A substructuring method for a harmonic wave
propagation problem : Analysis of the conditioning
number of the problem on the intertaces
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Abstract
In this paper, it is shown that the usual sub-domains methods which are efficient in the
case of elliptic problems have some defects in the case of propagation problems. In a
second part, a new method is presented and analysed. It is shown that this method is
well conditioned and that the local problems are always regular. Furthermore, it can be
applied to propagation in unbounded domains.

Une méthode de sous domaines pour un probléeme de
propagation d’ondes harmoniques : Analyse du
conditionnement du probléme aux interfaces

Résumé
Dans ce papier, il est montré que les méthodes de sous-domaines usuelles qui sont efficaces
dans le cas de problémes elliptiques ont un certain nombre de défauts pour les problémes
de propagation d’ondes. Dans une deuxiéme partie, une nouvelle méthode est proposée
et analysée. En particulier, cette méthode apparait comme bien conditionnée et avec
des problémes locaux bien posés. De plus nous étendons la méthode aux domaines non
bornés.
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1. Introduction. Wave propagation problems in domains like acoustics or elec-

tromagnetism for instance generally lead to huge linear systems, especially when one is
interested in high frequencies, since one has to mesh the domain, with a mesh step pro-
portional to the wavelength. When the problem is elliptic, people usually try to solve it
by dividing it into subdomains. See for instance [17], [18], [19] or [12]. Hence, each of the
sub-problems is practically solvable, and one has to make the sub-solutions compatible
at the interfaces between the subdomains. One so has the “primal” or “dual” subdomain
methods for instance. More precisely, for the Poisson problem, one may solve in each
subdomain a Dirichlet problem, with the same Dirichlet data on the interface, and the
compatibility relation has to insure that the normal derivatives coincide on the interface.
On the other hand, one may solve local Neumann problems with the same Neumann data
on the interface, and the compatibility relation has to insure that the traces coincide on
the interface. For elasticity, one may solve local problems with imposed displacements,
then forcing the normal constraints to be the same on both parts of the interface, or the
opposite. For operators like the Helmholtz operator, we present a subdomain method
which follows the same methodology as for elliptic operators, but which also avoids its
drawbacks when it is applied to non-elliptic problems. This method uses the same basic
idea as the one presented by B. Despres in [10] or [11], that is to use local problems with
Robin boundary conditions. Nevertheless, in his papers B. Despres does not apply this
method to unbounded problems with integral equations. Furthermore, he restricts him-
self to a unique numerical method. In our paper, we address general conjugate gradient
like methods for bounded and unbounded scattering problems.
In section 2, we precisely set the problems we want to solve. Both acoustics and elec-
tromagnetism are involved, with various boundary conditions. In section 3 we analyze
some classical subdomain methods when applied to the problems we consider, pointing
out their main drawbacks which are namely that the subproblems may be singular and
that the interface problem may be ill-conditioned. In section 4, we present a new way of
setting the problem on the interfaces, which avoids the drawbacks of the former methods
for the bounded domain problems. In section 5, we adapt this technique to unbounded
domain scattering. In these cases, the domain is cut, and we represent the outside by
an integral equation on the cutting surface. Thus, the surfacic-volumic coupled problem
can be viewed as a subdomain one.

2. Position of the problem. In this paper we are mainly addressing two physical
situations. The first is the acoustic one. Let Q an bounded open set of IR? and I its
boundary (see fig 1). We denote by H*(O) the Sobolev space of order s on the set O
(see for instance [1] or [16]). We want to solve the following problem. Given a function
gin H7YV4(T), find w in HY(), such that

Au+ku=0 in Q
0

ocu—i—ﬁ—u:g I
on

(1)
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Fic. 1. Geometrical situation

Here n is the outward unitary normal vector of I'. The numbers a and [ are chosen to
be real. Of course, they cannot be null in the same time. Note that, if § is null, then
one has to choose g in H'/2.

