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1 IntroductionThe use of partial di�erential equations and curve or surface evolution theory inimage analysis became a major research topic in the past years (see [17]) leadingto applications in image de-noising and de-blurring [18], in selective smoothingand edge detection [1, 16], in contrast enhancement [19], in shape segmentation[5]. Recently, applications were found in problems usually addressed by thecomputer vision community: intrinsic 
ows [13, 20] hold very good geometricsmoothing properties and allow the computation of local di�erential invariants[8]. Motivated by the importance of projective geometry in computer vision,we found it natural to extend the Euclidean [13] and a�ne [20] cases to theprojective one.2 Geometric 
owsLet L be a Lie group operating on some objects. A quantity q depending onthese objects is called an invariant of L if, whenever a transformation L 2 Lchanges q into q0, we have q0 = �(L)q, where � is a function of L alone, i.e.does not depend on the object which is transformed. If � � 1, then q is calledan absolute invariant.Di�erential invariants are special invariants based on local transformations(see [12]).Let C : R! R2 be a plane curve of parameter p. The �rst and the seconddi�erential invariants for the Euclidean group fm 7! Rm+ T j R rotation; Ttranslationg are the well known Euclidean arclength v and curvature � de�nedby: ( @v@p = k@C@pk� = k@2C@v2 k (1)which are preserved by rotations and translations.The corresponding invariants for the group of proper a�ne motions fm 7!Am + B j [A] > 0; B 2 R2g are the a�ne arclength s and curvature � de�nedby: ( @s@p = [@C@p ; @2C@p2 ]1=3� = [@2C@s2 ; @3C@s3 ] (2)which are invariants for a�ne proper motions, and absolute invariants for speciala�ne motions ( fm 7! Am+ B j [A] = 1; B 2 R2g ) .Circles (and straight lines) are the only curves with constant Euclideancurvature. In the a�ne case, constant a�ne curvature is obtained for the conics(� = 0 for a parabola, � > 0 for an ellipse and � < 0 for an hyperbola).Given an initial plane curve C0(p) : R! R2, the associated geometric 
ow(see [15]) is the family of curves C(p; t) : R� [0; �)! R2 evolving according tothe following law: ( @C(p;t)@t = @2C(p;t)@r2C(p; 0) = C0(p) (3)2



where r is the group arclength (v for the Euclidean geometric 
ow, s for thea�ne one). Contrary to the classical heat 
ow Ct = Cpp, these 
ows are intrinsic(i.e. don't depend on the parameterization p of the initial curve). They areinvariant for the considered Lie group. Their \smoothing" properties may besummarized as follow ([13, 20]): closed curves evolve toward a convex one andthen disappear shrinking toward a circle point (Euclidean case) or an ellipsepoint (a�ne case).For a given group, a plane curve is de�ned up to a group transformationby its group arclength and curvature. Hence, it is natural to study these 
owsthrough the evolution of the arclength and curvature. With ge = dvdp and ga =dsdp , we have:( @ge@t = �ge�2@�@t = ��3 � @2�@v2 and ( @ga@t = �2ga�=3@�@t = 43�2 + 13 @2�@s2 (4)3 Projective geometryLike in equations (1) and (2), it is possible to de�ne the projective arclengthand curvature of a plane curve in R2. However, this leads to too complexexpressions. The idea is to embed such a curve in the real projective planeP2. One can see P2 as the set of the lines of R3 going through the origin.An element of P2 is represented by its homogeneous coordinates (x; y; z) where(x; y; z) and (�x; �y; �z); (� 6= 0) are di�erent coordinate vectors of the sameprojective point.Let B(p) : R ! P2 be a smooth curve of the projective plane. Usingstandard results of projective di�erential geometry [4], we change B(p) by ascale factor �(p) and characterize its projective arclength � and curvature kintroducing the Cartan point A = �B, and the Cartan frame (A;A(1);A(2))which satisfy the projective Frenet equations:dAd� = A(1)dA(1)d� = �kA+A(2) (5)dA(2)d� = �A� kA(1)and the condition: jAA(1)A(2)j = 1 (6)Note that B and A are di�erent coordinate vectors of the same projectivepoint. The point A(1) is on the tangent to the curve in A and the line hA;A(2)iis the projective normal. Functions k and � are invariant under the action of theprojective group and characterize the curve up to a projective transformation.The plane curves with a constant projective curvature are (see [9]):� If k = k0 = �3=321=3: the exponential (y = ex)� If k < k0: the general parabola (y = xm; m =2 f2; 12 ;�1g)3



