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STABILITY ANALYSIS FOR FINITE VOLUMESCHEMESON RECTANGULAR AND TRIANGULARMESHESAPPLIED TO THE TWO-DIMENSIONALMAXWELL SYSTEM.Sophie Depeyre 1AbstractWe present in this paper a stability study concerning �nite volume schemes appliedto the Maxwell system. A stability condition is proved for the �rst-order upwindscheme using a rectangular mesh. Stability comparisons between the Yee scheme andthe �nite volume formulation are proposed. We also compare the stability domainsobtained when considering the Maxwell system and the convection equation.ANALYSE DE STABILITÉ POUR LESSCHÉMAS VOLUMES FINISAPPLIQUÉS AU SYSTÈME DE MAXWELLBIDIMENSIONNELSUR DES MAILLAGES RECTANGULAIRESET TRIANGULAIRES.RésuméNous présentons dans ce papier une étude de stabilité pour les schémas de typevolumes �nis appliqués au système de Maxwell. Un résultat de stabilité est démontrépour le schéma décentré d'ordre un sur un maillage rectangulaire. Des comparaisonsde stabilité entre le schéma de Yee et la formulation volumes �nis sont proposées.Nous comparons également les domaines de stabilité obtenus pour le système deMaxwell et l'équation d'advection.1CERMICS-INRIA, B.P. 93, 06902 Sophia-Antipolis Cédex





1 Introduction.We are concerned, in this paper, with a stability study for �nite volume schemes appliedto the two-dimensional time domain Maxwell system. This analysis is achieved for ahomogeneous medium, for instance the vacuum.We shall consider �rst-order and higher-order schemes on rectangular and triangularmeshes. In the case of a �rst-order scheme using a rectangular mesh, a necessary andsu�cient stability condition will be proved. This stability result will be compared to theone obtained for a Yee scheme, which is largely used in C.E.M applications.In order to increase the accuracy of �nite-volume schemes as well as the stability domains,high-order schemes, both in time and space, are achieved by means of an upwinding pa-rameter � and a multi-step Runge-Kutta time discretization. In this case, representationsof the stability domains will be computed, in order to compare stability conditions forthe Yee scheme and for third-order �nite volume schemes. This stability analysis willallow us to draw the most e�cient schemes, on triangular and rectangular meshes, froma class of high-order accurate methods.A comparison of the stability limits obtained for the Maxwell system and for the scalarconvection equation will also be proposed.This paper is divided into three parts: in the two �rst ones, we recall the Maxwell equa-tions and also the numerical approximation based on �nite volumes. The third one isconcerned with the stability study and the comparison of the stability results betweenthe Yee scheme and �nite-volume methods applied to the Maxwell system and to theconvection equation.2 Maxwell system2.1 Electromagnetic �eld equations.The electric �eld E = E(t;x) and the magnetic induction B = B(t;x) are solutions invacuum of the Maxwell equations:8>>>>>>>>>>><>>>>>>>>>>>: @E@t � c2rot(B) = � j�0 (x 2 IR3; t > 0) (1:1)@B@t + rot(E) = 0 (1:2)div(E) = ��0 (1:3)div(B) = 0 (1:4)where c is the light velocity, �0 the vacuum electric permittivity and �0 the vacuummagnetic permeability. These values satisfy the relation: �0�0c2 = 1.We denote by j = j(t;x) and � = �(t;x) the given current and the given charge densitieswhich are related by the conservation law:@�@t + div(j) = 0 (2)1



