
Numerical simulation of scattering problems withFourier-Integral operators.Armel de La Bourdonnaye and Marc TolentinoAbstractIn this paper, we present a general method for approximating oscillatory integrals arisingin some scattering problems. In particular, a microlocal basis is used to approximatewave functions, by discretizing their wave-front. Then, we exhibit a result concerningthe approximation of the scattering operator, which allows to retain only interactionsbetween coe�cients for which the product of the supports is near the wave-front of thekernel of the operator. Finally, we give an estimate of the algorithmic complexity of themethod presented in the paper.Approximation numérique de problèmes dedi�raction incluant des opérateurs Fourier-Intégraux.RésuméDans ce papier, nous présentons une méthode générale d'approximation numérique d'in-tégrales oscillantes intervenant dans divers problèmes de di�raction. En particulier,nous montrons une base microlocale de fonctions qui permet d'approcher les ondes quenous cherchons, en s'adaptant à leur front d'onde. Puis, nous exhibons un résultatd'approximation de l'opérateur, qui permet de ne retenir que les interactions entre des co-e�cients dont le produit des supports est proche du front d'onde du noyau de l'opérateur.En�n nous donnons une estimation de la complexité algorithmique de la méthode ex-hibée.



1. Introduction. High frequency scattering problems are generally hard to simu-late for many reasons. In this paper, we will focus on �nite element methods in frequencydomain. One of these reasons is that the linear systems which are involved are verylarge. Indeed, the mesh step has to be a portion of the wave length � of the simulatedphenomenon. This means O(��n) degrees of freedom where n is the dimension of theambient space. Furthermore, in the case of pseudo-di�erential or Fourier-integral opera-tors, the interaction is not local and each basis function interacts with each other. Thus,the number of coe�cients to be computed is O(��2n). It is also the case when one usesintegral equations for acoustics of electromagnetism.First, we are going to present a few situations where pseudo-di�erential or Fourier-integral operators occur. The �rst case is the wave equation one, when the sound speeddepends both on the geometric point (the material is not homogeneous) and on thedirection of propagation of the wave (the material is not isotropic). For instance, thisoccurs in composite material. The equation then writes :@2t u+ Z eix:�a(x; �j�j )j�j2ûd� = f:(1)In frequency domain it becomes :� Z eix:�(!2 � a(x; �j�j )j�j2)ûd� = f(2)where we have kept the same notations for the functions and their Fourier transformswith respect to time, and ! is the pulsation at which we observe the scattering. Thesecond case comes from the same idea, but we suppose that the medium is dispersive.Hence the equation becomes :� Z ei(x:���(�))(!2 � a(x; �j�j )j�j2)ûd� = f(3)These two situations are the ones we are going to investigate in this paper. The �rst casecorresponds to pseudo-di�erential operators and the second to Fourier integral operators.We could also add the case of integral equations coming from harmonic acoustics orelectromagnetism, since they also involve oscillating term or the Lipmann-Schwingerequation, especially when the term modelling the material oscillates with a characteristicstep which is similar to the wave length.At least in the case of integral equations, many works have already been done. V. Rokhlinpresented in [9] a method based on the decomposition into Hankel and Bessel functionsand on the use of addition formulae for the 2-D case. In [10] he presented the extensionof the former method to the 3-D case, but in fact it happens that this paper has an errorwhich makes the method as costly as the classical �nite element discretization and thusof no use. In [3] F.X. Canning presented for the 2-D case, a method based on the discreteFourier transform of packets of basis functions, and thus of packets of matrix coe�cients.1



