
A substructuring method for a harmonic wavepropagation problem : Analysis of the conditioningnumber of the problem on the interfacesArmel de La Bourdonnaye1AbstractIn this paper, it is shown that the usual sub-domains methods which are e�cient in thecase of elliptic problems have some defects in the case of propagation problems. In asecond part, a new method is presented and analysed. It is shown that this method iswell conditioned and that the local problems are always regular. Furthermore, it can beapplied to propagation in unbounded domains.Une méthode de sous domaines pour un problème depropagation d'ondes harmoniques : Analyse duconditionnement du problème aux interfacesRésuméDans ce papier, il est montré que les méthodes de sous-domaines usuelles qui sont e�cacesdans le cas de problèmes elliptiques ont un certain nombre de défauts pour les problèmesde propagation d'ondes. Dans une deuxième partie, une nouvelle méthode est proposéeet analysée. En particulier, cette méthode apparaît comme bien conditionnée et avecdes problèmes locaux bien posés. De plus nous étendons la méthode aux domaines nonbornés.
1 CERMICS-INRIA B.P. 93, 06902 Sophia-Antipolis Cedex, FranceE-Mail : armel@sophia.inria.fr



1. Introduction. Wave propagation problems in domains like acoustics or elec-tromagnetism for instance generally lead to huge linear systems, especially when one isinterested in high frequencies, since one has to mesh the domain, with a mesh step pro-portional to the wavelength. When the problem is elliptic, people usually try to solve itby dividing it into subdomains. See for instance [17], [18], [19] or [12]. Hence, each of thesub-problems is practically solvable, and one has to make the sub-solutions compatibleat the interfaces between the subdomains. One so has the �primal� or �dual� subdomainmethods for instance. More precisely, for the Poisson problem, one may solve in eachsubdomain a Dirichlet problem, with the same Dirichlet data on the interface, and thecompatibility relation has to insure that the normal derivatives coincide on the interface.On the other hand, one may solve local Neumann problems with the same Neumann dataon the interface, and the compatibility relation has to insure that the traces coincide onthe interface. For elasticity, one may solve local problems with imposed displacements,then forcing the normal constraints to be the same on both parts of the interface, or theopposite. For operators like the Helmholtz operator, we present a subdomain methodwhich follows the same methodology as for elliptic operators, but which also avoids itsdrawbacks when it is applied to non-elliptic problems. This method uses the same basicidea as the one presented by B. Despres in [10] or [11], that is to use local problems withRobin boundary conditions. Nevertheless, in his papers B. Despres does not apply thismethod to unbounded problems with integral equations. Furthermore, he restricts him-self to a unique numerical method. In our paper, we address general conjugate gradientlike methods for bounded and unbounded scattering problems.In section 2, we precisely set the problems we want to solve. Both acoustics and elec-tromagnetism are involved, with various boundary conditions. In section 3 we analyzesome classical subdomain methods when applied to the problems we consider, pointingout their main drawbacks which are namely that the subproblems may be singular andthat the interface problem may be ill-conditioned. In section 4, we present a new way ofsetting the problem on the interfaces, which avoids the drawbacks of the former methodsfor the bounded domain problems. In section 5, we adapt this technique to unboundeddomain scattering. In these cases, the domain is cut, and we represent the outside byan integral equation on the cutting surface. Thus, the surfacic-volumic coupled problemcan be viewed as a subdomain one.2. Position of the problem. In this paper we are mainly addressing two physicalsituations. The �rst is the acoustic one. Let 
 an bounded open set of IR3 and � itsboundary (see �g 1). We denote by Hs(O) the Sobolev space of order s on the set O(see for instance [1] or [16]). We want to solve the following problem. Given a functiong in H�1=2(�), �nd u in H1(
), such that�u+ k2u = 0 in 
�u+ � @u@n = g in �(1) 1
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ΓFig. 1. Geometrical situationHere n is the outward unitary normal vector of �. The numbers � and � are chosen tobe real. Of course, they cannot be null in the same time. Note that, if � is null, thenone has to choose g in H1=2.The second physical situation we consider is the propagation of harmonic electromagneticwaves. With the same geometry, we denote by Hcurl(
) the space of vector �elds E whichbelong to L2(
) so that curlE also belongs to L2(
). We also denote by H�1=2div (�) thetangential �elds which are in H�1=2(�) and whose surfacic divergence is also in H�1=2(�).We �x a �eld E0 in H�1=2div (�), and we are looking for a �eld E in Hcurl(
) satisfying :curlcurlE � k2E = 0 in 
E ^ n = �E0 in �(2)In the same way, we de�ne two unbounded problems. The �rst one is acoustics :�u+ k2u = 0 in 
�u+ � @u@n = g in �@u@r � iku = o(1r ) when r �! +1(3)with the same notations as before and r denoting the radius in the spherical coordinatesystem.For electromagnetism, we set the problem :curlcurlE � k2E = 0 in 
E ^ n = �E0 in �curlE ^ ur � ikES = o(1r ) when r �! +1(4)where ur is the unitary radius vector in the spherical coordinate system and ES denotesthe component of the electric �eld which is orthogonal to ur.3. Analysis of some usual methods. In this section, we �rst present the generalframework of multidomain methods. One can �nd details for instance in [2], [9] or [12].2



