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Abstract

In this paper, we present a general method for approximating oscillatory integrals arising
in some scattering problems. In particular, a microlocal basis is used to approximate
wave functions, by discretizing their wave-front. Then, we exhibit a result concerning
the approximation of the scattering operator, which allows to retain only interactions
between coefficients for which the product of the supports is near the wave-front of the
kernel of the operator. Finally, we give an estimate of the algorithmic complexity of the
method presented in the paper.

Approximation numérique de problemes de
diffraction incluant des opérateurs Fourier-Intégraux.

Résumé

Dans ce papier, nous présentons une méthode générale d’approximation numérique d’in-
tégrales oscillantes intervenant dans divers problémes de diffraction. En particulier,
nous montrons une base microlocale de fonctions qui permet d’approcher les ondes que
nous cherchons, en s’adaptant & leur front d’onde. Puis, nous exhibons un résultat
d’approximation de I'opérateur, qui permet de ne retenir que les interactions entre des co-
efficients dont le produit des supports est proche du front d’onde du noyau de I'opérateur.
Enfin nous donnons une estimation de la complexité algorithmique de la méthode ex-
hibée.



1. Introduction. High frequency scattering problems are generally hard to simu-

late for many reasons. In this paper, we will focus on finite element methods in frequency
domain. One of these reasons is that the linear systems which are involved are very
large. Indeed, the mesh step has to be a portion of the wave length A of the simulated
phenomenon. This means O(A ") degrees of freedom where n is the dimension of the
ambient space. Furthermore, in the case of pseudo-differential or Fourier-integral opera-
tors, the interaction is not local and each basis function interacts with each other. Thus,
the number of coefficients to be computed is O(A™2"). It is also the case when one uses
integral equations for acoustics of electromagnetism.
First, we are going to present a few situations where pseudo-differential or Fourier-
integral operators occur. The first case is the wave equation one, when the sound speed
depends both on the geometric point (the material is not homogeneous) and on the
direction of propagation of the wave (the material is not isotropic). For instance, this
occurs in composite material. The equation then writes :

(1) 0Fut [ ntale, e = .
In frequency domain it becomes :
) - [t — ale e e = £

where we have kept the same notations for the functions and their Fourier transforms
with respect to time, and w is the pulsation at which we observe the scattering. The
second case comes from the same idea, but we suppose that the medium is dispersive.
Hence the equation becomes :

Q@ - [ — ol e = 1

These two situations are the ones we are going to investigate in this paper. The first case
corresponds to pseudo-differential operators and the second to Fourier integral operators.
We could also add the case of integral equations coming from harmonic acoustics or
electromagnetism, since they also involve oscillating term or the Lipmann-Schwinger
equation, especially when the term modelling the material oscillates with a characteristic
step which is similar to the wave length.

At least in the case of integral equations, many works have already been done. V. Rokhlin
presented in [9] a method based on the decomposition into Hankel and Bessel functions
and on the use of addition formulae for the 2-D case. In [10] he presented the extension
of the former method to the 3-D case, but in fact it happens that this paper has an error
which makes the method as costly as the classical finite element discretization and thus
of no use. In [3] F.X. Canning presented for the 2-D case, a method based on the discrete
Fourier transform of packets of basis functions, and thus of packets of matrix coefficients.
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It happened in this case that lots of transformed coeflicients where small. For the 3-D
case, it seems not so easy to implement the same method since, it was based on FFT
which exist for segments but not for general 2D patches. But at least this method saves
memory if not CPU time. In [6], the first author of this paper presented a method which
is based on a discrete microlocalization of the functions which was leading to sparse
matrices. We also mention the paper of B. Bradie, R. Coifman and A. Grossmann (see
[2]) which deals with the oscillatory terms of acoustic integral equations. In this paper,
they use local cosine transforms following basically the same idea as F.X. Canning. Our
aim is here to extend the method proposed in [6] and [12] to the case of more general
oscillatory integrals such as the ones presented above.

In section 2 we precisely set the problems we want to solve. In section 3, we present a
discretization of the space of solutions we are looking for, thanks to an eikonal equation.
In section 4, we evaluate the interaction coeflicients between the basis functions, and
show that most of them can be negected. In the last section, we evaluate the algorithmic
and storage complexity.