The second physical situation we consider is the propagation of harmonic electromagnetic
waves. With the same geometry, we denote by H,,.;(2) the space of vector fields £ which
belong to L(f2) so that curlFE also belongs to L?(2). We also denote by H(Z},/Q(F) the

tangential fields which are in H~'/2(T") and whose surfacic divergence is also in H~'/2(T").
We fix a field Ej in H@i/Q(F), and we are looking for a field F in H,,.(2) satisfying :

(2) curleurlEE — k*E =0 in
EAn=-FE; in T

In the same way, we define two unbounded problems. The first one is acoustics :

Au+Eku=0 m

(3) ozu—i—ﬁ%:g mm T
0w = o2 wh +
_— — = — —
5, — thu=o(=) when r 00

with the same notations as before and r denoting the radius in the spherical coordinate
system.
For electromagnetism, we set the problem :

curlcurlE — k*E =0 mn Q

1
curlE Au, —ikEs = o(=) when r — 400
7

where u, is the unitary radius vector in the spherical coordinate system and Eg denotes
the component of the electric field which is orthogonal to w,.

3. Analysis of some usual methods. In this section, we first present the general
framework of multidomain methods. One can find details for instance in [2], [9] or [12].
2



Then, we will study the usual ways people use these methods in the frame of elliptic
operators. At last, we will briefly present how a volumic-surfacic coupled problem can
be viewed as a multi-domain one, following [8].

3.1. General framework of multidomain methods. The first step of these
methods is to divide €2 into a finite number of €; satisfying :

Adh(J ) = Q

where Adh(O) denotes the adherence of the set O. We will denote by I';; the interface
between §; and €, (see fig. 2). The second point, in the case of acoustics, is to notice

Fic. 2. Geometrical situation

u
that if u satisfies Helmholtz equation in each subdomain €2;, and the jumps of v and —

n
are null on the interfaces between subdomains, then u satisfies the Helmholtz equation in

the whole set €2. For the electromagnetism, one just has to replace the former continuity
conditions by the continuity of the tangential trace of £ and curlFE.

Then, one can solve in each subdomain €;, a Helmholtz equation with the global bound-
ary condition on the part of 9€; which is common with T' and for instance a Dirichlet
condition p on the interfaces. The function p is the same for each subdomain, so that
the jump of u is null through the interfaces. Then, in each subdomain, one has

ou p
(5) %—SP‘Ffi

where S* is the Steklov-Poincaré operator and f; comes from the global boundary con-
dition.



The last point is to ensure that the jump of the normal derivative is null. For that, one
has just to solve the equation on the interfaces :

(6) (S*+ 5w =fi—f

where 7 and j are indices such that there is an interface between (2; and €2;. The operators
S* and S7 are also referred to as Schur complements.

One could also do the opposite : solve a local Neumann problem, and then solve on the
interfaces :

(7) (ST S = Fi-

Before presenting a few results about unbounded problems, we make a few remarks.
Remark 1. Matrices corresponding to the S* operators are full and one does not want to
assemble them. So they are just defined in an implicit way. Namely, if in Q; we denote
by = the unknowns which are not on the interface and by y those which are on it, then,
the local problem with Neumann condition on the interface writes :

<8> 7 ell]-6)

So the matriz corresponding to the operator S* is
§'=C-B"A'B

and is called the Schur complement. It follows that usually one only factorize matrix A
and the matriz corresponding to the operator S* is only known implicitly. For instance
one can just perform matriz-vector products with it.

Remark 2. The consequence of the former remark is that the problem on the interface is
solved iteratively. So the conditioning of the interface operator is of great importance.
Remark 3. The last remark s that it is a well-known fact that, even with ill-conditioned
matrices the conjugate gradient like methods have a good behaviour is the upper part of the
spectrum of the operator is sparse (see for instance [21] or [23]). Since operators S* send
H'Y2 to H='/2, they are unbounded. So the corresponding matrices are ill-conditioned and
the higher part of their spectrum is dense and tends to infinity when the finite element
mesh is refined. It follows that one would better use Neumann local problems if not using
preconditioning matrices.