� If k > k0: the logarithmic spiral (� = em� ; m 6= 0)4 Projective invariant intrinsic 
owsThe lawAt = A�� investigated in [7] could be thought of as a natural extensionof the Euclidean and a�ne cases. Yet, this law raises some contradictions. Forinstance, according to the expression of kt in [7], curves with a constant initialcurvature should evolve keeping a constant curvature. Actually, it is not thecase (see [9]).The reason why it is so is that the Cartan point A(p; t) is some particularrepresentant for the projective point B(p; t) and depends on the curve and itsspatial derivatives at (p; t). As a result, one can't expect an arbitrary di�erentialequation fA(p; 0) = A0(p);At = f(p; t)g to be such that A(p; t) will still bethe Cartan point of the curve at time t > 0.This leads us to consider the evolution law( A(p; 0) = A0(p) (A0 Cartan point of the initial curve)At(p; t) = �A+ �A(1)+ 
A(2) (7)where f(p; t) has been decomposed on the Cartan frame, and to �nd out whichconditions on (�; �; 
) will assure that A(p; t) remains the Cartan point.We get the following result:Proposition 1 The di�erential equation (7) has a meaning (i.e. A(p,t) is theCartan point of the curve at time t) if and only if:� = 13 + k� [ �13k�3 � 32k�2
� � k�(73k
 + 176 
�2 + ��)� 83k2
�+k(
 � 53
�3) + 
�2=2� 
�5=6 ] (8)In this case, the projective arclength and curvature evolve according to:gtg = �+ �� � 13(k
 � 
�2) (9)kt = ���2 + 32
� + 
�46 + k(23
�2 � 2�)+k�(� + 76
�) + 
3(k�2 + 2k2) (10)where g = d�dp .Proof:� Step 1: Let us �rst establish some preliminary properties. Using the factthat the independent variables p and t verify@2@t@p = @2@p@t4



it is quite immediate to show that the Lie bracket [ @@t ; @@� ] equals:[ @@t; @@� ] = @2@t@� � @2@�@t = �gtg @@� (11)Applying this formula twice more, we obtain the expressions@3@t@�2 = �[gtg ]� @@� � 2gtg @2@�2 + @3@�2@t (12)and @4@t@�3 = �[gtg ]�2 @@� � 3[gtg ]� @2@�2 � 3gtg @3@�3 + @4@�3@t (13)that we will need later.� Step 2: Let us now prove that equation (8) is necessary and that we have(9) and (10). Taking the derivative of equation (6) with respect to t atconstant p, we get:0 = jAA(1)A(2)jt = jAtA(1)A(2)j+ jAA(1)t A(2)j+ jAA(1)A(2)t j (14)From equations (7) and (5), the �rst determinant of the right hand sidemember equals �. Using also equation (11), we getA(1)t = At� = �gtg A(1) + @At@� (15)from which we �nally obtain the value of jAA(1)t A(2)j in (14). In a similarway, we write A(2)t = @(kA+A��)@t = ktA+ kA�� +At�� (16)whose last term is obtained from equation (12) . Thus the value of the lastdeterminant in (14) and �nally equation (9) . From the Frenet formulas(5), we get the useful relationA�3 = �2kA(1) � (1 + k�)A (17)Let us now compute @@tA�3 in two di�erent ways:1. Using equation (17) , we have@A�3@t = @@t(�(1 + k�)A� 2kA(1))= �@k�@t A� (1 + k�)At � 2ktA(1) � 2kA(1)t (18)where we know At and A(1)t from (7) and (15).5