2. Setting of the problems. Following what has been presented in the introduc-
tion, we will address two problems. The first one, which involves pseudo-differential
operators is :

Let X be a regular bounded open set of IR". Given an elliptic pseudo-differential operator
P of order one, we want to compute

(4) )= [ bl &)eae)de

(5) i0u — Pu = f

and f is oscillating at a given pulsation w. Here, we consider first order problems instead
of second order ones in the introduction for the sake of clearness, but it is well-known
that one can always transform a higher order equation into a system of order one (see
for instance [11]). The ellipticity of the operator which is the positivity of the principal
symbol precisely means that the speed of propagation of the signal is always strictly
positive.

The second problem involves Fourier-integral operators. Let X and Y be regular bounded
open sets of IR". Given such an operator P of order one, we want to compute

(6) 2) = [ pla,y, ¥ uly)dedy
when
(7) i0, [ e uly)dydé - Pu= f

and f is oscillating at a given pulsation w. Here, p is the amplitude of the operator
and ¢ its phase. We impose ¢ and p to be 1-homogeneous in €. This corresponds to a
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material which has a dispersion varying linearly with the frequency. It is often a correct
assumption when a signal has its spectrum localized in frequency. We also impose the
ellipticity of the operator which has the same meaning as in the previous case. Of course,
the phase ¢ satisfies to usual property of non-degeneracy (see [7]) which is :

When 0z = 0, the differential forms dO¢&;¢ are lineary independent, where the &; are the
coordinates of &.

3. Discretization. In this section, we will see that, using an eikonal equation
coming from the fact that we observe a signal oscillation at pulsation w, we are able
to present a discretization of the functions we are looking for. The first point is to use
a variational principle as in all finite element methods. Then, thanks to the eikonal
equation and the ellipticity, we will obtain a finite manifold to discretize. We begin with
the case of pseudo-differential operators which is the simpler.

3.1. Pseudo-differential operators. In the case of problem (4-5), we first recall
that u satisfies

(8) u(@) = [ ae, ) g

for given amplitude a and phase 9. Hence, it is easy to check (see for instance [11]) by
expanding (5) in decreasing powers of the pulsation w, that, on the support of a(z,¢),
for (z,¢) € T*X satisfying V¢ =0,

(9) 1= pi(z, Vai(z,€))

where p; is the principal symbol of the pseudo-differential operator P. This last equation
is the eikonal equation. We denote by A, the lagrangian manifold associated with 1 :

(10) Ay =A{(z, Voi(z,§)) € T"X, Veip(w,£) = 0}
and we define
(11) T'X, = {(2,6) € T"X, 0 = pa(s, €)} .

To represent the function u, we want to discretize the part of its wavefront which is in
the neighborhood of 7% X, and combine local oscillatory terms like €. In order to do
that, we first prove the

THEOREM 3.1. the manifold T* X, s a bounded manifold if X 1s.

Proof :

Indeed, since the pseudo-differential operator P is elliptic, its principal symbol p; is
coercive which means that there exists a strictly positive constant a such that

(12) P12, &) > alé].
Thus, if (z,¢) is in T* X3, we have

(13) 1> al¢]
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and so

1
(14) T*X; C X x B(O,—)

a
where B(O,r) stands for the ball centered at origin with radius 7. This ends the proof.
O

The consequence of this theorem is that we are able to discretize T™X; with a finite
number of degrees of freedom. More precisely, we will discretize a tubular neighborhood
N of it in T*X with a thickness of (’)(wil/z). Now, we precise the way to discretize this
manifold.
o We discretize X with a mesh step hxy = O(w™/?), creating O(w?) points ;.
o We discretize each fiber with a mesh step hr = O(w™/?), creating O(w"z)
directions ¢;.
o We mesh T* X with the relevant couples (z;, &;), thus having O(w"~1/2) degrees
of freedom.

The next point is to present the basis of functions we will use to approximate the functions
satisfying (8). First, we use the P1-Lagrange (see for instance [4]) basis functions on the
mesh presented above. We denote them by p;;(z,£) where p;;(z,£) = 1 when (z,§) =
(zi,€;) and p;;(z,€) = 0 on the other points of the mesh. Then our basis functions will

be :
(15) Qij($) — /pi],(%g)eiw(xffgi),gdg

Intuitively, integrating a Fourier integral distribution which satisfies the eikonal equation
against ¢;; means microlocalizing the distribution around (z;, &;).