We assume that the initial electric �eld E0 and the magnetic induction B0 are suchthat: div E0 = � (t = 0)�0 = �0�0 ; div B0 = 0 (3)One can easily prove that conditions (3) and the charge conservation law (2) implythat constraints (1.3,1.4) are satis�ed for all t > 0. Hence, only the �rst two equations(1.1,1.2) will be considered in the numerical model since (1.3,1.4) are redondant in thecontinuous one.2.2 Conservative formulation and hyperbolic character.System (1) can be written in the following conservative form:Qt + F1(Q)x + F2(Q)y + F3(Q)z = J (4)where 8>>>>>>>>>><>>>>>>>>>>: Q = t(E1; E2; E3; B1; B2; B3)F1(Q) = t(0; c2B3;�c2B2; 0;�E3; E2)F2(Q) = t(�c2B3; 0; c2B1; E3; 0;�E1)F3(Q) = t(c2B2;�c2B1; 0;�E2; E1; 0)J = � 1�0 t(j1; j2; j3; 0; 0; 0)or in condensed form: Qt + �!r :IF (Q) = J (5)with IF (Q) = t (F1(Q) ; F2(Q) ; F3(Q)) :One can easily check that system (5) is hyperbolic. Indeed, let us consider a linearcombination of �uxes: F(Q;�) = �:IF (Q)where �= t(�1; �2; �3) is any nonzero vector of IR3.The jacobian matrix A de�ned by:A(Q;�) = �:IF 0(Q) = �1A1 + �2A2 + �3A3 ; (Ai)i=1;:::;3 = @@QFi(Q)is diagonalizable for any nonzero vector � of IR3 and for any vector Q of IR6.Its three real eigenvalues of double multiplicity are given by:8><>: �1 = cjj�jj�2 = �cjj�jj�3 = 0Two types of wave polarization are particularly interesting when modelling two di-mensional problems : transverse electric polarizations noted TE (E:ez=0) and transversemagnetic polarizations noted TM (B:ez=0). Indeed, in the two-dimensional case, these2



polarizations allow the Maxwell system to be splitted according to these two types ofwaves. From now, we shall restrict our study to the transverse electric waves (TE). TheTM case is treated similarly. In this case, (4) writes:Qt + F1(Q)x + F2(Q)y = J (6)where : 8>>>>>>><>>>>>>>: Q = t(E1; E2; B3)F1(Q) = t(0; c2B3; E2)F2(Q) = t(�c2B3; 0;�E1)J = � 1�0 t(j1; j2; 0)The conservative form as well as the hyperbolic character of the Maxwell system leadsup naturally to the use of upwind schemes which are known to be well adapted to solvenumerically hyperbolic conservative systems.3 Numerical approximation.The two-dimensional time domain solver presented here is based on a �nite volumeformulation using structured triangular or rectangular meshes. We describe brie�y inthe following section the �nite volume method applied to the Maxwell equations. Formore details on this method, one may refer to [8],[14].3.1 Spatial formulation.Let Th be a standard �nite element discretization of 
h, the polygonal approximation ofa computational domain 
 : 
h = nt[j=1Tjwhere Tj is a triangular or a rectangular element and nt is the number of elements.Another partition of 
 using �nite volumes is then constructed as follows:
 = ns[i=1Ciwhere ns is the number of nodes and Ci is the control volume or cell whose constructionis shown on Figures 1 and 2.A weak formulation is then obtained by integrating system (5) on each control volumeCi taking the characteristic functions of the cells as test functions.Assuming partial derivative Qt to be constant in space on Ci and using a Greenformula yields to the following equation written at each node of the mesh :Area(Ci) (Qt)i + Z@Ci IF (Q):�i d� = ZCi J dx: (7)3
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Figure 1: 2D cell Ci for a triangular mesh.
