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Abstract

In this paper, we investigate the evolution of curves of the projective
plane according to a family of projective invariant intrinsic equations. This
is motivated by previous work for the Euclidean [10, 11, 13] and the affine
cases [20, 21, 3, 2] as well as by applications in the perception of two-
dimensional shapes. We establish the evolution laws for the projective
arclength and curvature. Among this family of equations, we define a
“projective heat equation” [7] and establish the link with the projective
evolution of curves in R?.

Résumé

Dans le présent article, nous étudions les familles de courbes du plan pro-
jectif évoluant suivant des équations intrinséques projectivement invari-
antes. Cette démarche est motivée par les travaux précédents concernant
les cas euclidien [10, 11, 13] et affine [20, 21, 3, 2]. ainsi que par les ap-
plications possibles en perception des formes 2D. Nous établissons les lois
d’évolutions de I’abscisse curviligne et de la courbure projectives. Parmi
ces équations, nous définissons une équation de la chaleur projective [7] et
établissons le lien avec I’évolution projectivement invariante des courbes
du plan réel R2.



1 Introduction

The use of partial differential equations and curve or surface evolution theory in
image analysis became a major research topic in the past years (see [17]) leading
to applications in image de-noising and de-blurring [18], in selective smoothing
and edge detection [1, 16], in contrast enhancement [19], in shape segmentation
[5]. Recently, applications were found in problems usually addressed by the
computer vision community: intrinsic flows [13, 20] hold very good geometric
smoothing properties and allow the computation of local differential invariants
[8]. Motivated by the importance of projective geometry in computer vision,
we found it natural to extend the Euclidean [13] and affine [20] cases to the
projective one.

2 Geometric flows

Let £ be a Lie group operating on some objects. A quantity ¢ depending on
these objects is called an invariant of L if, whenever a transformation L € £
changes ¢ into ¢/, we have ¢’ = «o(L)q, where « is a function of L alone, i.e.
does not depend on the object which is transformed. If @ = 1, then ¢ is called
an absolute invariant.

Differential invariants are special invariants based on local transformations
(see [12]).

Let C : R — R? be a plane curve of parameter p. The first and the second
differential invariants for the Euclidean group {m — Rm + T | R rotation, T
translation} are the well known Euclidean arclength v and curvature s defined

by: 2 ac
{— = 1%
o= 5

(1)

which are preserved by rotations and translations.
The corresponding invariants for the group of proper affine motions {m —
Am + B | [A] > 0, B € R?} are the affine arclength s and curvature p defined

by:
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which are invariants for affine proper motions, and absolute invariants for special
affine motions ( {m — Am+ B|[A]=1,B € R?} ).

Circles (and straight lines) are the only curves with constant Euclidean
curvature. In the affine case, constant affine curvature is obtained for the conics
(1 = 0 for a parabola, p > 0 for an ellipse and p < 0 for an hyperbola).

Given an initial plane curve Co(p) : R — R?, the associated geometric flow
(see [15]) is the family of curves C(p,t) : R x [0,7) — R? evolving according to
the following law:

aC(p,t) _ 9%C(p.t)
{ ot = T (3)
C(p,0) = Colp)



where r is the group arclength (v for the Euclidean geometric flow, s for the
affine one). Contrary to the classical heat flow C; = C,,, these flows are intrinsic
(i.e. don’t depend on the parameterization p of the initial curve). They are
invariant for the considered Lie group. Their “smoothing” properties may be
summarized as follow ([13, 20]): closed curves evolve toward a convex one and
then disappear shrinking toward a circle point (Euclidean case) or an ellipse
point (affine case).

For a given group, a plane curve is defined up to a group transformation
by its group arclength and curvature. Hence, it is natural to study these flows

through the evolution of the arclength and curvature. With g, = j—; and g, =

%, we have:
P
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3 Projective geometry

Like in equations (1) and (2), it is possible to define the projective arclength
and curvature of a plane curve in R%. However, this leads to too complex
expressions. The idea is to embed such a curve in the real projective plane
P2, One can see P? as the set of the lines of R? going through the origin.
An element of P? is represented by its homogeneous coordinates (z,y, z) where
(z,y,z) and (Az, Ay, Az), (A # 0) are different coordinate vectors of the same
projective point.