Now, we are going to prove that the basis exhibited above is sufficient to represent the
asymptotic behavior of the functions we are looking for. We want to find coeflicients o
which minimize

2

(16) E= / dz

u(z) — Z a;j¢i; ()

The first point is the following. We make a change of variables such that the manifold

(17) E’l/J = {($7€)7v€¢($7£) = 0}

is mapped to the manifold A, which is the wavefront of u. We call z,n the new variables,
and for (z,¢) in X,

(18) n= V. (z,§).
Thus, if we denote, ¥(z,n) = 1(z, ), we have the implication
(19) [V (e, m) = 0] = [n = V.ib(z,n)]
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In the high frequency limit, due to the eikonal equation, we just have to take into account
the (z,n) which are in the neighborhood of the wavefront of « which is included into the
manifold A/. Since the function

(20) x(z,n) = pij(z,n)
ij
is a cut-off function around N, in the high frequency limit, we have that

2
dz.

i

(21) B~ / ‘/ 3" pij(zym)az, n)e®™ = Ddn — 37 ayipii(z, n)e )1 dy
’ 12

The symbol @ comes from the symbol a after the change of variables, it includes the
jacobian of the transformation. Then, we have
PROPOSITION 3.2.

2

(22) E < / dndzx

Zpij(wa n) (a(fca ‘U)eikq’g(%n) - Oév;jeik(w*fc")"")
i

since, thanks to eikonal equation 7 is in a bounded domain.
Next, we show the following lemma.
LEMMA 3.3. Let G(z,n) be a function, then,

(23) 1> piGl < 20+ 1) |piGP?
1 )

where n is the dimension of the manifold X .

Proof :

Indeed, on each simplex of the mesh, we have exactly 2n + 1 functions p;; which are not
null. Thus, a simple discrete version of Cauchy-Schwartz theorem leads to the result. O

Before using this lemma, we make the following remark. Since if
(24) Ay 0 Supp(pij) = 0,

the integral giving « on this set is fastly decreasing, then we can take a;; = 0 for such a
2-index.
On the other case, the phase in u is stationary and thus, in Supp(p;;),

(25) d(z,n) = Cte +n.(z — z;) + O(w™).

Indeed, since the phase is stationary, we can develop it around &, 7. The 7 derivative is
null, the  derivative is 1 and the higher order terms are O(w™'), since the mesh step is
O(w™?). Thus, we can prove



PROPOSITION 3.4.

(26) B<@ntl) X [ gpe,n) - eyl dady

(i), ANSupp(pi;)£0 S PPPis)
The symbol b comes from a by combination of the constant and (’)(w_l) terms in equation
(25), since, multiplied by w, these two terms cannot be considered as oscillatory ones.
Proof -
Indeed, since we have thrown out the supports which do not intersect the wave front of
u, we are left, for the v part of the error F, with

(27) bz, n)e™ @),
Factorizing the oscillatory part, which is of module 1, and using lemma 3.3, we have the

result since the functions p;; are bounded by 1. O

Now we can enounce the final result of this part.
THEOREM 3.5. For a function u satisfying (8) and eikonal equation (9), if the mesh
step h satisfies

1

(28) = e
then, denoting by w), the projection of u on the basis of the functions g;j(x), we have
(29) lu = wnllz, = O(1/C)l|ul|z, -
The constant C' represents the number of degrees of freedom by wave length in the physical
space X.
Proof :
We are going to choose the coefficient a;; such to minimize
(30) / b(, ) — ;| dadn

supp(pij)

We proceed to the following change of variables :

(31) y=z.yw, (=1

Thus, the new mesh step is 1/C and the jacobian is 1/w. If we choose a;; to be the mean
value of b on the support of integration, we have that,

2 [ ) — ey dedy =00/ [ ) dedn

S supp(pij)

since b(y, ¢) = b(z,n) as a gradient proportional to b. O

The meaning of this theorem is that, as classically done when approximating oscillatory
functions, for a given requested accuracy of approximation, we only need a bounded
number of degrees of freedom by wave length in the space manifold X. By this, we mean
that the number of degrees of freedom is a constant times w”, when n is the dimension

of X.