3.2. Unbounded problems and subdomain methods. As one can not just
discretize the Helmholtz equation on all the domain since it would lead to infinitely
many degrees of freedom, one has, in a way or an other, to cut the domain at a certain
distance from the scatterer and to impose boundary conditions on the cutting surface.
The only condition which is exact comes from integral equations. Thus, the usual way of
doing leads to a coupling between integral equations and volumic P.D.E.’s. The coupling
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of finite element and boundary element methods has been studied for a while in various
frameworks. We can find it described for example in Nedelec, [20] or Zienkiewicz, [25] or
more recently in Costabel, [4] and Wendland, [24]. This method is of special interest for
the study of complex bodies imbedded in a linear homogeneous medium. In the case of
wave propagation, the study of a non-homogeneous body is presented in Levillain, [15]
for an electromagnetic wave and in de La Bourdonnaye, [5] for an acoustic one.

This way of doing may be viewed as a domain decomposition technique. Indeed, there are
two domains, one is bounded and contains the scatterer, the other is its complementary.
This suggests to study the use of the Schur complement technique as presented above.
In [8] we showed that the part of the complement which deals with the outside can be
treated in a very simple manner, using well-known properties of the relevant integral
operators.

3.3. Analysis of the previous methods applied to propagation problems.
The first thing we have to point out is that with Helmholtz equation (and also with the
harmonic electromagnetism equation : H.E.M.), the Dirichlet and Neumann boundary
conditions may lead to singular problems when the frequency is a resonance. So when
solving the local subproblems one can fall on such a frequency for one of the subdomains.
The second point is mainly concerned with electromagnetism. Indeed, we have shown in
[6] (see also in [7]) that, in the case of the coupling of an integral equation method on
a surface wrapping an object and a volumic finite element method between the surface
and the objet, the operator which sends the tangential trace of the electric field to its
normal derivative is unbounded and of its reciprocal is unbounded. But this problem
can be viewed as a subdomain method (as shown in [8]) where the wrapping surface is
the interface. This implies that, the both methods presented above are ill conditioned
and have the higher part of their spectrum dense and going to infinity when the mesh is
refined.

4. A new method - Bounded domain scattering. In this section, we present
another way of doing which avoids the two drawbacks presented in the former section.
First, we change the local problem and present some of its properties. Namely, we use
Robin boundary conditions like in [10] or [11] Second, we change the interface problem.
Then, we will be able to comment about its properties related to the speed of convergence
of the global iterative scheme.

4.1. The local problem. It is a well known that in the case of propagation, one
obtains regular problems with mixing Neumann and Dirichlet boundary conditions with
complex coefficients (see [3] or [13]). So, in our case, given an orientation of the normal



vector n on the interface, we will solve in each subdomain €;,

Au+ku=0 in Q
0
(9) au + ﬁ% =g on T

u
— +tku =p on the interfacel

on

for the acoustics and

curleurlE — K*E =0 in
(10) EAn=-E, in T
curlE A\n+tkEr =p on the interface |

for the electromagnetism, where Er is the tangential part of £ on a surface. It is easy
to check that these two problems are injective. Indeed, suppose in the first case that ¢
and p equal 0, then, multiplying the equation on €2; by %, integrating on €2, and taking
the imaginary part leads to :

/ ik|ul? = 0.
I

Then, v and — are null on the interface and so « is null in €2;.

n
For the electromagnetism case, on the same way, one easily obtains that F7 and curl EAn

E

are null. Using the fact that divE is also null, leads to £ and g— are null. So the field
n

FE is null in ;.

4.2. The problem on the interface. On the interface we will ensure that

— —tku

on

is continuous for the acoustics, and the corresponding condition for the electromagnetism.

Asin [13] or [10], we can show that the operator sending 0_14 +tku on 8_u —iku is unitary.
n n

We show the following
PROPOSITION 1. Let B; denotes the operator from H~Y/2(9Q;\I') to itself, which maps

ou ou

— +tku to — — ik

o + 1ku to o thu

where u satisfies the Helmholtz equation in §2; with the global boundary conditions on I'.
Then B; is unitary, and its spectrum has just one accumulation point which is 1.

