numerical simulations of the box problem (case 2). When �ts = 0:8�10�3, the schemeis stable and gives a result close to Figure 5. In that case, the signal is not overdamped. For�ts = 0:86�10�3, the scheme has reached unstability. Spurious mesh oscillations appear. If welook at Figure 13, where the relative variation of the total energy of the system is presented infunction of time, we see the global energy relative error increases exponentially like in Figure 7for the volume-continuous method. However, the stability limit for this case is�ts = 0:83�10�3,which is three times bigger than for the �rst method.Comparing with the volume-continuous method, we see that this method has an enhancedstability, even when the �rst one had good results. We present on Figure 14 the structuraldisplacement for the box problem in case 3. We see the scheme is stable for a bigger time step(�ts = 1: � 10�2 which corresponds to a subcycling factor N = 357 and !c�ts = 0:01!).Finally, we present in Table 2 the stability limits we found for both problems in cases 1 and2 for the volume-discontinuous method. If we compare this table with Table 1, we see a generalenhancement for the structural time step �ts (and the subcycling factor). The relaxation of24
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Table 2: Stability limits on �ts for both problems in cases 1 and 2.problem test case !s (rad=s) !c (rad=s) �ts (s) N !s�ts !c�tspiston case 1 100 344 1:1 � 10�3 39 1:1 � 10�1 3:78 � 10�1piston case 2 100 253 1:3 � 10�3 52 1:3 � 10�1 3:29 � 10�1box case 1 100 61:7 7:0 � 10�4 26 7:0 � 10�2 4:32 � 10�2box case 2 100 78:5 8:3 � 10�4 32 8:3 � 10�2 6:52 � 10�2the matching condition allowed a better conservation of the energy through the interaction,and an exact conservation for the momentum. The consequence is the gain in stability, thoughwe used the elementary prediction (57).5.3.2 Explicit second-order prediction (constant acceleration)In this section, we present a family of prediction method depending of the real parameter �de�ned by gXn+1 = Xn +�ts h(1 + �) _Xn � � _Xn�1i (58)This prediction is at least �rst order accurate, and second-order accurate when � = 1=2. Weshow on Figure 15 the displacement for the box problem in case 2. It is similar to the resultgiven on Figure 11. However, this new method is less stable: the new stability limit is closeto �ts = 0:78 � 10�3. We have clearly observed that the enhancement of the accuracy in theprediction method (when it is done in an uncoupled way, independant of the �uid �ow) reducesthe stability domain of the method. This remark was also valid for other predictions of thefollowing type: gXn+1 = Xn +�ts _Xn + �0�t2S �Xn (59)The limited stability of these kinds of predictions is a consequence of their uncoupled nature.For example, the method (58) means the average acceleration during the previous time step hasthe same value in the current time step. This is equivalent in a certain sense to an assumptionon the �uid pressure during the current time step. This aspect could possibly be eliminatedwith coupled predictions. They will be investigated in the following.5.3.3 Prediction iterationsWe can obtain a coupled method of prediction by iterating the procedure described in 5.3.1.We propose the following algorithm:-0- at time tn (i.e. after the nth time step) store the �uid state, the �uid grid and thestructural state. set ipc = 0-1- compute a prediction of the structural displacement at time tn+1 according to (57)28



-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(t)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(t)

Figure 15: X(t) for the box problem, case 2, �ts = 0:75 � 10�3-2- using this prediction for the structure, compute a �uid mesh at time tn+1 and averagemesh speeds for the current time step. Using subcycles, advance the �uid in time andstore the time-averaged �uid pressure on the structure according to (50-51).-3- advance the structure till tn+1 with the preceding external pressure.