Let B(p) : R — P? be a smooth curve of the projective plane. Using
standard results of projective differential geometry [4], we change B(p) by a
scale factor A(p) and characterize its projective arclength o and curvature k
introducing the Cartan point A = AB, and the Cartan frame (A,A(l),A(z))
which satisfy the projective Frenet equations:

dA

— = A
o
1)
d‘s = —kA+A® (5)
o
2
d?( ) A A
o
and the condition:
IAAMAR) =1 (6)

Note that B and A are different coordinate vectors of the same projective
point. The point A() is on the tangent to the curve in A and the line (A, A(2)>
is the projective normal. Functions & and ¢ are invariant under the action of the
projective group and characterize the curve up to a projective transformation.

The plane curves with a constant projective curvature are (see [9]):

o If k = ko = —3/32'/3: the exponential (y = ¢*)

o If k < ko: the general parabola (y = 2™, m ¢ {2, %, —1})



o If k > ko: the logarithmic spiral (p = €™ m # 0)

4 Projective invariant intrinsic flows

The law A; = A,, investigated in [7] could be thought of as a natural extension
of the Euclidean and affine cases. Yet, this law raises some contradictions. For
instance, according to the expression of k; in [7], curves with a constant initial
curvature should evolve keeping a constant curvature. Actually, it is not the
case (see [9]).

The reason why it is so is that the Cartan point A(p,¢) is some particular
representant for the projective point B(p,¢) and depends on the curve and its
spatial derivatives at (p,¢). As aresult, one can’t expect an arbitrary differential
equation {A(p,0) = Ao(p); At = f(p,t)} to be such that A(p,¢) will still be
the Cartan point of the curve at time ¢ > 0.

This leads us to consider the evolution law

A(p,0) = Ap(p) (Ao Cartan point of the initial curve) 7)
Aip,t) = aA+BAN 4 yAB)
where f(p,t) has been decomposed on the Cartan frame, and to find out which
conditions on («, 3,7v) will assure that A(p,?) remains the Cartan point.
We get the following result:

Proposition 1 The differential equation (7) has a meaning (i.e. A(p,t) is the
Cartan point of the curve at time t) if and only if:
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In this case, the projective arclength and curvature evolve according to:

gt 1
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p o+ fo = S (k7 = 72) (9)
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do
whereg:%.
Proof:

e Step 1: Let us first establish some preliminary properties. Using the fact
that the independent variables p and t verify

2 2
dtop _ Ipot




it is quite immediate to show that the Lie bracket [%, 88—0] equals:

2 2
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Applying this formula twice more, we obtain the expressions
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that we will need later.

Step 2: Let us now prove that equation (8) is necessary and that we have
(9) and (10). Taking the derivative of equation (6) with respect to t at
constant p, we get:

0=]AAMWA®|, = A, AWAQ| 4 JAADAD| L [AAWAD]  (14)

From equations (7) and (5), the first determinant of the right hand side
member equals . Using also equation (11), we get

0A,
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(15)

from which we finally obtain the value of |AA£1)A(2)| in (14). In a similar
way, we write

AL w = A+ kAo + Argy (16)

whose last term is obtained from equation (12) . Thus the value of the last
determinant in (14) and finally equation (9) . From the Frenet formulas
(5), we get the useful relation

Ay = —28AM — (14 k,)A (17)
Let us now compute %Ags in two different ways:

1. Using equation (17) , we have

8A 3 8
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= 5 A — (14 ks)Ay — 2k AY — 2kA; (18)

where we know A; and Agl) from (7) and (15).



2. On the other hand, we can use equation (13)

DA,
at

A
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where all the terms of the right hand side member are known from (9)
and (5), except the last one which can be computed from equation
(7) and the Frenet formulas.