Then, we will study the usual ways people use these methods in the frame of ellipticoperators. At last, we will brie�y present how a volumic-surfacic coupled problem canbe viewed as a multi-domain one, following [8].3.1. General framework of multidomain methods. The �rst step of thesemethods is to divide 
 into a �nite number of 
i satisfying :Adh([
i) = 

i \ 
j = 0 if i 6= jwhere Adh(O) denotes the adherence of the set O. We will denote by �ij the interfacebetween 
i and 
j (see �g. 2). The second point, in the case of acoustics, is to notice
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Fig. 2. Geometrical situationthat if u satis�es Helmholtz equation in each subdomain 
i, and the jumps of u and @u@nare null on the interfaces between subdomains, then u satis�es the Helmholtz equation inthe whole set 
. For the electromagnetism, one just has to replace the former continuityconditions by the continuity of the tangential trace of E and curlE.Then, one can solve in each subdomain 
i, a Helmholtz equation with the global bound-ary condition on the part of @
i which is common with � and for instance a Dirichletcondition p on the interfaces. The function p is the same for each subdomain, so thatthe jump of u is null through the interfaces. Then, in each subdomain, one has@u@n = Sip+ fi(5)where Si is the Steklov-Poincaré operator and fi comes from the global boundary con-dition. 3



The last point is to ensure that the jump of the normal derivative is null. For that, onehas just to solve the equation on the interfaces :(Si + Sj)p = fi � fj(6)where i and j are indices such that there is an interface between 
i and 
j. The operatorsSi and Sj are also referred to as Schur complements.One could also do the opposite : solve a local Neumann problem, and then solve on theinterfaces : (Si�1 + Sj�1)p = ~fi � ~fj(7)Before presenting a few results about unbounded problems, we make a few remarks.Remark 1. Matrices corresponding to the Si operators are full and one does not want toassemble them. So they are just de�ned in an implicit way. Namely, if in 
i we denoteby x the unknowns which are not on the interface and by y those which are on it, then,the local problem with Neumann condition on the interface writes :" A BBT C # " xy # = " 0p # :(8)So the matrix corresponding to the operator Si isS i = C �BTA�1Band is called the Schur complement. It follows that usually one only factorize matrix Aand the matrix corresponding to the operator Si is only known implicitly. For instanceone can just perform matrix-vector products with it.Remark 2. The consequence of the former remark is that the problem on the interface issolved iteratively. So the conditioning of the interface operator is of great importance.Remark 3. The last remark is that it is a well-known fact that, even with ill-conditionedmatrices the conjugate gradient like methods have a good behaviour is the upper part of thespectrum of the operator is sparse (see for instance [21] or [23]). Since operators Si sendH1=2 to H�1=2, they are unbounded. So the corresponding matrices are ill-conditioned andthe higher part of their spectrum is dense and tends to in�nity when the �nite elementmesh is re�ned. It follows that one would better use Neumann local problems if not usingpreconditioning matrices.3.2. Unbounded problems and subdomain methods. As one can not justdiscretize the Helmholtz equation on all the domain since it would lead to in�nitelymany degrees of freedom, one has, in a way or an other, to cut the domain at a certaindistance from the scatterer and to impose boundary conditions on the cutting surface.The only condition which is exact comes from integral equations. Thus, the usual way ofdoing leads to a coupling between integral equations and volumic P.D.E.'s. The coupling4