-4- If ipc < IPC, use the structural displacement at time tn+1 as a prediction, reset allcomputational values to the values stored at step 0. ipc = ipc+ 1 and go to step 2.We notice that for each time step, the computational cost is IPC times bigger, since IPCsteps of the regular volume-discontinuous method are done. The storage for this method isalso double, since we have to store all computational values before each prediction cycle. Weshow on Figure 16 the performance of this method for the piston problem in case 1. We usedIPC = 2, with �ts = 1:8 � 10�3, which is the double of the time step used in Figure 9. Thencomputational costs are comparable for the structural part. For the �uid part of the problem,the time step is �xed by a CFL-like condition and in all cases, the computational cost is IPCtimes bigger. The method is stable. We have increased its stability domain. We emphasizethe fact that the preceding time step corresponds to !c�ts = 0:756 which is a rather poorresolution for each coupled period. This explains why the solution is so much damped. Thesame test for IPC = 4 and�ts = 3:6�10�3, (which gives !c�ts = 1:51 and means we have onlyfour points per period) which induces again a comparable computational cost for the structure,produced an even more damped solution.For the box problem (in case 2), the result is more interesting. The present iterated methodwith IPC = 2 does not show unstability for �ts = 3:2 � 10�3 (a time step four times biggerthan the time step used for the test of Table 2). The displacement for this test is shown on29
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Figure 16: X(t) for the piston problem, case 1, IPC = 2 and �ts = 1:8 � 10�3Figure 17. The solution is a little more damped, maybe because we have only 25 time stepsper coupled period instead of 100 as in Figure 15. For this method, with IPC = 2, unstabilitydoes not appear before �ts = 8: � 10�3, which corresponds to 10 time steps per period andN = 285, as shown on Figure 18.Our conclusion is the following. We have tried to increase the stability domain of ourmethod by repeated prediction cycles. This was done successfully, but we got some overdampedsolutions when we used too few time steps per coupled period of oscillations. However, wenoticed that the predictor for the structural displacement at the end of the current time step wasdepending on the step ordinal ipc. More precisely, there is a slow and oscillating convergencetowards a limit. This remark is the starting point for our next prediction method.5.3.4 Assumed convergence of prediction iterationsThe basic idea of this method is the same as peviously. We intend to perform prediction cycles.We have noticed, that for a number of prediction cycles greater than one, the computationalcost for the �uid part is at least doubled, for any time step �ts. Our goal is to cut down thiscomputational cost. An e�cient way would be the following method: for every other P timesteps �ts, perform actually two prediction cycles. For other time steps, use some informationand perform only one cycle with a more e�cient prediction. However, this is a little bitidealistic. Indeed, we �rst try to perform something easier. We �rst answer the followingquestion: is there a simple way to enhance the performance of the method with IPC = 2 ?For each time step, we lose information, which is the di�erence between our �rst prediction,30
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Figure 17: X(t) for the box problem, case 2, IPC = 2 and �ts = 3:2 � 10�3

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X(t)

Figure 18: X(t) for the box problem, case 2, IPC = 2 and �ts = 8: � 10�331



and the �nal displacement of the structure.For each prediction cycle, we use a prediction gXn+1 for the structural displacement at theend of the current time step in step 2, and we get a displacement Xn+1 in step 3. Then Xn+1is a function of gXn+1. We make the assumption that this function is linear, i.e.Xn+1 = �an+1 gXn+1 + bn+1: (60)where an+1 and bn+1 are some step dependant coe�cients. We know that, for the precedingmethod, stability increases with the number of prediction cycles. We also know that for anin�nite number of prediction cycles, when convergence is achieved, we have Xn+1 = gXn+1,and according to (56) the global energy of the system is conserved. We deduce the followingmethod:� for the �rst prediction cycle, use the predictor (57). We write gXn+11 for this �rst predic-tion. We get the structural displacement Xn+1 after the �rst prediction cycle.