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Abstract

We present in this paper a stability study concerning finite volume schemes applied
to the Maxwell system. A stability condition is proved for the first-order upwind
scheme using a rectangular mesh. Stability comparisons between the Yee scheme and
the finite volume formulation are proposed. We also compare the stability domains
obtained when considering the Maxwell system and the convection equation.

ANALYSE DE STABILITE POUR LES
SCHEMAS VOLUMES FINIS
APPLIQUES AU SYSTEME DE MAXWELL
BIDIMENSIONNEL
SUR DES MAILLAGES RECTANGULAIRES
ET TRIANGULAIRES.

Résumé

Nous présentons dans ce papier une étude de stabilité pour les schémas de type
volumes finis appliqués au systéme de Maxwell. Un résultat de stabilité est démontré
pour le schéma décentré d’ordre un sur un maillage rectangulaire. Des comparaisons
de stabilité entre le schéma de Yee et la formulation volumes finis sont proposées.
Nous comparons également les domaines de stabilité obtenus pour le systéme de
Maxwell et I’équation d’advection.
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1 Introduction.

We are concerned, in this paper, with a stability study for finite volume schemes applied
to the two-dimensional time domain Maxwell system. This analysis is achieved for a
homogeneous medium, for instance the vacuum.

We shall consider first-order and higher-order schemes on rectangular and triangular
meshes. In the case of a first-order scheme using a rectangular mesh, a necessary and
sufficient stability condition will be proved. This stability result will be compared to the
one obtained for a Yee scheme, which is largely used in C.E.M applications.

In order to increase the accuracy of finite-volume schemes as well as the stability domains,
high-order schemes, both in time and space, are achieved by means of an upwinding pa-
rameter # and a multi-step Runge-Kutta time discretization. In this case, representations
of the stability domains will be computed, in order to compare stability conditions for
the Yee scheme and for third-order finite volume schemes. This stability analysis will
allow us to draw the most efficient schemes, on triangular and rectangular meshes, from
a class of high-order accurate methods.

A comparison of the stability limits obtained for the Maxwell system and for the scalar
convection equation will also be proposed.

This paper is divided into three parts: in the two first ones, we recall the Maxwell equa-
tions and also the numerical approximation based on finite volumes. The third one is
concerned with the stability study and the comparison of the stability results between
the Yee scheme and finite-volume methods applied to the Maxwell system and to the
convection equation.

2 Maxwell system

2.1 Electromagnetic field equations.

The electric field E = E(¢,x) and the magnetic induction B = B(¢,x) are solutions in
vacuum of the Maxwell equations:

88_}? — *rot(B) = _ei (x e R%t>0) (L1)
oB "

rn + rot(E) =0 (1.2)
dio(E) = ~ (13)
div(B) =0 (1.4)

where c is the light velocity, ¢, the vacuum electric permittivity and py the vacuum
magnetic permeability. These values satisfy the relation: eyuoc® = 1.
We denote by j = j(t,x) and p = p(t,x) the given current and the given charge densities
which are related by the conservation law:
dp

a + d’LU(J) = 0 (2)



We assume that the initial electric field Ey and the magnetic induction B are such

that:

t=0
divEy = PL=0 P m 2 (3)
€0 €0

One can easily prove that conditions (3) and the charge conservation law (2) imply
that constraints (1.3,1.4) are satisfied for all t > 0. Hence, only the first two equations
(1.1,1.2) will be considered in the numerical model since (1.3,1.4) are redondant in the
continuous one.

2.2 Conservative formulation and hyperbolic character.

System (1) can be written in the following conservative form:

Q: + F1(Q). + F2(Q), + F5(Q). = J (4)
where
( Q - t(E17E27E3:BhBZ,B3)
F1(Q) = (0,c*Bs, —c*By,0, — E3, E,)
F2(Q) = '(—c*Bs,0,cBy, E3,0, —E)
F3(Q) = '(¢*By, —¢*By,0, —Es, E1,0)

1, . . .
J= __t(.]17]27.7370707 0)
€0

or in condensed form:

Q + VIFQ)=J (5)
with F(Q) =" (F1(Q); F2(Q); F5(Q)).

