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ABSTRACT: In the present paper, we shall show that most recent discretizations of macroscopic
first order traffic flow models are equivalent to Godunov’s scheme, by analyzing the Riemann problem
in the case of equilibrium flow-density relationship that are discontinuous relatively to the position.
Further, it will be shown that the resulting formulas lead to the introduction of the local traffic supply
and demand concepts. These concepts provide a unifying framework for the modelling of boundary
conditions in the LWR model and correlatively the modelling of intersections. A few examples of
resulting intersection and network models are discussed.

1 Introduction

This paper is about first order traffic low models and the Godunov scheme. Let us first recall the
basic equations of the first order traffic flow model, called hereafter the LWR model [LW 55], [RI 56].
The basic variables of this model are the following.

. K(z,t) : the density at point z and at time ¢.
. Q(z,t) : the flow at point z and at time ¢.
. V(x,t) : the space-time average speed at point x and at time ¢, defined by the relationship @ = KV'.

The basic equations of the model are:

0K 0Q
1 —+—=0
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(conservation of vehicles),
(2) Q=KV
(definition equation of V'),
(3) V =Ve(K, )
(equilibrium speed-density relationship). Of course these equations can be rewriten as

oK 0

4 — + —Q.(K,x) =0
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with .
Q.(K,z) < KV.(K,z)

the equilibrium flow-density relationship. Typically, the equilibrium flow-density has the following
aspect.
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The explicit dependency on position x of both equilibrium relationships takes into account the
variability of the physical and environmental parameters, for instance number of lanes, maximal allowed
speed, etc .... In principle, equation (4) can only be written while assuming that both time and space
scales are sufficiently large, in order that local average flow and densities may indeed be considered
and described by reasonably regular functions. The use of model (4) for the building of traffic flow
models on networks is quite old and various methods have been tried. Some earlier efforts implied
an explicit solution of the LWR model (4), using the well-known shock-wave and rarefaction fan
techniques, complete as in [MMS 81], or semi-discretized as in SIMAUT [INR 88| and Hilliges’ model
[HI 95] for instance. Other efforts implied a space-time discretization of the LWR model (4), such as
SSMT |LE 84|, [MBL 84|, [CP 92|, the model of Bui et al. [BNN 92|, Daganzo’s CELL model [DA 94|,
the urban part of METACOR |EHP 94| (whose corridor part is METANET |[MP 90]), the flow model
of INTEGRATION [VA 94|, STRADA [BLL 95]. The INTEGRATION flow model is quite different
from all the other models mentionned, since its discretization is a particle discretization.

All these models compute the so-called entropy solutions of the LWR model, since this model does
not admit unique solutions for given initial and boundary conditions. This choice is fairly natural but
not completely self-evident, and we shall discuss it in section 2, refering to [AN 90| and [BNN 92|. The
present paper concerns itself essentially with the Godunov scheme. This is the best first order scheme
for the computation of the entropy solution of the LWR model.

This scheme has been introduced in 1959 [GO 59| and many first order schemes are derived from
it. We shall discuss it in the sections 3 and 4 of this paper. Notably we shall show that the Godunov
scheme can be extended to the case where the equilibrium flow-density relationship is discontinuous
relatively to the space variable x. This point is definitely not an academic one. Indeed, if one needs
to model a network, it is absolutely essential to be able to consider such discontinuities, if only at
intersections. As a byproduct, we shall show that the various discretization schemes of (4) that have
been introduced in the past are nothing more than the Godunov scheme under one guise or other.
But only two of them (|[LE 93] and [DA 93|, [DA 94]|) are compatible with discontinuous equilibrium
flow-density relationships.

We shall then focuse our attention on the expression given by Daganzo in [DA 93|, [DA 94] for the
flow in Godunov’s scheme. Indeed, this expression has a nice interpretation, since it defines locally the
flow as the smallest of two quantities which, following [LE 95] and [BLL 95], we shall call local traffic
demand and supply. First we shall precise the proper way to specify boundary conditions for simple
links with the help of the above mentionned supply and demand functions (section 5). Though fairly
obvious, this is a necessary step for the sequel. We shall show further how using the supply and demand
functions make it is possible to construct various extensions of the basic LWR model, notably for the
modelling of intersections (section 6) and the modelling of the dynamics of partial densities (section
7). Of course, these extensions contain many behavioural elements, and the benefit of the introduction
of the local demand and supply concepts lies with the framework they provide for modelling, as well
as a clarification of issues. These points and others, such as second order discretizations of the LWR
model and assignment problems modelling will be evoed in the conclusion of the paper.

2 Background: entropy solutions of the LWR model

In this section, we shall discuss briefly entropy solutions of the LWR model. The fact that the basic
requirement of unicity of solutions does not hold for (4) is well known. Any method devised to solve



the LWR model must therefore specify which solution is computed. Let us recall first a basic example.
Let us take as initial conditions at time ¢ = ¢ the following:

K
K

max

X
XO

modelling traffic allowed to start after having been stopped till ¢ = ?y for instance by a red light. With
this initial condition, (4) admits an infinity of solutions. Let us describe three of them.

1. First solution: K is constant at all times, i.e. K(z,t) = K(x,%9) for all z and all ¢ > #y. At the
discontinuity point zg, the shock-wave speed v = 0 satisfies of course the well-known Rankine-
Hugoniot condition

where the symbol [.] means as usual the difference of the limit values of the argument on both
sides of the discontinuity. According to this solution the vehicles do not start moving at all!

2. The second solution is illustrated by the following chart of characteristics in the (z,t) plane.

t

Figure 1

It is the acceleration fan (or rarefaction fan). This is the customary solution.

3. Another solution yet could be built by imposing the trajectory of the leading vehicle as a (moving)
boundary condition for the platoon. If V (¢) is the speed of this leading vehicle, the corresponding
density is given as the solution of the following equation:

V(t) = Ve(K(t))

t
/ / Figure 2
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The solution obtained thus is consistent, in the sense that it satisfies the Rankine-Hugoniot
condition, since if z:(t) is the position of the leading vehicle at time ¢, the shock speed u at point
(z(t),t) is:

Q] _ K({#HV(#) -0

(K] K(t) -0
which is precisely equal to V(). Therefore it is also a solution of (4) in the weak sense.
Among those three solutions, the first one is clearly inadequate, whereas the second can only be

considered as a gross approximation of reality, since it implies irrealistic accelerations. Indeed, with
the Greenshields equilibrium relationship,

K
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the initial acceleration of a vehicle starting from point z would be

V2

F=— mazx

2(z — z0)

From a physical point of view, the third solution is far more realistic, since the trajectory (and acceler-
ation) of the first vehicle can be specified completely exogeneously and thus reflect exactly the average
behaviour of drivers. Nevertheless, this solution is not stable in the sense that a slightly perturbed
initial condition such as:

K

+
X0 XO € X

would result in a solution described by the following caracteristics chart:

t

+
XO Xo € X

which as a matter of fact converges to the rarefaction fan solution of figure 1 as the scale € of the
perturbation becomes vanishingly small.

Several reasons may be invoked to justify the choice that is nearly always made in favour of entropy
solutions of (4). The main argument is precisely the consistency of entropy solutions. Indeed, they
depend continuously on initial data, as shown for instance in chapter II of [GR 91|, or chapter 16
of [SM 83]. This continuous dependency on initial data implies of course the unicity of the entropy
solution.

As pointed out by Ansorge [AN 90| and later by Bui et al. [BNN 92|, the entropy solutions of
(4) that are of interest to traffic engineers, i.e. that are at least piecewise continuous, can only admit
discontinuities such that the upstream density is smaller than the downstream density. Hence in the
example of the starting of the (infinite) platoon, the first and third solution are precluded and only



the second one is admissible. What we wish to emphasize here is that the choice of the entropy
solution is essentially a mathematically sound choice. A solution allowing only finite accelerations (and
consequently time-continuous speeds) as the third solution in the preceeding example might well be
far more interesting, notably in situations in which the finiteness of accelerations plays an important
role. The regulation of corridors, especially in congested conditions, where much of the delay suffered
by the drivers results from alternating decelerations and accelerations, would be just such a situation.

