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(Rd)N by Xk(!) := !k and the (left) shift operator on (Rd)N �(X0; X1; � � �) := (X1; X2; � � �).It is widely known (see e:g: [13]) that the dynamical system ((Rd)N;B(Rd)N; �
N; �) beingergodic, the Birkho� Pointwise Ergodic Theorem implies that8F 2 L1((Rd)N; �
N); �
N-a:s: 1n n�1Xk=0 F � �k �! E (F ) = Z Fd�
N:Similarly, one can de�ne the right shift (this time on (Rd)Z) by setting Xn��� =Xn�1.Then identifying L1((Rd)N; �
N) to a subspace of L1((Rd)Z; �
Z)8F 2 L1((Rd)N; �
N); �
N-a:s: 1n n�1Xk=0 F � (��)k �! E (F ) = Z Fd�
N:The Shift on Independent Innovations Method(s) (SIIM) simply is/are the data-processingof these convergence results. The expectation E (F ) is then computed by averaging somedependent paths while the usual Monte Carlo method (MCM) requires some independentpaths.The main theoretical results concerning the �-shift method are summed up below (see [2]).Let T be a FXn -stopping time(1) and F 2 L2(RN ;B(R)
N ) be an FXT -measurable functional(2)where FXn :=�(X0; � � � ; Xn) denotes the natural �ltration of the canonical process (Xn)n2N.Then if T 2 L2+� for some �>0,� �2(F ) :=Var(F ) + 2 +1Xk=1 Cov(F; F � �k) is absolutely convergent, which in turn impliesthat :� The Gàl-Koksma Theorem holds :8 " > 0; 1n n�1Xk=0 F � �k � E (F ) = o�n 12 (log(n)) 32+"� �
N-a:s:� The CLT theorem holds, that is, whenever �(F ) 6=0,1�(F )pn n�1Xk=0 �F � �k � E (F )� L�! N (0; 1);where N (0; 1) denotes the standard normal distribution and L�! the convergence in distri-bution.�Moreover, if the stopping time T has �nite polynomial moments (this assumption is slightlyrelaxable), the LIL holdslim supn!1 n�1Xk=0 �F � �k � E (F )�p2n log logn = �(F ) and lim infn!1 n�1Xk=0 �F � �k � E (F )�p2n log logn = ��(F ):1A N-valued random variable is a FXn -stopping time if fT �ng2 FXn for every n2 N.2FXT :=fA2 FX1 =A \ fT � ng2 FXn g for every n2 N2



Similar results are obtained in the case of ��(see [5]). The computational performancesof the shift method SIIM lie in the use of a storage box that partially avoids to uselesslyre-simulate all the innovations Xi's when passing from a path to another while this is nec-essary in the usual MCM. Hence, for the same number of iterations, we observed on truesimulations that the SIIM runs faster than the classical MCM (see [2]). The time savings areon the expenses of the data storage (dynamical or not) which is typical for the antagonismbetween time complexity and storage complexity. On the other hand, the SIIM also calls therandom number generator less often than the MCM does. This may be crucial for large scalesimulations. However, when �2(F ) > Var(F ) the required number of iterations is higher.Unfortunately no satisfactory estimate of �2(F )V ar(F ) is known to us and it is likely that, for mostnaturally encountered functionals F , this ratio is greater than 1. The balance between thesetwo e�ects depends on the choice of F .The aim of the paper is to extend these results to more general stationary probabilitydistributions P : whenever the dynamical ((Rd)N;B(Rd)
N;P; �) is ergodic, the Birkho�'sTheorem directly applied on the shifted paths of a P-integrable functional F yieldsP-a:s: 1n n�1Xk=0 F � �k �! E (F ): (1)Of course, the plain ergodicity cannot provide a rate of convergence in the Birkho� PointwiseErgodic Theorem without any further assumption (see [13]). That is why we will assumefrom now on that the canonical process (Xn)n2N on ((Rd)N;B(Rd)
