
The Godunov scheme and what it means for �rst order tra�c �owmodels 1.J.P. LEBACQUE 2November 1995ABSTRACT: In the present paper, we shall show that most recent discretizations of macroscopic�rst order tra�c �ow models are equivalent to Godunov's scheme, by analyzing the Riemann problemin the case of equilibrium �ow-density relationship that are discontinuous relatively to the position.Further, it will be shown that the resulting formulas lead to the introduction of the local tra�c supplyand demand concepts. These concepts provide a unifying framework for the modelling of boundaryconditions in the LWR model and correlatively the modelling of intersections. A few examples ofresulting intersection and network models are discussed.1 IntroductionThis paper is about �rst order tra�c �ow models and the Godunov scheme. Let us �rst recall thebasic equations of the �rst order tra�c �ow model, called hereafter the LWR model [LW 55], [RI 56].The basic variables of this model are the following.. K(x; t) : the density at point x and at time t.. Q(x; t) : the �ow at point x and at time t.. V (x; t) : the space-time average speed at point x and at time t, de�ned by the relationship Q = KV .The basic equations of the model are: @K@t + @Q@x = 0(1)(conservation of vehicles), Q = KV(2)(de�nition equation of V ), V = Ve(K;x)(3)(equilibrium speed-density relationship). Of course these equations can be rewriten as@K@t + @@xQe(K;x) = 0(4)with Qe(K;x) def= KVe(K;x)the equilibrium �ow-density relationship. Typically, the equilibrium �ow-density has the followingaspect.1Submitted to ISTTT 19962CERMICS, Centre d'Enseignement et de Recherche en Mathématique, Informatique et Calcul Scienti�que. ENPC(Ecole Nationale des Ponts-et-Chaussées), La Courtine, 93167 NOISY-LE-GRAND Cedex, France1
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The explicit dependency on position x of both equilibrium relationships takes into account thevariability of the physical and environmental parameters, for instance number of lanes, maximal allowedspeed, etc . . . . In principle, equation (4) can only be written while assuming that both time and spacescales are su�ciently large, in order that local average �ow and densities may indeed be consideredand described by reasonably regular functions. The use of model (4) for the building of tra�c �owmodels on networks is quite old and various methods have been tried. Some earlier e�orts impliedan explicit solution of the LWR model (4), using the well-known shock-wave and rarefaction fantechniques, complete as in [MMS 81], or semi-discretized as in SIMAUT [INR 88] and Hilliges' model[HI 95] for instance. Other e�orts implied a space-time discretization of the LWR model (4), such asSSMT [LE 84], [MBL 84], [CP 92], the model of Bui et al. [BNN 92], Daganzo's CELL model [DA 94],the urban part of METACOR [EHP 94] (whose corridor part is METANET [MP 90]), the �ow modelof INTEGRATION [VA 94], STRADA [BLL 95]. The INTEGRATION �ow model is quite di�erentfrom all the other models mentionned, since its discretization is a particle discretization.All these models compute the so-called entropy solutions of the LWR model, since this model doesnot admit unique solutions for given initial and boundary conditions. This choice is fairly natural butnot completely self-evident, and we shall discuss it in section 2, refering to [AN 90] and [BNN 92]. Thepresent paper concerns itself essentially with the Godunov scheme. This is the best �rst order schemefor the computation of the entropy solution of the LWR model.This scheme has been introduced in 1959 [GO 59] and many �rst order schemes are derived fromit. We shall discuss it in the sections 3 and 4 of this paper. Notably we shall show that the Godunovscheme can be extended to the case where the equilibrium �ow-density relationship is discontinuousrelatively to the space variable x. This point is de�nitely not an academic one. Indeed, if one needsto model a network, it is absolutely essential to be able to consider such discontinuities, if only atintersections. As a byproduct, we shall show that the various discretization schemes of (4) that havebeen introduced in the past are nothing more than the Godunov scheme under one guise or other.But only two of them ([LE 93] and [DA 93], [DA 94]) are compatible with discontinuous equilibrium�ow-density relationships.We shall then focuse our attention on the expression given by Daganzo in [DA 93], [DA 94] for the�ow in Godunov's scheme. Indeed, this expression has a nice interpretation, since it de�nes locally the�ow as the smallest of two quantities which, following [LE 95] and [BLL 95], we shall call local tra�cdemand and supply. First we shall precise the proper way to specify boundary conditions for simplelinks with the help of the above mentionned supply and demand functions (section 5). Though fairlyobvious, this is a necessary step for the sequel. We shall show further how using the supply and demandfunctions make it is possible to construct various extensions of the basic LWR model, notably for themodelling of intersections (section 6) and the modelling of the dynamics of partial densities (section7). Of course, these extensions contain many behavioural elements, and the bene�t of the introductionof the local demand and supply concepts lies with the framework they provide for modelling, as wellas a clari�cation of issues. These points and others, such as second order discretizations of the LWRmodel and assignment problems modelling will be evoed in the conclusion of the paper.2 Background: entropy solutions of the LWR modelIn this section, we shall discuss brie�y entropy solutions of the LWR model. The fact that the basicrequirement of unicity of solutions does not hold for (4) is well known. Any method devised to solve2



the LWR model must therefore specify which solution is computed. Let us recall �rst a basic example.Let us take as initial conditions at time t = t0 the following:
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modelling tra�c allowed to start after having been stopped till t = t0 for instance by a red light. Withthis initial condition, (4) admits an in�nity of solutions. Let us describe three of them.1. First solution: K is constant at all times, i.e. K(x; t) = K(x; t0) for all x and all t � t0. At thediscontinuity point x0, the shock-wave speed u = 0 satis�es of course the well-known Rankine-Hugoniot condition u = [Q][K]where the symbol [:] means as usual the di�erence of the limit values of the argument on bothsides of the discontinuity. According to this solution the vehicles do not start moving at all!2. The second solution is illustrated by the following chart of characteristics in the (x; t) plane.
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Figure 1

It is the acceleration fan (or rarefaction fan). This is the customary solution.3. Another solution yet could be built by imposing the trajectory of the leading vehicle as a (moving)boundary condition for the platoon. If V (t) is the speed of this leading vehicle, the correspondingdensity is given as the solution of the following equation:V (t) = Ve(K(t)) .
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The solution obtained thus is consistent, in the sense that it satis�es the Rankine-Hugoniotcondition, since if x(t) is the position of the leading vehicle at time t, the shock speed u at point(x(t); t) is: u = [Q][K] = K(t)V (t)� 0K(t)� 0which is precisely equal to V (t). Therefore it is also a solution of (4) in the weak sense.Among those three solutions, the �rst one is clearly inadequate, whereas the second can only beconsidered as a gross approximation of reality, since it implies irrealistic accelerations. Indeed, withthe Greenshields equilibrium relationship,Ve(K) = Vmax(1� KKmax )the initial acceleration of a vehicle starting from point x would be�x = � V 2max2(x� x0) .From a physical point of view, the third solution is far more realistic, since the trajectory (and acceler-ation) of the �rst vehicle can be speci�ed completely exogeneously and thus re�ect exactly the averagebehaviour of drivers. Nevertheless, this solution is not stable in the sense that a slightly perturbedinitial condition such as:
x

K

Kmax

x
0

x
0
+ εwould result in a solution described by the following caracteristics chart:

xx
0

t

x + ε

K = 0K = Kmax

0which as a matter of fact converges to the rarefaction fan solution of �gure 1 as the scale � of theperturbation becomes vanishingly small.Several reasons may be invoked to justify the choice that is nearly always made in favour of entropysolutions of (4). The main argument is precisely the consistency of entropy solutions. Indeed, theydepend continuously on initial data, as shown for instance in chapter II of [GR 91], or chapter 16of [SM 83]. This continuous dependency on initial data implies of course the unicity of the entropysolution.As pointed out by Ansorge [AN 90] and later by Bui et al. [BNN 92], the entropy solutions of(4) that are of interest to tra�c engineers, i.e. that are at least piecewise continuous, can only admitdiscontinuities such that the upstream density is smaller than the downstream density. Hence in theexample of the starting of the (in�nite) platoon, the �rst and third solution are precluded and only4