Proof :

Indeed, let’s compute A = (B;p, Biq) — (p,q) where ( , ) stands for the L?(9%; N I)



hermitian product. We denote by u (resp. v) the function which satisfies the Helmholtz

U
equation in €2, and n + iku = p (resp. ¢) on the interface. Then,
n

" Ou 0v
11 Bip, Biq) — (p, :2'k/—‘— v
(11) (Bip, Biq) = (p,q) = 2ik | =0 —uz
Taking into account the boundary conditions in 1, this quantity satisfies
0 o0v
(12) A=k | 8—2@—%—;:2@1{/& Aub — uAB.

Using the fact that both v and v satisfy the Helmholtz equation in 2; we obtain that A
is null which proves that B; is a unitary operator.
Now let us denote by u, ¢ an eigenvalue of B; and its associated eigenfunction. We also

0
denote by u the function which satisfies the Helmholtz equation in €2; and gu +tku = ¢

on

on the interface I. Then, on I, we have

0 1
(13) A Nl )

on 1—uw

: du o : L1+ p

As the operator which maps u; to I has its inverse compact, the series of the ik 1

n|I — i

has its only accumulation point at co. Thus the pu series has its only accumulation point
inl. O

We now deduce from this property some qualities of the problem on the interface.
PROPOSITION 2. The compatibility operator on the interface as defined in this section
has the higher part of its spectrum sparse, so that it could behave well with a Gonjugate-
Gradient like method.

Indeed, this operator is the difference of the B; operators on each side on the interface.
So, it is of Fredholm type, and its spectrum has no accumulation point at infinity.
Now, we go into the analysis of the electromagnetic case (see also [11]). As for the
acoustics we show the following

PROPOSITION 3. Let B; denotes the operator from H;,M}f(@Qi\F) N H(Zi/Q(@Q,-\F) to
itself, which maps

curlE A n + 1kE7 to curlE A n — ikEp

where E satisfies system (2) in Q; with the global boundary conditions on T'. Then B; is
unitary, and its spectrum has just two accumulation points which are 1 and —1.

Proof -

Indeed, let’s compute A = (B;p, B;q) — (p,q) where ( , ) stands for the L*(0Q; N I)
hermitian product. We denote by F (resp. F') the function which satisfies system 2 in
Q; and curlE An + ikEp = p (resp. curlF An +ikFpr = q) on the interface. Then,

(14) (B:p, Biq) — (p,q) = 2ik /(curlE An).F — E.(curlF An).
I
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Taking into account the boundary conditions in 2, this quantity is equal to

(15)2ik - (curlE An).F — E.(curlF A n) = 2ik /Q curl curl E.F — E.curl curlF.
Using the fact that both £ and F' satisfy system 2 in {2; we obtain that A is null which
proves that B; is a unitary operator.
Now let us denote by u, ¢ an eigenvalue of B; and its associated eigenfunction. We also
denote by E the function which satisfies system 2 in §2; and curlE A n + ikEr = ¢ on
the interface I. Then, on I, we have

1
(16) curlB A n = ikEr; TH

In the same manner as in [6], we can show that the operator which maps Er; to
curlE A nr is a direct sum of a compact operator and an operator with compact in-

1
verse modulo a Fredholm operator. Then, ik 1 e

has its two only accumulation points

at 0 and co. Thus the p series has its two only accumulation points in 1 and —1. O

We now deduce from this property some qualities of the problem on the interface.
PROPOSITION 4. The compatibility operator on the interface as defined in this section
has the higher part of its spectrum sparse, so that it could behave well with a Gonjugate-
Gradient like method.

Indeed, this operator is the difference of the B; operators on each side on the interface.
So, it is of Fredholm type, and its spectrum has no accumulation point at infinity.

5. A new method - Unbounded domain scattering. In the case of the coupling
between volumic and boundary formulations, we follow the general framework presented
above and we focus on the differences with the bounded domain case.