It happened in this case that lots of transformed coe�cients where small. For the 3-Dcase, it seems not so easy to implement the same method since, it was based on FFTwhich exist for segments but not for general 2D patches. But at least this method savesmemory if not CPU time. In [6], the �rst author of this paper presented a method whichis based on a discrete microlocalization of the functions which was leading to sparsematrices. We also mention the paper of B. Bradie, R. Coifman and A. Grossmann (see[2]) which deals with the oscillatory terms of acoustic integral equations. In this paper,they use local cosine transforms following basically the same idea as F.X. Canning. Ouraim is here to extend the method proposed in [6] and [12] to the case of more generaloscillatory integrals such as the ones presented above.In section 2 we precisely set the problems we want to solve. In section 3, we present adiscretization of the space of solutions we are looking for, thanks to an eikonal equation.In section 4, we evaluate the interaction coe�cients between the basis functions, andshow that most of them can be negected. In the last section, we evaluate the algorithmicand storage complexity.2. Setting of the problems. Following what has been presented in the introduc-tion, we will address two problems. The �rst one, which involves pseudo-di�erentialoperators is :Let X be a regular bounded open set of IRn. Given an elliptic pseudo-di�erential operatorP of order one, we want to computePu(x) = Z p(x; �)eix:� û(�)d�(4)when i@tu� Pu = f(5)and f is oscillating at a given pulsation !. Here, we consider �rst order problems insteadof second order ones in the introduction for the sake of clearness, but it is well-knownthat one can always transform a higher order equation into a system of order one (seefor instance [11]). The ellipticity of the operator which is the positivity of the principalsymbol precisely means that the speed of propagation of the signal is always strictlypositive.The second problem involves Fourier-integral operators. Let X and Y be regular boundedopen sets of IRn. Given such an operator P of order one, we want to computePu(x) = Z p(x; y; �)ei�(x;y;�)u(y)d�dy(6)when i@t Z ei�(x;y;�)u(y)dyd� � Pu = f(7)and f is oscillating at a given pulsation !. Here, p is the amplitude of the operatorand � its phase. We impose � and p to be 1-homogeneous in �. This corresponds to a2



material which has a dispersion varying linearly with the frequency. It is often a correctassumption when a signal has its spectrum localized in frequency. We also impose theellipticity of the operator which has the same meaning as in the previous case. Of course,the phase � satis�es to usual property of non-degeneracy (see [7]) which is :When @�� = 0, the di�erential forms d@�i� are lineary independent, where the �j are thecoordinates of �.3. Discretization. In this section, we will see that, using an eikonal equationcoming from the fact that we observe a signal oscillation at pulsation !, we are ableto present a discretization of the functions we are looking for. The �rst point is to usea variational principle as in all �nite element methods. Then, thanks to the eikonalequation and the ellipticity, we will obtain a �nite manifold to discretize. We begin withthe case of pseudo-di�erential operators which is the simpler.3.1. Pseudo-di�erential operators. In the case of problem (4-5), we �rst recallthat u satis�es u(x) = Z a(x; �)ei! (x;�)d�(8)for given amplitude a and phase  . Hence, it is easy to check (see for instance [11]) byexpanding (5) in decreasing powers of the pulsation !, that, on the support of a(x; �),for (x; �) 2 T ?X satisfying r� = 0,1 = p1(x;rx (x; �))(9)where p1 is the principal symbol of the pseudo-di�erential operator P . This last equationis the eikonal equation. We denote by � the lagrangian manifold associated with  :� = f(x;rx (x; �)) 2 T ?X;r� (x; �) = 0g(10)and we de�ne T ?X� = f(x; �) 2 T ?X;� = p1(x; �)g :(11)To represent the function u, we want to discretize the part of its wavefront which is inthe neighborhood of T ?X1, and combine local oscillatory terms like eix:�. In order to dothat, we �rst prove theTheorem 3.1. the manifold T ?X1 is a bounded manifold if X is.Proof :Indeed, since the pseudo-di�erential operator P is elliptic, its principal symbol p1 iscoercive which means that there exists a strictly positive constant � such thatjp1(x; �)j � �j�j:(12)Thus, if (x; �) is in T ?X1, we have 1 � �j�j(13) 3