� for the second cycle: compute the value of bn+1 assuming a is constant bybn+1 = Xn+1 + an gXn+11 (61)and use as the second prediction gXn+12 the �xed point of the the function de�ned bycoe�cients an and bn+1, which writesgXn+12 = bn+11 + an : (62)Finally, since we have computed two evaluations of our assumed linear function, we canupdate both coe�cients in order to satisfy the system8<: Xn+1 = �an+1 gXn+11 + bn+1Xn+1 = �an+1 gXn+12 + bn+1 (63)We present on Figure 19 the results of this method for the piston problem in case 1. Weshow the structural displacements for a time step�ts = 1:8�10�3 for this assumed convergencemethod and for the simple prediction iteration method (Figure 16). The result is less dampedand the coupled pulsation is more accurately approximated (332s�1 instead of 317s�1, the exactvalue being 344s�1). We show on Figure 20 the corresponding results for �ts = 0:9 � 10�3.Both results are really close. However, though the coupled pulsation is correctly simulated,both solutions are quite overdamped.We conclude that the errors of the simple prediction iterations method were not correctedby our assumed convergence approach. The method produces disappointing results, and givesno hope about its ability to reduce computational costs, by reducing the proportion of timesteps where actual prediction iterations are made as stated at the beginning of this section.This method is elementary. We investigate in the following section the use of numerical �lters,which may be well �tted to the natural �exibility of the volume-discontinuous method.32
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5.3.5 Predictions using �ltersIf we observe numerical results presented on Figures 6-10-12, we notice that the unstability is�rst met by some high-frequency mode, that we could call a grid mode. As stated earlier, thevolume-discontinuous method has great �exibility. We can use a smoothing prediction for thestructural displacement, without applying this smoothing procedure directly to the structure,which could not have been possible with the volume-continuous method.In order to conserve the generality of the algorithm, we base a new method on adaptivenumerical �lters, which are able to detect and �lter some modes, without de�ning a priori thefrequency. In the following, we quickly present adaptive numerical �lters, and show their useto provide smooth predictions in our model problems.Looking at Figure 12, we see that our prediction carries an increasing amount of noise. Thetransformation of this prediction into something smoother is a typical task of signal processing.Throughout the computation, the prediction (57) gives successive values, which are seen asa signal. A nice course on signal processing can be found in [21]. We are interested in thesuppression of high-frequency modes in our incoming signal, and this can be done with nu-merical �lters [22]. However, though we know the structural eigenfrequency, we do not assumewe know the coupled eigenfrequency of the system. Then, we have to use adaptive numerical�lters, which are able to detect and �lter low-frequency modes [23].In this work, we have used gradient-type adaptive numerical �lters. We present now theirvery simple principle. Let us assume we dispose of a mono-dimensional signal we would like to�lter, because we know it is the sum of a sinusoidal signal and a �white� noise (denoted by �),for example xn = sin(n!c�ts) + �n (64)For a sinusoidal signal, second order adaptive �lters (depending on the two previous data xnand xn�1) are well �tted because of the following remark:�n � 0 =) xn+1� 2 cos(!c�ts)xn + xn�1 � 0 (65)The idea of gradient-type adaptive �lters is to consider the left term of the precedingequation as an error on the signal, since it only depends on the noise sequence �. The algorithmis the following: 8>>><>>>: en+1 = xn+1 � an1xn � an2xn�1" an+11an+12 # = " an1an2 #+ � " xnxn�1 # en+1 (66)The reader should notice that the algorithm depends only on a user-�xed parameter �. Noapproximation of the term !c�ts is used. We will see in the following how the parameter � is�xed.The result sequence en is an approximation of the noise sequence �n. If we dispose of theinput sequence xn, the output �ltered sequence will be xn� en. The stability of the algorithmis approximately proved under the assumption that the error en+1 has no correlation with theprevious input data (which is fairly true at convergence). Then, stability is achieved when thea posteriori error xn+1 � an+11 xn � an+12 xn�1 has a smaller expected value than the a priorierror xn+1� an1xn � an2xn�1. Thus, we have stability when��2 < 1 (67)34