Still, some sort of physical justification may be given for the choice of entropy solutions, by making
reference to the derivation of Payne’s model [PAY 71|. Indeed, starting with a microscopic follow-the-
leader model of the following kind:

Fn(t+T) = M1 (t) — 2a(t))

(with n the index of vehicles on a lane, z,(t) the position of vehicle n at time ¢, and 7' the reaction
time), defining the following variables:

o p(t)

Vie,t) e in(t)

d
y < (@aa(t) +ea®)/2,
and making the following approximations:
y=z+1/2K(y,t) %z + 1/2K (z,t) ,

-’Enfl(t) + "En(t) ~ 1/K(y7t) ~ K(}L‘,t) - QK(;,t)S %_Ix((x’t) 9

j:n(t + T) ~ V(.T, t) + T%(.T, t);
the Payne model for acceleration and speed dynamics results (admitting the Greenshields relationship):
awv 1 v 0K
(5) =

— == (Ve(K) =V = —=——
(with Vo (K) el A(1/K)). This equation, supplemented with (1) and (2) forms the Payne second order
traffic flow model [PAY 71|. This model can therefore be related somewhat better to microscopic driver
behavioral models than the LWR model.

Schochet [SC 88] has shown that, as 7" tends toward 0, Payne’s system admits the limit

OK o
G+ =0
(6) Q=KV
V =VK)— %%

or more concisely ,
oK 0 0°K
() ot T =g
Schochet has studied and demonstrated the existence and unicity of the solutions of Payne’s system
and of (7). The solutions of (7) can be considered as wiscosity solutions for (4). As the anticipation
factor v tends towards 0, the solutions of (7) tend towards the entropy solutions of (4). This is a special
case studied by Schochet of a general principle, i.e. that entropy solutions of hyperbolic conservation
equations are the limit for vanishing viscosity of viscosity solutions. Now of course from a physical
point of view, having 7" and v tend towards 0 is really the same as to have the time and length units
become arbitrarily large by a change of units in the equations of the traffic flow (it is straightforward
to check that the length unit is equal to the square root of the product of the anticipation factor
unit times the time unit). So, from a practical point of view, Schochet’s result means that as the
time- and space-scales taken into account become ever larger, the LWR becomes a better and better
approximation of Payne’s model (5) and of the viscosity model (7). So there exists a certain continuity
and coherence between the follow-the-leader models, and the scale of macroscopic models (5), (7) and
(4) (the solutions considered for the last one beeing the entropy solutions).
To conclude this section, we may consider that the entropy solution of the LWR model is:



- simpler from a methematical point of view (existence, unicity, continuous dependency on initial
conditions),

- consistent with other macroscopic and microscopic models (at least at large time- and space-scales),
- nevertheless not the best and most realistic from a behavioral point of view.

If we return one last time to the example of the starting vehicles of the beginning of this section, we
note that indeed the third solution (figure 2) tends towards the second (figure 1) at infinity, or that
equivalently if the time unit is such that the acceleration time of the leading vehicle can be neglected
and the space unit suitably expanded, then both solutions are nearly identical (provided of course that
the limit speed of the leading vehicle is the maximum speed).

3 The Godunov discretization scheme

We shall now recall some elements concerning the Godunov scheme, as applicable to the LWR model (4)
on a homogeneous (infinite) lane. This scheme was introduced by Godunov [GO 59] for the resolution
of nonlinear hyperbolic conservation equations of the following type:

Qu 4 %f u) =0
(8) (e, 0) = (ug)(x) Vz € R

with u an unknown function of a real variable z. Usually the flow function f is assumed convex by
numerical analysts, as for instance in the case of the celebrated inviscid Burger model, a simplified
model for fluid dynamics, in which f(u) = u?/2. Nevertheless most results carry over to concave flow
functions, such as the equilibrium flow-density relationship of traffic low models.

Qu1(t) f,¢)  Qalt)

Ta—1 (a) Lq

The description of the scheme is the following.

- The line is discretized into cells (a) = [z4-1, %] of lengths I, = x4 — x4 1.

The time is discretized into time intervals [tAt, (t + 1)At].

At time tAt, the solution u of (8) is approximated by a piecewise constant function @ defined as:

a(z,tAt) @ ul (Yo € (a))

The computation of the approximation at time (¢ + 1)At, a(., (¢ + 1)At) starting from the approxi-
mation (., tAt) at time tAt, requires the following two theoretical steps.

1. Compute the ezact solution, called Z, of (8) given the inital condition u(.,tAt) at time tAt:

E+2fE=0

(9) H ii(z, tAt VaIR
E(z,tAt) { ufs (&(a), (V.’E € %a))

2. take the average of Z(., (t + 1)At) over every cell(a):

(10) uttl = ll/()a(y, (t+1)Ab) dy



- The two preceding steps can be simplified in the following:

At

(1) =l + Mt —al)
a

with

12 o L

S B
the average flow crossing z, from cell (a) to cell (a + 1) during time step [tAZ, (¢ + 1)At].

- Finally, if f is concave, the expression (12) can be replaced by the more tractable following half-closed
expression due to Osher [OS 84]:

. . .

(13) Pl M Znuggugu;+1f(u) if uy <wgiy
a Maxut <u<utf(u) if UZ >l

a+1="="a - Ya+1

Bui et al. [BNN 92| applied this scheme directly to the modelization of traffic flow on a homogeneous
lane. The resulting equations are:

Kt = Ko+ 7HQh — QY)
o = Mingicpcre, Qe(r) i K < Kiyp
¢ Mazgt  <pcreQe(r)  if K> Koy o,

which is exactly the translation of (11) and (13). Let us note that @', can equivalently be given by the
following table:

KI\NK! || wuc oc
oc Qmax Z+1

in which the abbreviations uc and oc mean undercritical and overcritical respectively. The equivalence
of this table with Osher’s formula is straightforward.

- If K} < Kerit, Kby < Kepit, Qe(.) is increasing on the interval [K{ ,, K!] or [K}, K. ] and

a
consequently: . ,
MZ”K&SKSK(’;HQB(”) = Qe(Kg)

MaxK;JrlgngKng(”) = Qe(Ké)
- If K(§+1 < Kcrit; K}; < Kcrit; then

MaxKé+1§n§Kng(’§) = Qe(Kcrit) = Qmaz

- If KL < Ky < K¢§+1> Q. being concave atteins its minimum on [K{, K}i_H] at one of the boundary
points K¢, K¢§+1- Hence:

MinK3§m§K5+lQ6(H) = Min[Qe(K7), Qe(Ky)]
- If K} > Kega, KLy > Kegit, Qe(.) is decreasing on the interval [Kf |, K!] or [K}, K ] and

a a
consequently: ' .
Man3§m§K5+lQe(n) = Qe(Kgq1)
Qe(KLy1)

Masy, | <oers @)



The key for establishing the Osher formula (13), which provides also the clue for the treatment of the
space discontinuities of @, is the Riemann Problem. This problem can be defined as: find u such that

9u 2 f(u) =0

oy if <0
“(x’o)—{ u  if >0

(15)

The initial condition of the Riemann Problem is illustrated hereafter

u

X

The Riemann Problem constitutes an abstraction of the problem (9) in the neighbourhood of each
discretisation point z,. Indeed, to solve problem (9), one has to solve locally, at each point z,, a
Riemann Problem, taking the point x, as the space origin, the instant tAt as the time origin, and
replacing u; and u, by u!, and u}, 41 respectively. Of course this is only possible as long as the solution
computed thus is not modified by the solution computed at the neighbouring points during the time-
step. This implies that the cell length [, must be greater than the product of the time-step by the
greatest possible speed of wave-propagation. Hence:

(16) la > AtMazy|f'(u)] (V(a))

This is precisely the condition under which the Osher formula is established. The resolution of the
Riemann problem in the present context is trivial and the resulting solutions are described by the
following characteristics charts. We use the notation

Ql = Qe(Kl)
Qr = Qe(Kr)

for the equilibrium flows upstream and downstream of the initial density discontinuity at z = 0. The
flow Q(0,t) through this point is given in every case and is identical to the flow given hereafter by the
Osher formula.

Case K; and K, undercritical: Q(0,t) = Q;:

t t
oA

X X

Case K overcritical and K, undercritical: Q(0,t) = Qmaz:
t




Case K; and K, overcritical: Q(0,t) = Q,:
t t

.

X X

Case K; undercritical and K, overcritical: Q(0,t) = Min[Q, Q]
TOAN / R

X X

The Osher formula is trivially equivalent to the solution of the Riemann problem.

To conclude, let us say a few words about some earlier models. In [CP 92|, Roe’s scheme was
examined, and applied among others to the LWR model. This scheme is a variant of Godunov’s
method using an approximate Riemann solver instead of the exact solution of Riemann’s problem. In
[MBY 84], a shock-fitting Lax-Wendroff scheme was considered. But the resulting algorithm is quite
intricate. In [HI 95| (section 4.1), the following simple formula is proposed:

Q. =K. ‘/e(Kszl’a' +1)

(in a sem-discretized context in fact, but easily discretized). This last formula has in principle the
defect that there is no control over maximum flow or density values in the formulation; nevertheless
interesting results are reported in [KLHK 95]. Finally, let us examine the SSMT formula [LE 84|,
which is described by the following sequential algorithm:

Compute

ey QulEL) — QulKLy)
Ko — K

(u can be considered the shock-wave speed associated to the initial conditions of a Riemann
problem with w; = K}, u, = K} |.