and so T ?X1 � X �B(O; 1� )(14)where B(O; r) stands for the ball centered at origin with radius r. This ends the proof.2The consequence of this theorem is that we are able to discretize T ?X1 with a �nitenumber of degrees of freedom. More precisely, we will discretize a tubular neighborhoodN of it in T ?X with a thickness of O(!�1=2). Now, we precise the way to discretize thismanifold.� We discretize X with a mesh step hX = O(!�1=2), creating O(! n2 ) points xi.� We discretize each �ber with a mesh step hF = O(!�1=2), creating O(! n�12 )directions �j.� We mesh T ?X1 with the relevant couples (xi; �j), thus having O(!n�1=2) degreesof freedom.The next point is to present the basis of functions we will use to approximate the functionssatisfying (8). First, we use the P1-Lagrange (see for instance [4]) basis functions on themesh presented above. We denote them by pij(x; �) where pij(x; �) = 1 when (x; �) =(xi; �j) and pij(x; �) = 0 on the other points of the mesh. Then our basis functions willbe : qij(x) = Z pij(x; �)ei!(x�xi):�d�(15)Intuitively, integrating a Fourier integral distribution which satis�es the eikonal equationagainst qij means microlocalizing the distribution around (xi; �j).Now, we are going to prove that the basis exhibited above is su�cient to represent theasymptotic behavior of the functions we are looking for. We want to �nd coe�cients �ijwhich minimize E = Z ������u(x)�Xi;j �ijqij(x)������2 dx(16)The �rst point is the following. We make a change of variables such that the manifold� = f(x; �);r� (x; �) = 0g(17)is mapped to the manifold � which is the wavefront of u. We call x; � the new variables,and for (x; �) in � , � = rx (x; �):(18)Thus, if we denote, ~ (x; �) =  (x; �), we have the implicationhr� ~ (x; �) = 0i) h� = rx ~ (x; �)i(19) 4



In the high frequency limit, due to the eikonal equation, we just have to take into accountthe (x; �) which are in the neighborhood of the wavefront of u which is included into themanifold N . Since the function �(x; �) =Xij pij(x; �)(20)is a cut-o� function around N , in the high frequency limit, we have thatE � Z ������Z Xij pij(x; �)~a(x; �)eik ~ (x;�)d� �Xij �ijpij(x; �)eik(x�xi):�d�������2 dx:(21)The symbol ~a comes from the symbol a after the change of variables, it includes thejacobian of the transformation. Then, we haveProposition 3.2.E � Z ������Xij pij(x; �) �~a(x; �)eik ~ (x;�) � �ijeik(x�xi):��������2 d�dx(22)since, thanks to eikonal equation � is in a bounded domain.Next, we show the following lemma.Lemma 3.3. Let G(x; �) be a function, then,jXij pijGj2 � (2n+ 1)Xij jpijGj2(23)where n is the dimension of the manifold X.Proof :Indeed, on each simplex of the mesh, we have exactly 2n+1 functions pij which are notnull. Thus, a simple discrete version of Cauchy-Schwartz theorem leads to the result. 2Before using this lemma, we make the following remark. Since if� \ Supp(pij) = ;;(24)the integral giving u on this set is fastly decreasing, then we can take �ij = 0 for such a2-index.On the other case, the phase in u is stationary and thus, in Supp(pij),~ (x; �) = Cte+ �:(x � xi) +O(!�1):(25)Indeed, since the phase is stationary, we can develop it around �; �. The � derivative isnull, the x derivative is � and the higher order terms are O(!�1), since the mesh step isO(!�1=2). Thus, we can prove 5



Proposition 3.4.E � (2n+ 1) X(ij);�\Supp(pij)6=; Zsupp(pij) jb(x; �)� �ijj2 dxd�(26)The symbol b comes from ~a by combination of the constant and O(!�1) terms in equation(25), since, multiplied by !, these two terms cannot be considered as oscillatory ones.Proof :Indeed, since we have thrown out the supports which do not intersect the wave front ofu, we are left, for the u part of the error E, withb(x; �)ei!(x�xi):�:(27)Factorizing the oscillatory part, which is of module 1, and using lemma 3.3, we have theresult since the functions pij are bounded by 1. 2Now we can enounce the �nal result of this part.Theorem 3.5. For a function u satisfying (8) and eikonal equation (9), if the meshstep h satis�es h = 1C!1=2 ;(28)then, denoting by uh the projection of u on the basis of the functions qij(x), we havejju � uhjjL2 = O(1=C)jjujjL2 :(29)The constant C represents the number of degrees of freedom by wave length in the physicalspace X.Proof :We are going to choose the coe�cient �ij such to minimizeZsupp(pij) jb(x; �) � �ij j2 dxd�(30)We proceed to the following change of variables :y = x:p!; � = �:p!:(31)Thus, the new mesh step is 1=C and the jacobian is 1=!. If we choose �ij to be the meanvalue of b on the support of integration, we have that,Zsupp(pij) jb(x; �) � �ij j2 dxd� = O(1=C2) Zsupp(pij) jb(x; �)j2 dxd�:(32)since ~b(y; �) = b(x; �) as a gradient proportional to ~b. 2The meaning of this theorem is that, as classically done when approximating oscillatoryfunctions, for a given requested accuracy of approximation, we only need a boundednumber of degrees of freedom by wave length in the space manifold X. By this, we meanthat the number of degrees of freedom is a constant times !n, when n is the dimensionof X. 6