2. On the other hand, we can use equation (13)@A�3@t = �[gtg ]�2A� � 3[gtg ]�A�2 � 3gtg A�3 + @3At@�3 (19)where all the terms of the right hand side member are known from (9)and (5), except the last one which can be computed from equation(7) and the Frenet formulas.Expressing (18) and (19) in the frame (A;A(1);A(2)) and equaling theircoordinates, we get three relations: a tautology, equation (10) and condi-tion (8).� Step 3: We now have to prove that condition (8) is su�cient for thelaw (7) to be well-de�ned. More precisely, we have to show that B(p; t)de�ned by8><>: B(p; 0) = A0(p) (A0 Cartan point of the initial curve)Bt(p; t) = �A+ �A(1) + 
A(2)(A;A(1);A(2)) Cartan frame of the curve at time t(20)remains the Cartan point, i.e. B(p; t) = A(p; t). Actually, the samemethod as in step 2 using B = A=� in (20) gives three evolution laws:gt, kt and �t. When � is given by (8), the evolution of � becomes �t = 0,thus �(p; t) = �(p; 0) = 1 and B(p; t) = A(p; t).2Remark 1: Another way to see that a condition like (8) is necessary isto consider the surface S = fA(p; t)j(p; t)g of R3. The reason why this is awell-de�ned surface is because there is no scale factor on A even though itrepresents a projective point of P2. Now, in order for (7) to be a well-de�nedPDE on S, the vector At has to belong to the tangent plane TS at A(p; t). Theright hand side contains the vector A(1) which belongs to TS but the vector�A + 
A(2) does not in general belong to TS unless � and 
 are dependent.In fact the condition is even stronger since not only At must belong to TS butalso, as stated above, A must remain a Cartan point.Remark 2: Note that At = A�� is the case (�; �; 
) = (�k; 0; 1), thusdoesn't satisfy condition (8), hence the previously mentioned contradictions.Finally, if � and 
 are projective invariant intrinsic quantities, then � de�nedby equation (8) is a projective invariant intrinsic quantity too. Therefore, weget:Corollary 1 Let � and 
 be some projective invariant intrinsic quantities, let� be de�ned by equation (8) . The di�erential equation (7) de�nes a projectiveinvariant intrinsic 
ow. The evolution of the projective arclength and curvatureof the curves is given by equations (9, 10).6



5 The projective \heat 
ow"Among all the possible choices for (�; 
), it turns out that the simplest one(0; 1) is also the right one for a projective \heat 
ow" extending the Euclideanand a�ne cases. Some intuitive justi�cation could be:� �A(1) is on the tangent in A. Thus, the choice of � has no importance:changing � doesn't modify the family of curves obtained but only theirparameterization p (see [20]).� (�; 
) = (0; 1) are the components of A�� on (A(1);A(2)). The induced �could be considered as a corrected component of A�� on A.However, the deep reason for this choice is that it gives the same 
ow as Ct = C��in R2 (see next section). Consequently, we have directly from proposition 1 thefollowing statement:Proposition 2 Let � be:� = 19 + 3k� (3k � 7kk� � k�3)Let B0(p) be a curve of P2 and A0(p) its Cartan points. We de�ne its projectiveheat 
ow as the solution of:( A(p; 0) = A0(p)At(p; t) = �A+A(2) (21)Let g = d�dp . The projective arclength and curvature evolve according to:gtg = �19 + 3k� (8kk� + k�3) (22)kt = 23k2 + 13k�2 � 2�k � ��2 (23)6 Going back to R2Let us now justify our choice, explaining the link between:� equation (21) on the Cartan point.� the more natural equation Bt = B�� on any coordinate vector B in P2.� and its previously mentioned [15] analog in the real plane R2: Ct = C�� .Proposition 3 Given an initial curve in P2, let B0(p) be any smooth enoughcoordinate vector of it.1. The 
ow de�ned by ( B(p; 0) = B0(p)Bt(p; t) = B�� (24)is intrinsic and doesn't depend on the choice of B0 (i.e. B0(p) and�0(p)B0(p) give the same family of curves for any choice of a smoothenough �0 strictly positive or negative).7