If u > 0, the flow, being determined by upstream conditions, is defined as:
QZ = Qe(K};)
If u <0, the flow, being determined by downstream conditions, is defined as:

Q Qe( a—l—l)

Finally, and whatever the value of u, if K; > K.+ > K,

t
Qa = Qmax )

expressing the acceleration of vehicles in the rarefaction fan at maximum flow.



This algorithm is equivalent to the Osher formula and can be viewed as an implementation of the
solution to the Riemann problem. Indeed, if K! and K! 41 are undercritical, u > 0, hence Q! = Q.(K}),
and if K} and K[, are overcritical, u < 0, hence QY = Q.(K!,,). If K! undercritical and K|,
overcritical, the sign of u is that of the difference Qe(K., ;) — Qe(KL), and QY = Q.(K}) if u > 0,
QL = Qe(K!, ;) if u <0, hence QY = Min[Q.(K!),Qc(K!,)]. The case K! overcritical and K¢,
overcritical needs no checking.

All the formulas described in this section for the computation of the flows between cells or equiva-
lently the flow at the origin in the Riemann problem are inadequate for the modelization of inhomoge-
neous conditions. For instance in the SSM'T model, in which a facility for the modelling of intersections
was provided, flow discontinuities could result from the use of the algorithm described above. These
discontinuities went unnoticed for a long time, essentially because they occured infrequently (in sat-
urated conditions), in intersections whose dynamics were complicated anyway, and because the input
of the model was generally real data. The inclusion of a modified version of SSMT into METACOR
as its urban part led to a correction which will be described in the next section, since it provides the
link between Daganzo’s flow formula and the Godunov scheme in the inhomogeneous case.

4 The Generalized Riemann Problem

4.1 introduction

We now adress the case where (). depends explicitly and discontinuously on z. Typically, we shall
consider in this section that (). is piecewise constant relative to x, and as usual a concave function
of K on the interval [0, K;nez(2)]. The introduction of such a functional form is motivated by the
necessity to be able to model:

- intersections,

- sections with variable number of lanes,

incidents (implying local and temporary restrictions of capacity, speed, etc ... ),

any situation in which speed and/or capacity parameters are likely to vary.

Further, the discretization of traffic in situations such as refered to above implies the use of piecewise
constant approximations of Q.. Hence, the equilibrium flow-density relationship associated to cell (a)
will hereafter been noted

(17) Qe(Kq,a)

to emphasize its dependency on both the average density K, in cell (a) and on the cell itself. Typically,
the physical parameters Quaz, Vinaz, Kmaz, Kerie would be functions of the cell (a), but the functional
form itself might vary as well from one cell to the other. For instance the equilibrium relationship in
a cell belonging to a urban link might have a different functional form from that of a cell belonging to
say an access or exit ramp or a highway section. In this discontinuous context, the basic principles of
the Godunov scheme remain the same as in the continuous case and the Godunov scheme requires the
following steps for its basic iteration.

- The starting point is a piecewise constant approximation K of the solution K of (4), at time tAt,
described by the approximate values K. of K (z,tAt) for all z in cell a:

K(z,tAt) ~ Kt Y K(z,tAt) (Vz € a)

- One computes the exact solution (Z, ®) of the LWR system (1), (2), (3) at time (¢ + 1)A¢t, with E
the density and ® the flow, given the initial condition at time tA¢:

E(z,tAt) = K} (Vz € a)

The initial condition means Z(., tAt) = K (.,tAt)

10



- One takes the average of Z(., (t + 1)At) over cell (a), yielding Kt

KU :/ =(x, (t+ 1)AL) do
@

Let us note the following:

It 1s essential that the set of discontinuity points of Q. be included in the set of cell boundary
points.

As before, we get:

At
K =42 QL, —Q)
a
with Q' the flow passing at exit point z, of cell (a) during time interval [tAt, (t + 1)At] :
(t+1)At
QZ = P (z4,5) ds
tAt

The only remaining problem is that of estimating the Q!s, which is achieved by solving a generalized
Riemann problem.

4.2 Principles of the solution
We consider now a Generalized Riemann Problem for the LWR system (1), (2), (3) with initial con-
ditions:

B K, ifz <0
K(*'”’O)—{ K, ifz>0

and following equilibrium flow-density relationship:

_ [ Qe(K,l) ifx <0
Qe(K,z) = { Q.(K,r) 1ifgfc >0

Qe 1) Qe(-.1)

0 X

We must now describe the rules that will enable us to calculate the solution of this Riemann problem.
Let us first consider the case where the dependency on z is smooth. The basic fact which enables us
to compute the solutions of the LWR system (1), (2), (3) (i.e. (4)) is the existence of characteristic
lines for the flow, i.e. lines along which the flow (but not the density) is constant. Indeed, if one looks

for a line (z(t),t), in the (z,t) plane, along which @ is conserved, one gets, starting from Q9 _

dt —
o . 0Q
or:

0Q. 0K .0
Q0K | 0Q _

oK ot Tor =0

11



which, indentified with (4), yields:

dr 0
(18) dr _ 0Q.

dt 0K
This last equation of course must be combined with a rule of choice of the density since at any point
x, for every value of the flow @), there exist two values of the density such that

Qe(K,z) =Q

(K (z,t),z)

Consequently we define:

Q = Q.(K,z)
qul(an) =K <+ K < Kcrit(x)

(K undercritical)
(19)

Q= Q.(K,z)
Q;ol(an) =K <+ K Z Kcrit(x)

(K overcritical)

(the subscripts u and o meaning respectively under- and overcritical). Now, to compute for instance
the characteristic line passing through point (xg,%o) of the (x,t) plane, we note the initial conditions:

Ko d;f K(.T[), to)

and: def
Qo = Q(zo,t0) = Qe(K (w0, t), 7o)
If Ky is undersaturated, the characteristic line is described by the equation:

x(to) =T
20) T
and by the equation:

x(to) =T
2y {5 mlono e

if Ky is oversaturated.

What is to be highlighted here is the fact that as long as a characteristic line is not interrupted by
a shock-wave, its associated density must vary continuously. As a consequence, since (). is smooth,
what we shall call the state of the flow (i.e. whether it is under- or overcritical) will remain constant
along a characteristic line. Let us emphasize that under- or overcriticality is understood here in the
large sense, meaning that both concepts include criticality (i.e. K = Kp,q,). The state of the flow
along a characteristic line may only change at points = such that:

Qe Qe
8[5 [Qeol(Qﬂux)ax] = 8[(8 [Qeul(QOWT)ax] =0
At such points which are inflection points, the characteristic need not be unique.
t
X
large Q, small Q large Q,



In the above figure an increasing flow is limited by a capacity restriction, characterized by a “small
Q¢”. There is no unicity of the characteristics issued from the inflection point A.

The case where @, depends discontinuously on x will be considered as a limit case of the smooth
case, with Q.(K,.) varying very fast. The flow @ is continuous relative to x, except at shock-waves,
as a consequence of the conservation equation (1). This holds true also at space discontinuity points
of Q.. At the crossing of such points the flow @), but not the density K, is conserved. Another
way to understand this is to consider a space-discontinuity point of (). as a very special, stationary,
shock-wave, with shock-wave speed u = 0 and consequently the jump condition reduces to [@] = 0.

Suppose now that a characteristic line crosses a space-discontinuity point of ().. The flow is the
same on both sides of the discontinuity; in order to compute the relationship of densities on both
sides of the discontinuity we impose the condition that the flow state be conserved while crossing the
discontinuity. This refraction condition of characteristic lines can be justified two ways.

1. It is satisfied in the smooth case, hence it is consistent to suppose that it is satisfied in the
discontinuous case as well, viewed as the limit of the continuous case.

2. If this condition were not satisfied, there could be no crossing of the discontinuity by the char-
acteristic line. Indeed, the sign of the slope & (t) of the characteristic line, which is equal to the

sign of
0Qe

0K

must be the same on both sides of the discontinuity, which is to say again that the state of the
flow must be conserved across the singularity.

(K (2(t),1),2)

The refraction of a shock-wave across a discontinuity has the following aspect:

t t

X ! X

Consequently, a characteristic line bearing a flow Q¢ and crossing a discontinuity at point z will
be associated with density Q!(Qo,z—) upstream and Q' (Qo, 7+) downstream of the discontinuity,
where * is equal to u or o depending on whether the characteristic line is associated with an undersat-
urated or oversaturated flow. Characteristic lines are therefore refracted (but not reflected: reflection
conditions generate a shock-wave).