3.2. Fourier-integral operators. For Fourier-integral operators, as in (6-7), thesituation is more complex than in previous section since these operators transform thewavefront of the functions to which they are applied. Thus we are in a �Petrov-Galerkin�situation where the searched functions are of one type and the test functions of anotherone. More precisely, as in previous section, we can take the function u of problem (6-7),as a locally �nite sum of functions likeu(x) = Z a(x; �)ei! (x;�)d�:(33)Now, the problem is to compute Pu where P is the Fourier-integral operator. We willuse a variational technique. It means that we want to compute < Pu; v > where < ; >stands for the hermitian product, for all v in a class of functions which is similar to u.Namely, we want to compute < Pu; v >, taking into account the equationi@t < Z ei�u; v > � < Pu; v >=< f; v >(34)at frequency ! for all u satisfyingu(x) = Z a(x; �)ei! (x;�)d�(35)and all v satisfying v(x) = Z b(x; �)ei!�(x;�)d�;(36)where I� is the Fourier integral operator of amplitude 1 and phase �. The next point isto write something equivalent to the eikonal equation. In fact, the equation will involveboth u and v together. It writes :! = p1(x; y;rx�(x; �);�ry (y; �))(37)for ( r��(x; �) = 0r� (y; �) = 0(38)and (x; y;rx�(x; �);�ry (y; �)) 2 ��:(39)where p1 is the principal symbol of the operator as de�ned in [8]. Let us recall that p1is de�ned on the neighborhood of the wavefront of the operator which is a lagrangianmanifold of T ?(X � Y ) which we often replace by T ?X � T ?Y .As before, we de�ne (��)� = f(x; y; �; �) 2 ��; p1(x; y; �; �) = �g :(40) 7



We have the theorem :Theorem 3.6. the manifold (��)1 is a bounded manifold if X and Y are.Proof :Indeed, thanks to the assumed ellipticity of the operator, the principal symbol is coercive.Thus, as in previous section,[(x; y; �; �) 2 (��)1]) �qj�j2 + j�j2 � 1�c �(41)where �c is the constant of coercivity of the principal symbol of the operator. So,(��)1 � X �B(0; 1�c )� Y �B(0; 1�c ):(42)This ends the proof of the theorem. 2As for pseudo-di�erential operators, this theorem implies that we can use a �nite numberof degrees of freedom to discretize our functions u and v.Precisely, let N be a tubular neighborhood of the manifold (��)1 in T ?X � T ?Y ofthickness !�1=2.� We discretize the basis of N considered as a �ber bundle over X � Y with amesh step hXY = O(!�1=2), creating O(! n2 ) couples (x�; yi).� We discretize the �ber above each (x�; yi) with a mesh step hF = O(!�1=2)by couples of directions (�� ; �j), creating O(! n�12 ) directions �� and O(! n�12 )directions �j.� We mesh the subsets of T ?X and T ?Y with the relevant couples (x�; ��) and(yi; �j), thus having O(!n�1=2) degrees of freedom in T ?X and O(!n�1=2) degreesof freedom in T ?Y .Now, we de�ne the functions p��(x; �) as in the previous section for T ?X and pij in thesame manner. Finally we have,8><>: q��(x) = Z p��(x; �)ei!(x�x�):�d�qij(y) = Z pij(y; �)ei!(y�yi):�d�(43)The basis of functions q�� will be used to approximate the functions v, and the basisof qij will be used to approximate the functions u. Since the functions u and v arenot in the same class the result of approximation cannot be of the same kind as forpseudo-di�erential operators. For Fourier integral operators, we will try to estimate thequantity E = j< I�(u� uh); v � vh >j(44)where uh and vh are the projections of u and v on the bases qij and q�� and I� is theFourier integral operator of amplitude 1 and phase � which is the phase of the operatorP . We make two comments about this operator.8