the second one is admissible. What we wish to emphasize here is that the choice of the entropysolution is essentially a mathematically sound choice. A solution allowing only �nite accelerations (andconsequently time-continuous speeds) as the third solution in the preceeding example might well befar more interesting, notably in situations in which the �niteness of accelerations plays an importantrole. The regulation of corridors, especially in congested conditions, where much of the delay su�eredby the drivers results from alternating decelerations and accelerations, would be just such a situation.Still, some sort of physical justi�cation may be given for the choice of entropy solutions, by makingreference to the derivation of Payne's model [PAY 71]. Indeed, starting with a microscopic follow-the-leader model of the following kind:_xn(t+ T ) = �(xn�1(t)� xn(t)) ,(with n the index of vehicles on a lane, xn(t) the position of vehicle n at time t, and T the reactiontime), de�ning the following variables:x def= xn(t) ,V (x; t) def= _xn(t) ,y def= (xn�1(t) + xn(t))=2 ,and making the following approximations:y � x+ 1=2K(y; t) � x+ 1=2K(x; t) ,xn�1(t) + xn(t) � 1=K(y; t) � 1K(x;t) � 12K(x;t)3 @K@x (x; t) ,_xn(t+ T ) � V (x; t) + T dVdt (x; t),the Payne model for acceleration and speed dynamics results (admitting the Greenshields relationship):dVdt = 1T (Ve(K)� V � �K @K@x ) .(5)(with Ve(K) def= �(1=K)). This equation, supplemented with (1) and (2) forms the Payne second ordertra�c �ow model [PAY 71]. This model can therefore be related somewhat better to microscopic driverbehavioral models than the LWR model.Schochet [SC 88] has shown that, as T tends toward 0, Payne's system admits the limit������� @K@t + @Q@x = 0Q = KVV = Ve(K)� �K @K@x(6)or more concisely @K@t + @@xQe(K) = � @2K@x2 .(7)Schochet has studied and demonstrated the existence and unicity of the solutions of Payne's systemand of (7). The solutions of (7) can be considered as viscosity solutions for (4). As the anticipationfactor � tends towards 0, the solutions of (7) tend towards the entropy solutions of (4). This is a specialcase studied by Schochet of a general principle, i.e. that entropy solutions of hyperbolic conservationequations are the limit for vanishing viscosity of viscosity solutions. Now of course from a physicalpoint of view, having T and � tend towards 0 is really the same as to have the time and length unitsbecome arbitrarily large by a change of units in the equations of the tra�c �ow (it is straightforwardto check that the length unit is equal to the square root of the product of the anticipation factorunit times the time unit). So, from a practical point of view, Schochet's result means that as thetime- and space-scales taken into account become ever larger, the LWR becomes a better and betterapproximation of Payne's model (5) and of the viscosity model (7). So there exists a certain continuityand coherence between the follow-the-leader models, and the scale of macroscopic models (5), (7) and(4) (the solutions considered for the last one beeing the entropy solutions).To conclude this section, we may consider that the entropy solution of the LWR model is:5



- simpler from a methematical point of view (existence, unicity, continuous dependency on initialconditions),- consistent with other macroscopic and microscopic models (at least at large time- and space-scales),- nevertheless not the best and most realistic from a behavioral point of view.If we return one last time to the example of the starting vehicles of the beginning of this section, wenote that indeed the third solution (�gure 2) tends towards the second (�gure 1) at in�nity, or thatequivalently if the time unit is such that the acceleration time of the leading vehicle can be neglectedand the space unit suitably expanded, then both solutions are nearly identical (provided of course thatthe limit speed of the leading vehicle is the maximum speed).3 The Godunov discretization schemeWe shall now recall some elements concerning the Godunov scheme, as applicable to the LWR model (4)on a homogeneous (in�nite) lane. This scheme was introduced by Godunov [GO 59] for the resolutionof nonlinear hyperbolic conservation equations of the following type:���� @u@t + @@xf(u) = 0u(x; 0) = u0(x) 8x 2 IR(8)with u an unknown function of a real variable x. Usually the �ow function f is assumed convex bynumerical analysts, as for instance in the case of the celebrated inviscid Burger model, a simpli�edmodel for �uid dynamics, in which f(u) = u2=2. Nevertheless most results carry over to concave �owfunctions, such as the equilibrium �ow-density relationship of tra�c �ow models.-xa�1 xaQa�1(t) Qa(t)Ka(t)(a)- -The description of the scheme is the following.- The line is discretized into cells (a) = [xa�1; xa] of lengths la = xa � xa�1.- The time is discretized into time intervals [t�t; (t+ 1)�t].- At time t�t, the solution u of (8) is approximated by a piecewise constant function ~u de�ned as:~u(x; t�t) def= uta (8x 2 (a)) .- The computation of the approximation at time (t+ 1)�t, ~u(:; (t + 1)�t) starting from the approxi-mation ~u(:; t�t) at time t�t, requires the following two theoretical steps.1. Compute the exact solution, called �, of (8) given the inital condition ~u(:; t�t) at time t�t:�������� @�@t + @@xf(�) = 0�(x; t�t) = � ~u(x; t�t) (8xIR)uta (8(a); 8x 2 (a))(9)2. take the average of �(:; (t+ 1)�t) over every cell(a):ut+1a = 1la Z(a) �(y; (t+ 1)�t) dy .(10) 6



- The two preceding steps can be simpli�ed in the following:ut+1a = uta + �tla (�ta�1 � �ta) .(11)with �ta def= 1�t Z (t+1)�tt�t f [�(xa; s)] ds(12)the average �ow crossing xa from cell (a) to cell (a+ 1) during time step [t�t; (t+ 1)�t].- Finally, if f is concave, the expression (12) can be replaced by the more tractable following half-closedexpression due to Osher [OS 84]:�ta = ( Minuta�u�uta+1f(u) if uta � uta+1Maxuta+1�u�utaf(u) if uta � uta+1 .(13)Bui et al. [BNN 92] applied this scheme directly to the modelization of tra�c �ow on a homogeneouslane. The resulting equations are:��������� Kt+1a = Kta + �tla (Qta�1 �Qta)Qta = ( MinKta���Kta+1Qe(�) if Kta � Kta+1MaxKta+1���KtaQe(�) if Kta � Kta+1 ,which is exactly the translation of (11) and (13). Let us note that Qta can equivalently be given by thefollowing table: KtanKta+1 uc ocuc Qta Min[Qta; Qta+1]oc Qmax Qta+1(14)
in which the abbreviations uc and oc mean undercritical and overcritical respectively. The equivalenceof this table with Osher's formula is straightforward.- If Kta � Kcrit, Kta+1 � Kcrit, Qe(:) is increasing on the interval [Kta+1;Kta] or [Kta;Kta+1] andconsequently: MinKta���Kta+1Qe(�) = Qe(Kta)MaxKta+1���KtaQe(�) = Qe(Kta) .- If Kta+1 � Kcrit, Kta � Kcrit, thenMaxKta+1���KtaQe(�) = Qe(Kcrit) = Qmax .- If Kta � Kcrit � Kta+1, Qe being concave atteins its minimum on [Kta;Kta+1] at one of the boundarypoints Kta, Kta+1. Hence:MinKta���Kta+1Qe(�) = Min[Qe(Kta); Qe(Kta)] .- If Kta � Kcrit, Kta+1 � Kcrit, Qe(:) is decreasing on the interval [Kta+1;Kta] or [Kta;Kta+1] andconsequently: MinKta���Kta+1Qe(�) = Qe(Kta+1)MaxKta+1���KtaQe(�) = Qe(Kta+1) .7



The key for establishing the Osher formula (13), which provides also the clue for the treatment of thespace discontinuities of Qe, is the Riemann Problem. This problem can be de�ned as: �nd u such that�������� @u@t + @@xf(u) = 0u(x; 0) = � ul if x < 0ur if x > 0 .(15)The initial condition of the Riemann Problem is illustrated hereafter
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The Riemann Problem constitutes an abstraction of the problem (9) in the neighbourhood of eachdiscretisation point xa. Indeed, to solve problem (9), one has to solve locally, at each point xa, aRiemann Problem, taking the point xa as the space origin, the instant t�t as the time origin, andreplacing ul and ur by uta and uta+1 respectively. Of course this is only possible as long as the solutioncomputed thus is not modi�ed by the solution computed at the neighbouring points during the time-step. This implies that the cell length la must be greater than the product of the time-step by thegreatest possible speed of wave-propagation. Hence:la � �tMaxujf 0(u)j (8(a))(16)This is precisely the condition under which the Osher formula is established. The resolution of theRiemann problem in the present context is trivial and the resulting solutions are described by thefollowing characteristics charts. We use the notationQl = Qe(Kl)Qr = Qe(Kr)for the equilibrium �ows upstream and downstream of the initial density discontinuity at x = 0. The�ow Q(0; t) through this point is given in every case and is identical to the �ow given hereafter by theOsher formula.Case Kl and Kr undercritical: Q(0; t) = Ql:
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Case Kl and Kr overcritical: Q(0; t) = Qr:
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xCase Kl undercritical and Kr overcritical: Q(0; t) = Min[Ql; Qr]:
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xThe Osher formula is trivially equivalent to the solution of the Riemann problem.To conclude, let us say a few words about some earlier models. In [CP 92], Roe's scheme wasexamined, and applied among others to the LWR model. This scheme is a variant of Godunov'smethod using an approximate Riemann solver instead of the exact solution of Riemann's problem. In[MBY 84], a shock-�tting Lax-Wendro� scheme was considered. But the resulting algorithm is quiteintricate. In [HI 95] (section 4.1), the following simple formula is proposed:Qta = Kta Ve(Kta+1; a+ 1)(in a sem-discretized context in fact, but easily discretized). This last formula has in principle thedefect that there is no control over maximum �ow or density values in the formulation; neverthelessinteresting results are reported in [KLHK 95]. Finally, let us examine the SSMT formula [LE 84],which is described by the following sequential algorithm:- Compute u def= Qe(Kta)�Qe(Kta+1)Kta+1 �Kta(u can be considered the shock-wave speed associated to the initial conditions of a Riemannproblem with ul = Kta, ur = Kta+1.- If u � 0, the �ow, being determined by upstream conditions, is de�ned as:Qta = Qe(Kta) .- If u � 0, the �ow, being determined by downstream conditions, is de�ned as:Qta = Qe(Kta+1) .- Finally, and whatever the value of u, if Kl � Kcrit � Kr,Qta = Qmax ,expressing the acceleration of vehicles in the rarefaction fan at maximum �ow.9