of �nite element and boundary element methods has been studied for a while in variousframeworks. We can �nd it described for example in Nedelec, [20] or Zienkiewicz, [25] ormore recently in Costabel, [4] and Wendland, [24]. This method is of special interest forthe study of complex bodies imbedded in a linear homogeneous medium. In the case ofwave propagation, the study of a non-homogeneous body is presented in Levillain, [15]for an electromagnetic wave and in de La Bourdonnaye, [5] for an acoustic one.This way of doing may be viewed as a domain decomposition technique. Indeed, there aretwo domains, one is bounded and contains the scatterer, the other is its complementary.This suggests to study the use of the Schur complement technique as presented above.In [8] we showed that the part of the complement which deals with the outside can betreated in a very simple manner, using well-known properties of the relevant integraloperators.3.3. Analysis of the previous methods applied to propagation problems.The �rst thing we have to point out is that with Helmholtz equation (and also with theharmonic electromagnetism equation : H.E.M.), the Dirichlet and Neumann boundaryconditions may lead to singular problems when the frequency is a resonance. So whensolving the local subproblems one can fall on such a frequency for one of the subdomains.The second point is mainly concerned with electromagnetism. Indeed, we have shown in[6] (see also in [7]) that, in the case of the coupling of an integral equation method ona surface wrapping an object and a volumic �nite element method between the surfaceand the objet, the operator which sends the tangential trace of the electric �eld to itsnormal derivative is unbounded and of its reciprocal is unbounded. But this problemcan be viewed as a subdomain method (as shown in [8]) where the wrapping surface isthe interface. This implies that, the both methods presented above are ill conditionedand have the higher part of their spectrum dense and going to in�nity when the mesh isre�ned.4. A new method - Bounded domain scattering. In this section, we presentanother way of doing which avoids the two drawbacks presented in the former section.First, we change the local problem and present some of its properties. Namely, we useRobin boundary conditions like in [10] or [11] Second, we change the interface problem.Then, we will be able to comment about its properties related to the speed of convergenceof the global iterative scheme.4.1. The local problem. It is a well known that in the case of propagation, oneobtains regular problems with mixing Neumann and Dirichlet boundary conditions withcomplex coe�cients (see [3] or [13]). So, in our case, given an orientation of the normal
5



vector n on the interface, we will solve in each subdomain 
i,�u+ k2u = 0 in 
i�u + � @u@n = g on �@u@n + iku = p on the interface I(9)for the acoustics and curlcurlE � k2E = 0 in 
iE ^ n = �E0 in �curlE ^ n+ ikET = p on the interface I(10)for the electromagnetism, where ET is the tangential part of E on a surface. It is easyto check that these two problems are injective. Indeed, suppose in the �rst case that gand p equal 0, then, multiplying the equation on 
i by �u, integrating on 
i and takingthe imaginary part leads to : ZI ikjuj2 = 0:Then, u and @u@n are null on the interface and so u is null in 
i.For the electromagnetism case, on the same way, one easily obtains that ET and curlE^nare null. Using the fact that divE is also null, leads to E and @E@n are null. So the �eldE is null in 
i.4.2. The problem on the interface. On the interface we will ensure that@u@n � ikuis continuous for the acoustics, and the corresponding condition for the electromagnetism.As in [13] or [10], we can show that the operator sending @u@n+iku on @u@n�iku is unitary.We show the followingProposition 1. Let Bi denotes the operator from H�1=2(@
in�) to itself, which maps@u@n + iku to @u@n � ikuwhere u satis�es the Helmholtz equation in 
i with the global boundary conditions on �.Then Bi is unitary, and its spectrum has just one accumulation point which is 1.Proof :Indeed, let's compute A = (Bip;Biq) � (p; q) where ( ; ) stands for the L2(@
i \ I)6