� First, in the case of pseudo-di�erential operators, the phase � was (x � y):�.Thus the corresponding error E would have just been the modulus of the innerproduct < u� uh; v � vh >.� Second, I� just transports the symbol of u from the wavefront of u to the wave-front of v, thus the error E is something like the error of approximation of thesymbols.Now, we will use the same machinery as for the pseudo-di�erential operators. We wantto �nd coe�cients �ij and ��� which minimizeE = ������Z ei�(x;y;�) 24u(y) �Xij �ijqij(y)35 :24v(x) �X�� ���q��(x)35 dxdyd�������(45)As previously, we make a change of variables which maps �� to ��, � to � and ��to ��. For the sake of simplicity, we keep the same notations for the new amplitudes,phases and variables. In the high frequency limit, we can limit ourselves to take intoaccount only the variables x; y; �; � which are in the neighborhood of the wavefront ofthe operator. Since the function�(x; y; �; �) =X pij(y; �)p��(x; �)(46)is a cut-o� around this wavefront, in the high frequency limit, we have thatE � ������Z ei�(x;y;�) 24Xij pij(y; �) �a(y; �)ei! (y;�) � �ijei!(y�yi):��35 :24X�� p��(x; �) �a(x; �)ei!�(x;�) � ���ei!(x�x�):��35������(47)Then, we remark that if the set S��ij = Supp(p�� 
 pij) satis�esS��ij \ (�� � � ) = ;;(48)then, the terms coming from u and v in this microlocal set are rapidly decreasing andthus, we can choose the corresponding coe�cients �ij and ��� to be null in this case.Now, we have theProposition 3.7.E � C1 Xij; ��S��ij \ �� � � 6= ; Z jpij(y; �)(a(y; �) � �ij)j :jp��(x; �)(b(x; �) � ���)j dxdyd�d�(49)where C1 is a constant which depends only on the dimension of the manifolds X and Y .Proof :Indeed, we use the same trick as in lemma 3.3, and the Cauchy-Schwartz theorem (since,9



thanks to ellipticity and eikonal equation, variables � and � vary in a bounded domain)to obtain thatE � C1XZ ���pij(y; �)(a(y; �)ei! (y;�) � �ijei!(y�yj):�)��� :���p��(x; �)(b(x; �)e�i!�(x;�) � ���e�i!(x�x�):�)��� dxdyd�d�:(50)Now, we develop the phases around x� and yi. We have, in the microlocal supports, (y; �) = Cte+ �:(y � yi) +O(!�1);(51) �(x; �) = Cte+ �:(x � x�) +O(!�1):(52)So the O(!�1) terms are not oscillatory in the spread of the microlocal supports and arejoined to the symbols. Then we are left with oscillatory terms which we can factorize asei�e�i!(x�x�):�ei!(y�yi):�(53)and thus transformed to 1 by taking the modulus. 2At last, we can enounce the �nal theorem of this part.Theorem 3.8. For u and v satisfyingu(y) = Z a(y; �)ei! (y;�)d�(54) v(x) = Z b(x; �)ei!�(x;�)d�(55)and the eikonal equation (37) if the mesh steps on T ?X, T ?Y satisfyhX = 1CX!1=2(56) hY = 1CY !1=2(57)Then, the error is bounded in the following way.E � O( 1CXCY )jjujjL2(Y )jjvjjL2 (X):(58)Proof :As for pseudo-di�erential operators, we have just to choose the coe�cients � as the meanvalues of v in the support of p�� and of u in the support of pij to obtain the result. 2We can notice that this result is just the same as the result for pseudo-di�erential oper-ators when we replace the Fourier integral operator by the former class.10