This algorithm is equivalent to the Osher formula and can be viewed as an implementation of thesolution to the Riemann problem. Indeed, ifKta andKta+1 are undercritical, u � 0, hence Qta = Qe(Kta),and if Kta and Kta+1 are overcritical, u � 0, hence Qta = Qe(Kta+1). If Kta undercritical and Kta+1overcritical, the sign of u is that of the di�erence Qe(Kta+1) � Qe(Kta), and Qta = Qe(Kta) if u � 0,Qta = Qe(Kta+1) if u � 0, hence Qta = Min[Qe(Kta); Qe(Kta+1)]. The case Kta overcritical and Kta+1overcritical needs no checking.All the formulas described in this section for the computation of the �ows between cells or equiva-lently the �ow at the origin in the Riemann problem are inadequate for the modelization of inhomoge-neous conditions. For instance in the SSMT model, in which a facility for the modelling of intersectionswas provided, �ow discontinuities could result from the use of the algorithm described above. Thesediscontinuities went unnoticed for a long time, essentially because they occured infrequently (in sat-urated conditions), in intersections whose dynamics were complicated anyway, and because the inputof the model was generally real data. The inclusion of a modi�ed version of SSMT into METACORas its urban part led to a correction which will be described in the next section, since it provides thelink between Daganzo's �ow formula and the Godunov scheme in the inhomogeneous case.4 The Generalized Riemann Problem4.1 introductionWe now adress the case where Qe depends explicitly and discontinuously on x. Typically, we shallconsider in this section that Qe is piecewise constant relative to x, and as usual a concave functionof K on the interval [0;Kmax(x)]. The introduction of such a functional form is motivated by thenecessity to be able to model:- intersections,- sections with variable number of lanes,- incidents (implying local and temporary restrictions of capacity, speed, etc . . . ),- any situation in which speed and/or capacity parameters are likely to vary.Further, the discretization of tra�c in situations such as refered to above implies the use of piecewiseconstant approximations of Qe. Hence, the equilibrium �ow-density relationship associated to cell (a)will hereafter been noted Qe(Ka; a) ,(17)to emphasize its dependency on both the average density Ka in cell (a) and on the cell itself. Typically,the physical parameters Qmax, Vmax, Kmax, Kcrit would be functions of the cell (a), but the functionalform itself might vary as well from one cell to the other. For instance the equilibrium relationship ina cell belonging to a urban link might have a di�erent functional form from that of a cell belonging tosay an access or exit ramp or a highway section. In this discontinuous context, the basic principles ofthe Godunov scheme remain the same as in the continuous case and the Godunov scheme requires thefollowing steps for its basic iteration.- The starting point is a piecewise constant approximation ~K of the solution K of (4), at time t�t,described by the approximate values Kta of K(x; t�t) for all x in cell a:K(x; t�t) � Kta def= ~K(x; t�t) (8x 2 a) .- One computes the exact solution (�, �) of the LWR system (1), (2), (3) at time (t + 1)�t, with �the density and � the �ow, given the initial condition at time t�t:�(x; t�t) = Kti (8x 2 a) .The initial condition means �(:; t�t) = ~K(:; t�t)10



- One takes the average of �(:; (t+ 1)�t) over cell (a), yielding Kt+1a :Kt+1a = Z(a) �(x; (t+ 1)�t) dx .Let us note the following:It is essential that the set of discontinuity points of Qe be included in the set of cell boundarypoints.As before, we get: Kt+1a = Kta + �tla (Qta�1 �Qta) ,with Qta the �ow passing at exit point xa of cell (a) during time interval [t�t; (t+ 1)�t] :Qta = Z (t+1)�tt�t �(xa; s) ds .The only remaining problem is that of estimating the Qtas, which is achieved by solving a generalizedRiemann problem.4.2 Principles of the solutionWe consider now a Generalized Riemann Problem for the LWR system (1), (2), (3) with initial con-ditions: K(x; 0) = � Kl if x < 0Kr if x > 0and following equilibrium �ow-density relationship:Qe(K;x) = � Qe(K; l) if x < 0Qe(K; r) if x > 0
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We must now describe the rules that will enable us to calculate the solution of this Riemann problem.Let us �rst consider the case where the dependency on x is smooth. The basic fact which enables usto compute the solutions of the LWR system (1), (2), (3) (i.e. (4)) is the existence of characteristiclines for the �ow, i.e. lines along which the �ow (but not the density) is constant. Indeed, if one looksfor a line (x(t); t), in the (x; t) plane, along which Q is conserved, one gets, starting from dQdt = 0,@@tQ+ _x@Q@x = 0or: @Qe@K @K@t + _x@Q@x = 011



which, indenti�ed with (4), yields: dxdt = @Qe@K (K(x; t); x) .(18)This last equation of course must be combined with a rule of choice of the density since at any pointx, for every value of the �ow Q, there exist two values of the density such thatQe(K;x) = Q .Consequently we de�ne: �������������� Q
�1eu (Q;x) = K () 8<: Q = Qe(K;x)K � Kcrit(x)(K undercritical)Q�1eo (Q;x) = K () 8<: Q = Qe(K;x)K � Kcrit(x)(K overcritical)(19)(the subscripts u and o meaning respectively under- and overcritical). Now, to compute for instancethe characteristic line passing through point (x0; t0) of the (x; t) plane, we note the initial conditions:K0 def= K(x0; t0)and: Q0 def= Q(x0; t0) = Qe(K(x0; t0); x0) .If K0 is undersaturated, the characteristic line is described by the equation:� x(t0) = x0dxdt = @Qe@K [Q�1eu (Q0; x); x](20)and by the equation: � x(t0) = x0dxdt = @Qe@K [Q�1eo (Q0; x); x](21)if K0 is oversaturated.What is to be highlighted here is the fact that as long as a characteristic line is not interrupted bya shock-wave, its associated density must vary continuously. As a consequence, since Qe is smooth,what we shall call the state of the �ow (i.e. whether it is under- or overcritical) will remain constantalong a characteristic line. Let us emphasize that under- or overcriticality is understood here in thelarge sense, meaning that both concepts include criticality (i.e. K = Kmax). The state of the �owalong a characteristic line may only change at points x such that:@Qe@K [Q�1eo (Q0; x); x] = @Qe@K [Q�1eu (Q0; x); x] = 0 .At such points which are in�ection points, the characteristic need not be unique.
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In the above �gure an increasing �ow is limited by a capacity restriction, characterized by a �smallQe�. There is no unicity of the characteristics issued from the in�ection point A.The case where Qe depends discontinuously on x will be considered as a limit case of the smoothcase, with Qe(K; :) varying very fast. The �ow Q is continuous relative to x, except at shock-waves,as a consequence of the conservation equation (1). This holds true also at space discontinuity pointsof Qe. At the crossing of such points the �ow Q, but not the density K, is conserved. Anotherway to understand this is to consider a space-discontinuity point of Qe as a very special, stationary,shock-wave, with shock-wave speed u = 0 and consequently the jump condition reduces to [Q] = 0.Suppose now that a characteristic line crosses a space-discontinuity point of Qe. The �ow is thesame on both sides of the discontinuity; in order to compute the relationship of densities on bothsides of the discontinuity we impose the condition that the �ow state be conserved while crossing thediscontinuity. This refraction condition of characteristic lines can be justi�ed two ways.1. It is satis�ed in the smooth case, hence it is consistent to suppose that it is satis�ed in thediscontinuous case as well, viewed as the limit of the continuous case.2. If this condition were not satis�ed, there could be no crossing of the discontinuity by the char-acteristic line. Indeed, the sign of the slope _x(t) of the characteristic line, which is equal to thesign of @Qe@K (K(x(t); t); x) ,must be the same on both sides of the discontinuity, which is to say again that the state of the�ow must be conserved across the singularity.The refraction of a shock-wave across a discontinuity has the following aspect:
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Consequently, a characteristic line bearing a �ow Q0 and crossing a discontinuity at point x willbe associated with density Q�1e� (Q0; x�) upstream and Q�1e� (Q0; x+) downstream of the discontinuity,where � is equal to u or o depending on whether the characteristic line is associated with an undersat-urated or oversaturated �ow. Characteristic lines are therefore refracted (but not re�ected: re�ectionconditions generate a shock-wave).As a consequence of the preceeding analysis, we shall use the following rules for the computationof the solution of the Generalized Riemann Problem (these rules apply more generally for all problemswith piecewise continuous dependency of Qe on x):- characteristic lines carry a constant �ow and tra�c state, and are described by equations (20) and(21),- the density on a characteristic line is derived from the �ow value by taking the reciprocal of the partof the equilibrium �ow-density relationship corresponding to the tra�c state of the characteristicline (equations (19)),- across a spatial discontinuity of the equilibrium �ow-density relationship, the �ow value is conserved,- along shock-wave lines, the usual Rankine-Hugoniot condition holds,- shock-waves and rarefaction fans are introduced according to the usual rules for the computation ofentropy solutions, wherever Qe is continuous,13