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where �i is the unit normal exterior to @Ci.The integral term in equation (7) is splitted into a sum of internal �uxes and boundaryterms. Since we are mainly interested in the study of stability conditions, we shallconsider periodic boundary conditions, which makes the contribution of these boundaryterms to be zero. Area(Ci) (Qt)i + NiXj=1�ij = Area(Ci)Ji (8)where Ni is the number of the neighbours of the node i and �ij is an approximation ofthe internal �ux R@Ci\@Cj IF (Q):�ij d� which will be discussed in the sequel.3.2 First-order upwind scheme.Since the Maxwell system is hyperbolic, we choose an upwind approximation for theevaluation of the numerical �uxes �ij . Let us set :� = Z@Ci\@Cj �ij d�:where @Ci \ @Cj represents the common interface between the two cells Ci and Cj.We recall that the Maxwell equations in vacuum form a linear system with constantcoe�cients. Thus all �rst-order upwind schemes reduce to the classical I.C.R (Isaac-Courant-Reeves) scheme [12] which writes :�ij = �(Qi;Qj;�) = F(Qi;�) +F(Qj ;�)2 � 12 jA(�)j (Qj �Qi)where Qi denotes the value of Q at node i and A(�) is the jacobian matrix of F(Q;�).3.3 High order approximation.The MUSCL (Monotonic Upwind Schemes for Conservation Laws) method [9] allowsus to increase the precision of the schemes by de�ning new values Qij and Qji at theinterface of the cells without altering the numerical �uxes fonction �. In the MUSCLmethod, these values are obtained by using a linear interpolation on each cell. We choosehere a �-scheme formulation which writes :8>>>>>><>>>>>>: �ij = �ij(Qij;Qji)Qij = Qi + 12f (1� 2�)(Qj �Qi) + 2��!rQHi :SiSj gQji = Qj � 12f (1� 2�)(Qj �Qi) + 2��!rQHj :SiSj g (9)where � is an upwinding parameter whose value determines the accuracy of thescheme. Choosing � = 13 gives a third-order accurate scheme in space for structured5



schemes [8]. The formulation requires the evaluation of a nodal gradient (�!rQ)Hi;j whichcan be de�ned in several ways. We use here a �nite element approach.In the case of a rectangular mesh, it writes:�!rQHi R = 1Area(Supp('i)) ZSupp('i)�!rQ dx= 1Area(Supp('i)) XR;i2R 4Xk=1Qik ZR�!r'ikdx (10)where the ik (k = 1; :::; 4) are the four vertices of the rectangle R and �!r'ik is thegradient of the bilinear Q1 function at node ik.In the case of a triangular mesh, we use the following de�nition:�!rQHi T = 1Area(Supp('i)) ZSupp('i)�!rQ dx= 1Area(Ci) XT;i2T Area(T )3 4Xk=1Qik�!r'ik(T ) (11)where the ik (k = 1; 2; 3) are the three vertices of the triangle T and �!r'ik(T ) is thegradient of the linear P 1 function at node ik, which is constant on T.3.4 Time integration.The time accuracy for unsteady problems is important that is why we choose explicitaccurate time schemes. We use a Runge-Kutta multi-step explicit method; the stepnumber for the accuracy of the scheme is �xed with regard to the value of �. The RKralgorithm is given below (in our case r = 1; :::; 3) :8>>><>>>: Q0 = QnQl = Q0 � �t(r + 1� l)�(Ql�1) l = 1; :::; rQn+1 = Qrwhere tn = n�t and �(Ql�1) represent the �uxes calculated with �elds Ql�1. Forthe values � = 13 and r = 3, the scheme is third-order accurate in time and space sincethe Maxwell system is linear.4 Stability analysis.We study here the stability of the schemes presented above for both rectangular andtriangular meshes. The Maxwell system is written dimensionless and we choose c = 1.6