N) shares a strong mixingassumption, namely the Ibragimov �-mixing assumption, under the probability P. Thisnotion turns out to be the natural extension of the former of i.i.d. random variable settingin terms of Limit Theorems for our stopping functionals.The �-mixing Markovian setting is a natural domain of application for the techniques.In fact, let (Xn)n2N be an homogeneous Markov chain on Rd with transition P (x; dy) and astarting distribution �0. A commonly encountered problem of Numerical Probability is tocompute (an approximate of) E � (f(X0;� � �; X`�1)) where � denotes the invariant probabilitymeasure � assumed to be unique � of the transition P . When the chain is positively recurrent(resp. stable), the natural method is to apply the Law of Large Numbers along the availablepaths of the chain that is, for every x2 Rd , for every f : (Rd)` �! R bounded Borel (resp.continuous) function8 x2 Rd ; 1n n�1Xk=0 f(Xk;� � �; Xk+`�1) n!+1�! E � (f(X0;� � �; X`�1)) Px-a:s: (2)The rate of convergence in (2) is ruled by several classical theorems like the Central LimitTheorem or the Law of the Iterated Logarithm under some standard assumptions (see e:g:[9]).When f is no longer a function of �nitely many Xn's but is a functional F de�ned on thewhole canonical space ((Rd)
N;B(Rd)
N) of the chain, the computation of E � (F ) either bysimulation or from statistical data cannot be carried out as easily. The �rst natural idea is toimplement the usual Monte Carlo Method (MCM). However this approach turns out to becostly in terms of C.P.U. time. Starting from experimental facts on the Shift on Independent3



Innovation Method (SIIM), one can try using equation (1) under P� and shift on the chainitself. We will call this method the Shift Process Method (SPM).The Markov assumption on (Xn)n2N will be dropped in the theoretical part of the pa-per. The theoretical results will then be applied to the �-mixing case. Then the threemethods (MCM, SIIM, SPM) will be compared numerically. They will be applied to two�-mixing Markovian models �Xn+1 = h(Xn; Yn)� where the underlying innovations Yn areindependent.The paper is organized as follows. Section 2 is devoted to some background on the maintools used in the rest of the paper : the de�nition of an �-mixing process is recalled alongwith the Ibragimov Central Limit Theorem for �-mixing sequences satisfying the Ibragimovassumption (subsection 2.1). The Gál-Koksma Theorem in the L2-stationary setting is re-called at subsection 2.2. This will be our basic result when dealing with the a:s: rate ofconvergence (except for the Law of the Iterated Logarithm investigated in section 5).Section 3 deals with the a:s: rate of convergence of the shift method for stopping func-tionals. This result essentially relies on the �niteness of a pseudo-variance, denoted �2(F ).In section 4, a Central Limit Theorem is established under the same hypothesis. In sec-tion 5, after recalling Philipp and Stout's Theorem, a Law of the Iterated Logarithm isestablished, only for a subclass of stopping functionals having �nite polynomial moments.Section 6 is dedicated to the Markov setting. Some standard �-mixing criteria for (station-ary) Markov chains are recalled (subsection 6.1) and the simulation framework is presented(subsection 6.2). Some numerical simulations are processed in section 7 on three ��mixingMarkov processes satisfying the Ibragimov assumption. A simple Metropolis like algorithm(subsection 7.1) is considered in two di�erent settings so that the invariant distribution � isalternately explicitly known (subsubsection 7.1.1) and not explicitly known (subsubsection7.1.2). The third example, a Vector Quantization algorithm, will illustrate some possiblefalse convergence phenomenon (subsection 7.2) when � is not explicitly known.Throughout the text Lp(