- in case of multiple possible solutions at the singularity, the solution maximizing the local �ow ischoosen.This last rule is completely consistent with the conception of the solution of the LWR problem with asingularity as a limit case of the entropy solution of the LWR problem with a very rapidly varying Qe.It may be conceived of as a generalization to the discontinuous case of the de�nition of the entropysolution of the LWR problem as the solution that, among all possible solutions, maximizes locally the�ow. So we simply adapt the usual rules for the computation of entropy solutions and supplementthem with rules for taking into account the spatial discontinuities of Qe.4.3 E�ective solution of the Generalized Riemann ProblemLet us recall the de�nition of the Generalized Riemann Problem:Find the solution K(x; t), for t � 0 and all x, of the LWR system (1), (2), (3):���������� @K@t + @Q@x = 0Q = KVQ = Qe(K;x)with initial conditions: K(x; 0) = � Kl if x < 0Kr if x > 0and Qe given by: Qe(K;x) = � Qe(K; l) if x < 0Qe(K; r) if x > 0 .In the sequel, we shall also use frequently the following notation:������ Ql def= Qe(Kl; l)Qr def= Qe(Kr; r) ,which are the �ows upstream and downstream of the singularity. We shall now describe the varioussolutions of the Generalized Riemann Problem, corresponding to the possible relationships betweenthe physical parameters upstream and downstream of the singularity (conventionnally placed at theorigin). There are many cases to be considered, and the description of the solution for the variouscases will be essentially graphical, with comments given only as needed. The solutions will representedby their characteristics charts in the (x; t) plane, as is custumary. The results do not depend on thespeci�c functional forms of Qe(:; l) and Qe(:; r).The main classi�cation criterium is whether Qmax(l) is greater than Qmax(r) or not. The secondcriterium is the initial tra�c state upstream and downstream of the singularity (under- or overcritical).The third criterium is the comparison between the smallest maximum �ow Min[Qmax(l); Qmax(r)] andthe �ows Ql and Qr. The reason for this is that in certain circumstances no characteristics at all maycross the singularity. This implies that in such a situation the characteristics either converge towardsthe singularity (the �ow is then identical on both sides of the singularity, overcritical downstream andundercritical upstream) or diverge from it. In this last case (of which we shall see several examples lateron), many solutions are possible, including the entropy solution maximizing the �ow, which is thenprecisely equal to Min[Qmax(l); Qmax(r)]. With this value of the �ow, the �ow state varies continu-ously from overcritical upstream of the singularity through critical at the singularity, to undercriticaldownstream of the singularity. Hence 18 di�erent subcases need to be considered.
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4.3.1 The general case Qmax(l) � Qmax(r)The refraction of characteristic lines will generally have the following aspect, which we shall use forthe illustrations later on (the exact refraction angle depends on the speci�c functional forms of Qe(:; l)and Qe(:; r)):
x x

t t

What is essential is that the refraction of a characteristic line is possible only if the �ow Q it carriesis smaller than Qmax(l). The refraction in the limit case of a characteristic line carrying a �ow valueQ = Qmax(l) is illustrated hereafter.
x x

t t

a. Kl, Kr undercritical The upstream characteristic lines can cross the discontinuity point uncon-ditionnally. The solution depends on the relative values of Ql and Qr. The two resulting possibilitiesare illustrated hereafter.
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Q   greater  than  Q Q  smaller  than  Q

l r l

r

r l r lThe characteristic lines carrying �ow Ql carry a density valueQ�1eu (Ql; r)on the right side of the discontinuity, and a density value Kl of course on the left side. The �ow valueat the singularity point is at all times: Q(0; t) = Ql 8t > 0 .b. Kl undercritical, Kr overcritical The crossover of characteristic lines is possible uncondi-tionnally from left to right, and is possible from right to left only conditionnally to Qr � Qmax(l).Nevertheless, if Qr � Qmax(l), then Qr � Ql as well, and in this case the crossover of characteristicsoccurs from left to right anyway. The following two possiblities result, depending on whether Ql isgreater or smaller than Qr. 15
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Q   greater  than  Q

l r l

r

r Q  smaller  than  Qrl lThe characteristic lines carrying a �ow Ql, when crossing the singularity, carry a density valueQ�1eu (Ql; r)on the right-hand side of the discontinuity, and a density value Kl on the left side. The characteristiclines carrying a �ow Qr, when crossing the singularity, carry a density valueQ�1eo (Qr; l)on the left-side side of the discontinuity, and a density value Kr on the right side. The �ow value atthe singularity point is at all times:Q(0; t) = min[Ql; Qr] 8t > 0 .c. Kl overcritical, Kr undercritical Considering the slopes of the characteristics generated att = 0, which are negative on the left-hand side of the singularity and positive on its right-hand side, itis clear that no characteristic line crosses the singularity. Hence, according to the last computationalrule, the �ow at the singularity is equal to the smallest maximal �ow, i.e. Qmax(l). Consequentlythere results an acceleration fan on the upstream side of the singularity, and a boundary conditionQ = Qmax(l) with undercritical tra�c conditions on the downstream side of the singularity. The tworesulting solutions are shown hereafter:
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Q      (l)  smaller  than   Qmax maxQ        (l)  greater  than  Qr rThe density on the downstream side of the singularity, carried by the characteristics generated by theboundary condition Q(0; t) = Qmax(l) is Q�1eu (Qmax(l); r) .The �ow at the singularity is of courseQ(0; t) = Qmax(l) 8t > 0 .To illustrate the non-unicity of solutions on this speci�c example of characteristics diverging initiallyfrom the singularity, corresponding solutions that do not maximize the �ow locally (and do not assurecontinuity of the tra�c state) are given hereafter.
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Q   greater  than Q Q    smaller  than  Q0 0r rThese solutions are characterized by a �ow Q0 at the singularity that satis�es to Q0 < Qmax(l).c. Kl overcritical, Kr overcritical In this case we need only consider the crossing of the singu-larity by characteristics of negative slope, associated to an overcritical tra�c state, generated on thedownstream side of the singularity. The characteristics may only cross over if Qr � Qmax(l). Twosubcases result from the satisfaction of this condition, depending on whether Ql is smaller or greaterthan Qr. The corresponding solutions are described by the following characteristics charts.
x x

t t

K

K
l

r

Kl Kr

Q   smaller  than  Q Q    greater  than  Ql lr rIn both cases, Q(0; t) = Qr 8t > 0 ,and the density carried by the characteristics crossing the singularity is Kr on the right-hand side ofthe singularity and Qeo(Qr; l) on its left-hand side.Now, if Qr � Qmax(l), the situation is similar to the one analyzed above (case c: Kl overcritical,Kr undercritical, with Qr � Qmax(l)). There is an acceleration fan upstream of the singularity, andcharacteristics carrying a �ow Qmax(l) and an undercritical density Q�1eu (Qmax(l); r) are generateddownstream of the singularity. The �ow at the singularity is given by:Q(0; t) = Qmax(l) 8t > 0 .The corresponding solution is illustrated hereafter:
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4.3.2 Summary of the results for the case Qmax(l) � Qmax(r)The values of the �ow at the singularity resulting for the solution of the Generalized Riemann Problemare given in the following table: KlnKr uc ocuc Ql Min[Qr; Ql]oc Qmax(l) Min[Qr; Qmax(l)](22)
In this table, the abbreviations uc and oc mean again undercritical and overcritical respectively. Itis straightforward to check that if Qmax(l) = Qmax(r), then this table is identical to table (14),summarizing the results of the Riemann Problem for the homogeneous LWR model. Indeed, ifQmax(l) = Qmax(r), then Qr � Qmax(l) = Qmax(r), and it follows:Min[Qr; Qmax(l)] = Qr .4.3.3 The general case Qmax(l) � Qmax(r)The refraction of characteristic lines will generally have the following aspect:
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The refraction of a characteristic line is possible only if the �ow Q it carries is smaller than Qmax(r).The refraction in the limit case of a characteristic line carrying a �ow value Q = Qmax(r) is illustratedhereafter.
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t t