hermitian product. We denote by u (resp. v) the function which satis�es the Helmholtzequation in 
i and @u@n + iku = p (resp. q) on the interface. Then,(Bip;Biq) � (p; q) = 2ik ZI @u@n�v � u@�v@n:(11)Taking into account the boundary conditions in 1, this quantity satis�esA = 2ik Z@
i @u@n�v � u@�v@n = 2ik Z
i �u�v � u��v:(12)Using the fact that both u and v satisfy the Helmholtz equation in 
i we obtain that Ais null which proves that Bi is a unitary operator.Now let us denote by �; � an eigenvalue of Bi and its associated eigenfunction. We alsodenote by u the function which satis�es the Helmholtz equation in 
i and @u@n + iku = �on the interface I. Then, on I, we have@u@n = ik1 + �1� �u:(13)As the operator which maps ujI to @u@n jI has its inverse compact, the series of the ik1 + �1� �has its only accumulation point at 1. Thus the � series has its only accumulation pointin 1. 2We now deduce from this property some qualities of the problem on the interface.Proposition 2. The compatibility operator on the interface as de�ned in this sectionhas the higher part of its spectrum sparse, so that it could behave well with a Gonjugate-Gradient like method.Indeed, this operator is the di�erence of the Bi operators on each side on the interface.So, it is of Fredholm type, and its spectrum has no accumulation point at in�nity.Now, we go into the analysis of the electromagnetic case (see also [11]). As for theacoustics we show the followingProposition 3. Let Bi denotes the operator from H�1=2curl (@
in�) \ H�1=2div (@
in�) toitself, which maps curlE ^ n+ ikET to curlE ^ n� ikETwhere E satis�es system (2) in 
i with the global boundary conditions on �. Then Bi isunitary, and its spectrum has just two accumulation points which are 1 and �1.Proof :Indeed, let's compute A = (Bip;Biq) � (p; q) where ( ; ) stands for the L2(@
i \ I)hermitian product. We denote by E (resp. F ) the function which satis�es system 2 in
i and curlE ^ n+ ikET = p (resp. curlF ^ n+ ikFT = q) on the interface. Then,(Bip;Biq)� (p; q) = 2ik ZI(curlE ^ n): �F � E:(curl �F ^ n):(14) 7



Taking into account the boundary conditions in 2, this quantity is equal to2ik Z@
i(curlE ^ n): �F �E:(curl �F ^ n) = 2ik Z
i curl curl E: �F �E:curl curl �F :(15)Using the fact that both E and F satisfy system 2 in 
i we obtain that A is null whichproves that Bi is a unitary operator.Now let us denote by �; � an eigenvalue of Bi and its associated eigenfunction. We alsodenote by E the function which satis�es system 2 in 
i and curlE ^ n + ikET = � onthe interface I. Then, on I, we havecurlE ^ n = ikET 1 + �1� �:(16)In the same manner as in [6], we can show that the operator which maps ET jI tocurlE ^ njI is a direct sum of a compact operator and an operator with compact in-verse modulo a Fredholm operator. Then, ik1 + �1� � has its two only accumulation pointsat 0 and 1. Thus the � series has its two only accumulation points in 1 and �1. 2We now deduce from this property some qualities of the problem on the interface.Proposition 4. The compatibility operator on the interface as de�ned in this sectionhas the higher part of its spectrum sparse, so that it could behave well with a Gonjugate-Gradient like method.Indeed, this operator is the di�erence of the Bi operators on each side on the interface.So, it is of Fredholm type, and its spectrum has no accumulation point at in�nity.5. A new method - Unbounded domain scattering. In the case of the couplingbetween volumic and boundary formulations, we follow the general framework presentedabove and we focus on the di�erences with the bounded domain case.5.1. local problems. First we wrap the scattering object 
 in a surface �0 whichplays in the present case the role of the interface. For acoustics, between 
 and �0, wesolve : �u+ k2u = 0 between 
 and �0�u + � @u@n = g on �@u@n + iku = p on the interface �0 :(17)Outside �0, we solve : �u+ k2u = 0 outside �0@u@r � iku = o(1r ) when r �! +1@u@n + iku = p on the interface �0 :(18) 8