We consider the �rst-order accurate scheme and we present a proof of the stabilitycondition in the case of a rectangular grid. Then we study the �-scheme stability on bothrectangular and triangular meshes by ajusting the parameter �. Stability study is basedon Von Neumann analysis, but we �rst introduce some de�nitions before developpingthis analysis. We note : Qnj;k = Q̂nei(j�1+k�2) (p; q) 2 ZZ2where i2=-1. Then we obtain the relation :Q̂n+1 = G�1 ;�2 Q̂nwhere G�1 ;�2 is the 3x3 ampli�cation matrix of the scheme which depends on the timeincrement �t and the Fourier angles �1; �2.4.1 First-order accurate schemes.We recall that a necessary and su�cient stability condition (Von Neumann condition)writes: 8 (�1; �2) 2 [0; 2�] 2; r(G�1 ;�2) = maxl=1;2;3 j�l�1 ;�2 j � 1 (12)where �l�1;�2 are the eigenvalues of G�1 ;�2 and r is the spectral radius of the matrix G�1 ;�2 .4.1.1 Rectangular mesh.In this part, we shall establish a necessary and su�cient stability condition for the �rst-order �nite volume scheme on a rectangular mesh. The ampli�cation matrix G�1;�2 writesin this case :G�1;�2 = Id��t0BBBBBBB@ X2 0 i�y sin(�2)0 X1 � i�x sin(�1)i�y sin(�2) � i�x sin(�1) X1 +X2 1CCCCCCCA (13)where X1 = 2�x sin2 �12 ; X2 = 2�y sin2 �22 .We notice that G�1;�2 is a complex symmetric matrix.Theorem 4.1 The �rst-order �nite volume scheme applied to the Maxwell system usinga rectangular mesh is stable if and only if �t�x + �t�y � 1.7



Proof : We prove �rst that the condition �t�x + �t�y � 1 is necessary and then thatit is su�cient.Proposition 4.1 If the scheme is stable then �t�x + �t�y � 1.Demonstrating this assertion is equivalent to show that if �t�x + �t�y > 1 there exits acouple (�1; �2) for which maxl=1;2;3 j�l�1 ;�2 j > 1. Taking (�1; �2)=(�; �) leads up to:G�1;�2 = Id��t0BBBBBB@ 2�y 0 00 2�x 00 0 2�x + 2�y 1CCCCCCAand r(G�1 ;�2) = j 1� 2( �t�x + �t�y ) j. Hence taking �t�x + �t�y > 1 leads clearly toan unstable scheme, which ends the proof of proposition (4.1).2Proposition 4.2 If �t�x + �t�y � 1, then the scheme is stable.Proof : We �rst de�ne a new matrix H�1;�2 by multiplying the third column of G�1;�2by �i and the third line by i. One can easily check that G�1;�2 and H�1;�2 are similar.Hence they have the same eigenvalues, and the stability condition (12) is identical whenconsidering H�1;�2 as the scheme ampli�cation matrix. H�1;�2 presents the advantage tobe real and can be splitted into: H�1;�2 = Id��t(D�1 ;�2 +A�1;�2) where D�1;�2 is a realdiagonal matrix and A�1;�2 is a real antisymmetric one.D�1;�2 = 0B@ X2 0 00 X1 00 0 X1 +X2 1CA ; A�1;�2 = 0BBBBBB@ 0 0 � 1�y sin �20 0 1�x sin �11�y sin �2 � 1�x sin �1 0 1CCCCCCAThe matrix (D�1;�2 + A�1;�2) has either three real eigenvalues or one real eigenvalueand two complex conjugate ones. Concerning the real eigenvalues we have the followingresult:Lemma 4.1 The real eigenvalues �r;�1;�2 of (D�1;�2 +A�1;�2) verify0 � min(X1; X2) � �r;�1;�2 � X1 +X28



We omit from now the subscripts �1; �2 in what follows. This lemma and all the followingones will be proved further.Let � be the eigenvalues of H and � the eigenvalues of (D + A). Then we have� = 1��t�.We �rst consider the case of the real eigenvalues �r of H.Equation (12) implies: j�rj � 1 8 (�1; �2) i.e. �1 � 1��t�r � 1 8 (�1; �2).Using lemma 4.1 one has 0 � �r � X1 +X2, furthermore X1 +X2 � 2�x + 2�y . There-fore, if the condition �t�x + �t�y � 1 is assumed one obtains 0 � �t�r � 2 and thenj �r j� 1:We now consider the case of the complex eigenvalues �c of H. First we have :j �c j2= 1� 2�tRe(�c) + �t2 j �c j2The condition j �c j� 1 writes �t2 j �c j2 �2�tRe(�c) � 0Assuming the real eigenvalue �r is strictly positive, we obtain by multiplying the previousinequality by �r : �t2�r j �c j2 �2�t�rRe(�c) � 0 (14)Furthermore one