a. Kl, Kr undercritical In this case, we have to consider whether the characteristics generated onthe left-hand side of the singularity can cross it or not. The crossover of characteristics is possible onlyif Ql � Qmax(r). If this condition is satis�ed, the following solutions result:
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The �ow at the singularity is: Q(0; t) = Ql 8t > 0 ,and the density carried by the characteristics crossing the singularity is Kl on the left-hand side of thesingularity and Q�1eu (Ql; r) on its right-hand side.Now, if Ql � Qmax(r), the �ow is necessarily critical at the singularity, since no characteristics maycross it. Hence, Q(0; t) = Qmax(r) for all times t > 0, and the resulting solution can be described as:
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Q          (r)   smaller than  Qmax rThe characteristics generated upstream of the singularity by the boundary condition carry a �owQmax(r) and a density Q�1eo (Qmax(r); l)b. Kl undercritical, Kr overcritical The characteristics generated on the right-hand side of thesingularity can cross it unconditionnally, the characteristics generated on its left-hand side can cross itonly if Ql � Qmax(r). Nevertheless, if Ql � Qmax(r), the crossover of characteristics occurs from theright to the left anyway, as a special case of the general case Ql � Qr. Consequently, the solution isdescribed by the following chart:
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The �ow crossing the singularity is:Q(0; t) = Min[Ql; Qr] 8t > 0 ,and the density carried by the characteristics after crossover is equal toQ�1eu (Ql; r) for the characteristicscrossing the singularity from the left to the right, and to to Q�1eo (Qr; l) for the characteristics crossingthe singularity from the right to the left.c. Kl overcritical, Kr undercritical No characteristic can cross the singularity, which consequentlyde�nes a critical boundary condition Q = Qmax(r). This boundary condition is associated to anacceleration fan on the downstream side of the singularity, and the �ow upstream of the singularityis overcritical and equal to Qmax(r). The exact solution depends on whether Ql is smaller or greaterthan Qmax(r). The charts of the solution are the following.
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The �ow crossing the singularity is:Q(0; t) = Qmax(r) 8t > 0 ,and the density carried by the characteristics generated by the boundary condition at the singularityis equal to Q�1eu (Qmax(r); l).d. Kl overcritical, Kr overcritical Only the characteristics generated on the downstream sideof the singularity may cross it, and they can do so unconditionnally. Consequently, according to therespective values of Ql and Qr, we get the following solutions.
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KrKl K l
K r

Q    greaterQ   smaller than Ql r l than Q rThe �ow crossing the singularity is:Q(0; t) = Qr 8t > 0 ,and the density carried by the characteristics crossing the singularity is equal to Q�1eo (Qr; l) on theupstream side of the singularity.4.3.4 Summary of the results for the case Qmax(l) � Qmax(r)The values of the �ow at the singularity that result for the solution of the Generalized Riemann Problemare given in the following table:KlnKr uc ocuc Min[Ql; Qmax(r)] Min[Ql; Qr]oc Qmax(r) Qr(23)
As in the previous table (22), we use in this table the abbreviations uc and oc for undercritical andovercritical respectively. It is straightforward to check that if Qmax(l) = Qmax(r), then this table isagain identical to table (14), summarizing the results of the Riemann Problem for the homogeneousLWR model. Indeed, if Qmax(l) = Qmax(r), then Ql � Qmax(r) = Qmax(l), and it follows:Min[Ql; Qmax(r)] = Ql .Tables (22) and (23), which summarize the expression for the �ow in Godunov's scheme resulting fromthe analysis of the Generalized Riemann Problem, were introduced in [LE 93] as a correction in theinhomogeneous case to the algorithm used previously in SSMT.
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4.4 Relationship between various expressions of the �ow in Godunov's schemeA �rst point: if Qmax(l) = Qmax(r), tables (22) and (23) are identical to table (14), i.e. to Osher'sformula and consequently to all formulas equivalent to Osher's formula.The second point is: they are also equivalent to Daganzo's formula introduced in [DA 94] andstudied in [DA 93]. To check this point, let us de�ne:��������������
� the (upstream) tra�c demand function�(Kl; l) def= � Qe(Kl; l)) if Kl � Kcrit(l) (undercritical �ow)Qmax(l) if Kl � Kcrit(l) (overcritical �ow)� the (downstream) tra�c supply function�(Kr; r) def= � Qmax(r) if Kr � Kcrit(r) (undercritical �ow)Qe(Kr; r) if Kr � Kcrit(r) (overcritical �ow)(24)Following [BLL 95] and [LE 95] we shall prefer this terminology demand and supply, for reasons whichwill become completely self-evident in the next section 5.Intuitively, the meaning of the tra�c demand function is the following: it takes the value of thegreatest possible out�ow of the upstream half-line, if the downstream half-line were empty and ofarbitrarily great capacity. Symetrically, the meaning of the tra�c supply function is the following: ittakes the value of the greatest possible in�ow into the downstream half-line, if the upstream half-linewere oversaturated and endowed with the same equilibrium �ow-density relationship as the downstreamhalf-line.It is straightforward to check that with the de�nition (24), tables (22) and (23) can be replaced bythe single following formula giving the �ow Q(0; t) through the singularity in the Generalized RiemannProblem: Q(0; t) = Min[�(Kl; l);�(Kr; r)] .(25)This formula expresses of course the fact that the Generalized Riemann Problem was solved by com-puting speci�cally those solutions that maximized the �ow Q(0; t). By de�nition, this �ow must besmaller than, or equal to the tra�c supply and demand. If Qmax(l) � Qmax(r), the table (22) can berewritten as: �(Kl; l)n�(Kr ; r) Qmax(r) Qe(Kr(r)r)Qe(Kl(l)l) Ql Min[Qr; Ql]Qmax(l) Qmax(l) Min[Qr; Qmax(l)]and every value of Q(0; t) in this table appears indeed as the minimum of the corresponding values ofthe supply and demand given in the margins.Similarly, if Qmax(l) � Qmax(r), the table (23) can be rewritten as:�(Kl; l)n�(Kr; r) Qmax(r) Qe(Kr(r)r)Qe(Kl(l)l) Min[Ql; Qmax(r)] Min[Ql; Qr]Qmax(l) Qmax(r) Qrand every value of Q(0; t) in this table appears also as the minimum of the corresponding values ofthe supply and demand given in the margins. To this author's knowledge, Daganzo was the �rst tointroduce this speci�c expression (25) of the �ow of Godunov's scheme, in [DA 94] where he used it inthe context of a speci�c equilibrium �ow-density relationship which was piecewise linear, as depictedhereafter: 21
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Later on he generalized it in [DA 93] to general �ow-density relationships, as mentionned already. Letus add that (25) is also linked to ideas expressed in [NE 93].4.5 Discretization of tra�c �ow on an inhomogeneous laneWe return to the problem of the discretization with Godunov's scheme of the LWR system on aninhomogeneous lane, adressed to in subsection 4.1. In order to apply (25) to Godunov's scheme, theGeneralized Riemann Problem is solved at all discretization points xa in order to estimate the relevantintegrals of � and �. The resulting �ows are indeed equal to the �owsQta = Z (t+1)�tt�t �(xa; s) dsif the solution of the Generalized Riemann Problem at one extremity of a does not modify the solutionat the other extremity during the time step [t�t; (t + 1)�t]. To ensure that this condition to besatis�ed, it su�ces that the greatest possible propagation speed of shock-waves in cell a,Umax(a) def= Max[@Qe@K (0; a);�@Qe@K (Kmax(a); a)] ,(26)be smaller than la=�t: Umax(a) � la�t .(27)This condition speci�es that the spatial and temporal resolution of the model cannot be choosenarbitrarily. For a given time-step, there exists a lower limit to the admissible space-discretization stepsize.It is convenient to associate to every cell a its tra�c supply and demand functions, which following(24), will be de�ned as:��������������
� the cell tra�c demand function�e(�; a) def= � Qe(�; a)) if � � Kcrit(a) (undercritical �ow)Qmax(a) if � � Kcrit(a) (overcritical �ow)� the cell tra�c supply function�e(�; a) def= � Qmax(a) if � � Kcrit(a) (undercritical �ow)Qe(�; a) if � � Kcrit(a) (overcritical �ow)(28)