)
One can easily check that system (5) is hyperbolic. Indeed, let us consider a linear
combination of fluxes:

F(Q,n) =nF(Q)

where = (11, 12,73) is any nonzero vector of IR3.
The jacobian matrix A defined by:

_ 2
- 73

is diagonalizable for any nonzero vector 1 of IR® and for any vector Q of IRS.
Its three real eigenvalues of double multiplicity are given by:

Fi(Q)

A= cf[n]]
Xy = —c]|n]
)\3 =0

Two types of wave polarization are particularly interesting when modelling two di-
mensional problems : transverse electric polarizations noted TE (E.e,=0) and transverse
magnetic polarizations noted TM (B.e,=0). Indeed, in the two-dimensional case, these



polarizations allow the Maxwell system to be splitted according to these two types of
waves. From now, we shall restrict our study to the transverse electric waves (TE). The
TM case is treated similarly. In this case, (4) writes:

Q: + F1(Q), + F2(Q), = J (6)
where :
Q = t(ElyEQ)B?»)
F1(Q) = '(0,¢°Bs, E)
F3(Q) = /(—c*Bs,0, - Ey)
J= =L (1, 42,0)
€0

The conservative form as well as the hyperbolic character of the Maxwell system leads
up naturally to the use of upwind schemes which are known to be well adapted to solve
numerically hyperbolic conservative systems.

3 Numerical approximation.

The two-dimensional time domain solver presented here is based on a finite volume
formulation using structured triangular or rectangular meshes. We describe briefly in
the following section the finite volume method applied to the Maxwell equations. For
more details on this method, one may refer to [8],[14].

3.1 Spatial formulation.

Let 7, be a standard finite element discretization of €2, the polygonal approximation of
a computational domain 2 :

nt

o - U
j=1
where Tj is a triangular or a rectangular element and nt is the number of elements.
Another partition of {2 using finite volumes is then constructed as follows:

ns

Q=G
i=1

where ns is the number of nodes and C; is the control volume or cell whose construction
is shown on Figures 1 and 2.

A weak formulation is then obtained by integrating system (5) on each control volume
C; taking the characteristic functions of the cells as test functions.

Assuming partial derivative Q; to be constant in space on C; and using a Green
formula yields to the following equation written at each node of the mesh :

Area(C)) (Qu), + /00 F(Q)wido = /C J dx. (7)

3



Figure 1: 2D cell C; for a triangular mesh.

]
\
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Figure 2: 2D cell C; for a rectangular mesh.



where v; is the unit normal exterior to 9C;.

The integral term in equation (7) is splitted into a sum of internal fluxes and boundary
terms. Since we are mainly interested in the study of stability conditions, we shall
consider periodic boundary conditions, which makes the contribution of these boundary
terms to be zero.

N;
Area(Cy) (Qu)i + > @i = Area(C))J; (8)
J=1
where N; is the number of the neighbours of the node ¢ and ®;; is an approximation of
the internal flux faCmaCj F(Q).v;; do which will be discussed in the sequel.

3.2 First-order upwind scheme.

Since the Maxwell system is hyperbolic, we choose an upwind approximation for the
evaluation of the numerical fluxes ®;;. Let us set :

n= v;; do.
aCiNaC;

where 0C; N 0C; represents the common interface between the two cells C; and Cj.

We recall that the Maxwell equations in vacuum form a linear system with constant

coefficients. Thus all first-order upwind schemes reduce to the classical I.C.R (Isaac-

Courant-Reeves) scheme [12] which writes :

F %) F js 1
2, = 8(Q, Q;m) = WAL Yy (g, - q)

where Q; denotes the value of Q at node ¢ and A(n) is the jacobian matrix of F(Q, n).

3.3 High order approximation.

The MUSCL (Monotonic Upwind Schemes for Conservation Laws) method [9] allows
us to increase the precision of the schemes by defining new values Q,;; and Q,; at the
interface of the cells without altering the numerical fluxes fonction ®. In the MUSCL
method, these values are obtained by using a linear interpolation on each cell. We choose
here a #-scheme formulation which writes :

®;; = ©,;(Q,,Qy i)
Qi :Qi+%{(1—25)(QJ—Q¢)+25€QZH'SiSj} (9)
Qi = Q; — 3{(1-26)(Q; - Q) + 26V QLSS )

where 3 is an upwinding parameter whose value determines the accuracy of the

scheme. Choosing § = 3 gives a third-order accurate scheme in space for structured



schemes [8]. The formulation requires the evaluation of a nodal gradient (V Q) which
can be defined in several ways. We use here a finite element approach.
In the case of a rectangular mesh, it writes:

o
Area(Supp(pi)) Jsupp(ei)

— —
VQE = V Q dx

(10)

- Z ZQ /v@,kdx

Area(Supp RLER]» 1

ﬁ
where the i* (k = 1,...,4) are the four vertices of the rectangle R and V ¢, is the
gradient of the bilinear Ql function at node 4*.