As a consequence of the preceeding analysis, we shall use the following rules for the computation
of the solution of the Generalized Riemann Problem (these rules apply more generally for all problems
with piecewise continuous dependency of Q). on z):

- characteristic lines carry a constant flow and traffic state, and are described by equations (20) and
(21),

the density on a characteristic line is derived from the flow value by taking the reciprocal of the part
of the equilibrium flow-density relationship corresponding to the traffic state of the characteristic
line (equations (19)),

across a spatial discontinuity of the equilibrium flow-density relationship, the flow value is conserved,

along shock-wave lines, the usual Rankine-Hugoniot condition holds,

- shock-waves and rarefaction fans are introduced according to the usual rules for the computation of
entropy solutions, wherever ). is continuous,
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- in case of multiple possible solutions at the singularity, the solution maximizing the local flow is
choosen.

This last rule is completely consistent with the conception of the solution of the LWR problem with a
singularity as a limit case of the entropy solution of the LWR problem with a very rapidly varying Q..
It may be conceived of as a generalization to the discontinuous case of the definition of the entropy
solution of the LWR problem as the solution that, among all possible solutions, maximizes locally the
flow. So we simply adapt the usual rules for the computation of entropy solutions and supplement
them with rules for taking into account the spatial discontinuities of ().

4.3 Effective solution of the Generalized Riemann Problem

Let us recall the definition of the Generalized Riemann Problem:

Find the solution K (x,t), for t > 0 and all z, of the LWR system (1), (2), (3):

oK | 0Q _
St tax =0

Q=KV
Q= QB(K,IE)
with initial conditions: it 0
B L x <
K(z,0) = { K, ifz>0

and . given by:
[ Qe(K,I) ifz <0
Qe (K, 2) = { Qe(K,r) ifx >0

In the sequel, we shall also use frequently the following notation:

de
Qo)

def )
r = Qe(KT7T)

which are the flows upstream and downstream of the singularity. We shall now describe the various
solutions of the Generalized Riemann Problem, corresponding to the possible relationships between
the physical parameters upstream and downstream of the singularity (conventionnally placed at the
origin). There are many cases to be considered, and the description of the solution for the various
cases will be essentially graphical, with comments given only as needed. The solutions will represented
by their characteristics charts in the (x,t) plane, as is custumary. The results do not depend on the
specific functional forms of Q.(.,1) and Qe(., 7).

The main classification criterium is whether Qq. (1) is greater than Qe (r) or not. The second
criterium is the initial traffic state upstream and downstream of the singularity (under- or overcritical).
The third criterium is the comparison between the smallest maximum flow Min[Qmaz (1), @maz(r)] and
the flows Q; and Q. The reason for this is that in certain circumstances no characteristics at all may
cross the singularity. This implies that in such a situation the characteristics either converge towards
the singularity (the flow is then identical on both sides of the singularity, overcritical downstream and
undercritical upstream) or diverge from it. In this last case (of which we shall see several examples later
on), many solutions are possible, including the entropy solution maximizing the flow, which is then
precisely equal to Min|[Qmaz (1), Qmaz(r)]. With this value of the flow, the flow state varies continu-
ously from overcritical upstream of the singularity through critical at the singularity, to undercritical
downstream of the singularity. Hence 18 different subcases need to be considered.
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4.3.1 The general case Q42(!) < Qmax(r)

The refraction of characteristic lines will generally have the following aspect, which we shall use for
the illustrations later on (the exact refraction angle depends on the specific functional forms of Q.(.,[)

and Qc(.,r)):

/

X X

What is essential is that the refraction of a characteristic line is possible only if the flow @) it carries
is smaller than @4z (!). The refraction in the limit case of a characteristic line carrying a flow value
Q = Qmaz (1) is illustrated hereafter.

t t

7

a. K;, K, undercritical The upstream characteristic lines can cross the discontinuity point uncon-
ditionnally. The solution depends on the relative values of ); and @,. The two resulting possibilities
are illustrated hereafter.

t t
e
K 7 /K K
77 /K(

Qr greater than q Qr smaller than q

The characteristic lines carrying flow ; carry a density value

qul (Qla T)

on the right side of the discontinuity, and a density value K; of course on the left side. The flow value
at the singularity point is at all times:

Q(Oat) =@ V>0

b. K, undercritical, K, overcritical The crossover of characteristic lines is possible uncondi-
tionnally from left to right, and is possible from right to left only conditionnally to @, < Qmnaz(l)-
Nevertheless, if Q, > Qmaz (1), then @, > @Q; as well, and in this case the crossover of characteristics
occurs from left to right anyway. The following two possiblities result, depending on whether @ is

greater or smaller than Q.
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Q, greater than Q Q smaler than Q

The characteristic lines carrying a flow @;, when crossing the singularity, carry a density value

Qe_ul (Ql7 T)

on the right-hand side of the discontinuity, and a density value K; on the left side. The characteristic
lines carrying a flow @, when crossing the singularity, carry a density value

()

on the left-side side of the discontinuity, and a density value K, on the right side. The flow value at
the singularity point is at all times:

Q(0,t) = min[Q;, Q,] Vt >0

c. K; overcritical, K, undercritical Considering the slopes of the characteristics generated at
t = 0, which are negative on the left-hand side of the singularity and positive on its right-hand side, it
is clear that no characteristic line crosses the singularity. Hence, according to the last computational
rule, the flow at the singularity is equal to the smallest maximal flow, i.e. Quuaz(l). Consequently
there results an acceleration fan on the upstream side of the singularity, and a boundary condition
Q = Qmaz(l) with undercritical traffic conditions on the downstream side of the singularity. The two
resulting solutions are shown hereafter:

t t

/ /// K

Q ey () grester than @ Q () smaler than Q

X

The density on the downstream side of the singularity, carried by the characteristics generated by the
boundary condition Q(0,%) = Qumaz(l) is

Qe (Q@maz (1), 7)
The flow at the singularity is of course
Q(0,t) = Qmas(l) Vt>0
To illustrate the non-unicity of solutions on this specific example of characteristics diverging initially

from the singularity, corresponding solutions that do not maximize the flow locally (and do not assure
continuity of the traffic state) are given hereafter.
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/ / K
r /

X
Qo greater thanQr X Q0 smaller than Qr

These solutions are characterized by a flow Qg at the singularity that satisfies to Qo < Qmaz(l)-

c. K; overcritical, K, overcritical In this case we need only consider the crossing of the singu-
larity by characteristics of negative slope, associated to an overcritical traffic state, generated on the
downstream side of the singularity. The characteristics may only cross over if @, < Qpaz(l). Two
subcases result from the satisfaction of this condition, depending on whether (); is smaller or greater
than @,. The corresponding solutions are described by the following characteristics charts.

t t
~ B
N \
K, K, AR I —
\\ K
\\ N
X
Q| smaller than q X Ql greater than q

In both cases,
Q(Ovt):QT‘ Vt>0 )

and the density carried by the characteristics crossing the singularity is K, on the right-hand side of
the singularity and Qe (Q@r,!) on its left-hand side.

Now, if Q; > Qmaz(l), the situation is similar to the one analyzed above (case c¢: K overcritical,
K, undercritical, with Q, > Qpnaz(l)). There is an acceleration fan upstream of the singularity, and
characteristics carrying a flow Qaz(l) and an undercritical density Qg (Qmaz(l),7) are generated
downstream of the singularity. The flow at the singularity is given by:

Q(0,t) = Qmaz(l) Yt >0
The corresponding solution is illustrated hereafter:

t

Qmax(l) smaller than Q
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4.3.2 Summary of the results for the case Q4 (l) < Qumaz(T)

The values of the flow at the singularity resulting for the solution of the Generalized Riemann Problem
are given in the following table:

K\K, uc oc

(22) uc Ql MZ”[QW Ql]

oc Qmaz (l) Min[Qra Qmaz (l)]

In this table, the abbreviations uc and oc mean again undercritical and overcritical respectively. It
is straightforward to check that if Quuez(l) = Qmaz(r), then this table is identical to table (14),
summarizing the results of the Riemann Problem for the homogeneous LWR model. Indeed, if

Qmaz () = Qmae(r), then Qp < Qaz(l) = Qmae(r), and it follows:
Min[Qra Qmax(l)] =Qr

4.3.3 The general case Q42(1) > Qnaz(r)
The refraction of characteristic lines will generally have the following aspect:

t t

\

X X

The refraction of a characteristic line is possible only if the flow @ it carries is smaller than Qs (7).
The refraction in the limit case of a characteristic line carrying a flow value Q = Qmae(r) is illustrated
hereafter.

t t

N

a. Kj, K, undercritical In this case, we have to consider whether the characteristics generated on
the left-hand side of the singularity can cross it or not. The crossover of characteristics is possible only
if Q; < Qmax(r). If this condition is satisfied, the following solutions result:

Q, greater thanQ, X Q, smaller thanQ,
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The flow at the singularity is:
Q(Oat) =Q Vt>0 ,
and the density carried by the characteristics crossing the singularity is K; on the left-hand side of the
singularity and Q.,!(Q;,r) on its right-hand side.
Now, if Q; > Qmax (), the flow is necessarily critical at the singularity, since no characteristics may
cross it. Hence, Q(0,t) = Qumaz(r) for all times ¢ > 0, and the resulting solution can be described as:

Q max (r) smaller than Q

The characteristics generated upstream of the singularity by the boundary condition carry a flow
Qumaz(r) and a density Q.. (Qmaz(7),1)

b. K; undercritical, K, overcritical The characteristics generated on the right-hand side of the
singularity can cross it unconditionnally, the characteristics generated on its left-hand side can cross it
only if Q; < Qumaz(r). Nevertheless, if Q; > Qumaz(r), the crossover of characteristics occurs from the
right to the left anyway, as a special case of the general case @ > @Q,. Consequently, the solution is
described by the following chart:

/ot N — s
\\ r // K,

Q, greater thanQ, X Q, smaller thanQ,

The flow crossing the singularity is:
Q(Oat) = M'Ln[Qla QT] vVt >0 )

and the density carried by the characteristics after crossover is equal to Q.1 (Q;, ) for the characteristics
crossing the singularity from the left to the right, and to to Q,!(Q,,1) for the characteristics crossing
the singularity from the right to the left.

c. K;overcritical, K, undercritical No characteristic can cross the singularity, which consequently
defines a critical boundary condition @ = Qe (r). This boundary condition is associated to an
acceleration fan on the downstream side of the singularity, and the flow upstream of the singularity
is overcritical and equal to Q42 (7). The exact solution depends on whether @); is smaller or greater
than Qaz(r). The charts of the solution are the following.

t t

Q, smdler thanQ__ (1) * Q, grester thanQ, . ()
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The flow crossing the singularity is:

Q(0,t) = Qmaz(r) YE>0 |
and the density carried by the characteristics generated by the boundary condition at the singularity

is equal to Q.. (Qmaz(r),1)-

d. K; overcritical, K, overcritical Only the characteristics generated on the downstream side
of the singularity may cross it, and they can do so unconditionnally. Consequently, according to the
respective values of @; and @, we get the following solutions.

t

QI srnallerthanQr QI greaterthanQr

The flow crossing the singularity is:

Q0,t) =Q, Yt>0 ,
and the density carried by the characteristics crossing the singularity is equal to Q.!(Q,!) on the
upstream side of the singularity.
4.3.4 Summary of the results for the case Quz(l) > Qumaz(T)

The values of the flow at the singularity that result for the solution of the Generalized Riemann Problem
are given in the following table:

K \K, uc oc
(23) uc Min[Q1; Qmaz ()] | Min[Qy, Q]
oc Qmaz(r) Qr

As in the previous table (22), we use in this table the abbreviations uc and oc for undercritical and
overcritical respectively. It is straightforward to check that if Qpez(l) = Qmaz(r), then this table is
again identical to table (14), summarizing the results of the Riemann Problem for the homogeneous
LWR model. Indeed, if Qa2(l) = Qmaz(r), then Q) < Quaz (1) = Qmaz (1), and it follows:

M’in[Ql, Qmaaz (T)] = Ql

Tables (22) and (23), which summarize the expression for the flow in Godunov’s scheme resulting from
the analysis of the Generalized Riemann Problem, were introduced in [LE 93| as a correction in the
inhomogeneous case to the algorithm used previously in SSMT.
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4.4 Relationship between various expressions of the flow in Godunov’s scheme

A first point: if Qmaz(l) = Qmaz(r), tables (22) and (23) are identical to table (14), i.e. to Osher’s
formula and consequently to all formulas equivalent to Osher’s formula.

The second point is: they are also equivalent to Daganzo’s formula introduced in [DA 94] and
studied in [DA 93]. To check this point, let us define:

— the (upstream) traffic demand function
A(KL1) def { Qe(Ky, 1)) if K; < Kgi(l) (undercritical flow)
b Qmaz(l) if K; > Kei(l)  (overcritical flow)
(24)
— the (downstream) traffic supply function
S(K,,7) def { Qmaz(r) i K, < Kegi(r) (undercritical flow)
™ Qe(Ky,r) if K, > Kqi(r) (overcritical flow)

Following [BLL 95| and |[LE 95| we shall prefer this terminology demand and supply, for reasons which
will become completely self-evident in the next section 5.

Intuitively, the meaning of the traffic demand function is the following: it takes the value of the
greatest possible outflow of the upstream half-line, if the downstream half-line were empty and of
arbitrarily great capacity. Symetrically, the meaning of the traffic supply function is the following: it
takes the value of the greatest possible inflow into the downstream half-line, if the upstream half-line
were oversaturated and endowed with the same equilibrium flow-density relationship as the downstream
half-line.

It is straightforward to check that with the definition (24), tables (22) and (23) can be replaced by
the single following formula giving the flow Q(0,¢) through the singularity in the Generalized Riemann
Problem:

(25) Q(0,t) = Min[A(Ky, 1), 2(K,,T)]

This formula expresses of course the fact that the Generalized Riemann Problem was solved by com-
puting specifically those solutions that maximized the flow Q(0,¢). By definition, this flow must be
smaller than, or equal to the traffic supply and demand. If Qpaz(l) < Qmaz(r), the table (22) can be

rewritten as:
A(Klv l)\Z(KT’ T) Qmaaz (T) QB(KT (T)T)

Qe (K (1)) Qi Min[Qr, Qi

Qmaw (l) Qmaw (l) M’iTL[QT, Qmaaz(l)]

and every value of Q(0,t) in this table appears indeed as the minimum of the corresponding values of
the supply and demand given in the margins.
Similarly, if Qmaz(l) > Qmaz(r), the table (23) can be rewritten as:

A(Ky, D\E(Kr, ) Qrmaz (1) Qe(Kr(r)r)
Qe(Kl(l)l) M’Ln[Ql, Qmaw('r)] M'Ln[Qlu Qr]
Qmaz (l) Qmaz (T) Qr

and every value of Q(0,¢) in this table appears also as the minimum of the corresponding values of
the supply and demand given in the margins. To this author’s knowledge, Daganzo was the first to
introduce this specific expression (25) of the flow of Godunov’s scheme, in [DA 94| where he used it in
the context of a specific equilibrium flow-density relationship which was piecewise linear, as depicted
hereafter:
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Later on he generalized it in [DA 93] to general flow-density relationships, as mentionned already. Let
us add that (25) is also linked to ideas expressed in [NE 93].

4.5 Discretization of traffic flow on an inhomogeneous lane

We return to the problem of the discretization with Godunov’s scheme of the LWR system on an
inhomogeneous lane, adressed to in subsection 4.1. In order to apply (25) to Godunov’s scheme, the
Generalized Riemann Problem is solved at all discretization points z, in order to estimate the relevant
integrals of ® and =. The resulting flows are indeed equal to the flows

(t+1)At
Q= D(xq,s)ds
tAL
if the solution of the Generalized Riemann Problem at one extremity of a does not modify the solution
at the other extremity during the time step [tAt, (¢ + 1)At]. To ensure that this condition to be
satisfied, it suffices that the greatest possible propagation speed of shock-waves in cell a,

d 0 0
(26) Unao(a) € Mag] a% (0,a), ——8% (Kmaz(a),a)]
be smaller than {,/At:
la
< &
(27) Umaz(a) < Ag

This condition specifies that the spatial and temporal resolution of the model cannot be choosen
arbitrarily. For a given time-step, there exists a lower limit to the admissible space-discretization step
size.

It is convenient to associate to every cell a its traffic supply and demand functions, which following
(24), will be defined as:

— the cell traffic demand function
A a) def Qe(k,a)) if k< Kei(a) (undercritical flow)
el @) = Qmaz(a) if k> Kgi(a) (overcritical flow)

— the cell traffic supply function
5, (5, a) def Qmaz(a) if k< Kei(a) (undercritical flow)
elfi, @) = Qc(k,a) if k> Kei(a) (overcritical flow)

It results that, provided that (28) is satisfied,
(29) QZ = Min[Ae(Ka(t)a a')a ZJe(K-a-I-l(t)a a—+ 1)]
The basic iteration of the Godunov scheme can be rewritten as:

- a first loop indexed on the cells, during which the cell traffic demands A(K,(t),a) and supplies
Y(K,4(t),a) are computed,

- a second loop indexed on the discretization points z,, during which the flows are computed following
above equation (28),
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- a third loop indexed on the cells, during which the cell average densities are compute according to:

A
KE = K+ (@~ Ql)

which ensures the conservativity of the scheme.