It results that, provided that (28) is satis�ed,Qta = Min[�e(Ka(t); a);�e(Ka+1(t); a+ 1)] .(29)The basic iteration of the Godunov scheme can be rewritten as:- a �rst loop indexed on the cells, during which the cell tra�c demands �(Ka(t); a) and supplies�(Ka(t); a) are computed,- a second loop indexed on the discretization points xa, during which the �ows are computed followingabove equation (28), 22



- a third loop indexed on the cells, during which the cell average densities are compute according to:Kt+1a = Kta + �tla (Qta�1 �Qta)which ensures the conservativity of the scheme.This possibility of breaking down the scheme into three independent component parts is an essentialfeature, that allows for speci�c physical characteristics for each cell and constitutes the clue for thegeneralization to networks of the scheme.4.6 Dissipativity of the Godunov schemeMany proprieties of the Godunov scheme are discussed in [DA 94] from the tra�c point of view, andthere is no need here to expand on them. For a more mathematical point of view, the reader is referedto [LV 90] or to [GR 91], as mentionned before. It is nevertheless necessary to point out one of the lessdesirable features of the scheme, i.e. its dissipativity.Let us consider for instance a single cell a, and let us suppose that the tra�c �ow is roughlystationnary, i.e. varying slowly from one time-step to the next. Then, if the �ow is undercritical,we may consider the in�ow Qta�1 as given (see section 5 below for a rigourous justi�cation), whereasQta = Qe(Kta; a). It follows: Kt+1a = Kta + �tla (Qta�1 �Qta) ,Qt+1a = Qe(Kt+1a ; a) � Qta + @Qe@K (Kta; a) [Kt+1a �Kta] ,assuming Qta�1 �Qta small enough (here the near-stationnarity hypothesis intervenes). It follows:Qt+1a � (1� �)Qta � �Qta�1with � def= @Qe@K (Kta; a) �tla = @Qe@K (Kta; a)Vmax(a) Vmax(a)�tla .This is of course a smoothing process whose smoothing factor � can be described as the product oftwo terms1. The term Vmax(a)�t=la is of a geometric nature, and should be taken as near to 1 as possiblein order to restrict the numerical dissipativity of the scheme. This term is limited by (27). In/Dag95.1/ it is taken to be 1 exactly; for complex networks this is usually not possible and thecell lengths and time-steps should be adjusted in order that � should be as near to 1 as possible.2. The term @Qe@K (Kta; a)=Vmax(a)depends on the tra�c intensity, and is equal to one if Kta = 0, and small or nil (depending onthe functional form of Qe) for critical density Kta � Kmax(a).A symetric result holds in the overcritical case, except that the roles of the entry and exit of thecell a are exchanged. We need to introduce the greatest backward propagation speed of perturbations,Wmax(a) de�ned as: Wmax(a) def= �@Qe@K (Kmax(a); a) ,(hence (26) can be restated as Umax(a) = Max[Vmax(a);Wmax(a)]). It follows that:Qt+1a�1 � (1� �)Qta�1 � �Qta ,23



with � def= � @Qe@K (Kta; a)Wmax(a) Wmax(a)�tla .Here the smoothing factor � is most favorable when the density is highest and the cell length smallest.It must be noted that in most cases, Wmax(a) will be smaller than Vmax(a), which means that therewill always be a certain amount of residual smoothing for shock waves, of a factor Wmax(a)=Vmax(a)in the most favorable case, i.e. for adjusted cell length la � Vmax(a)�t and very high density.This smoothing of shock-waves and undercritical �ow might be thought of as a positive trait;indeed the formula obtained above is somewhat reminiscent of the TRANSYT [RO 69] smoothingformula. Nevertheless the problem here is that the modeller has little control over the geometric partsof smoothing factors, since cell lengths will usually result from other considerations such as desirabletime-step, computational complexity, link lengths (the links must be subdivided into an integer numberof cells!), etc . . . .5 Proper boundary conditions for the LWR model of a linkWe shall study in the next sections some extensions of the LWR model. We shall begin with thefollowing remark: the tra�c demand and supply at the entrance and exit of a link provide the naturalboundary conditions for the solution of equation (4) on the link. More precisely, equation (4) on thelink [a; b] with initial conditions K(x; t0) for x 2 [a; b] supplemented with upstream demand �(a; t)and downstream supply �(b; t) for t � t0 will admit an unique (entropy) solution. For convenience'ssake we shall consider reduced demands and reduced supplies:�(a; t) = min(�(a; t); Qmax) ,�(b; t) = min(�(b; t); Qmax) ,where Qmax is the maximum �ow in [a; b]. -a b�(a; t) �(b; t)- -The above-mentionned property is of course completely intuitive. A simple way to understand it is toconsider the simple case where upstream demand �(a; t) and downstream supply �(b; t) are constant,i.e. independant of t, and the initial condition K(x; t0) is homogeneous, i.e. independant of x. Thiswould be the analogue of the Riemann problem, this time for the description of the e�ect of boundaryconditions. Let us �rst point out that the equilibrium supply and demand functions are monotonous.Hence to every upstream demand it is possible to associate a unique undercritical density, and to everydownstream supply it is possible to associate a unique overcritical density. Consequently we de�ne theinverse equilibrium supply and demand functions (for a cell i):��1e (�; i) def= � i� � = �e(�; i) and � 2 [0;Kcrit(i)](30) ��1e (�; i) def= � i� � = �e(�; i) and � 2 [Kcrit(i);Kmax(i)] .(31)The computation rule for entry points is the following. The upstream reduced demand �(a) determinesthe boundary conditions at entry point a except when it is greater than the supply of the link [a; b],�e(K(a); [a; b]), which for simplicity's sake we shall abbreviate as �e(K). Hence:- if �(a) � �e(K), the density at entry point a is given by ��1e (�(a)) (here we skip the dependencyof ��1e on [a; b] as well) and the associated �ow is �(a) (the associated characteristic lines areof positive slope),- if �(a) � �e(K), the density at entry point a is given by K (which is necessarily overcritical) andthe �ow is Qe(K) = �e(K) in this case. The associated caracteristic lines are of negative slope.24



The resulting solutions are represented hereafter:Case 1, �(a) � Qe(K) � Qmax = �e(K):
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Case 2, Qe(K) � �(a) � Qmax = �e(K):
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Case 3, �(a) � Qe(K) = �e(K) � Qmax:
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Case 4, Qe(K) = �e(K) � �(a) � Qmax:
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aThe situation at the other end b of the link is exactly symetric. The downstream reduced supply�(b) determines the boundary conditions at exit point b except when it is greater than the demand ofthe link [a; b], �e(K(b); [a; b]), abbreviated as �e(K). Hence:- if �(b) � �e(K), the density at exit point b is given by ��1e (�(b)) (as previously we skip thedependency on [a; b]) and the associated �ow is �(b) (the associated caracteristic lines are ofpositive slope), 25



- if �(b) � �e(K), the density at exit point b is given by K (which is necessarily undercritical) andthe �ow is Qe(K) = �e(K) in this case. The associated caracteristic lines are of positive slope.Case 1, Qe(K) = �e(K) � �(b) � Qmax:
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Case 4, �(b) � Qe(K) � Qmax = �e(K):
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It is straightforward to check that by considering the solutions obtained in this section for entryand exit points as right-side and left-side solutions at a same point say c def= a = b and �pasting� themone retrives the various solutions of the Generalized Riemann Problem described in section 4.26