has:�r j �c j2= det(D +A) = 2X1X2( 1�x + 1�y ) ; �r + 2Re(�c) = Tr(D + A) = 2(X1 +X2).Inequality (14) transforms into:P (�r) = �2r � 2(X1 +X2)�r + 2X1X2( �t�x + �t�y ) � 0 (15)Lemma 4.2 If the condition �t�x + �t�y � 1 is achieved, then P (�r) � 0.Using lemma 4.2 allows us to conclude that j �c j� 1 8 (�1; �2).The following lemma treats the case �r = 0.Lemma 4.3 If �t�x + �t�y � 1, the condition j �c j� 1 8 (�1; �2) is ensured.We have �nally proved that if �t�x + �t�y � 1, then the scheme is stable which con-cludes the proof of proposition (4.2) and the demonstration of theorem (4.1).2We establish in the sequel the proof of all the intermediary lemma.9



Proof of lemma 4.1 :Let v be the eigenvector of the real matrix (D +A) associated to the eigenvalue �r.We have : (D+A)v = �rv and tv(D+A)v = tv�rv. As A is an antisymmetric matrix,from tvAv = 0 we deduce tvDv = tv�rv which writes:(X2 � �r)v21 + (X1 � �r)v22 + (X1 +X2 � �r)v23 = 0where vi (i = 1; 2; 3) are the components of the eigenvector v.We note that X1 +X2 � �r � max(X1 � �r; X2 � �r) as X1 and X2 are positive.Since the coe�cients in front of vi can not have all the same sign, one can deduce thatX1 +X2 � �r > 0 and (X1 � �r) or (X2 � �r) are negative.Thus one can conclude that �r � X1 +X2 and �r � min(X1; X2) � 0. 2Proof of lemma 4.2 :We recall that: P (�r) = �2r � 2(X1 +X2)�r + 2X1X2( �t�x + �t�y ):The discriminant of P writes:� = 4(X1 +X2)2 � 8X1X2( �t�x + �t�y ):Assuming the condition �t�x + �t�y � 1 leads to � � 4(X21 +X22) � 0.The particular case � = 0 corresponds to X21 +X22 = 0 which is equivalent to �r = 0in view of lemma 4.1. Since we consider the case �r 6= 0, the discriminant is strictlypositive and the polynom P (�r) has two distinct roots r1, r2 given by:r1 = 2(X1 +X2)�p�2 ; r2 = 2(X1 +X2) +p�2We obtain that P (�r) � 0 ever since �r 2 [r1; r2]. Lemma (4.1) establishes that0 < �r � X1 +X2 � r2, then we still have to show that �r � r1.From � � 4(X21 +X22) we have r1 � X1 +X2 �qX21 +X22 . Furthermore qX21 +X22 �max(X1; X2) and X1 +X2 �qX21 +X22 � X1 +X2 �max(X1; X2) = min(X1; X2) � �rthanks to lemma (4.1).Finally r1 � �r � r2 and P (�r) � 0 which ends the proof of lemma 4.2. 2
10



Proof of lemma 4.3 :We consider here the case of a zero eigenvalue �r. From lemma 4.1, if �r = 0 thenmin(X1; X2) = 0 that is to say �1 = 2k� or �2 = 2k�, (k 2 ZZ). Conversely, if �1 or�2 = 2k� then �r = 0. Hence �r = 0 is equivalent to �1 = 2k� or �2 = 2k�.Assuming �1 = 2k�, the matrix (D + A) writes:D +A = 0BBBBB@ X2 0 � 1�y sin �20 0 01�y sin �2 0 X2 1CCCCCAIn this case, the eigenvalues of the matrix are: 0; X2 � i�y sin �2. The conditionj�cj2 = j1��t�cj2 � 1 writes: �t2X22 + �t2�y2 sin2 �2 � 2�tX2 � 0.One can easily check that this condition is achieved since �t�y � 1. In the same wayif we consider the case �2 = 2k�, the stability condition is satis�ed if �t�x � 1.To sum up in the case of a zero eigenvalue, the condition �t�x + �t�y � 1 implies j �c j� 1,which ends the proof of lemma 4.3. 2We have proved that a necessary and su�cient stability condition for the �rst-orderscheme on a rectangular mesh was �t�x + �t�y � 1.A way to represent the stability domain is to obtain numerically the maximum valuesof the couple (�t�x , �t�y ) such that the condition (12) may be veri�ed. To represent thisdomain, we choose the variables �t�x and �t�y as coordinates in the plane.Remarks:� First we can notice that if we consider one direction in�nite, for instance �y, weobtain the monodimensional stability condition �t�x � 1. This stability conditionis the most restrictive when we choose �x = �y.We note also that the stability domain represented on Figure 3 is the same asthe one obtained when considering the �rst-order scheme applied to the two-dimensional scalar convection equation ut + ux + uy = 0 on a rectangular mesh.For more details on the stability analysis concerning the convection equation, onemay refer to [3],[8].� Maxwell system (1.1,1.2) can be written into a non conservative form:Qt +AQx +BQy = 011