For electromagnetism, between 
 and �0, we solve :curlcurlE � k2E = 0 in 
iE ^ n = �E0 in �curlE ^ n+ ikET = p on the interface �0 :(19)Outside �0, we solve curlcurlE � k2E = 0 in 
icurlE ^ ur � ikES = o(1r ) when r �! +1curlE ^ n+ ikET = p on the interface �0 :(20)As the injectivity of problems (17) and (19) is just the same property as in the caseof bounded problems, we will only deal with problems at the outside. We begin withacoustics. We �rst recall some properties that can be found in [14].Proposition 5. If u is solution of problem (18), then :(i) : u � A(�)eikrr when r tends to in�nity.(ii) : the imaginary part of ZSR @u@r �u equals to RS jA(�)j2where � denotes the angular coordinates in the spherical coordinate system, SR is thesphere centered at origin with radius R, and S = S1. Hence, we can enounce :Proposition 6. The outside acoustics problem (18) is injective.Proof :From Helmholtz equation, denoting by 
R the volume between SR and �0 we have :0 = Z
R �u:�u + k2juj2 = Z
R �jruj2 + k2juj2 � Z�0 @u@n �u+ ZSR @u@r �u:(21)Taking the imaginary part, and then the limit r �! +1 we obtain :0 = Z�0 juj2 + ZS jA(�)j2(22)Thus, u is null on �0 and so is the normal derivative thanks to the boundary conditionon �0. Hence, it is a well known fact that u = 0 outside �0. 2For the electromagnetism we �rst recall thatProposition 7. If E is solution of problem (20), then :(i) : E � A(�)eikrr when r tends to in�nity.(ii) : the imaginary part of ZSR curlE ^ n: �E equals to RS jA(�)j2.Here A(�) is a vector �eld which tangential to the sphere S. Hence, we can enounce :Proposition 8. The outside electromagnetic problem (20) is injective.9



Proof :As in the acoustic case, we have :0 = Z
R �jcurlEj2 + k2jEj2 � Z�0 curlE ^ n: �E + ZSR curlE ^ n: �E:(23)Taking the imaginary part, and then the limit r �! +1 we obtain :0 = Z�0 jEj2 + ZS jA(�)j2(24)Thus, E is null on �0 and so is curlE^n thanks to the boundary condition on �0. Hence,it is a well known fact that E = 0 outside �0. 25.2. The problem at the interface. On the interface �0 we will constrain thesame quantity as in bounded-domain problems to be continuous. Namely, if we denoteby [ ] the jump of a quantity at �0, we impose"@u@n � iku# = 0(25)in the acoustic case, and [curlE ^ n� ikET ] = 0(26)for the electromagnetism.We de�ne B operators as before. Since the �inside� problems are particular cases of thebounded problems, their B operators are still unitary. So we will focus in the followingon the operators related to the outside domains.We �rst recall a few facts about pseudo-di�erential operators (for more details, we refer to[22]). We denote by S�1 the set of pseudo-di�erential operators whose symbols decreasefaster than any polynomial at in�nity. We recall that, if P is a pseudo-di�erentialoperator and Q is another one, Q is said to be a right parametrix of P (resp. leftparametrix) if P:Q� I (resp. Q:P � I) belongs to S�1. Q is a parametrix of P if it isboth a right and left parametrix.Now we show a lemma using these facts.Lemma 1. If A(�) is the amplitude exhibited in former section, then both in the case ofacoustics and electromagnetism, still denoting by A the operator which associates u or Eto its amplitude, we have : A?A 2 S�1:(27)Proof :Indeed, if u and v are solutions of problem (18), then< Au;Av > = Z�0��0 G(x; y)@u@n(x): @�v@n(y) + @2G@nx@ny (x; y)u(x):�v(y)dxdy(28) � Z�0��0 @G@nx (x; y)u(x): @�v@n (y) + @G@ny (x; y)@u@n(x):�v(y)dxdy(29) 10