6 Modelling intersections within the framework of the LWR model6.1 IntroductionWe shall now adress the problem of describing consistent �rst-order LWR models of networks. In thepreceeding section, we have clari�ed the issue of boundary conditions for links within the frameworkof such a model. We have seen that the entry point, is characterized by the tra�c supply of the linkwhereas its exit point is characterized by the link tra�c demand. These quantities must be adjustedrespectively to the upstream demand and the downstream supply to determine the dynamics of thelink. If we wish to model an intersection, the problem becomes now: how to combine the di�erentdemands upstream of the intersection, and how to adjust them to the di�erent supplies downstreamof the intersection.Before proceeding with the analysis, we must �rst precise the scale of the intersection model en-visioned here. Essentially, we shall consider intersections modelled as geometrical points. As we shallsee, these points can nevertheless be endowed with some physical characteristics and parameters ifneed be. Such a model is consistent with the spirit of the LWR model, in which the space scale shouldbe reasonnably large. More sophisticated models are possible, we shall say a few words about them atthe end of the section 7.3.A technical de�nition must be introduced at this point. In subsection 4.5, formula (28), the conceptsof cell tra�c supply and demand function were introduced. It is similarly possible to de�ne local tra�csupplies and demands, for piecewise continuous equilibrium �ow-density relationships and piecewisecontinuous solutions of the LWR system (1), (2), (3). Let us �rst de�ne the local equilibrium demandand supply:��������������
� the local equilibrium demand function�e(�; x) def= � Qe(�; x�) if � � Kcrit(x�) (undercritical �ow)Qmax(x�) if � � Kcrit(x�) (overcritical �ow)� the local equilibrium supply function�e(�; x) def= � Qmax(x+) if � � Kcrit(x+) (undercritical �ow)Qe(�; x+) if � � Kcrit(x+) (overcritical �ow) .(32)The tra�c equilibrium demand function has the following aspect:
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The equilibrium tra�c supply function has the following aspect:
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We can now de�ne the local tra�c demand and supply as����������� � the local demand�(x; t) def= �e(K(x�; t); x)� the local supply�(x; t) def= �e(K(x+; t); x) .(33)Let us note that it follows from this de�nition that if (K;Q) is a piecewise continuous entropy solutionof the LWR system, then at all points x and all times t:Q(x; t) = Min[�(x; t);�(x; t)] .6.2 Modelling divergesLet us now consider �rst intersections of the diverge kind, composed of an upstream link (u) andseveral downstream links (d1), . . . , (di), . . . .
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yGiven at a time t are the state of every link and the assignment coe�cients pi: pi is the proportion ofusers in link (u) at intersection point y wishing to use link (di). The upstream demand is then givenby: �u def= �e(K(y�; t;u); y;u) ,and the downstream supplies are given by:�i def= �e(K(y+; t; di); y; di) .Now we must specify what we understand exactly by intersection model. An intersection model consistsof a set of rules enabling us to adjust upstream demands to downstream supplies. Such an adjustmentrequires two steps.1. It is necessary to choose the order of the adjustment process, meaning to choose whether tocompute �rst the total �ow through the intersection, and then to divide it between the partial�ows relative to the various entry and/or exit links, or to �rst compute these partial �ows andthen to agregate them.2. It is necessary to use a rule for the splitting of �ows, supplies and/or demands.28



Both steps involve choices that are not intrinsical but of a phenomenological nature, directly linked tothe kind of driver behaviour and physical conditions to be modelled. Let us illustrate this in the caseof a diverge. If one chooses to compute the total out�ow of (u) �rst, it is necessary to determine anequivalent downstream supply for (u), let �eq be its name. Then the total out�ow of (u), Qu, will begiven by: Qu = Min[�u;�eq] .A simple rule for splitting the total �ow according to downstream links (di) is the following:QIi def= piQu ,(here we need to distinguish the in�ows QIi of links (di)). This rule means that the out�ow is splitexactly according to its composition, a rule that has a long history; it has been used already in [PA 90]for instance. We shall analyze it in the next section. Now there remains to check that QIi � �i for alldownstream links. From Qu �Mini[�i=pi] it follows that the choice that maximizes the out�ow Q isQeq def= Mini [�i=pi] .This choice is in keeping with the �ow-maximizing properties of the entropy solutions of the LWRmodel. The resulting intersection model has been described in [DA 94]. Let us note that if �eq is nil,i.e. if one of the downstream supplies is nil, then the total (as well as the partial) out�ows are nil. Thisillustrates precisely the kind of intersection that are modelled by the preceeding model: essentiallyintersections whose upstream link has a single lane, or behaves as if it did. There is no speci�c storagecapability for the users whose destination is an oversaturated link. Let us note that this model worksboth for discretized and distributed models. By distributed model we mean a model whose basic objectsare undiscretized functions of continuous variables, in opposition to discretized models. The discretizedmodel is described by: Qtu = Min[�tu;Mini(�ti=pi)] ,QIti = piQtu 8(di) .A quite di�erent model is the following, in which the demand �u is split �rst according to:�i def= pi�u .Thus partial demands relative to each downstream link are determined �rst, then the partial �ows QIiresult from the adequation of demand to supply for each link:QIi = Min [�i;�i] .Finally, the total out�ow of the link (u) is given by:Qu =Xi QIi .The resulting discretized model ([BLL 95]) is described by the following:QIti = Min[pi�tu;�ti] 8(di) ,Qtu = PiQIti .But this model is not easily adapted to distributed models. Indeed, since the assignment coe�cients areonly relative to the demand, they are not necessarily satis�ed, i.e. pi 6= QIi=QIu. There is a resultingchange in the composition of the (u) link, which is easily accomodated if the model is discretized, butnot if is distributed. In this last case, it is necessary to expand the basic LWR model in (u). Thispoint will be discussed in next section. For the time being, let us note that the physical meaningof the model is that there exists a speci�c storage capacity in link (u) for the tra�c �ow relative toeach exit link (di). This would typically be the case of a multilane link. If some supply �i is nil, thecorresponding partial �ow Qi becomes nil, but the other partial �ows are not a�ected immediately.29



6.3 Modelling mergesLet us consider the following merge, in which (ui) are the upstream links and d is the downstream link;
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3the intersection is represented by the point y. Given are the tra�c demands �i of the upstream linksand the tra�c supply �d of the downstream link:�i def= �e(K(y�; t;ui); y;ui) ,�d def= �e(K(y+; t; d); y; d) .A possibility of modelling such an intersection is given by the following rule for splitting the supply�d: �d;i = �i�dwith �i a split coe�cient. The partial (ui) �! (d) �ow, denoted Qi, is then equal to:Qi = Min[�i;�d;i]and the total �ow is then equal to Q =Xi Qi .Various models can be proposed for the coe�cients �i. These coe�cients re�ect that proportion of thetotal tra�c supply that the users coming from (ui) perceive is accessible to them. So a possible simplemodel is: �i = Kmax;iKmaxwith Kmax the maximum density of link (d) at point y and with Kmax;i the maximum density availableto users coming from (ui) at at the entrance of link (d). So the split coe�cients in this model areproportional to the number of lanes the users coming from (ui) can use when entering d. If usually,Pi �i = 1, it is possible that Pi �i > 1. In the following example
������� � ����i = 1i = 2the natural values of the split coe�cients are �1 = �2 = 2=3. The case Pi �i > 1 requires precautionswhose description is outside the scope of this paper, the reader is refered to /BLL95/ for details. Thepreceeding merge model could be used indi�erently for discretized or distributed models.
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6.4 General intersectionsThe preceeding merge and diverge models can be combined into a general intersection model, which,owing to the limitations of the diverge model, is only applicable to discretized network models, or toextensions of the LWR model in a sense that will be described in the next section. Let us consider thefollowing intersection:
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2The data are:- the tra�c demand �i of link (ui) at point y,- the tra�c supply �j of link (dj) at point y,- the proportion pij of users of link (ui) wishing to use link (dj),- the split coe�cients �ij of the supply �j: �ij�j is the supply accessible to users from link (ui) onlink (dj).Of course, all these quantities must be understood to be time-dependent. The �ow Qij of users goingfrom link (ui) to link (dj) is given by:Qij = Min[pij�i; �ij�j] ,the total out�ow QOi of link (ui) is: QOi =Xj Qij ,and the total in�ow QIj of link (dj) is: QIj =Xi Qij .It is possible to impose bounds �ij on the �ows Qij , to represent the workings of tra�c lights or tomodel con�icts within the intersection. The resulting model would be:Qij = Min[pij�i;�ij; �ij�j] .In the next section, we shall mention in a more general context an intersection model suitable fordistributed LWR models as well.7 Modelling partial �ows for assignment problems within the frame-work of the LWR model7.1 LinksLet us now consider the problem of splitting the �ow between partial �ows:K = PdKdQ = PdQdwhere the superscript d could, depending on the problem, represent local or global destinations, paths,or any other partition of the set of drivers. The simplest model , which has already been mentionnedin the previous section, is: Qd = Q�d(34) 31