In the case of a triangular mesh, we use the following definition:

vqr 1 / vQd
H_ X
i T Area(Supp(p;i)) Jsupp(e)
4 (1)
1 Area
= V
Treal ) 2, ; ol

where the i* (k = 1,2,3) are the three vertlces of the triangle T and cht (T) is the
gradient of the hnear P1 function at node ¢*, which is constant on T.

3.4 Time integration.

The time accuracy for unsteady problems is important that is why we choose explicit
accurate time schemes. We use a Runge-Kutta multi-step explicit method; the step
number for the accuracy of the scheme is fixed with regard to the value of 3. The RKr

algorithm is given below (in our case r = 1,...,3) :
QU — Qn N
t
l=Q° -2 S I W
Q1L+1 QT

where t" = nAt and ®(Q'!) represent the fluxes calculated with fields Q'~!. For

the values § = - and » = 3, the scheme is third-order accurate in time and space since

the Maxwell system is linear.

4 Stability analysis.

We study here the stability of the schemes presented above for both rectangular and
triangular meshes. The Maxwell system is written dimensionless and we choose ¢ = 1.
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We consider the first-order accurate scheme and we present a proof of the stability
condition in the case of a rectangular grid. Then we study the $-scheme stability on both
rectangular and triangular meshes by ajusting the parameter 3. Stability study is based
on Von Neumann analysis, but we first introduce some definitions before developping
this analysis. We note :

ij — Qn (761 +k02) (p, q) € ZZ

where 1°2=-1. Then we obtain the relation :

Q" =G, 9, Q"

where Gy, 5, is the 3x3 amplification matrix of the scheme which depends on the time
increment At and the Fourier angles 6, 6.

4.1 First-order accurate schemes.
We recall that a necessary and sufficient stability condition (Von Neumann condition)

writes:

v (91702) € [0727T] 27 T(G(h,ez) = lI:n |/’L91 (92| < 1 (12)

where /ﬂgl’gz are the eigenvalues of Gy, g, and 7 is the spectral radius of the matrix Gy, g,.

4.1.1 Rectangular mesh.

In this part, we shall establish a necessary and sufficient stability condition for the first-
order finite volume scheme on a rectangular mesh. The amplification matrix Gy, 4, writes
in this case :

X 0 ALysm(Gg)
1
Goy 0, = Id — At 0 X, ———sin(6;) (13)

L sin(6y) ———sin(6) ?(ZX

Ay Sin\vo A,’E sSin(vq 1 2
, 01 2,0,
here X; = — sin? =& — Z sin? 2,
where X; = Ao sin? 5 9 Ay sin 5

We notice that Gy, ¢, is a complex symmetric matrix.

Theorem 4.1 The first-order finite volume scheme applied to the Mazwell system using

At
a rectangular mesh is stable if and only if Az + N <1.
Y



At At

Proof : We prove first that the condition + — < 1 is necessary and then that

Az Ay
it is sufficient.
At At
Proposition 4.1 If the scheme is stable then — + — < 1.
Azx Ay
. . L . . At At i
Demonstrating this assertion is equivalent to show that if s + Au > 1 there exits a
z y

couple (01, 62) for which Jnax |1th, 6,1 > 1. Taking (01,0:)=(w, ) leads up to:

2 0
Ay )
G91792 =Jd— At 0 — 0
T
2 2
0 0 —+4+—
Ax + Ay
At At At At
and r(Go, 0,) = | 1 — Q(E + A—y) |. Hence taking AT Ay > 1 leads clearly to

an unstable scheme, which ends the proof of proposition (4.1).0

Proposition 4.2 ]fﬁ + ﬁ < 1, then the scheme is stable.
Ar Ay

Proof : We first define a new matrix Hy, 4, by multiplying the third column of Gy, 4,
by —: and the third line by :. One can easily check that Gy, g, and Hy, 4, are similar.
Hence they have the same eigenvalues, and the stability condition (12) is identical when
considering Hy, 4, as the scheme amplification matrix. Hy, 4, presents the advantage to
be real and can be splitted into: Hy, g, = Id — At(Dyg, 9, + As, 6,) Where Dy, 4, is a real
diagonal matrix and Ag, 4, is a real antisymmetric one.