Expressing (18) and (19) in the frame (A, A A(?)) and equaling their
coordinates, we get three relations: a tautology, equation (10) and condi-
tion (8).

e Step 3: We now have to prove that condition (8) is sufficient for the
law (7) to be well-defined. More precisely, we have to show that B(p, )
defined by

B(p,0) = Ay(p) (Ao Cartan point of the initial curve)
Bi(p,t) = aA+[FAD £~AR)
(A, A A®?) Cartan frame of the curve at time ¢
(20)

remains the Cartan point, i.e. B(p,t) = A(p,t). Actually, the same
method as in step 2 using B = A/X in (20) gives three evolution laws:
gt, ki and A, When v is given by (8), the evolution of A becomes A\, = 0,
thus A(p,t) = A(p,0) = 1 and B(p,t) = A(p,t).

a

Remark 1: Another way to see that a condition like (8) is necessary is
to consider the surface & = {A(p,t)|(p,t)} of R®. The reason why this is a
well-defined surface is because there is no scale factor on A even though it
represents a projective point of P2. Now, in order for (7) to be a well-defined
PDE on §, the vector A; has to belong to the tangent plane Ts at A(p,t). The
right hand side contains the vector A1) which belongs to Ts but the vector
@A + vA®) does not in general belong to Ts unless o and v are dependent.
In fact the condition is even stronger since not only A; must belong to T's but
also, as stated above, A must remain a Cartan point.

Remark 2: Note that A, = A,, is the case (o, 3,7) = (—k,0, 1), thus
doesn’t satisfy condition (8), hence the previously mentioned contradictions.

Finally, if 5 and + are projective invariant intrinsic quantities, then « defined
by equation (8) is a projective invariant intrinsic quantity too. Therefore, we
get:

Corollary 1 Let 3 and v be some projective invariant intrinsic quantities, let
« be defined by equation (8) . The differential equation (7) defines a projective
invariant intrinsic flow. The evolution of the projective arclength and curvature
of the curves is given by equations (9, 10).



5 The projective “heat flow”

Among all the possible choices for (3,v), it turns out that the simplest one
(0,1) is also the right one for a projective “heat flow” extending the Euclidean
and affine cases. Some intuitive justification could be:

e SA(M is on the tangent in A. Thus, the choice of § has no importance:
changing f doesn’t modify the family of curves obtained but only their
parameterization p (see [20]).

e (B,7) = (0,1) are the components of A,, on (A, A@)), The induced
could be considered as a corrected component of A,, on A.

However, the deep reason for this choice is that it gives the same flow as C; = C,,
in R? (see next section). Consequently, we have directly from proposition 1 the
following statement:

Proposition 2 Let « be:
1
o =
9+ 3k,

Let Bo(p) be a curve of P? and Ao (p) its Cartan points. We define its projective
heat flow as the solution of:

A(p,0) = Aolp)
{Afp,t) = aAi)—A(z) (21)

(3k — Thky — ko)

Let g = 92 The projective arclength and curvature evolve according to:

-
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k‘t = gk‘ -I— §k0.2 — QOék‘ — Q52 (23)

6 Going back to R?

Let us now justify our choice, explaining the link between:
e cquation (21) on the Cartan point.
e the more natural equation B; = B,, on any coordinate vector B in P2.
e and its previously mentioned [15] analog in the real plane R%: C; = C,,.
Proposition 3 Given an initial curve in P?, let Bo(p) be any smooth enough

coordinate vector of it.

1. The flow defined by
B(p,0) = Bo(p)

{ Bt(p7 t) = Bos (24)
is intrinsic and doesn’t depend on the choice of By (i.e. Bo(p) and
¢o(p)Bo(p) give the same family of curves for any choice of a smooth
enough ¢q strictly positive or negative).