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Figure 3: Maxwell system and convection equation.where A and B are the jacobians of the �uxes F1(Q) and F2(Q).In the monodimensional case, one can diagonalize the jacobian matrix which leadsup to a splitted system: each component is solution of the convection equationwith speeds (c,-c,0).Unfortunately, in the two-dimensional case, the matrixes A and B are not diag-onalizable in the same basis for the two space coordinates (x; y). Thus it is notpossible to transform the Maxwell system in order to obtain a system which eachcomponent may verify the convection equation, as it is in one dimension. Howeverwe �nd the same stability condition for the �rst-order scheme applied either tothe Maxwell system or to the convection equation. As we shall see later, we donot observe the same concerning the �-schemes and the schemes using a triangularmesh.4.1.2 Triangular mesh.In this part we study the stability in the case of a �rst-order scheme applied to theMaxwell system. The mesh used here is a structured triangular mesh obtained by cuttingrectangles diagonally. We use again a Fourier analysis but in this case the matrix Hwrites : H = Id��t(D +A+ S) where S is a symmetric matrix, which prevents us toapply the same demonstration as for the rectangular mesh.The eigenvalues of the ampli�cation matrix are calculated numerically in order to ob-tain numerically a su�cient stability condition verifying (12). As done in the rectangularcase, we choose the variables (�t�x ,�t�y ) to represent the stability domain. A comparisonbetween the convection equation and the Maxwell system is shown on Figure 4. Wenotice that the stability domain obtained when considering the convection equation iswider than the one obtained with the Maxwell system.If we choose�x = �y, we can take CFL=1.17 in the case of the convection equation, and12
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Figure 4: Maxwell system and convection equation.CFL=0.93 for the Maxwell system, where CFL is the Courant-Friedricks-Levy number.The stability limit is generally higher for the triangular mesh (see Figures 3 and 4).However, when a direction �x or �y is almost in�nite, then the rectangular mesh givesthe higher stability limit.4.1.3 Comparison with the Yee scheme.One recalls that Yee introduced a set of �nite-di�erence equations to discretize Maxwellequations. Yee algorithm consists in using �nite di�erence expressions for the spaceand time derivatives, and in positioning the components of E and B orthogonally toeach other. In order to achieve a second-order accurate scheme, in time and space, Eand B are evaluated at half-time and half-space steps. The stability criterion for thetwo-dimensional Yee scheme writes as:�ts 1�x2 + 1�y2 � 1 (16)and a proof of the above result can be found in [20].Choosing the variables �t�x and �t�y to represent the stability domain leads up to aquarter-circular unit domain. Therefore, this stability condition is less restrictive thanthe one obtained for the �rst-order upwind scheme on both rectangular and triangularmeshes (see Figure 5). It is mainly due to the second-order accuracy of the Yee scheme.