2. This 
ow is the projective heat 
ow de�ned by equation (21) up to are-parameterization of the curves.3. Let � be the Cartan scale factor (A = �B). (�; k; �) de�ne B up to aprojective transformation. Their evolution is given by:gtg = �19 + 3k� (8kk� + k�3 + 18��2)kt = 23k2 + 13k�2 � 2Pk � P�2 � 2k��� (25)�t = �19 + 3k� [k�3 + 3k�(�2� � 3��2) + 4k(k� � 3) + 9(�2� � ��2)]where g = d�dp ; � = log j�j; P = �2� � ��2 � k + �tProof:� Step 1: Let B(p; t) be the solution of (24) for a given coordinate vectorB0 of the initial curve (chosen such that all the necessary derivatives arede�ned). Any other smooth coordinate vector of the initial curve can bewritten �0(p)B0(p) where �0 is also smooth enough and �0(p) 6= 0; 8p.Let �(p; t) be the solution of:( �(p; 0) = �0(p)�t(p; t) = ��� � 2(��)2=� (26)Let us de�ne B0(p; t) = �B. B(:; t) and B0(:; t) are di�erent coordinatevectors for the same curves of P2 thus have the same projective arclength :�0 = �. It is then straightforward to check that B0 veri�esB0t = (�2��0=�)B0�0 +B0�0�0which gives the same curves as B0t = B0�0�0 up to a re-parameterization inspace. B0 is the solution of (24) with initial condition �0B0. Finally bothinitial conditions B0 and �0B0 give the same 
ow.� Step 2: Any choice of B0 giving the same solution, let us take B0 = A0.With A = �B, equation Bt = B�� becomes At = �1A + �1A(1) +A(2)where (�1; �1; 1) veri�es condition (8). The tangential component of thevelocity being of no importance, this latest equation gives the same familyof curves as At = �2A + A(2) where �2 is the correct value of � for(�; 
) = (0; 1): Bt = B�� gives the projective heat 
ow de�ned by (21).� Step 3: The method used in step 2 of the proof of proposition 1 appliedon law (24) with A = �B gives equations (25). � and its derivatives nowappear in the components (�; �; 
) of At in the frame (A;A(1);A(2)). Inthe previous case, we wanted � to be the constant 1. Hence the condition8



(8) on �. Here, � is free and the same equation that gave condition (8)now leads to the evolution law of �. Note that the quantity P used to geta somehow shorter writing of equations (25) is in fact the �rst component� of At.2 Let C0(p) = (x0; y0) be a real plane curve, it is then easy to prove that:Corollary 2 The 
ow de�ned by fC(p; 0) = C0 ; Ct = C��g is a projectiveinvariant 
ow. It gives the same family of curves through the map (xz ; yz ) as theprojective heat 
ow (21) with initial curve (x0; y0; 1). Let C(p; t) = (x; y) and� be the Cartan scale of (x; y; 1), the evolution of the projective arclength andcurvature of C is given by equations (25).Proof: Let B = (x; y; 1). If Ct = C�� then B follows law (24) just because:1. Its projective arclength is the same as the one of C2. Its �rst two components are the ones of C and its third component isconstant.As a result, the parameters (�; k; �) of C, which are the ones of B, evolveaccording to (25).2 Note that this was already proved in [14], even though the argument in [15]about the relationship between di�erent coordinate vectors is incorrect (seeproposition 3 above: the scaling factor � doesn't remain the initial one and thecurves have to be re-parameterized)7 Curves with constant projective curvatureA �rst property of the projective heat 
ow, common with the Euclidean anda�ne cases, is that initial curves with a constant projective curvature evolveremaining with a constant curvature. Moreover, we see that they keep theirinitial curvature: kt = 0. Hence, they evolve remaining the initial one up toan homography. It is easy to solve equation (24) completely and to see thatLogarithmic spirals rotate and shrink, general parabolas and the exponentialgo to a line in the limit (�gure 1).8 ConclusionWe have established a link between the invariant projective 
ow de�ned in R2[15, 14] and the one de�ned in P2 [7]. We have de�ned the projective heatequation in three equivalent ways: At = �A+A(2) (� given by equation (8))or Bt = B�� in P2, and Ct = C�� in R2. As expected, the connection is not9
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