This possibility of breaking down the scheme into three independent component parts is an essential
feature, that allows for specific physical characteristics for each cell and constitutes the clue for the
generalization to networks of the scheme.

4.6 Dissipativity of the Godunov scheme

Many proprieties of the Godunov scheme are discussed in [DA 94| from the traffic point of view, and
there is no need here to expand on them. For a more mathematical point of view, the reader is refered
to [LV 90] or to [GR 91], as mentionned before. It is nevertheless necessary to point out one of the less
desirable features of the scheme, i.e. its dissipativity.

Let us consider for instance a single cell a, and let us suppose that the traffic flow is roughly
stationnary, i.e. varying slowly from one time-step to the next. Then, if the flow is undercritical,
we may consider the inflow Q%_, as given (see section 5 below for a rigourous justification), whereas
Q! = Qe(K!, a). It follows:

At
+ l_( Z—l - QZ) y

3Qe

t+1 _ gt
Ka - Ka

Qo' = Qe(Ky™ a) » Qo+ —2 (Kq,0) K — K]

assuming Q! _; — Q! small enough (here the near—statlonnarity hypothesis intervenes). It follows:

Q" (11— a)Qg — Qi

with

o e 0Qe per AL B2 (KL, a) Vinaa (@) At
0K la Vmaaz(a) la

This is of course a smoothing process whose smoothing factor « can be described as the product of
two terms

1. The term V4, (a)At/l, is of a geometric nature, and should be taken as near to 1 as possible
in order to restrict the numerical dissipativity of the scheme. This term is limited by (27). In
/Dag95.1/ it is taken to be 1 exactly; for complex networks this is usually not possible and the
cell lengths and time-steps should be adjusted in order that « should be as near to 1 as possible.

2. The term

0Q.
S (K0)/ Vinas (0)

depends on the traffic intensity, and is equal to one if K! = 0, and small or nil (depending on
the functional form of Q) for critical density K. ~ Knqz(a).

A symetric result holds in the overcritical case, except that the roles of the entry and exit of the
cell a are exchanged. We need to introduce the greatest backward propagation speed of perturbations,
Winaz (@) defined as:

def 8@8

Winaz(a) = 0K (Kmaz(a),a)
(hence (26) can be restated as Upag(a) = Max[Vimaz(a), Winaz(a)]). It follows that:

Qz,—i_ll ~ ( /6) f],fl - BQZ )
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with )
3 def %(Ké, a) Waz(a)At
Winaz(a) lq

Here the smoothing factor 3 is most favorable when the density is highest and the cell length smallest.
It must be noted that in most cases, Wi,ae(a) will be smaller than V4, (a), which means that there
will always be a certain amount of residual smoothing for shock waves, of a factor Wiez(a)/Vinez (@)
in the most favorable case, i.e. for adjusted cell length I, & V42 (a) At and very high density.

This smoothing of shock-waves and undercritical flow might be thought of as a positive trait;
indeed the formula obtained above is somewhat reminiscent of the TRANSYT [RO 69| smoothing
formula. Nevertheless the problem here is that the modeller has little control over the geometric parts
of smoothing factors, since cell lengths will usually result from other considerations such as desirable
time-step, computational complexity, link lengths (the links must be subdivided into an integer number
of cells!), etc ....

5 Proper boundary conditions for the LWR model of a link

We shall study in the next sections some extensions of the LWR model. We shall begin with the
following remark: the traffic demand and supply at the entrance and exit of a link provide the natural
boundary conditions for the solution of equation (4) on the link. More precisely, equation (4) on the
link [a,b] with initial conditions K (z,t°) for & € [a,b] supplemented with upstream demand A(a,t)
and downstream supply X(b,t) for ¢ > #° will admit an unique (entropy) solution. For convenience’s
sake we shall consider reduced demands and reduced supplies:

A(a,t) = min(A(a,t), Qmaz)

Y(b,t) = min(X(b,t), Qmaz)

where Qnae 18 the maximum flow in [a, b].

a b
Ala,t) 2(b, t)

The above-mentionned property is of course completely intuitive. A simple way to understand it is to
consider the simple case where upstream demand A(a,t) and downstream supply ¥ (b, t) are constant,
i.e. independant of ¢, and the initial condition K (z,t°) is homogeneous, i.e. independant of x. This
would be the analogue of the Riemann problem, this time for the description of the effect of boundary
conditions. Let us first point out that the equilibrium supply and demand functions are monotonous.
Hence to every upstream demand it is possible to associate a unique undercritical density, and to every
downstream supply it is possible to associate a unique overcritical density. Consequently we define the
inverse equilibrium supply and demand functions (for a cell i):

(30) AZL6,0) ™ ki 6 = Au(k,i) and K € [0, Kunir(i)]
(31) 216,0) Yk iff 6= Bu(k,i) and K € [Keit(i), Ko (9)]

The computation rule for entry points is the following. The upstream reduced demand A(a) determines
the boundary conditions at entry point a except when it is greater than the supply of the link [a, b],
Ye(K(a),[a,b]), which for simplicity’s sake we shall abbreviate as ¥.(K). Hence:

- if A(a) < B(K), the density at entry point a is given by A '(A(a)) (here we skip the dependency
of A_ ! on [a,b] as well) and the associated flow is A(a) (the associated characteristic lines are
of positive slope),

- if A(a) > Xe(K), the density at entry point a is given by K (which is necessarily overcritical) and
the flow is Q¢(K) = Xe(K) in this case. The associated caracteristic lines are of negative slope.
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The resulting solutions are represented hereafter:
Case 1, Aa) € Qe(K) < Qumaz = Ze(K):

t

A (A

a X

Case 2, Qe(K) < A(a') < Qmaz = z]e(Kv)3

t

A4 ()
K
a X
Case 3, A(a) < Qe(K) = Xe(K) < Qmag:
t .
Case 4, Qe(K) = Z]e(I() < A(a) < Qumaz:
t
K
a X

The situation at the other end b of the link is exactly symetric. The downstream reduced supply
Y (b) determines the boundary conditions at exit point b except when it is greater than the demand of
the link [a, b], A (K (D), [a,b]), abbreviated as A.(K). Hence:

- if $(b) < A¢(K), the density at exit point b is given by X71(X(b)) (as previously we skip the

dependency on [a,b]) and the associated flow is 3(b) (the associated caracteristic lines are of
positive slope),
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- if ¥(b) > A¢(K), the density at exit point b is given by K (which is necessarily undercritical) and
the flow is Q¢(K) = Xe(K) in this case. The associated caracteristic lines are of positive slope.

Case 1, Qe(K) = Ae(K) < X(b) < Qumag:

7

b X
Case 2, X(b) < Qe(K) = Ae(K) < Qmag:
t
LI (2(b)
K
b X
Case 3, Qc(K) < 3(b) < Qumaz = Ae(K):
t
L)
K
b X
Case 4, X(b) < Qe(K) < Qumaz = Ae(K):
t
N -1
V2 (Z0
K \\
b X

It is straightforward to check that by considering the solutions obtained in this section for entry

and exit points as right-side and left-side solutions at a same point say ¢ lef a = b and “pasting” them

one retrives the various solutions of the Generalized Riemann Problem described in section 4.
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6 Modelling intersections within the framework of the LWR model

6.1 Introduction

We shall now adress the problem of describing consistent first-order LWR models of networks. In the
preceeding section, we have clarified the issue of boundary conditions for links within the framework
of such a model. We have seen that the entry point, is characterized by the traffic supply of the link
whereas its exit point is characterized by the link traffic demand. These quantities must be adjusted
respectively to the upstream demand and the downstream supply to determine the dynamics of the
link. If we wish to model an intersection, the problem becomes now: how to combine the different
demands upstream of the intersection, and how to adjust them to the different supplies downstream
of the intersection.

Before proceeding with the analysis, we must first precise the scale of the intersection model en-
visioned here. Essentially, we shall consider intersections modelled as geometrical points. As we shall
see, these points can nevertheless be endowed with some physical characteristics and parameters if
need be. Such a model is consistent with the spirit of the LWR model, in which the space scale should
be reasonnably large. More sophisticated models are possible, we shall say a few words about them at
the end of the section 7.3.