4. Approximation. In the previous part we presented the way we discretize func-tions satisfying the pseudo-di�erential problem (4-5) or the Fourier integral one (6-7).Now, we are going to explain how we calculate Pu in the �rst case or < Pu; v > in thesecond case. We begin with the classical variational technique for �nite element whichis :Suppose uh =X�i0j0qi0j0, then for each qij we have to computeX�i0j0 < Pqi0j0; qij > :(59)which leads to the linear algebra computation P� where P is the matrix de�ned byPij;i0j0 =< Pqi0j0; qij >(60)and � is the vector formed by the coe�cients �i0j0. For Fourier integral operators, wewill compute X < Pqij; q�� > �ij(61)leading to the linear algebra computation P� where P is the matrix de�ned byP��;ij =< Pqij; q�� >(62)and � is the vector formed by the coe�cients �ij . The complexity of the computation isat least O(!2n�1) for the computation of the matrix. We will present in the followingsections a way to approximate these matrices which will decrease the complexity with acontrolled error.4.1. Pseudo-di�erential operators. We begin by studying the case of pseudo-di�erential operators. We will compute and evaluate the coe�cientsaij;i0j0 = Z p(x; �)ei(x�y):�pij(x; �)pi0j0(y; �)e�i!(x�xi):�ei!(y�xi0 ):�dxdyd�d�d�(63)which corresponds to the interaction between basis functions and which form the ma-trix approximating the pseudo-di�erential operator in our space of approximation. Weenounce the following theorem which we will prove in the sequel.Theorem 4.1. In the evaluation of the coe�cients aij;i0j0 of formula (63), we distinguishthree cases :(i) If i 6= i0, then the coe�cient aij;i0j0 is rapidly decreasing when ! goes to in�nity.(ii) Else, if d(Supp(pij); Supp(pi0j0)) = O(!�1=2), thenaij;i0j0 = O( 1!3n=2�1 ):(64)(iii) Else, aij;i0j0 = O( 1!2n�1=2 ):(65) 11



Proof :We begin with the change of variables8><>: !~� = �;~x = p!(x� xi);~y = p!(y � xi0):(66)Thus,aij;i0j0 = Z p(x; !~�)ei!(xi�xi0 ):~�+ip!(~x�~y)~�+ip!(�~x:�+~y:�)~pij(~x; �)~pi0j0(~y; �)d~xd~yd�d�d~�(67)For point (i), denoting by L the operatorL = �i(xi � xi0):r~�jxi � x0ij2 ;(68)we can integrate by part with respect to L an in�nite number of times since the operatorL applied to the oscillatory part of the integrand is equivalent to ! times identity. Thus,aij;i0j0 is decreasing faster than any power of 1! when ! ! 1. In the other cases, usingthe fact that the phase is stationary in the variables ~� and ~x for ~x = ~y and ~� = ��, wehave that aij;i0j0 � � 1!1=2�n Z p(x; !~�)eip!~y:(���)~pij(~y; �)~pi0j0(~y; �)d~yd�d�(69)In case (ii), the phasep!~y:(���) is equivalent to 1, and so the integrand is not oscillatory.Thus, aij;i0j0 = O � 1!n=2 :!: 1!n�(70)since p(x; !�) = O(!) because the symbol of the operator is of order 1, and the volumeof integration in ~y; �; � is proportional to � 1!1=2�2n.In case (iii), the phase of the right hand side of expression (69) can be considered asoscillatory in ~y. Thus, de�ning Ly byLy = i(� � �):r~yj� � �j2 ;(71)we have that Ly applied to eip!~y:(���) is p! times identity. So, each time we integrate bypart with respect to Ly we gain a factor !�1=2. For counting the number of times we canintegrate by part, we make the following remark : since the functions pij are P1, we canintegrate by part once without creating boundary terms. Then, for each new integration,we create one more boundary term of dimension one less than the former term. Thus,12



we can integrate n+ 1 times, leading to a factor of � 1!1=2�n+1. We are �nally left withintegrals the variables �; � other a volume of O � 1!1=2�2n. It leads toaij;i0j0 = O � 1!n=2 :!: 1!(n+1)=2 1!n� :(72)This ends the proof of the theorem. 2During the previous computation, we made the assumption that deriving the symbol in ~y,would not involve any perturbation in the evaluation of the magnitude of the coe�cient.Let us check when this is true. For that let us recall that if the symbol p belongs to theclass S1�;�, then j@�x p(x; �)j � Cj�j1+��:(73)Thus, j@�~y p(xi + !�1=2~y; !�)j � C 1!�=2!1+�� = C!!(��1=2)�:(74)Now, each time we integrate by part in ~y, we create a boundary term with no derivationof the symbol and a volumic term with derivatingp(x; �)~pij(~y; �)~pi0j0(~y; �):(75)In the second case, either we derivate basis functions, leading to a non-continuous in-tegrand, or we derivate the symbol without modifying the regularity of the integrand.In that case, we gain a factor !�1=2, with the integration by part, and a factor !��1=2with the derivation of the symbol. Thus, in order not to alter the result of point (iii) ofprevious theorem, we just have to impose that the combination of the two factors leadsto something not increasing with the frequency. This is reached for � � 1.Let us comment the di�erent cases of theorem 4.1. Case (i) just says that a pseudo-di�erential operator is local. Cases (ii) and (iii) mean that such an operator is microlocal,that is to say that the value of Pu in a point of the phase space depends only on thevalue of u in the neighborhood of this point.Now, we are in position to give an e�cient way to approximate the computation of thematrix A = (aij;i0j0) which discretizes the operator.Theorem 4.2. If A is the matrix recalled above and ~A is the submatrix of A built withthe coe�cients which correspond to case (ii) of theorem 4.1, setting the others to 0, wethen have : jjAjj = O(!1�3n=2);(76) jjA� ~Ajj = O(!�3n=2);(77) 13