where the kernel G(x; y) is the following :G(x; y) = sinkjx� yjkjx � yj :(30)Since G is a even function of jx � yj, we can easily check that this kernel is analyticby considering its Taylor series in 0 for instance. Hence, its Fourier transform, whichis the symbol of A?A is exponentially decreasing, and thus A?A is in S�1. For theelectromagnetic case, the same type of computations apply, and we are led to the samekernel G. Thus, the same results hold for electromagnetism. 2The last point of this section is to show the same type of proposition as for the bounded-domain case for the operators B. Let us start with acoustics.Proposition 9. Let B denote the operator from H�1=2(�0) to itself which maps @u@n+ikuto @u@n � iku where u satis�es the Helmholtz equation outside �0 and the radiation condi-tion at in�nity. Then B is essentially unitary, which means that B? is a left parametrixof B, and its spectrum as just one accumulation point which is 1.Proof :As for the bounded domain case we setL =< Bp;Bq > � < p; q > :(31)Then denoting by u, (resp. v) the solution of Helmholtz equation with radiation conditionwhich satis�es @u@n + iku = p (resp. = q), we have :L = 2ik Z�0 @u@n�v � u@�v@n(32) = 2ik Z
R �u�v � u��v + 2ik ZSR @u@r �v � u@�v@r(33)Due to the Helmholtz equation, the volumic integral is null, thus letting R grow toin�nity, we have : L = ZS�4k2jA(�)j2d�:(34)From the previous lemma, we deduce thatB?B � I = A?A 2 S�1:(35)This proves the �rst part of the proposition. Thus B is unitary modulo a regularizingoperator. To analyze its spectrum the method is just the same as for bounded domains.The only di�erence is that 1 is never an eigenvalue, since it would correspond to a nulleigenvalue for an outside Dirichlet problem, which is not possible. 211



Finally, for acoustics we can enounceProposition 10. The compatibility operator on the interface �0 for coupled volumic-surfacic problems has the higher part of its spectrum sparse, so that it could behave wellwith a Conjugate-Gradient like method.For electromagnetism, we prove the same type of result.Proposition 11. Let B denote the operator from H�1=2div (�0)[H�1=2curl (�0) to itself whichmaps curlE^n+ikET to curlE^n�ikET where E satis�es the electromagnetic Helmholtzequation outside �0 and the radiation condition at in�nity. Then B is essentially unitary,which means that B? is a left parametrix of B, and its spectrum has only two accumulationpoints which are 1 and �1.Proof :As previously, we set L =< Bp;Bq > � < p; q > :(36)Then denoting by E, (resp. F ) the solution of electromagnetic Helmholtz equation withradiation condition which satis�es curlE ^ n+ ikET = p (resp. = q), we have :L=2ik Z�0 curlE ^ n: �F � E:curl �F ^ n(37) =2ik Z
R curlcurlE: �F �E:curlcurl �F + 2ik ZSR curlE ^ ur: �F �E:curl �F ^ ur(38)Due to the Helmholtz equation, the volumic integral is null, thus letting R grow toin�nity, we have : L = ZS�4k2jA(�)j2d�:(39)As for acoustics, from the previous lemma, we deduce thatB?B � I = A?A 2 S�1:(40)Thus B is unitary modulo a regularizing operator. Again, to analyze its spectrum weuse the same method as for bounded domains. And here, again the only di�erence isthat 1 and �1 are never eigenvalues, since it would correspond to a null eigenvalue foran outside metallic problem, which is not possible. 2Finally, we haveProposition 12. The compatibility operator on the interface �0 for coupled volumic-surfacic problems has the higher part of its spectrum sparse, so that it could behave wellwith a Conjugate-Gradient like method.6. conclusion. After having given the general framework of subdomain methodsas well as the way they are usually used for elliptic problems, we presented their twomain drawbacks when they are applied to propagation of harmonic waves. Indeed, the12
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