2. This flow is the projective heat flow defined by equation (21) up to a
re-parameterization of the curves.

3. Let X be the Cartan scale factor (A = AB). (0,k,\) define B up to a
projective transformation. Their evolution is given by:

gt -1
B (8kky + kye + 18A
g g 37 (BFko + ks +18A52)
k2 = %kQ + %kUQ — 2Pk — P2 =2k, A, (25)
—1
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P

Proof:

e Step 1: Let B(p,t) be the solution of (24) for a given coordinate vector
By of the initial curve (chosen such that all the necessary derivatives are
defined). Any other smooth coordinate vector of the initial curve can be
written ¢o(p)Bo(p) where ¢g is also smooth enough and ¢o(p) # 0,Vp.
Let ¢(p,t) be the solution of:

o(p,0) = ¢olp)
{@(M = Goo —2(¢5)*/0 (26)

Let us define B'(p,t) = ¢B. B(.,t) and B’(.,t) are different coordinate
vectors for the same curves of P? thus have the same projective arclength :
o' = o. It is then straightforward to check that B’ verifies

B; — (—2¢0//¢)Bg/ —|— B:J.IO./

which gives the same curves as B} = B/, , up to a re-parameterization in

space. B’ is the solution of (24) with initial condition ¢yBg. Finally both
initial conditions By and ¢gBg give the same flow.

e Step 2: Any choice of Bg giving the same solution, let us take By = Ay.
With A = AB, equation B; = B,, becomes A; = a1 A + ﬁlA(l) +A®
where (ay, #1,1) verifies condition (8). The tangential component of the
velocity being of no importance, this latest equation gives the same family
of curves as A, = asA + A®2) where «ay is the correct value of a for
(8,7)=(0,1): By = B,, gives the projective heat flow defined by (21).

e Step 3: The method used in step 2 of the proof of proposition 1 applied
on law (24) with A = AB gives equations (25). A and its derivatives now
appear in the components (a, 3,7) of A; in the frame (A, A, A()), In
the previous case, we wanted A to be the constant 1. Hence the condition



(8) on . Here, A is free and the same equation that gave condition (8)
now leads to the evolution law of A. Note that the quantity P used to get
a somehow shorter writing of equations (25) is in fact the first component
o of Ay,

Let Co(p) = (20, yo) be a real plane curve, it is then easy to prove that:

Corollary 2 The flow defined by {C(p,0) = Co ; C; = Cos} is a projective
invariant flow. It gives the same family of curves through the map (£,%) as the
projective heat flow (21) with initial curve (z9,y0,1). Let C(p,t) = (z,y) and
A be the Cartan scale of (x,y,1), the evolution of the projective arclength and

curvature of C is given by equations (25).
Proof: Let B = (z,y,1). If C; = C,, then B follows law (24) just because:
1. Its projective arclength is the same as the one of C

2. Its first two components are the ones of C and its third component is
constant.

As a result, the parameters (o,k, A\) of C, which are the ones of B, evolve
according to (25).
O

Note that this was already proved in [14], even though the argument in [15]
about the relationship between different coordinate vectors is incorrect (see
proposition 3 above: the scaling factor ¢ doesn’t remain the initial one and the
curves have to be re-parameterized)

7 Curves with constant projective curvature

A first property of the projective heat flow, common with the Euclidean and
affine cases, is that initial curves with a constant projective curvature evolve
remaining with a constant curvature. Moreover, we see that they keep their
initial curvature: k; = 0. Hence, they evolve remaining the initial one up to
an homography. It is easy to solve equation (24) completely and to see that
Logarithmic spirals rotate and shrink, general parabolas and the exponential
go to a line in the limit (figure 1).

8 Conclusion

We have established a link between the invariant projective flow defined in R?
[15, 14] and the one defined in P? [7]. We have defined the projective heat
equation in three equivalent ways: A; = oA + A() (« given by equation (8))
or B; = B,, in P?, and C; = C,» in R%. As expected, the connection is not



rho=exp(theta) y=exp(x) y=x"3

Figure 1: Evolution of the curves with a constant projective curvature. In bold,
the initial curve

trivial but simple enough. The advantage of the definition in P? [7] which we
have modified here to make it entirely correct is that: a) it does not depend
on the particular coordinates used to represent P? and b) it has allowed us to
establish the evolution of the projective arclength and curvature. There remains
to see if it is possible to define a projective scale-space as in the Euclidean and
affine cases. Of particular interest would be to compare our approach with the
one developed by Dibos [6].
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