A technical definition must be introduced at this point. In subsection 4.5, formula (28), the concepts
of cell traffic supply and demand function were introduced. It is similarly possible to define local traffic
supplies and demands, for piecewise continuous equilibrium flow-density relationships and piecewise
continuous solutions of the LWR system (1), (2), (3). Let us first define the local equilibrium demand
and supply:

— the local equilibrium demand function
Ak, 7) def Qc(k,z—) if kK < Kepie(z—) (undercritical flow)
el @) = Qmaz(x—) if k> Kgy(z—) (overcritical flow)

— the local equilibrium supply function
(K, 7) def Qmaz(z+) if Kk < Kegi(z+) (undercritical flow)
e\fn®) = Qe(k,2+) if K> Kepit(z+) (overcritical flow)

The traffic equilibrium demand function has the following aspect:

A, + Undersa-
turated Oversaturated
Regime Regime
Qma.’l'— - — =
|
|
|
|
| :
KCTit Kmax K

The equilibrium traffic supply function has the following aspect:
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Y. + Undersa-
turated Oversaturated
Regime Regime
Qma |
|
|
|
|
|
KCTit Kmam KS

We can now define the local traffic demand and supply as

— the local demand

A(xa t) déf AE(K(x_a t)a $)
(33)
— the local supply

Sz, 1) Y S (K (a+, 1), )

Let us note that it follows from this definition that if (K, @) is a piecewise continuous entropy solution
of the LWR system, then at all points # and all times ¢:

Q(z,t) = Min[A(z,t), X(z,t)]

6.2 Modelling diverges

Let us now consider first intersections of the diverge kind, composed of an upstream link (u) and
several downstream links (d1), ..., (di), ....

d)

(d2)

(u) y
(d3)

Given at a time ¢ are the state of every link and the assignment coefficients p;: p; is the proportion of
users in link (u) at intersection point y wishing to use link (d;). The upstream demand is then given
by:

A'u, = Ae(K(y_atau)ayv U) )

and the downstream supplies are given by:

de
S Y S(K (gt £ di), y; d)

Now we must specify what we understand exactly by intersection model. An intersection model consists
of a set of rules enabling us to adjust upstream demands to downstream supplies. Such an adjustment
requires two steps.

1. It is necessary to choose the order of the adjustment process, meaning to choose whether to
compute first the total flow through the intersection, and then to divide it between the partial
flows relative to the various entry and/or exit links, or to first compute these partial flows and
then to agregate them.

2. It is necessary to use a rule for the splitting of flows, supplies and/or demands.
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Both steps involve choices that are not intrinsical but of a phenomenological nature, directly linked to
the kind of driver behaviour and physical conditions to be modelled. Let us illustrate this in the case
of a diverge. If one chooses to compute the total outflow of (u) first, it is necessary to determine an
equivalent downstream supply for (u), let ¥, be its name. Then the total outflow of (u), @y, will be
given by:

Qu = Min[A,, Zeq]

A simple rule for splitting the total flow according to downstream links (d;) is the following:

def

QL = piQu

(here we need to distinguish the inflows QI; of links (d;)). This rule means that the outflow is split
exactly according to its composition, a rule that has a long history; it has been used already in [PA 90]
for instance. We shall analyze it in the next section. Now there remains to check that QI; < 3; for all
downstream links. From @, < Min;[3;/p;] it follows that the choice that maximizes the outflow @ is

d .
Qeq <l Min; [¥;/pi]

This choice is in keeping with the flow-maximizing properties of the entropy solutions of the LWR
model. The resulting intersection model has been described in [DA 94]. Let us note that if 3., is nil,
i.e. if one of the downstream supplies is nil, then the total (as well as the partial) outflows are nil. This
illustrates precisely the kind of intersection that are modelled by the preceeding model: essentially
intersections whose upstream link has a single lane, or behaves as if it did. There is no specific storage
capability for the users whose destination is an oversaturated link. Let us note that this model works
both for discretized and distributed models. By distributed model we mean a model whose basic objects
are undiscretized functions of continuous variables, in opposition to discretized models. The discretized
model is described by:

Q= Min[A, Miny(S4/p))] |

QI = pQL  ¥(di)

A quite different model is the following, in which the demand A, is split first according to:

d
N
Thus partial demands relative to each downstream link are determined first, then the partial flows QI;
result from the adequation of demand to supply for each link:

QI; = Min [A;, %]

Finally, the total outflow of the link (u) is given by:
Qu = Z QI
i

The resulting discretized model ([BLL 95|) is described by the following:

QIf = Minlp; ALYl Y(di)
QZ = ZiQIf

But this model is not easily adapted to distributed models. Indeed, since the assignment coefficients are
only relative to the demand, they are not necessarily satisfied, i.e. p; # QI;/QI,. There is a resulting
change in the composition of the (u) link, which is easily accomodated if the model is discretized, but
not if is distributed. In this last case, it is necessary to expand the basic LWR model in (u). This
point will be discussed in next section. For the time being, let us note that the physical meaning
of the model is that there exists a specific storage capacity in link (u) for the traffic flow relative to
each exit link (d;). This would typically be the case of a multilane link. If some supply ¥; is nil, the
corresponding partial flow @; becomes nil, but the other partial flows are not affected immediately.
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6.3 Modelling merges

Let us consider the following merge, in which (u;) are the upstream links and d is the downstream link;
(ug)

(d)
(uz)

(uz)

the intersection is represented by the point y. Given are the traffic demands A; of the upstream links
and the traffic supply %4 of the downstream link:

de
A; lef Ae(K(y—,t;ui), y;u;)

d
Sa " Se(K (y+.t;d), y; )
A possibility of modelling such an intersection is given by the following rule for splitting the supply

Ed:
Vi = ;g

with «; a split coefficient. The partial (u;) — (d) flow, denoted @, is then equal to:
Qi = Min[A, Sq,]

and the total flow is then equal to

QZZQi

Various models can be proposed for the coefficients «;. These coefficients reflect that proportion of the
total traffic supply that the users coming from (u;) perceive is accessible to them. So a possible simple
model is:

Kmax,i

Kmax

with Kiqe the maximum density of link (d) at point y and with Kjpe.; the maximum density available
to users coming from (u;) at at the entrance of link (d). So the split coefficients in this model are
proportional to the number of lanes the users coming from (u;) can use when entering d. If usually,
> ;a; =1, it is possible that >, o; > 1. In the following example

oy =

the natural values of the split coefficients are ay = ap = 2/3. The case ), a; > 1 requires precautions
whose description is outside the scope of this paper, the reader is refered to /BLL95/ for details. The
preceeding merge model could be used indifferently for discretized or distributed models.
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6.4 General intersections

The preceeding merge and diverge models can be combined into a general intersection model, which,
owing to the limitations of the diverge model, is only applicable to discretized network models, or to
extensions of the LWR model in a sense that will be described in the next section. Let us consider the
following intersection:

(ug)
(d1)

(uz)

(dz)
(uz)

The data are:
- the traffic demand A; of link (u;) at point y,

the traffic supply ¥; of link (d;) at point y,

the proportion p;; of users of link (u;) wishing to use link (d;),

the split coefficients «;; of the supply X;: «;;3; is the supply accessible to users from link (u;) on
link (d;).

Of course, all these quantities must be understood to be time-dependent. The flow @;; of users going
from link (u;) to link (d;) is given by:

Qij = Min[pijA;, %5
the total outflow QO; of link (u;) is:
Q0 =) Qi
J
and the total inflow QI; of link (d;) is:
QL =Y Qi
i
It is possible to impose bounds ®;; on the flows @;;, to represent the workings of traffic lights or to
model conflicts within the intersection. The resulting model would be:
Qij = Min[pij A, ®ij, i3]

In the next section, we shall mention in a more general context an intersection model suitable for

distributed LWR models as well.

7 Modelling partial flows for assignment problems within the frame-
work of the LWR model

7.1 Links

Let us now consider the problem of splitting the flow between partial flows:
K = Y,K?
Q = ¥,

where the superscript d could, depending on the problem, represent local or global destinations, paths,
or any other partition of the set of drivers. The simplest model , which has already been mentionned
in the previous section, is:

(34) Q= Q¢!
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with &% the traffic composition:
(35) ¢ Y KK
The resulting flow model for the partial densities is:
oK  0Q¢
oKt Q' _
ot 0x
(conservation of vehicles), which, supplemented with (34), (35), yields:

oKY 9,
(36) T g (K1) =0

In equation (36), the meaning of V' is the following: V is the equilibrium speed

VYK, )

associated to the solution (K, Q) of the LWR system for the global flow. Since V' can be considered as
given, (36) is of a very different nature than for instance the LWR equation (4). Indeed, let us derive
the equations for the compositions. From (36), with K¢ = ¢9K and (35), it follows:

OK | o¢lQ
Ot + or 0,
hence oed oed
9 S
(37) ot +V 9 0

This last equation is an advection equation with speed V; its significance is that the compositions do
not change along a trajectory. In other words, the composition of the traffic entering the link at time
t is the same as the composition of the traffic exiting the link at time ¢ + 7(¢), with 7(¢) the effective
travel time of users entering the link at time ¢. Another way to understand model (34), (35), is to
notice that it is equivalent to the FIFO rule. Indeed, if one considers only two values of the superscript
d, say d = 1 for the users entering the link before time ¢ and d = 2 for the users entering the link after
time ¢, then all users d = 1 will exit the link before time ¢ + 7(¢), and all users d = 2 will exit the link
after time ¢ + 7(), as a consequence of the advection equation (37). Another way yet to view (36) or
(37) is to note that these equation imply a forward propagation of the information relevant to partial
densities, at the speed V of the traffic stream.