1
0 0 ———s8inf,
Xs 0 0 1Ay
D91792 = 0 Xl 0 s A91792 = 0 0 A_ sin 91
0 0 X;+X, 1 1 fU
—sinfl; ——sinb; 0

Ay Az

The matrix (Dg, g, + Ag, 9,) has either three real eigenvalues or one real eigenvalue
and two complex conjugate ones. Concerning the real eigenvalues we have the following
result:

Lemma 4.1 The real eigenvalues A, g, 6, of (Do, 6, + As, 6,) verify

0 <min(Xy,X2) < Ago, < X1+ Xo



We omit from now the subscripts 61, 5 in what follows. This lemma and all the following
ones will be proved further.

Let w be the eigenvalues of H and A the eigenvalues of (D + A). Then we have

pw=1—At\

We first consider the case of the real eigenvalues p, of H.

Equation (12) implies: |p,| <1 V (601,02) ie. =1 <1 —AtA, <1 V (04,05).
2 2

Using lemma 4.1 one has 0 < A, < X; + X5, furthermore X; + X5 < Ao + N There-
z y

At

At
fore, if the condition Ar + A <1 is assumed one obtains 0 < AtA, < 2 and then
T Yy

| o |< 1.
We now consider the case of the complex eigenvalues p. of H. First we have :

| e =1 — 2AtRe(),) + At? | A, |?

The condition | . |< 1 writes At? | A, |* —2AtRe(A.) <0
Assuming the real eigenvalue ), is strictly positive, we obtain by multiplying the previous
inequality by A, :

AN, | A, |2 —2AtM Re().) <0 (14)

Furthermore one has: | )

A | Ae |P=det(D + A) = 2X1X2(A— + A—) , A+ 2Re(N) = Tr(D + A) = 2(X; + Xap).
x Y

Inequality (14) transforms into:

At At
P(A) = A2 —2(X1 + Xo)A, + 2X1X2(E + A—y) <0 (15)

At At
Lemma 4.2 If the condition s + N <1 is achieved, then P(),) < 0.
x

)

Using lemma 4.2 allows us to conclude that | . [< 1 V (6y,60).

The following lemma treats the case A, = 0.

At At
Lemma 4.3 If — + — < 1, the condition | p. |[< 1 V (01,60) is ensured.
Azr Ay

At At
We have finally proved that if s + Ao < 1, then the scheme is stable which con-
x

Yy
cludes the proof of proposition (4.2) and the demonstration of theorem (4.1).0

We establish in the sequel the proof of all the intermediary lemma.



Proof of lemma 4.1 :

Let v be the eigenvector of the real matrix (D + A) associated to the eigenvalue A,.
We have : (D + A)v = A\,v and *v(D + A)v = "vA,v. As A is an antisymmetric matrix,
from ‘vAv = 0 we deduce ‘vDv = *v\,v which writes:

(X2 - )\T)’U% + (Xl - AT)’US + (Xl + X2 - AT)’Ug =0
where v; (1 = 1,2, 3) are the components of the eigenvector v.

We note that X; + X5 — A, > max(X; — A\, Xo — \,) as X and X, are positive.
Since the coefficients in front of v; can not have all the same sign, one can deduce that
X1+ Xo— A >0and (X7 — \,) or (X2 — )\,) are negative.

Thus one can conclude that A\, < X; 4+ X5 and A, > min(Xq, X3) > 0. O

Proof of lemma 4.2 :

We recall that:

At At
P(\) = A2 = 2(X) + X))\, + 2X1Xo( 5 A_y).