and thus, the relative error satis�esjjA � ~AjjjjAjj = (!�1):(78)Proof :Indeed, we take for instance, jjAjj = maxij Xi0j0 jaij;i0j0j(79)as an algebra norm. It is important to have an algebra norm, if we want to be able todeduce from the approximation of A something about the approximation of its inverseA�1.In each line of the matrix, there are O(1) coe�cients corresponding to case (ii) andO(!(n�1)=2) coe�cients corresponding to case (iii). Thus,jjAjj = O(1:!1�3n=2)(80)and jjA � ~Ajj = O(!(n�1)=2:!1=2�2n):(81)This completes the proof of the theorem. 2We �nally have the numerically interestingTheorem 4.3. The algorithmic and storage complexity of the computation of ~A isO(!n�1=2).Proof :Indeed, since we only retain O(1) coe�cients by line in matrix ~A, we have the resultfor the storage complexity. For the computations, we have to recall that we keep thecoe�cient in the matrix only when the phase is stationary. Thus, we can numericallyintegrate with a �nite number of Gauss integration points, this number not varying withthe frequency. Hence the computation of a coe�cient costs O(1) operations which endsthe proof of the theorem. 2So, we see that the method proposed here to approximate pseudo-di�erential operatorsfor propagation problems gives �rst a controlled error, which decreases when the fre-quency goes to in�nity and second a gain in storage and computation complexity of atleast O(!n+1=2).4.2. Fourier-integral operators. Now, we go into the Fourier integral operatorcase. We want to compute the matrix A = (a��;ij) wherea��;ij = Z p(x; y; �)ei�(x;y;�)pij(y; �)p��e�i!(x�x�):�ei!(y�yi):�dxdyd�d�d�:(82) 14



We will have the same kind of theorem as in the case of pseudo-di�erential operators.Theorem 4.4. We denote by N the dimension of the space where � is, and by n thedimensions of X and Y .(i) If (x�; yj) is not the projection of a point of the lagrangian manifold of the operator��, the coe�cient a��;ij is rapidly decreasing.(ii) Else, if d(Supp(p�� 
 pij); ��)) = O(!�1=2), thena��;ij = O � 1!N+n=2�1� :(83)(iii) Else, a��;ij = O � 1!N+n�1=2� :(84)We see that, applying this theorem to the pseudo-di�erential case would give the samekind of results as theorem 4.1 since is this case we would take �� = diag(T ?X � T ?X).Proof :As previously, we proceed to the following change of variables :8><>: !~� = �;~x = p!(x� xi);~y = p!(y � xi0):(85)This leads to a factor !n�N in front of the integral. Thus,a��;ij = !n�N Z ~p(~x; ~y; !~�)ei! ~�(~x;~y;~�)ei!1=2(�~x:�+~y:�)~p��(~x; �)~pij(~y; �)d~xd~yd�d�d~�;(86)where the amplitude ~p satis�es~p(~x; ~y; !~�) = p(x� + !�1=2~x; yi + !�1=2~y; !�)(87)and the phase ~� is given by,!�(~x; ~y; ~�) = �(x� + !�1=2~x; yi + !�1=2~y; !�)(88) = !�(x�; yi; ~�) + !1=2(rx�(x�; yi; ~�)~x+ry�(x�; yi; ~�)~y) +O(1):(89)Thus, as before, if r~��(x�; yi; ~�) cannot be null, we can integrate by part an in�nitenumber of times with respect to ~� and that concludes the proof of point (i) of thetheorem. In the other cases, we perform the change of variables from the manifold�� to ��, denoting by �x; �y the new variable. The phase is stationary in �x; ~x for� = rx�(x�; yi; ~�) = �x and rx��~x+ry��~y = 0. So, we have thata��;ij � !n�N 1!n=2 Z ~p(~x; ~y; !~�)ei!1=2(�y+�)~y ~p��(~x; �)~pij(~y; �)d~yd�d�(90) 15