3.2. Fourier-integral operators. For Fourier-integral operators, as in (6-7), the
situation is more complex than in previous section since these operators transform the
wavefront of the functions to which they are applied. Thus we are in a “Petrov-Galerkin”
situation where the searched functions are of one type and the test functions of another
one. More precisely, as in previous section, we can take the function u of problem (6-7),
as a locally finite sum of functions like

(33) uw) = [ alz, €)e" e,

Now, the problem is to compute Pu where P is the Fourier-integral operator. We will
use a variational technique. It means that we want to compute < Pu,v > where <, >
stands for the hermitian product, for all v in a class of functions which is similar to w.
Namely, we want to compute < Pu,v >, taking into account the equation

(34) i3t</ei¢u,v>—<Pu,v>=<f,v>
at frequency w for all u satisfying

(35) u(@) = [ a(z, e de

and all v satisfying

(36) oe) = [[ofa,me

where I, is the Fourier integral operator of amplitude 1 and phase ¢. The next point is
to write something equivalent to the eikonal equation. In fact, the equation will involve
both v and v together. It writes :

(37) w = pu(,y, Vob(z,n), —Vyi(y,§))
for
v,0(z,7) =0
(38) { Ve(y,§) =0
and
(39) (=,y, Val(z, ), =Vy1h(y, €)) € Ay.

where p; is the principal symbol of the operator as defined in [8]. Let us recall that p;
is defined on the neighborhood of the wavefront of the operator which is a lagrangian
manifold of 7*(X x Y) which we often replace by T*X x T*Y.

As before, we define

(40) (A¢)a = {(«'L’ayﬂ% 5) € A‘f”pl(w’y’n’ 5) = Oé} :
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We have the theorem :

THEOREM 3.6. the manifold (Ay)1 ts a bounded manifold if X andY are.

Proof :

Indeed, thanks to the assumed ellipticity of the operator, the principal symbol is coercive.
Thus, as in previous section,

(41) [(z,y,m,€) € (Ay)1] = { €7+ |nl* < é}]

where a, is the constant of coercivity of the principal symbol of the operator. So,

(42) (As)i © X x B(0, ) x Y x B(0, ).

o Q.

This ends the proof of the theorem. O

As for pseudo-differential operators, this theorem implies that we can use a finite number

of degrees of freedom to discretize our functions u and v.
Precisely, let N be a tubular neighborhood of the manifold (A,); in 7*X x T*Y of
thickness w™1/2.
o We discretize the basis of A considered as a fiber bundle over X x Y with a
mesh step hxy = O(w™1/?), creating O(w?) couples (zq, ¥;).
o We discretize the fiber above each (z,, ;) with a mesh step hp = O(w /?)
by couples of directions (7,&;), creating O(w*z") directions 73 and O(w*T)
directions §;.
e We mesh the subsets of 7*X and 7™Y with the relevant couples (z,,73) and
(vi, &), thus having O(w"~/2) degrees of freedom in 7* X and O(w" /%) degrees
of freedom in T*Y.
Now, we define the functions p,g(z,n) as in the previous section for 7*X and p;; in the

same manner. Finally we have,

@up(@) = [ pagla,m)e "1

(43) 4
qii(y) = / pij(y, £ v4de

The basis of functions g,s will be used to approximate the functions v, and the basis
of g;; will be used to approximate the functions w. Since the functions u and v are
not in the same class the result of approximation cannot be of the same kind as for
pseudo-differential operators. For Fourier integral operators, we will try to estimate the
quantity

(44) E =< Iy(u—up),v—uv >|

where u;, and v, are the projections of v and v on the bases ¢;; and q,3 and I is the
Fourier integral operator of amplitude 1 and phase ¢ which is the phase of the operator
P. We make two comments about this operator.
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e First, in the case of pseudo-differential operators, the phase ¢ was (z — y).£.
Thus the corresponding error £ would have just been the modulus of the inner
product < u — up, v — v >.

e Second, I, just transports the symbol of u from the wavefront of u to the wave-
front of v, thus the error £ is something like the error of approximation of the
symbols.