;A;P) will denote the set of A-measurable real-valued func-tionals F whose Lp�norm jjF jjp := �Z jF jpdP� 1p is �nite. From now on the shift operator� will be the canonical shift on (Rd)N.2 Some background2.1 �-mixing sequences and Central Limit TheoremWe are going to recall some results on �-mixing processes (see e:g: Doukhan [7]). Let � bea sequence (�(n); n 2 N) of real numbers, satisfying limn!1 �(n) = 0, and let (Xn)n2N be aRd -valued process de�ned on a probability space (
;A;P). (Xn)n2N is �-mixing if for everyk; n 2 N , n � 1 8A 2 Fk0 ; 8B 2 F1k+n; jP(A \ B)� P(A)P(B)j � �(n):Intuitively if �(n) is small then B and A are essentially independent, hence for an �-mixingprocess the future is asymptotically independent from the present and the past. One �ndsin the literature various notions of mixing that quantify the dependence between the past4



and the future. Just for comparison, in the '-mixing for example we measure the quantityjP(B=A)� P(B)j. The notion of �-mixing is therefore weaker. It is in fact the weakestwhen compared to all usual notions of strong mixing (see [7]). However, this assumptionon the sequence (Xn)n2N turns out to be quite adequate. Furthermore, we will say that an��mixing process (Xn)n2N satis�es the Ibragimov assumption ifXn�0 � �2+� (n) < +1 for some � > 0: (3)Historically, the Central Limit Theorem for �-mixing processes is due to Ibragimov (1962)(see [7] or Hall & Heyde [12]). It essentially holds under the above assumption (3).Theorem 1 Suppose that (Xn)n2N is a centered real valued strictly stationary(3) �-mixingprocess with 1Xn=0 �(n) �2+� < +1 and E jX0 j2+� < +1 for some � > 0. Then the sequence�2 := V ar(X0) + 2 1Xk=1 Cov(X0; Xk)is absolutely convergent. Furthermore, if � > 0, thenX0 +X1 + � � �+Xn�1�pn L�! N (0; 1) as n! +1;where N (0; 1) denotes the standard normal distribution and L�! is for the convergence inlaw.�Except for the fundamental underlying Central Limit Theorem for the martingale incre-ments, this result mainly relies on the covariance inequality below (see [7] p.9).Proposition 1 Let (Xn)n2N be a strictly stationary �-mixing process. Then:8 r; p; q � 1 with 1r + 1p + 1q = 1, 8 F 2 Lp(Fk0 ) and 8 G 2 Lq(F1k+n)jCov(F;G)j � 8� 1r (n) jjF jjp jjGjjq :Application to cylindrical functions: Let us go back to the framework described in theintroduction i:e: the canonical projections (Xn)n2N are �-mixing on the canonical dynamicalspace ((Rd)N ;B(Rd)
N;P) with a rate � := (�(n))n2N. Then, the real valued measurablefunctions F on ((Rd)N;B(Rd)
N;P) that actually depend on �nitely many components behavelike the sequence (Xn)n2N itself in the following sense: if F only depends on the �rst Ncomponents then X(F;N)n :=F � �n; n 2 N , is an �N -mixing process with rate�N(n) = � 1 if n � N�(n�N) if n > N :3A Rd -valued process (Xn)n2N is strictly stationary if for every k2 N, (Xn+k)n2N and (Xn)n2N have thesame distribution that is, if P denotes the distribution of (Xn)n2N on the canonical space ((Rd )N;B(Rd)
N),P � � = P with the notations of section 1. 5