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Figure 5: Stability domains for Yee and �rst-order �nite volume schemes.4.2 Higher order schemes.In the case of a three-step Runge-Kutta time integration we introduce the characteristicpolynom g(z) = 1 + z + z22 + z36 :For z = A�t, we recall that the polynom G(A �t) represents the ampli�cation matrixof the Runge-Kutta method applied to the di�erential system Qt = A Q where A is the3x3 scheme matrix. We obtain the following relation using a Fourier analysis :Q̂n+1 = G�1;�2(A �t) Q̂nand Von Neumann theorem (12) still applies to G�1;�2 .4.2.1 Rectangular mesh.In this section we plot some stability domains computed with di�erent values of theupwinding parameter �.We recall that for � = 0 we obtain a centered scheme, for �=12 the scheme is half-centered, � = 1 gives an upwind scheme.Figure 6 shows that the closer to 1 � is, the smaller the stability limit is, which meansthat using a centered scheme allows us to take a higher time step.As a comparison, we represent on Figure 7 the stability domain in the case of theconvection equation. Although they vary in the same way with �, the stability domainsare di�erent except for � = 1 where we obtain in both cases the numerical stability limit:�t�x + �t�y = 0:62. If we choose �x or �y in�nite we �nd in both cases the monodi-mensional stability limit. For �x and �y �nite and for a �xed value of � the stability14



domain is wider for the Maxwell system than for the advection equation, especially for� = 13 or � = 0.
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Figure 6: Maxwell system.
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Figure 7: Convection equation.4.2.2 Triangular mesh.The stability domains obtained for the �-schemes on a triangular mesh are still di�erentconcerning the Maxwell system and the convection equation (see Figures 8 and 9). Asfor the rectangular case, the stability limit decreases when � is closer to 1. However, thestability domains are wider in the case of the convection equation for all value of theupwinding parameter �. 15
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Figure 8: Maxwell system.
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Figure 9: Convection equation.If we take �x or �y in�nite we �nd again the same monodimensional stability limitfor the Maxwell system and for the convection equation.We can notice that using a triangular mesh gives the privilege to the direction �x = �yconcerning the stability : it is the direction where we can choose the highest time step,on the contrary to the rectangular mesh where imposing �x = �y is the most restrictivechoice. However, if a direction �x or �y is close to in�nity, the use of rectangularmeshes is more interesting concerning the stability limit. The two last remarks concernthe Maxwell system as well as the scalar convection equation.16



4.2.3 Comparison with the Yee scheme.We now compare the stability domains obtained for the Yee scheme and for third-order�nite volume schemes applied to the Maxwell system. Figure 10 shows that stabilitydomains are wider for �-schemes (� = 13), on both rectangular and triangular meshes.On the contrary to the Yee scheme, the �nite volume approach has the advantage toextend easily �rst-order upwind schemes to �-schemes, and then to achieve high-orderaccuracy in time and space. This method is also more �exible, as it can be appliedto many sorts of meshes. However, �-schemes require an additionnal CPU time costcompared to the use of the Yee scheme.
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Figure 10: Stability domains for Yee and third-order �nite volume schemes.5 Conclusion.A stability study concerning a class of �nite volume schemes applied to the two-dimensionalMaxwell system has been presented here. We have proposed a demonstration of a neces-sary and su�cient stability condition for the �rst-order upwind scheme, on a rectangularmesh. In this case, we �nd the same stability condition for the Maxwell system and forthe convection equation : ut + ux + uy = 0.High-order �nite volume schemes are achieved by using a MUSCL formulation, andstability domains are computed on both triangular and rectangular meshes. We alsocompare the stability limits obtained for the Maxwell system with those obtained whenconsidering the convection equation. We can observe that the stability domains are widerfor the convection equation when using a triangular mesh. On the other hand, stabilitylimits are higher for �-schemes applied to the Maxwell system on rectangular meshes.We can note that stability limits vary in the same way with � for the Maxwell system andfor the convection equation: the limit on the time-step is the highest for a fully-centeredscheme. When one of the mesh-step tends to in�nity, we �nd again in both cases (the17
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