Now, we will use the same machinery as for the pseudo-differential operators. We want
to find coefficients ¢;; and 6,4 which minimize

af

(45) E= ‘/ g re) {U(Z/) - Z 51‘,1‘(1@7‘(3/)} : {”(1’) - Zéaﬁ%ﬂ(m)} dzdyd¢

As previously, we make a change of variables which maps ¥4 to Ay, ¥, to Ay and Yy
to Ay. For the sake of simplicity, we keep the same notations for the new amplitudes,
phases and variables. In the high frequency limit, we can limit ourselves to take into
account only the variables z,y,n, & which are in the neighborhood of the wavefront of
the operator. Since the function

(46) X(wvy7 m, g) = pr(y)g)pab’(xan)

is a cut-off around this wavefront, in the high frequency limit, we have that
|/ ip(x,y,C) [Zpu y, §) (a(y, g)eiw/)(ysf) _ 5ijeiw(y—'y1:)-5)] )

(47)
[Z () (ol et - me““”‘“”“)'")] ‘
af

Then, we remark that if the set S,s; = Supp(pas ® pij) satisfies
(48) Sapij N (Mg X Ay) =0,

then, the terms coming from « and v in this microlocal set are rapidly decreasing and
thus, we can choose the corresponding coefficients é,; and 6,3 to be null in this case.
Now, we have the

PROPOSITION 3.7.

E< ¢ > [ 1psv.€)(alw,€) = 8,1
(49) ij, a8
Saﬁij N Ag X qu/, 75 @
|pf¥/3(wa 7’)(b($7 77) - 6(1[3)| di'?dydﬁdf

where Cy 1s a constant which depends only on the dimension of the manifolds X andY .

Proof :

Indeed, we use the same trick as in lemma 3.3, and the Cauchy-Schwartz theorem (since,
9



thanks to ellipticity and eikonal equation, variables ¢ and 7 vary in a bounded domain)
to obtain that

(50) b= “ Z/

ptj(y7 g)(a’(:% é.)eiwa)(yf) - 6ij€i“)(y_yj)-€)‘ .
Pap(@, 1)(b(m, 7)) — 5,56 =)0) | dpdydndé.

Now, we develop the phases around z, and y;. We have, in the microlocal supports,

(51) Y(y,6) = Cte+&(y— ) +O0(w™),
(52) 0(z,n) = Cte+n.(z—z,)+O0wh).

So the O(w_l) terms are not oscillatory in the spread of the microlocal supports and are
joined to the symbols. Then we are left with oscillatory terms which we can factorize as

(53) el o~ w(x—wa)m giw(y—y9:)-£

and thus transformed to 1 by taking the modulus. O

At last, we can enounce the final theorem of this part.
THEOREM 3.8. For u and v satisfying

(54) u(y) = ./a(y’g)eiw%/)(%‘f)dg
(55) v(z) = /b(wm)eiwﬁ(wmdn

and the eikonal equation (37) if the mesh steps on T*X, T*Y satisfy

1
(56) hx = Croll?

1
(57) e I

Then, the error is bounded in the following way.

1

(58) E < O(m”|u||L2(Y)||v||L2(X)'

Proof :
As for pseudo-differential operators, we have just to choose the coefficients ¢ as the mean
values of v in the support of p,s and of v in the support of p;; to obtain the result. O

We can notice that this result is just the same as the result for pseudo-differential oper-
ators when we replace the Fourier integral operator by the former class.
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4. Approximation. In the previous part we presented the way we discretize func-
tions satisfying the pseudo-differential problem (4-5) or the Fourier integral one (6-7).
Now, we are going to explain how we calculate Pu in the first case or < Pu,v > in the
second case. We begin with the classical variational technique for finite element which
is :

Suppose uj, = Z a;1;1qyjr, then for each ¢;; we have to compute

(59) Z Qjrjr < quvj:, qij > .
which leads to the linear algebra computation Pa where P is the matrix defined by

and « is the vector formed by the coefficients o .
will compute

(61) > < Pgij, qap > 6

leading to the linear algebra computation Pé where P is the matrix defined by

For Fourier integral operators, we

(62) Popij =< Pgij, Gap >

and 6 is the vector formed by the coefficients ¢;;. The complexity of the computation is
at least O(w**™1) for the computation of the matrix. We will present in the following
sections a way to approximate these matrices which will decrease the complexity with a
controlled error.