The discriminant of P writes:

At At
A =4(X] + X5)? — 8X Xo( — + —).
(X1 4+ X2) 812(A$+Ay)

At At
Assuming the condition Az + Ay < 1leads to A > 4(X? + X3) > 0.
x

y
The particular case A = 0 corresponds to X7 + X2 = 0 which is equivalent to A, = 0
in view of lemma 4.1. Since we consider the case A, # 0, the discriminant is strictly
positive and the polynom P(),) has two distinct roots 71, ro given by:

2(X1+ Xo) — VA . 2(X1+ Xo) + VA
9 2 —
2 2

™ =

We obtain that P()\,) < 0 ever since A\, € [ri,72]. Lemma (4.1) establishes that
0 < A < X1+ Xy <7g, then we still have to show that A, > rq.

From A > 4(X12 + X22) we have r; < X; + X, — /X? + X2. Furthermore /X% + X3 >

max (X7, X2) and X7 + Xo — /X7 + X7 < X; + X2 — max(Xy, Xo) = min(Xq, X5) < A,
thanks to lemma (4.1).
Finally r; < A, <7y and P(A,) < 0 which ends the proof of lemma 4.2. O
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Proof of lemma 4.3 :

We consider here the case of a zero eigenvalue A,. From lemma 4.1, if A, = 0 then
min( Xy, X5) = 0 that is to say 6; = 2kw or 6, = 2km, (k € Z). Conversely, if 6; or
0y = 2km then A\, = 0. Hence A\, = 0 is equivalent to #; = 2k7 or 6, = 2km.

Assuming 6; = 2k, the matrix (D + A) writes:

1
X 0 Ay sin #,

Y
D+ A= 0 0 0
1
A—ySiHGQ 0 X2

1
In this case, the eigenvalues of the matrix are: 0, X5+ A—sin 6. The condition
y
2

At
l1e|? = |1 — AtA? < 1 writes: AX3 + o sin? 0, — 2AtX, < 0.
)
At
One can easily check that this condition is achieved since Au < 1. In the same way

At
if we consider the case 0, = 2k, the stability condition is satisfied if — < 1.

x
At

To sum up in the case of a zero eigenvalue, the condition Az + Au < 1implies | u. |< 1,
T Y

which ends the proof of lemma 4.3. O

We have proved that a necessary and sufficient stability condition for the first-order

A At
scheme on a rectangular mesh was — + — < 1.
Az Ay

A way to represent the stability domain is to obtain numerically the maximum values

At

[2
of the couple (—, —) such that the condition (12) may be verified. To represent this
Az’ A
T Ay

At At

domain, we choose the variables Az and Ay as coordinates in the plane.
T Y
Remarks:

e First we can notice that if we consider one direction infinite, for instance Ay, we

At
obtain the monodimensional stability condition Ap < 1. This stability condition
x
is the most restrictive when we choose Az = Ay.

We note also that the stability domain represented on Figure 3 is the same as
the one obtained when considering the first-order scheme applied to the two-
dimensional scalar convection equation u; + u, + u, = 0 on a rectangular mesh.
For more details on the stability analysis concerning the convection equation, one
may refer to [3],[8].

o Maxwell system (1.1,1.2) can be written into a non conservative form:

Q:+AQ, +BQ, =0

11



FIRST-ORDER SCHEME STABILITY ON A RECTANGULAR MESH.
dt/dy 1 T T T T T T T T T

0.9 B

0.8 B

0.7 | o

0.6 - B

05 | B

0.4 B

03 B

0.2 - B

0.1 | o

0 ! ! ! ! ! ! ! ! !
01 0 01 02 03 04 05 06 07 08 09 1
dt/dx

Figure 3: Maxwell system and convection equation.

where A and B are the jacobians of the fluxes F1(Q) and F2(Q).

In the monodimensional case, one can diagonalize the jacobian matrix which leads
up to a splitted system: each component is solution of the convection equation
with speeds (c,-c,0).

Unfortunately, in the two-dimensional case, the matrixes A and B are not diag-
onalizable in the same basis for the two space coordinates (z,y). Thus it is not
possible to transform the Maxwell system in order to obtain a system which each
component may verify the convection equation, as it is in one dimension. However
we find the same stability condition for the first-order scheme applied either to
the Maxwell system or to the convection equation. As we shall see later, we do
not observe the same concerning the 3-schemes and the schemes using a triangular
mesh.

4.1.2 Triangular mesh.

In this part we study the stability in the case of a first-order scheme applied to the
Maxwell system. The mesh used here is a structured triangular mesh obtained by cutting
rectangles diagonally. We use again a Fourier analysis but in this case the matrix H
writes : H = Id — At(D + A+ S) where S is a symmetric matrix, which prevents us to
apply the same demonstration as for the rectangular mesh.