with �d the tra�c composition: �d def= Kd=K .(35)The resulting �ow model for the partial densities is:@Kd@t + @Qd@x = 0 ,(conservation of vehicles), which, supplemented with (34), (35), yields:@Kd@t + @@x(KdV ) = 0 .(36)In equation (36), the meaning of V is the following: V is the equilibrium speedV def= Ve(K;x)associated to the solution (K;Q) of the LWR system for the global �ow. Since V can be considered asgiven, (36) is of a very di�erent nature than for instance the LWR equation (4). Indeed, let us derivethe equations for the compositions. From (36), with Kd = �qK and (35), it follows:@�dK@t + @�dQ@x = 0 ,hence @�d@t + V @�d@x = 0 .(37)This last equation is an advection equation with speed V ; its signi�cance is that the compositions donot change along a trajectory. In other words, the composition of the tra�c entering the link at timet is the same as the composition of the tra�c exiting the link at time t+ �(t), with �(t) the e�ectivetravel time of users entering the link at time t. Another way to understand model (34), (35), is tonotice that it is equivalent to the FIFO rule. Indeed, if one considers only two values of the superscriptd, say d = 1 for the users entering the link before time t and d = 2 for the users entering the link aftertime t, then all users d = 1 will exit the link before time t+ �(t), and all users d = 2 will exit the linkafter time t+ �(t), as a consequence of the advection equation (37). Another way yet to view (36) or(37) is to note that these equation imply a forward propagation of the information relevant to partialdensities, at the speed V of the tra�c stream.The partial densities equation (36) can be discretized several ways. Let us mention that in [DA 94],a scheme is proposed, in which the partial densities in a cell are split according to the time of entry inthe cell of vehicles. The tracing of entry times is cumbersome, but permits a strict respect of the FIFOrule. In a simpler way, it is possible to simply discretize the continuity equation for partial densitiesand (34). The resulting scheme for partial densities is:Kd;t+1a = Kd;ta + �tla (Qd;ta�1 �Qd;ta ) ,and Qd;ta = QtaKd;ta =Kta .Kd;ta is the mean partial density in cell a at time t of users having d as their destination, and Qd;ta isthe out�ow of cell a of these users. This scheme is simple but implies, like Godunov's method, a strongamount of dissipativity, and therefore satis�es the FIFO rule only approximatively.
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7.2 The diverge intersection revisitedLet us now return to the problem of modelling a diverge like the following
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yThe �rst diverge model which we examined in the subsection 6.2, in which the out�ow of the link (u)is described precisely by a relation similar to (34) (with d � di), is in complete keeping with the model(36). On the other hand, the second model in which the demand was split according to compositions,but not necessarily the out�ow, is not compatible with (37). Indeed, the out�ow would be determinedindependently both by the previous in�ow, according to (37), and by the conditions downstream ofthe diverge, leading to a contradiction. The forward propagation of the tra�c coposition explains thedi�culty of modelling diverges. The model describing the partial densities (equations (34) to (37))needs to be modi�ed in order to take into account the following elements:- locally, at any point x, the partial demand associated to tra�c d, �d(x), should be proportional tothe total demand �(x) and the composition:�d(x) = �d�(x)(38)where the total demand �(x) is determined as usual according to (33).- locally, a rule for the splitting of the total supply �(x) into partial demands �d(x), with�(x) =Xd �d(x)should be provided. (The total supply results from (33) as well).A possible model along these lines would be the following:�d(x) = M [Kdmax(x)�Kd(x)Kmax(x)�K(x) ]�(x) ,(39)with. Kdmax(x) the maximum density for vehicles of destination d (representing the storage capacity ofpreselection lanes associated to downstream link d),. Kdmax(x) the maximum density,. M is de�ned as: M(�) = � if � � 0 ,0 if � � 0 .The idea here is to consider that �(x)d should be proportional to the residual storage capacityKdmax(x)�Kd(x). Such a model limits the partial density Kd(x) to its capacity Kdmax(x). The dynamics of theresulting model are obtained by combining the conservation equation for partial densities with theadjustment of partial supplies and demands.@Kd@t + @Qd@x = 0 ,Qd(x; t) = Min [�(x; t)d;�(x; t)d] .(40) 33



The total �ow and density result fromQ(x; t) =Pd Qd(x; t)K(x; t) =Pd Kd(x; t) .(41)The global supplies and demands result from�(x; t) = �e(K(x+; t); x)�(x; t) = �e(K(x�; t); x) .(42)The partial supplies and demands result from�d(x; t) = M [Kdmax(x)�Kd(x;t)Kmax(x)�K(x;t) ]�(x; t)�d(x; t) = Kd(x;t)K(x;t) �(x; t) .(43)The resulting system, (40), (41), (42) (43) is a system of conservation laws. The dynamics of thepartial densities are fairly independant, nevertheless they are linked through the global density and itsassociated local supply and demand. For instance, a shock-wave a�ects all partial densities, and theRankine-Hugoniot conditions hold for all of them with the same shock-wave speed. At low densities,the system simpli�es to the simpler FIFO model (36). The interaction mechanism depicted here is insharp contrast to other previous multilane models such as [MBY 84], since it aims essentially to allowdi�erential storage behavior, depending on the lane. The structure of the model is well adapted to thedescription of large diverges with storage capacity.The discretized version of system (40), (41), (42) (43) is straightforward, and consists of threeloops: loop 1 Kta = Pd Kd;ta�ta = �e(Kta; a)�ta = �e(Kta; a)�ta = �d;ta Kd;taKta�d;ta = M [Kdmax;a�Kd;taKmax;a�Kta ]�ta�d;ta = Kd;taKta �taloop 2 Qd;ta = Min [�ta;�d;ta+1]Qta = Pd Qd;taloop 3 Kd;t+1a = Kd;ta + �tla [Qd;ta�1 �Qd;ta ]7.3 General intersectionsThe model of a general intersection described in subsection 6.3 requires very little modi�cation toinclude partial �ows. With the same notations, it su�ces to introduce also:- the assignment coe�cients $dij (proportion of users coming from link (ui), with �nal destination d,who use link (dj)),- the composition �di of the tra�c �ow leaving link (ui).Here superscripts d represent again ultimate destinations. We de�ne the proportion pij of the tra�cleaving link (ui) for link (dj), which is given by:pij =Xd �di$dij .34



As previously, the �ows are given byQij = Min[pij�i; �ij�j] ,and the partial �ows Qdij are determined using a simple proporionality rule asQdij = Qij �di$dijpij .Indeed, the fraction of the (ui)! (dj) of ultimate destination d is�di$dijpij .Such an intersection model is perfectly suitable in a discretized context, since the cells provide thencessary storage capacity if some downstream links are oversaturated. Indeed, if one considers anetwork with intersections modelled as above and a discretization with just one cell per link, modelsof the exit-function kind ([MN 78], [FLTW 89]) result, with nevertheless some provision for tra�csupply modelling at intersections. In a distributed context, the above model is only compatible witha non FIFO �ow model of the kind of the system (40), (41), (42), (43). It can be noted also that theintersection model proposed in [HI 95], chapter 6, presents some similarities with the above model.It is possible to design more complicated intersection models, endowed with various physical pa-rameters, notably storage capacities, and with various dynamical variables describing the numbers ofvehicles stored in the intersection, split according to �nal destination, and to the entry and exit pointsof the intersection. Such models can provide proper boundary conditions as de�ned in section 5 forall upstream and downstream links, even in a distributed context. Therefore they can be used withlinks modelled by the LWR model and the FIFO (36) to build discrete or continuous time models ofnetworks. The exchange zone of [BLL 95] provides such an intersection model. It is closely linkedto the intersection concept of METACOR [EHP 94]. These intersection models cannot garantie thesatisfaction of the FIFO rule, neither globally, which would not have much physical meaning anyway,nor if one considers only the tra�c joining one entrance to one exit of the intersection.8 Conclusion.In this paper we have shown that the Godunov scheme is well adapted to the discretization of the LWRsystem and the approximate solution of its entropy solution, especially in the presence of discontinuitiesof the equilibrium �ow-density relationship. This raises two questions. The �rst is: would not a higherorder approximation scheme be applicable and even preferable? For instance, Van Leer's method (see[GR 91], pp 201 and following, or [LV 90], section 16.3) follows the same principles as Godunov'smethod, but with piecewise linear (discontinuous) approximation of the density. But solving theanalogue of the Riemann problem explicitly might proove a di�cult task, because then this problemis no longer scale-invariant. Approximate methods would have to be used. Further, in order to bene�tfrom the gain in precision, it would be necessary to diminish the cell size, since the slope of the linearapproximation in every cell would be limited by the constraints 0 � K � Kmax. Apart from the factthat small cells are not in keeping with the spirit of the LWR model, the gain in precision might wellbe more than compensated by the loss in computational tractability. Another question is: should theentropy solutions of the LWR system be thus privileged. The answer to this question depends on therange of application of the model. For problems in which the �niteness of accelerations is important,such as corridor control, an adaptation of the Godunov scheme emulating bounded accelerations seemsadvisable. Such an adaptation might take the form of a bound on the �ow between cells, followingthe analysis of sections 3 and 4.1. Of course, one of the nice feature of the Godunov scheme, its scaleinvariance (i.e. the fact that the discretization has the same form whatever the cell size), would be lostas a consequence of such an adaptation.If we turn now to the concepts of tra�c supply and demand as they result from Dagazo's �owformula, they provide e�ectively a tool and a rationale for modelling intersections and networks within35
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