4.1. Pseudo-differential operators. We begin by studying the case of pseudo-
differential operators. We will compute and evaluate the coeflicients

(63)  asiay = [ b, Q) P ps (o, mpo(y, €)e = 1050 ddydndgdC

which corresponds to the interaction between basis functions and which form the ma-
trix approximating the pseudo-differential operator in our space of approximation. We
enounce the following theorem which we will prove in the sequel.
THEOREM 4.1. In the evaluation of the coefficients a;; . of formula (63), we distinguish
three cases :
(1) If 1 # 7', then the coefficient a;j 1 is Tapidly decreasing when w goes to infinity.
(i) Else, if d(Supp(pi;), Supp(pij1)) = O(w ?), then

1
(64) aijiry = O(—551)-
(iii) Else,
1
(65) ajij = Ol =)

11



Proof :
We begin with the change of variables

wl =,
(66) z = yw(z — z;),
g =vwly —z).
Thus,

(67)a; 0 = /p(l’,wg)eiwm*x”)'Gi\/a(iiﬂ)éﬂﬁ(‘*i'"w'@ﬁij(55,‘77)]57:']"(@, ¢)dzdgdndédl

For point (i), denoting by £ the operator

—i(z; — 2).V;

e
?

(68) L=

|z; —

we can integrate by part with respect to £ an infinite number of times since the operator
L applied to the oscillatory part of the integrand is equivalent to w times identity. Thus,

a;jqj 1s decreasing faster than any power of — when w — oco. In the other cases, using
’ w

the fact that the phase is stationary in the variables ¢ and Z for Z = § and ¢ = -7, We
have that

1 n TN R _ _ _
(69) Qijitjr ~ (W) / p(a, wQ)eV I iy (G, 1)Big (5, €)didndé

In case (ii), the phase y/w§.(§—n) is equivalent to 1, and so the integrand is not oscillatory.
Thus,

1 1

since p(z,wn) = O(w) because the symbol of the operator is of order 1, and the volume
2n
of integration in g, £, 7 is proportional to (M) .

In case (iii), the phase of the right hand side of expression (69) can be considered as
oscillatory in §. Thus, defining £, by

(71) »Cy — i(n_é.)'v?],
n—¢[?

we have that £, applied to V@I &) g y/w times identity. So, each time we integrate by

part with respect to £, we gain a factor w12

integrate by part, we make the following remark : since the functions p;; are P1, we can

integrate by part once without creating boundary terms. Then, for each new integration,

. For counting the number of times we can

we create one more boundary term of dimension one less than the former term. Thus,
12



1 n+1
we can integrate n + 1 times, leading to a factor of (W) . We are finally left with
w

2n
) . It leads to

integrals the variables £, n other a volume of O < e
e

1 1 1
(72) a,t'jﬂ'ljl = O (w’n/Q .w.w(n+1)/2 J) .
This ends the proof of the theorem. O

During the previous computation, we made the assumption that deriving the symbol in ,
would not involve any perturbation in the evaluation of the magnitude of the coefficient.
Let us check when this is true. For that let us recall that if the symbol p belongs to the
class 5175, then

p
(73) 9 p(, €)] < Clefe
Thus,
o, |
(74) 35 pla: + w2, wE)| < C— ™ = Cun0 1120

Now, each time we integrate by part in 7, we create a boundary term with no derivation
of the symbol and a volumic term with derivating

(75) p(z, O)pij (¥, m)pirj (7,).

In the second case, either we derivate basis functions, leading to a non-continuous in-
tegrand, or we derivate the symbol without modifying the regularity of the integrand.
In that case, we gain a factor w /2, with the integration by part, and a factor w?® 1/2
with the derivation of the symbol. Thus, in order not to alter the result of point (4i7) of
previous theorem, we just have to impose that the combination of the two factors leads
to something not increasing with the frequency. This is reached for § < 1.

Let us comment the different cases of theorem 4.1. Case (i) just says that a pseudo-
differential operator is local. Cases (ii) and (iii) mean that such an operator is microlocal,
that is to say that the value of Pu in a point of the phase space depends only on the
value of u in the neighborhood of this point.