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Figure 23: X(t) for the box problem, case 2, �ts = 3:2 � 10�36 DiscussionIn this section, we intend to discuss the possibilities of enhancements of the previous methodsand their possible extensions to multi-dimensional aeroelastic problems. We �rst present sometime-interpolation aspects for the previous methods. Then we consider the space-interpolationdi�culties that may be encountered for multi-dimensional extensions.As stated earlier, we have considered subcycled schemes in sections 4 and 5 where the timevariation of the �uid mesh was given by (40). This method is not accurate, particularly whenthe structural time step �ts increases. Thus, we �rst investigate in the following the in�uenceof the time interpolation of the �uid grid motion on the numerical results. Throughout thispaper, we have used the linear law of motion (40)for the �uid mesh during subcycles. This lawof motion could be more accurate. However, in most cases, like computations corresponding toFigures 18-20, we tried with no success to reduce numerical damping. Actually, the numericaldamping was caused by the use of a big structural time step �ts, which gave us a quiteunaccurate prediction for the structural displacement at the end of the step. The unaccuracyof the linear motion of the �uid mesh was covered by the unaccuracy of the prediction.However, some work has been done on time-interpolation aspects in cases where we disposedof a very accurate prediction of the structural displacement. For example, adaptive numerical�ltering produces as an output informations on the pulsation and phase of the processed signal.These informations can be easily used to construct some accurate law of motion for the �uidmesh. This was done successfully, as shown on Figure 24, which presents another result for thesame test case as Figure 23. 37
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Figure 24: X(t) for the box problem, case 2, �ts = 3:2 � 10�3 (non-linear mesh motion)The structural displacement is very slightly damped. This damping was produced by thenumerical viscosity added in the �uid by the explicit �rst-order numerical scheme. The pre-ceding result is quite optimal, since damping and pulsation are well simulated, and stabilityis conserved though !c�ts = 0:25 (which corresponds to 25 time steps per coupled period ofoscillations).We also tested the generalized-� method we presented in (21-23). This method was con-structed to control and possibly reduce high-frequency modes by using a user-speci�ed high-frequency dissipation. However, the generalized-� method is used for the structure only. Inthe test cases we considered in this paper, the structure is reduced to a point and the onlyeigenfrequency is low. Then the generalized-� method may not have any in�uence on high-frequency coupled modes. This was numerically con�rmed. The generalized-� method will beused in future works for complex structures.As said before, our structure is reduced to a material point (one degree of freedom). We thenhave not mentionned any spatial interpolation problem at the �uid/structure interface. Thismight be the least straightforward part of the extension of the methods to multi-dimensionalcases. In the case where the �uid and the structural meshes are conforming (same verticesat the common interface), the extension of the volume-continuous method is easy. For thevolume-discontinuous method, and for the volume-continuous method when both grids are notconforming, the extension is a little more complex. Both methods should be added a procedureallowing the transfer of pressure forces and structural displacements between the �uid and thestructure. Because the most part of industrial test cases are non-conforming - usually, �uidand structural spatial discretizations are di�erent - this kind of procedure has already beenimplemented (see [20] for example). 38



We will focus our future work on the extension of the methods presented in this paper totwo-dimensional problems, and particularly, to the Euler �utter analysis of a classical NACAairfoil, �rst with two and then with a great number of degrees of freedom. Our aim will bethe use of subcycling schemes, which allow a limited number of structural time-integrations(optimal would be twenty-�ve like the box problem seen previously) per coupled period ofoscillations.ACKNOWLEDGEMENTS:We wish to thank our colleagues Charbel Fahrat and Nathan Maman (both at the Centerfor Space Structures and Control, University of Colorado at Boulder), and Stéphane Lantéri(INRIA Sophia-Antipolis) for their impressive support and help, and for the expensive time theymassively devoted to fruitful discussions on numerical simulation of �uid/structure interactions.
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