5.1. local problems. First we wrap the scattering object {2 in a surface I'y which
plays in the present case the role of the interface. For acoustics, between €2 and I'y, we

solve :
Au+k*u =0 between QandT,
0
(17) ozg + ﬁa—z = on r
a_u +iku =1p on the interface I'
n

Outside I'y, we solve :

) 1
(18) 8_u —iku = o(=) when r— 400
r r
0
8_u +iku =p on the interface Iy
n
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For electromagnetism, between 2 and I'j, we solve :

curleurlE — K*E =0 in
(19) EAn=—-Fy in T .
curlK Anm+itkFEp =p on the interface I

Outside I'y, we solve

curleurlE —kK*E =0 in
1
(20) curlE Au, —ikEg = o(=) when r— 400
T
curlE An+ikEr =p on  theinterface I
As the injectivity of problems (17) and (19) is just the same property as in the case
of bounded problems, we will only deal with problems at the outside. We begin with
acoustics. We first recall some properties that can be found in [14].
PROPOSITION 5. If u is solution of problem (18), then :
ikr
(i) : w~ A(0)

€

when r tends to infinity.
”

g ‘ ‘ © 0u
(ii) : the imaginary part of/ a—ﬂ equals to [4|A(0)]?
JSp OT
where 6 denotes the angular coordinates in the spherical coordinate system, Sg is the
sphere centered at origin with radius R, and S = 5. Hence, we can enounce :
PROPOSITION 6. The outside acoustics problem (18) is injective.
Proof :

From Helmholtz equation, denoting by 2z the volume between Si and I'y we have :
' © 0 © 0

@) 0= [ Ava+kf= [ —VuP+rl?- [ Zat [ Sa
Qr JOp r, On Sp Or

Taking the imaginary part, and then the limit » — +o00 we obtain :

(22) 0= [ luf*+ [ 1a@)P

Thus, w is null on I'j and so is the normal derivative thanks to the boundary condition
on I'y. Hence, it is a well known fact that v = 0 outside I'y. O

For the electromagnetism we first recall that

PROPOSITION 7. If E is solution of problem (20), then :
tkr
(i) : B~ A0)S
,

when r tends to infinity.

(i) :  the imaginary part of | curlE An.E equals to [4|A(0)[*.
JSRr
Here A(0) is a vector field which tangential to the sphere S. Hence, we can enounce :

PROPOSITION 8. The outside electromagnetic problem (20) is injective.
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Proof :
As in the acoustic case, we have :

(23) 0= / —|cu7‘lE|2 + ]<:2|E|2 — / curlEBE An.E + curl B A n.E.
Qp JTy Sr

Taking the imaginary part, and then the limit » — +o00 we obtain :

(24) 0= [ 1EP+ [ 1A0)P

Thus, E is null on I'y and so is curl E An thanks to the boundary condition on I'y. Hence,
it is a well known fact that £ = 0 outside I'y. O

5.2. The problem at the interface. On the interface I'y we will constrain the
same quantity as in bounded-domain problems to be continuous. Namely, if we denote
by [] the jump of a quantity at T'y, we impose

(25) lg—z - zku] =0

in the acoustic case, and
(26) [curlE An —tkEr] =0

for the electromagnetism.

We define B operators as before. Since the “inside” problems are particular cases of the
bounded problems, their B operators are still unitary. So we will focus in the following
on the operators related to the outside domains.

We first recall a few facts about pseudo-differential operators (for more details, we refer to
[22]). We denote by S~ the set of pseudo-differential operators whose symbols decrease
faster than any polynomial at infinity. We recall that, if P is a pseudo-differential
operator and @ is another one, @ is said to be a right parametrix of P (resp. left
parametrix) if P.QQ — I (resp. @.P — I) belongs to S™>°. @ is a parametrix of P if it is
both a right and left parametrix.

Now we show a lemma using these facts.

LEMMA 1. If A(0) is the amplitude exhibited in former section, then both in the case of
acoustics and electromagnetism, still denoting by A the operator which associates u or E
to its amplitude, we have :

(27) A*A e 57,

Proof :

Indeed, if u and v are solutions of problem (18), then

(28) < Au,Av> = /F e y)%(x).%(y) + 8§j§ny(x,y)u(w).@(y)d:cdy
(29) = o B ule) o) + e )G @)l dedy
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where the kernel G(z,y) is the following :

sink|z — y|
(30) Gle.y) = T

Since G is a even function of |z — y|, we can easily check that this kernel is analytic
by considering its Taylor series in 0 for instance. Hence, its Fourier transform, which
is the symbol of A*A is exponentially decreasing, and thus A*A is in S™°°. For the
electromagnetic case, the same type of computations apply, and we are led to the same
kernel G. Thus, the same results hold for electromagnetism. 0O

The last point of this section is to show the same type of proposition as for the bounded-
domain case for the operators B. Let us start with acoustics.
ou
PROPOSITION 9. Let B denote the operator from H_l/z(FO) to itself which maps 8——|—ik’u
n
ou

to o tku where u satisfies the Helmholtz equation outside I'y and the radiation condi-

n
tion at infinity. Then B is essentially unitary, which means that B* s a left parametriz
of B, and its spectrum as just one accumulation point which is 1.