Now, we are in position to give an efficient way to approximate the computation of the
matrix A = (a;;;;-) which discretizes the operator.

THEOREM 4.2. If A is the matrix recalled above and A is the submatriz of A bwilt with
the coefficients which correspond to case (ii) of theorem 4.1, setting the others to 0, we

then have :
(76) 1Al = O(w* /),
(77) 14— Al = O(w *7?),
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and thus, the relative error satisfies

[A-All
(78) . = W)
1Al
Proof :
Indeed, we take for instance,
(79) [[A]] = max > [asy|

,L‘/J'/

as an algebra norm. It is important to have an algebra norm, if we want to be able to
deduce from the approximation of A something about the approximation of its inverse
AL

In each line of the matrix, there are O(1) coefficients corresponding to case (ii) and
O(w™1/2) coefficients corresponding to case (iii). Thus,

(80) I1A]] = O(Lwt 3/2)
and
(81) 14 = A]| = (w172 y1/2-2m)

This completes the proof of the theorem. O

We finally have the numerically interesting

THEOREM 4.3. The algorithmic and storage complexity of the computation of A is
O(w”’_l/Q).

Proof :

Indeed, since we only retain O(1) coefficients by line in matrix A, we have the result
for the storage complexity. For the computations, we have to recall that we keep the
coefficient in the matrix only when the phase is stationary. Thus, we can numerically
integrate with a finite number of Gauss integration points, this number not varying with
the frequency. Hence the computation of a coefficient costs O(1) operations which ends
the proof of the theorem. O

So, we see that the method proposed here to approximate pseudo-differential operators
for propagation problems gives first a controlled error, which decreases when the fre-
quency goes to infinity and second a gain in storage and computation complexity of at

least O(w"t1/2),

4.2. Fourier-integral operators. Now, we go into the Fourier integral operator
case. We want to compute the matrix A = (aag,;) where

(82)  aupis = [ (@3, QI iy, page 7 10 dadyddnd.
14



We will have the same kind of theorem as in the case of pseudo-differential operators.
THEOREM 4.4. We denote by N the dimension of the space where { is, and by n the
dimensions of X and Y .
(1) If (x4, y,) is not the projection of a point of the lagrangian manifold of the operator
Ay, the coefficient a.p;j ts rapidly decreasing.
(i) Else, if d(Supp(pas @ pij), Ag)) = O(w Y?), then

1

(iii) Else,

1
(84) Aapij = O <W) :

We see that, applying this theorem to the pseudo-differential case would give the same
kind of results as theorem 4.1 since is this case we would take Ay = diag(T*X x T*X).
Proof

As previously, we proceed to the following change of variables :

€
I

— C’
= \/E(IL’ - $i)7
§=wly—zs).

This leads to a factor w™ " in front of the integral. Thus,

(85)

n— ~oo = TN iwd(5.9,0) w2 (—E+i.8) = (= ~ - ~ 7= pt
(86) Qapig = W N /p(l',y, WC)G g ,J~C)e ( Y g)paﬂ(xan)pzy(y7£)d$dyd£d77dC7

where the amplitude p satisfies

(87) (%, §,wl) = p(za + w22,y + w0 V2G,wl)

and the phase gz~5 is given by,

(88) wd(Z,9,() = é(za+ w Y2E g + wil/Qg,wC)
(89) = wd(a, i, 5) + wl/z(vm¢(mav Yi, Z)i’ + Vyd(za, Yi, E)g) + O(1).

Thus, as before, if ng)(wa,yi,g) cannot be null, we can integrate by part an infinite
number of times with respect to E and that concludes the proof of point (i) of the
theorem. In the other cases, we perform the change of variables from the manifold
Y4 to Ay, denoting by (,,(, the new variable. The phase is stationary in (,,  for
n = V.d(Ta, i, 5) = (, and VT + V007 = 0. So, we have that

n— 1 " T\ awl/2? 7~ ~ -/~ ~
(90) Qopij ~ W Nw,n/g / B(E, 5, wC)e™ " TIIE o3, )Py (3, €)didédn
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In case (ii), the phase of the integrand is O(1) and so we just to integrate a non oscillatory
term in a volume of O(w ™). Thus, in this case,