Note that 1Xn=0 � �2+� (n) < +1 () 1Xn=0 � �2+�N (n) < +1:So, one straightforwardly derives the followingProposition 2 Let (Xn)n2N be a strictly stationary Rd-valued �-mixing process. If there is� > 0 satisfying 1Xn=0 � �2+� (n) < +1, then for every cylindrical function F 2 L2+�(P) withE (F )=0,(a) the sequence �2(F ) := V ar(F ) + 2 1Xk=1 Cov(F � �k; F ) is absolutely convergent,(b) Furthermore, if �(F ) > 0, then: 1�(F )pn n�1Xk=0 F � �k L�! N (0; 1) as n! +1:2.2 Rate of almost sure convergenceAs a �rst step we recall the Gál and Koksma Theorem, established in their article �Surl'ordre de grandeur des fonctions sommables�([11]). We will restrict to the L2-stationaryprocess setting (see [1] for a probabilistic proof in a full general setting).Theorem 2 Let (
;A;P) be a probability space and let (Xn)n2N be a L2-stationary sequenceof random variables such that E jX1 +X2 + � � �+Xnj2 = O(n). Then8 " > 0 X1 +X2 + � � �+Xn = o�n 12 (log(n)) 32+"� P-a:s:�Coming back to the canonical dynamical system ((Rd)N;B(Rd)
N;P; �), we derive from theprevious theorem a strong ergodic result. i:e: a speed of a:s: convergence in Birkho�'spointwise ergodic Theorem.Proposition 3 Let F 2 L2((Rd)N;B(Rd)
N);P) such that E (F )=0. If�2(F ) :=V ar(F ) + 2 1Xk=1 Cov(F � �k; F ) converges, then8 " > 0; 1n n�1Xk=0 F � �k = o�n� 12 (log(n)) 32+"� P-a:s::Proof: Using the convergence of the series �2(F ) and the fact that � preserves the measureP, we �rst prove that (see e:g: [1])E  n�1Xk=0 F � �k!2 = n�2(F )� 2 nXk=1 kCov(F � �k; F )� 2n 1Xk=n+1Cov(F � �k; F ):6



The �niteness of �2(F ) along with the Kronecker lemma yieldlimn!1 1n Z(Rd)Nj n�1Xk=0 F � �kj2dP = �2(F ):The Gál and Koksma's Theorem completes the proof. �By its very construction, a functional F that can be simulated on a computer naturallyappears as a stopping functional with respect to its (a:s: �nite) stopping rule T . So fromnow on, we will focus on such FT -measurable functionals.3 An a:s: rate of convergence for stopping functionals3.1 A class of FT -measurable functionals with �nite �2(F )Set Fnm :=�(Xm;� � � ;Xn) and F1m :=�(Xk; k�m). T will denote a Fn0 -stopping time and Fa FT -measurable functional. Finally [x] will denote the integral part of x.Theorem 3 below provides a bound for the covariance Cov(F � �k; F ) from which theabsolute convergence of the series �2(F ) = V ar(F ) + 2 1Xk=1 Cov(F � �k; F ) follows. It is thekey result of this work.Theorem 3 Let (Xn)n2N be a Rd -valued stationary �-mixing process. Assume there is some� > 0 such that 1Xn=0 � �2+� (n) < +1. If T is a stopping time and T 2 Lp((Rd)N;P) for somep > 2+�1+� then, for every F 2 L2+�((Rd)N;FT ;P) with E (F ) = 0, we have��Cov(F � �k; F )�� � 16 jjF jj22+� � �2+� (k � [k=2]) + jjF jj2+�1+� jjF jj2+� (E (T p))1+�2+�[k=2]p 1+�2+� : (4)Proof: To establish inequality (4), �rst notice that��Cov(F � �k; F )�� � ��Cov(F � �k; F � 1fT�[k=2]g)��+ ��Cov(F � �k; F � 1fT>[k=2]g)�� : (5)Now F ��k is F1k -measurable and F �1fT�[k=2]g is F [k=2]0 -measurable. By applying Proposition1 with r = 1 + 2� and p = q = 2 + �, we obtain��Cov(F � �k; F � 1fT�[k=2]g)�� � 8� �2+� (k � [k=2]) ����F � 1fT�[k=2]g����2+� jjF jj2+�� 8� �2+� (k � [k=2]) jjF jj22+� : (6)For the second term on the right of inequality (5), the standard H�older inequality withp = 2 + � and q = 2 + �1 + � �rst provides��Cov(F � �k; F � 1fT>[k=2]g)�� � ����F � �k � 1fT>[k=2]g���� 2+�1+� jjF jj2+� : (7)7



It is straightforward thatE �jF j 2+�1+� � �k � 1fT>[k=2]g�� ���Cov(jF j 2+�1+� � �k; 1fT>[k=2]g)���+ E �jF j 2+�1+�� P(T > [k=2])At this stage, we observe that F � �k is F1k -measurable and fT > [k=2]g belongs to F [k=2]0 .Still applying Proposition 1 but this time with r = 1 + 1� ; p = 1 + � and q = +1 yieldsE �jF j 2+�1+� � �k � 1fT>[k=2]g��8� �1+� (k � [k=2]) �E �jF j2+��� 11+� + E �jF j 2+�1+��P(T > [k=2]);that is����F � �k � 1fT>[k=2]g���� 2+�1+� ��8� �1+� (k�[k=2]) �E �jF j2+��� 11+� + E �jF j 2+�1+��P(T > [k=2])� 1+�2+� :Plugging this bound in inequality (7) and using inequality (x + y)� � x� + y�; 0 < � <1; x; y � 0 leads to��Cov(F � �k; F � 1fT>[k=2]g)�� � 8 1+�2+�� �2+� (k�[k=2]) jjF jj22+� + jjF jj 2+�1+� jjF jj2+� (P(T � [k=2]))1+�2+�� 8� �2+� (k � [k=2]) jjF jj22+� + jjF jj 2+�1+� jjF jj2+� (P(T � [k=2]))1+�2+� : (8)As T 2 Lp((Rd)N;B(Rd)