The partial densities equation (36) can be discretized several ways. Let us mention that in [DA 94],
a scheme is proposed, in which the partial densities in a cell are split according to the time of entry in
the cell of vehicles. The tracing of entry times is cumbersome, but permits a strict respect of the FIFO
rule. In a simpler way, it is possible to simply discretize the continuity equation for partial densities
and (34). The resulting scheme for partial densities is:

At
K = Kt + Q01 - Qi)
a

and
Qe = QKK

K%' is the mean partial density in cell a at time ¢ of users having d as their destination, and Q%" is
the outflow of cell a of these users. This scheme is simple but implies, like Godunov’s method, a strong
amount of dissipativity, and therefore satisfies the FIFO rule only approximatively.
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7.2 The diverge intersection revisited

Let us now return to the problem of modelling a diverge like the following

d)

(d)
() y ?

(d3)

The first diverge model which we examined in the subsection 6.2, in which the outflow of the link (u)
is described precisely by a relation similar to (34) (with d = d;), is in complete keeping with the model
(36). On the other hand, the second model in which the demand was split according to compositions,
but not necessarily the outflow, is not compatible with (37). Indeed, the outflow would be determined
independently both by the previous inflow, according to (37), and by the conditions downstream of
the diverge, leading to a contradiction. The forward propagation of the traffic coposition explains the
difficulty of modelling diverges. The model describing the partial densities (equations (34) to (37))
needs to be modified in order to take into account the following elements:

- locally, at any point z, the partial demand associated to trafic d, A%(x), should be proportional to
the total demand A(z) and the composition:

(38) Al(z) = ¢A(w)
where the total demand A(z) is determined as usual according to (33).

- locally, a rule for the splitting of the total supply (x) into partial demands %%(x), with

should be provided. (The total supply results from (33) as well).

A possible model along these lines would be the following:

Kd

(39) £(g) = pp ez (#) = K@)

()

with

. K2 . (z) the maximum density for vehicles of destination d (representing the storage capacity of
preselection lanes associated to downstream link d),

. K¢ (r) the maximum density,

. M is defined as:
M(k) = if kx>0 ,

K
0 it k<0

The idea here is to consider that X (z)? should be proportional to the residual storage capacity K&, (z)—
K%z). Such a model limits the partial density K¢(z) to its capacity K2 ,,(z). The dynamics of the
resulting model are obtained by combining the conservation equation for partial densities with the
adjustment of partial supplies and demands.

oKt | 9Qt _

Dt =0,

(40)
Q% z,t) = Min [Z(z,t)?, Az, t)9]
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The total flow and density result from

Q(xvt) = % Qd(xvt)

(41) K(n.t) = 5 Ki(z, 1)
d

The global supplies and demands result from

E(z,t) = Ze(K (2+,1), 1)

(42) Az, t) = Ao(K (a—, 1), )

The partial supplies and demands result from

d T)— d T
2w, ) = M[ Gl LD |53 1)

(43)

d T
Az, 1) = B A (2, 1)

The resulting system, (40), (41), (42) (43) is a system of conservation laws. The dynamics of the
partial densities are fairly independant, nevertheless they are linked through the global density and its
associated local supply and demand. For instance, a shock-wave affects all partial densities, and the
Rankine-Hugoniot conditions hold for all of them with the same shock-wave speed. At low densities,
the system simplifies to the simpler FIFO model (36). The interaction mechanism depicted here is in
sharp contrast to other previous multilane models such as [MBY 84], since it aims essentially to allow
differential storage behavior, depending on the lane. The structure of the model is well adapted to the
description of large diverges with storage capacity.

The discretized version of system (40), (41), (42) (43) is straightforward, and consists of three
loops:

loop 1
K! = deK{f’t
AZ = Ae(Kctu a)
ZZ = Ee(Kéa a)
Kbt
Al = Ag,tﬁ—
K;inaz aiKg,t
Zg’t = M[ Kmaa’:,afKttz ]ZZ
Kt
AL = A
loop 2
Qi = Min[ALBgY)]
Q. = T
a a
d
loop 3
At ydot
Kgl,t+1 = Kg’t + l_at[Qa—l _ Qg,t]

7.3 General intersections

The model of a general intersection described in subsection 6.3 requires very little modification to
include partial flows. With the same notations, it suffices to introduce also:

- the assignment coefficients wzdj (proportion of users coming from link (u;), with final destination d,
who use link (d;)),

- the composition ¢¢ of the traffic flow leaving link (u;).

Here superscripts d represent again ultimate destinations. We define the proportion p;; of the trafic
leaving link (u;) for link (d;), which is given by:

d__d
pij =) &l
d

34



As previously, the flows are given by
Qij = Min[pi; A, aij%5]
and the partial flows ij are determined using a simple proporionality rule as

d_d
i Wij

Qf; = Qij

ij
Indeed, the fraction of the (u;) — (d;) of ultimate destination d is

d,d
& Wij
Dbij

Such an intersection model is perfectly suitable in a discretized context, since the cells provide the
ncessary storage capacity if some downstream links are oversaturated. Indeed, if one considers a
network with intersections modelled as above and a discretization with just one cell per link, models
of the exit-function kind ([MN 78|, [FLTW 89|) result, with nevertheless some provision for traffic
supply modelling at intersections. In a distributed context, the above model is only compatible with
a non FIFO flow model of the kind of the system (40), (41), (42), (43). It can be noted also that the
intersection model proposed in [HI 95|, chapter 6, presents some similarities with the above model.

It is possible to design more complicated intersection models, endowed with various physical pa-
rameters, notably storage capacities, and with various dynamical variables describing the numbers of
vehicles stored in the intersection, split according to final destination, and to the entry and exit points
of the intersection. Such models can provide proper boundary conditions as defined in section 5 for
all upstream and downstream links, even in a distributed context. Therefore they can be used with
links modelled by the LWR model and the FIFO (36) to build discrete or continuous time models of
networks. The ezchange zone of |BLL 95| provides such an intersection model. It is closely linked
to the intersection concept of METACOR [EHP 94]. These intersection models cannot garantie the
satisfaction of the FIFO rule, neither globally, which would not have much physical meaning anyway,
nor if one considers only the traffic joining one entrance to one exit of the intersection.

8 Conclusion.

In this paper we have shown that the Godunov scheme is well adapted to the discretization of the LWR
system and the approximate solution of its entropy solution, especially in the presence of discontinuities
of the equilibrium flow-density relationship. This raises two questions. The first is: would not a higher
order approximation scheme be applicable and even preferable? For instance, Van Leer’s method (see
[GR 91|, pp 201 and following, or [LV 90|, section 16.3) follows the same principles as Godunov’s
method, but with piecewise linear (discontinuous) approximation of the density. But solving the
analogue of the Riemann problem explicitly might proove a difficult task, because then this problem
is no longer scale-invariant. Approximate methods would have to be used. Further, in order to benefit
from the gain in precision, it would be necessary to diminish the cell size, since the slope of the linear
approximation in every cell would be limited by the constraints 0 < K < K4, Apart from the fact
that small cells are not in keeping with the spirit of the LWR model, the gain in precision might well
be more than compensated by the loss in computational tractability. Another question is: should the
entropy solutions of the LWR system be thus privileged. The answer to this question depends on the
range of application of the model. For problems in which the finiteness of accelerations is important,
such as corridor control, an adaptation of the Godunov scheme emulating bounded accelerations seems
advisable. Such an adaptation might take the form of a bound on the flow between cells, following
the analysis of sections 3 and 4.1. Of course, one of the nice feature of the Godunov scheme, its scale
invariance (i.e. the fact that the discretization has the same form whatever the cell size), would be lost
as a consequence of such an adaptation.

If we turn now to the concepts of traffic supply and demand as they result from Dagazo’s flow
formula, they provide effectively a tool and a rationale for modelling intersections and networks within
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the framework of the LWR model, or eventually related models. Nevertheless the analysis of traffic
demand and supply is in itself insufficient and must be completed with experimentally supported
models describing driver behaviour, as reflected in the various split coefficients. Further research in
this direction should therefore put emphasis on the experimental testing of these intersection split
coefficients.
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