1 1 1
wN—n/ZwE) =0O( wN+n/2—1 )

(91) Gapij = O

since we have choosen the amplitude of the operator to be homogeneous of degree 1.
In case (iii), the phase is oscillatory in §. So, we can perform integrations by parts with

respect to this variable. As before, each integration gives a factor of w /2 and we can

integrate n + 1 times, giving a global factor of Hence, in case (iii),

CE=Ek
1 1 1 1
(92) Qapij = O(wN—n/Z u)(n+1)/2"‘jﬁ) = O(wN+1L—1/2)'

This concludes to proof of the theorem. O

Now, as for the pseudo-differential case, we can exhibit a way of approximating Fourier
integral operators in the case of propagation problems at high frequency.
THEOREM 4.5. If A is the complete matriz discretizing the operator in the basis choosed

for it, and A is the submatriz built with the coefficients of A which correspond to case
(it) of theorem 4./, we have that

(93) 14]] = O(w'™27%),

(94) |4 = A = O(w™/27Y),
and thus, the relative error satisfies

14— A 1
(95) o = (W),
1Al
Proof :
Indeed, since there are only O(1) coefficients by line in matrix A corresponding to case

(i) of theorem 4.4 and O(w™ V/2) corresponding to case (iii) of the same theorem, we
have that

(96) ||A|| — 0(1‘w17n/27N)
and
(97) 1A = A]| = O(um D2 12Ny

This allows to conclude the proof. O

Now, for the complexity, we have the
16



THEOREM 4.6. The algorithmic and storage complezity of the computation of A is
O(wn—l/2)'

Proof -

Indeed, as in the case of pseudo-differential operators, since we only keep O(1) coefficients
by line in A , we have the result for the storage complexity, and since the coefficients
corresponding to case (ii) of theorem 4.4 have non oscillatory integrands, they only need
O(1) operations each to be computed with a given accuracy. O

5. Conclusion. In this paper, we have presented a technique of discrete microlo-
calization which is well-suited to diffraction problems using pseudo-differential or Fourier
integral operators. Let us summarize our results for Fourier integral operators since it
appeared in all the paper that the pseudo-differential operators could be thought of as a
subcase of them.

e First, we have exhibited a space of microlocal approximation built with functions
whose wave-front was in the neighborhood of the wave-front of the operator and
we projected these functions on the two factors 7*X and T*Y creating the basis
of the p,s and the one of the p;;.

¢ Second, we have shown that the coefficients of interaction where important only
when Supp(pas ®pi;) was in the neighborhood of the wave-front of the operator.

e Third, we have got that the relative error made on the matrix when setting to

1
0 all the interactions which where not important was O(—).

e Fourth, the complexity of the computation and storage of the approximated
matrix is O(w" /%) which has to be compared with the O(w>")
method.

Finally, we make a few comments and give some perspectives. As we did in [5], it is easy
to take caustics and grazing rays into account, because, using Fourier- Airy operators we
still obtain an eikonal equation and the basis functions presented in this paper give a
correct approximation for that kind of waves. In fact, the point is that the characteristic
size of our discretization is v/A and caustics or degenerated waves differ from a generic
wave only on a length greater than A\'/3 where ) is the wavelength. So our discretization
does not descriminate between generic and degenerated waves.

This method can also take into account singular geometries. For instance in the case
of edges, instead of asking the gradient of the phase to be null, we would ask for its
projection on the tangent space of the edge to be null, and we would be able to carry on
with our technique.

If one wants a greater quality in the approximation of the operator, one has to use
basis functions which are more regular than just P1. Indeed, the magnitude of what is
neglected is related to the number of times that we can integrate by part in the case (iii)
of theorems 4.1 and 4.4. This method could be extended to the time domain propagation.
In that case, we would have to fix a maximum pulsation w,,,, related to the time step.

for a classical
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We would then have to mesh the manifold corresponding to the eikonal inequality :

(98)

|p1$7 y, 1, £| S Winaz

and then to adapt the techniques presented in this paper. We may also use an extension

of our method to compute solutions for non-linear wave equations, using paraproducts
defined by Bony (see [1]).
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