The eigenvalues of the amplification matrix are calculated numerically in order to ob-
tain numerically a sufficient stability condition verifying (12). As done in the rectangular

At At

case, we choose the variables (A_’A_) to represent the stability domain. A comparison
T Ay

between the convection equation and the Maxwell system is shown on Figure 4. We
notice that the stability domain obtained when considering the convection equation is
wider than the one obtained with the Maxwell system.

If we choose Az = Ay, we can take CFL=1.17 in the case of the convection equation, and

12



FIRST-ORDER SCHEME STABILITY ON A TRIANGULAR MESH.
1 T T T T T

0.9

0.8

0.7 -

0.6 -

05

dt/dy

0.4

03

0.2 -

0.1 -

0 L L L L L L L T

01 0 01 02 03 04 05 06 07 08 09 1
dx

Figure 4: Maxwell system and convection equation.

CFL=0.93 for the Maxwell system, where CFL is the Courant-Friedricks-Levy number.
The stability limit is generally higher for the triangular mesh (see Figures 3 and 4).
However, when a direction Az or Ay is almost infinite, then the rectangular mesh gives
the higher stability limit.

4.1.3 Comparison with the Yee scheme.

One recalls that Yee introduced a set of finite-difference equations to discretize Maxwell
equations. Yee algorithm consists in using finite difference expressions for the space
and time derivatives, and in positioning the components of E and B orthogonally to
each other. In order to achieve a second-order accurate scheme, in time and space, E
and B are evaluated at half-time and half-space steps. The stability criterion for the
two-dimensional Yee scheme writes as:

1 1
Aty — +— <1 1
\/ Azx? + Ay? — (16)

and a proof of the above result can be found in [20].

Choosing the variables A and Ao to represent the stability domain leads up to a
T Y

quarter-circular unit domain. Therefore, this stability condition is less restrictive than
the one obtained for the first-order upwind scheme on both rectangular and triangular
meshes (see Figure 5). It is mainly due to the second-order accuracy of the Yee scheme.

13



1 =T T T T

“>-~.__"FV scheme on rectangles." ——
RN "YEE scheme" -----

"FV.scheme on triangles." -----

0.6 |- ‘\:‘\\ 4

dt/dy

04| AN

02| : H

0 1 1 1 1 3
-0.2 0 02 0.4 0.6 08 1
dtidx

Figure 5: Stability domains for Yee and first-order finite volume schemes.

4.2 Higher order schemes.

In the case of a three-step Runge-Kutta time integration we introduce the characteristic

polynom
2,3

=1 — 4+ —.
g(2) —i—z—|—2+6

For z = AAt, we recall that the polynom G(A At) represents the amplification matrix
of the Runge-Kutta method applied to the differential system @; = A @) where A is the
3x3 scheme matrix. We obtain the following relation using a Fourier analysis :

Qnﬂ = Go,.0,(A At) Qn

and Von Neumann theorem (12) still applies to Gy, 4,.

4.2.1 Rectangular mesh.

In this section we plot some stability domains computed with different values of the
upwinding parameter (.

1
We recall that for 3 = 0 we obtain a centered scheme, for ﬁ:§ the scheme is half-

centered, 3 = 1 gives an upwind scheme.
Figure 6 shows that the closer to 1 (§ is, the smaller the stability limit is, which means
that using a centered scheme allows us to take a higher time step.

As a comparison, we represent on Figure 7 the stability domain in the case of the
convection equation. Although they vary in the same way with 3, the stability domains
are different except for § = 1 where we obtain in both cases the numerical stability limit:

At At
+ — = 0.62. If we choose Az or Ay infinite we find in both cases the monodi-

Az Ay
mensional stability limit. For Az and Ay finite and for a fixed value of # the stability

14



domain is wider for the Maxwell system than for the advection equation, especially for

ﬂz%orﬁ:().

BETA-SCHEME STABILITY FOR THE RECTANGULAR MESH.