In case (ii), the phase of the integrand isO(1) and so we just to integrate a non oscillatoryterm in a volume of O(!�n). Thus, in this case,a��;ij = O( 1!N�n=2! 1!n ) = O( 1!N+n=2�1)(91)since we have choosen the amplitude of the operator to be homogeneous of degree 1.In case (iii), the phase is oscillatory in ~y. So, we can perform integrations by parts withrespect to this variable. As before, each integration gives a factor of !�1=2 and we canintegrate n+ 1 times, giving a global factor of 1!(n+1)=2 . Hence, in case (iii),a��;ij = O( 1!N�n=2 1!(n+1)=2! 1!n ) = O( 1!N+n�1=2):(92)This concludes to proof of the theorem. 2Now, as for the pseudo-di�erential case, we can exhibit a way of approximating Fourierintegral operators in the case of propagation problems at high frequency.Theorem 4.5. If A is the complete matrix discretizing the operator in the basis choosedfor it, and ~A is the submatrix built with the coe�cients of A which correspond to case(ii) of theorem 4.4, we have that jjAjj = O(!1�n=2�N);(93) jjA � ~Ajj = O(!�n=2�N);(94)and thus, the relative error satis�esjjA � ~AjjjjAjj = (!�1):(95)Proof :Indeed, since there are only O(1) coe�cients by line in matrix A corresponding to case(ii) of theorem 4.4 and O(!(n�1)=2) corresponding to case (iii) of the same theorem, wehave that jjAjj = O(1:!1�n=2�N)(96)and jjA� ~Ajj = O(!(n�1)=2!1=2�n�N):(97)This allows to conclude the proof. 2Now, for the complexity, we have the 16



Theorem 4.6. The algorithmic and storage complexity of the computation of ~A isO(!n�1=2).Proof :Indeed, as in the case of pseudo-di�erential operators, since we only keep O(1) coe�cientsby line in ~A , we have the result for the storage complexity, and since the coe�cientscorresponding to case (ii) of theorem 4.4 have non oscillatory integrands, they only needO(1) operations each to be computed with a given accuracy. 25. Conclusion. In this paper, we have presented a technique of discrete microlo-calization which is well-suited to di�raction problems using pseudo-di�erential or Fourierintegral operators. Let us summarize our results for Fourier integral operators since itappeared in all the paper that the pseudo-di�erential operators could be thought of as asubcase of them.� First, we have exhibited a space of microlocal approximation built with functionswhose wave-front was in the neighborhood of the wave-front of the operator andwe projected these functions on the two factors T ?X and T ?Y creating the basisof the p�� and the one of the pij.� Second, we have shown that the coe�cients of interaction where important onlywhen Supp(p��
pij) was in the neighborhood of the wave-front of the operator.� Third, we have got that the relative error made on the matrix when setting to0 all the interactions which where not important was O( 1! ).� Fourth, the complexity of the computation and storage of the approximatedmatrix is O(!n�1=2) which has to be compared with the O(!2n) for a classicalmethod.Finally, we make a few comments and give some perspectives. As we did in [5], it is easyto take caustics and grazing rays into account, because, using Fourier-Airy operators westill obtain an eikonal equation and the basis functions presented in this paper give acorrect approximation for that kind of waves. In fact, the point is that the characteristicsize of our discretization is p� and caustics or degenerated waves di�er from a genericwave only on a length greater than �1=3 where � is the wavelength. So our discretizationdoes not descriminate between generic and degenerated waves.This method can also take into account singular geometries. For instance in the caseof edges, instead of asking the gradient of the phase to be null, we would ask for itsprojection on the tangent space of the edge to be null, and we would be able to carry onwith our technique.If one wants a greater quality in the approximation of the operator, one has to usebasis functions which are more regular than just P1. Indeed, the magnitude of what isneglected is related to the number of times that we can integrate by part in the case (iii)of theorems 4.1 and 4.4. This method could be extended to the time domain propagation.In that case, we would have to �x a maximum pulsation !max related to the time step.17
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