Proof :

As for the bounded domain case we set
(31) L =<Bp,Bqg>—<p,q>.

Then denoting by u, (resp. v) the solution of Helmholtz equation with radiation condition

which satisfies 8_u + iku = p (resp. = q), we have :
n

o [ Ou_ 0v
(32) L= 2ik| oo-uz
(33) = 2k /QR Aut — uAT + 2ik SR %1—) _ u%

Due to the Helmholtz equation, the volumic integral is null, thus letting R grow to
infinity, we have :

(34) L= / O
Js

From the previous lemma, we deduce that

(35) B*B—-1=A"Aec 5.

This proves the first part of the proposition. Thus B is unitary modulo a regularizing
operator. To analyze its spectrum the method is just the same as for bounded domains.
The only difference is that 1 is never an eigenvalue, since it would correspond to a null
eigenvalue for an outside Dirichlet problem, which is not possible. O
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Finally, for acoustics we can enounce

PROPOSITION 10. The compatibility operator on the interface I'y for coupled volumic-
surfacic problems has the higher part of its spectrum sparse, so that it could behave well
with a Conjugate-Gradient like method.

For electromagnetism, we prove the same type of result.

PROPOSITION 11. Let B denote the operator from Hy\'*(Ty) U H_"*(Ty) to itself which
maps curl EAn+1kEr to curlEAn—ik Ep where F satisfies the electromagnetic Helmholtz
equation outside I'y and the radiation condition at infinity. Then B is essentially unitary,
which means that B* is a left parametriz of B, and its spectrum has only two accumulation
points which are 1 and —1.

Proof :

As previously, we set
(36) L =<Bp,Bg>—<p,q>.

Then denoting by F, (resp. F') the solution of electromagnetic Helmholtz equation with
radiation condition which satisfies curlE A n + ikEp = p (resp. = q), we have :

(37)L=2ik | curlE An.F — E.curlF An
Lo

(38) =2ik " curlewrlB.F — E.curleurl + 2ik curl B A u,.F' — E.curl F A u,

Qr JSRr
Due to the Helmholtz equation, the volumic integral is null, thus letting R grow to
infinity, we have :

(39) L= / O

Js
As for acoustics, from the previous lemma, we deduce that
(40) B*B—1=A"A¢€ S™™.

Thus B is unitary modulo a regularizing operator. Again, to analyze its spectrum we
use the same method as for bounded domains. And here, again the only difference is
that 1 and —1 are never eigenvalues, since it would correspond to a null eigenvalue for
an outside metallic problem, which is not possible. O

Finally, we have

PROPOSITION 12. The compatibility operator on the interface I'y for coupled volumic-
surfacic problems has the higher part of its spectrum sparse, so that it could behave well
with a Conjugate-Gradient like method.

6. conclusion. After having given the general framework of subdomain methods
as well as the way they are usually used for elliptic problems, we presented their two
main drawbacks when they are applied to propagation of harmonic waves. Indeed, the
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subproblems may be singular and the interface problem does not behave well as far as
the speed of convergence is concerned, especially in the case of electromagnetic waves.
Then we introduced a new formulation that keeps the general framework of subdomain
methods but corrects the above mentionned defaults. In fact the local problems are
made coercive by the mean of a dissipative boundary condition. Furthermore, we have
developed in this paper a Schur complement which is unitary is the case of bounded
domains and essentially unitary in the case of unbounded domains. This leads in every
case to Fredholm operators which are known to behave well with respect to Gradient-
Conjugate like algorithms. Of course, it is possible to use some bounded domains with
an unbounded one and to mix our studies on both cases.
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