T T T T T T T T
"beta=1/3" ——
g "beta=1" -----
1.6 N "beta=1/2" ----- -
"beta=0"
14 - E
12 - E
s i
>
=
=
=l
08 | E
06 | E
04| E
02| i
0 1
02 0 02 18
Figure 6: Maxwell system.
BETA-SCHEME STABILITY FOR THE RECTANGULAR MESH.
1. T T T T T T T T
"beta=0" ——
"beta=1/3" ----
1.6 beta=1/2" ----- —
"beta=1'
14 | A g
12+ ) E
s i
>
=l
=
08 | E
06 | E
0.4 - i
02| ~ N A
0 1 1 L 1 1 1 1 1

-0.2 0 02 04 06 08 1 12 14 16 18
dt/dx

Figure 7: Convection equation.

4.2.2 Triangular mesh.

The stability domains obtained for the 5-schemes on a triangular mesh are still different
concerning the Maxwell system and the convection equation (see Figures 8 and 9). As
for the rectangular case, the stability limit decreases when /3 is closer to 1. However, the
stability domains are wider in the case of the convection equation for all value of the
upwinding parameter (.
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BETA-SCHEME STABILITY FOR THE TRIANGULAR MESH.
T T T T T T T T T
"beta=0"
"beta=1/3" -----
18 "beta=1/2" -+ |
"beta=1"

16 B

dt/dy

Figure 8: Maxwell system.

BETA-SCHEME STABILITY FOR THE TRIANGULAR MESH.
T T T T T T T T T
"beta=0" ——
"beta=1/3" -----
1.8 |- "beta=1/2" ----- b
"beta=1"

16 e g
14

12

dt/dy
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Figure 9: Convection equation.

If we take Az or Ay infinite we find again the same monodimensional stability limit
for the Maxwell system and for the convection equation.
We can notice that using a triangular mesh gives the privilege to the direction Az = Ay
concerning the stability : it is the direction where we can choose the highest time step,
on the contrary to the rectangular mesh where imposing Az = Ay is the most restrictive
choice. However, if a direction Az or Ay is close to infinity, the use of rectangular
meshes is more interesting concerning the stability limit. The two last remarks concern
the Maxwell system as well as the scalar convection equation.
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4.2.3 Comparison with the Yee scheme.

We now compare the stability domains obtained for the Yee scheme and for third-order
finite volume schemes applied to the Maxwell system. Figure 10 shows that stability

domains are wider for S-schemes (5 = - ), on both rectangular and triangular meshes.

On the contrary to the Yee scheme, the finite volume approach has the advantage to
extend easily first-order upwind schemes to 3-schemes, and then to achieve high-order
accuracy in time and space. This method is also more flexible, as it can be applied
to many sorts of meshes. However, 3-schemes require an additionnal CPU time cost
compared to the use of the Yee scheme.

1.8 T T T T T T T T

"FV scheme on rectangles." ——
"FV scheme on triangles.” -----

1.6 - "YEE scheme" ----- E

14

12 |

1+

dt/dy

0.8 -

0.6 |-

0.4

0.2 -

0 1 1 1 1 1 1 M 1
-0.2 0 02 04 06 08 1 12 14 16 18
dt/dx

Figure 10: Stability domains for Yee and third-order finite volume schemes.

5 Conclusion.

A stability study concerning a class of finite volume schemes applied to the two-dimensional
Maxwell system has been presented here. We have proposed a demonstration of a neces-
sary and sufficient stability condition for the first-order upwind scheme, on a rectangular
mesh. In this case, we find the same stability condition for the Maxwell system and for
the convection equation : u; + u, + u, = 0.

High-order finite volume schemes are achieved by using a MUSCL formulation, and
stability domains are computed on both triangular and rectangular meshes. We also
compare the stability limits obtained for the Maxwell system with those obtained when
considering the convection equation. We can observe that the stability domains are wider
for the convection equation when using a triangular mesh. On the other hand, stability
limits are higher for 3-schemes applied to the Maxwell system on rectangular meshes.
We can note that stability limits vary in the same way with § for the Maxwell system and
for the convection equation: the limit on the time-step is the highest for a fully-centered
scheme. When one of the mesh-step tends to infinity, we find again in both cases (the
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Maxwell system and the convection equation) the one-dimensional stability condition.
A comparison between the Yee scheme and the finite volume approximation is also pro-
posed. In the case of third-order finite volume schemes, stability domains are wider, on
both rectangular and triangular meshes.
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