N;P), P(T > [k=2]) � E (T p)[k=2]p . Hence, collecting inequalities (5), (6)and (8) �nally yield:��Cov(F � �k; F )�� � 16 jjF jj22+� � �2+� (k � [k=2]) + jjF jj2+�1+� jjF jj2+� (E (T p))1+�2+�[k=2]p 1+�2+� ;which completes the proof. �Remarks and improvements:(a) A careful reading of the above proof (namely equation (8)) shows that the assumptionT 2 Lp for some p > 2+�1+� can be slightly improved into1Xk=1 P(T > k) 1+�2+� < +1:(b) As 2+�1+� < 2, the moment assumption on T is always ful�lled as soon as that: T 2L2((Rd)N;B(Rd)
N;P).(c) If the functional F is bounded, then we can simply assume that T is integrable. Indeed,if T is integrable then P1k=1 P(T > [k=2]) < +1 and the proof can be modi�ed � infact simpli�ed! � in this setting (which formally corresponds to � = +1).(d) Our assumptions on the process (Xn)n2N and the functional F are satisfactory in thefollowing sense: 8



� Both conditions 1Xn=0 � �2+� (n) < 1 and F 2 L2+� do not di�er from those of theoriginal Ibragimov Central Limit Theorem which studies functions only dependingon one variable (i:e: F (x0; � � � ; xn; � � �) := f(x0)).� When �(n)=0, n�1, we �nd again the results of [2] obtained in the independentsetting.(e) The FT -measurability of the functional F for some stopping time T is crucial. In fact,we cannot obtain this result as a consequence of some results on functionals that canbe approximated by a sequence (Fk)k2N of Fk0 -measurable cylindrical functions so asP1k=1 jjF � Fkjj2 < +1. By such a simple approach (setting Fk := F:1fT�kg), we getthe result under the more stringent assumptions:F 2 L2+� and T has a moment of order p > 4(2+�)� .3.2 An a:s rate of convergenceAs it has been emphasized in paragraph 2.2 on the a:s: convergence rate, the condition�2(F ) < +1 is the basic assumption to apply Gál and Koksma Theorem (Theorem 2).Therefore, we derive from the previous theorem the following a:s: convergence result.Theorem 4 Under the assumptions of Theorem 3, one has:8 " > 0; 1n n�1Xk=0 F � �k = o�n� 12 (log(n)) 32+"� P-a:s::�4 A Central Limit Theorem for stopping functionalsTheorem 5 Let (Xn)n2N be a Rd -valued stationary �-mixing process. Assume there is some� > 0 such that 1Xn=0 � �2+� (n) < +1. If T is a stopping time and T 2 Lp((Rd)N;P) for somep> 2+�1+� then, for every F 2 L2+�((Rd)N;FT ;P) with E (F ) = 0, we have:�2(F ) > 0 =) 1�(F )pn n�1Xn=0 F � �k L�! N (0; 1) as n! +1; (9)where N (0; 1) denotes the standard normal distribution.To establish the Central Limit Theorem we compute the limits of �2(F:1fT�`g)and �2(F:1fT>`g) when ` tends to +1. Indeed, if for every ` 2 N we set:�2̀ := �2(F:1fT�`g) = V ar(F:1fT�`g) + 2 1Xk=1 Cov(F:1fT�`g � �k; F:1fT�`g) (10)9



and � 2̀ := �2(F:1fT>`g) = V ar(F:1fT>`g) + 2 1Xk=1 Cov(F:1fT>`g � �k; F:1fT>`g);then we have the following results.Lemma 1 Under the assumptions of Theorem 5,lim`!1�2̀ = �2 and lim`!1 � 2̀ = 0: (11)Proof : Following Theorem 3, if we replace the function F by F:1fT�`g�E �F:1fT�`g� (stillFT -measurable and centered), inequality (4) yields an upper bound for��Cov(F:1fT�`g � �k; F:1fT�`g)��, namely��Cov(F:1fT�`g � �k; F:1fT�`g)�� � 16 ����F:1fT�`g � E � (F:1fT�`g)����22+� � �2+� (k � [k=2])+ ����F:1fT�`g � E (F:1fT�`g)���� 2+�1+� ����F:1fT�`g � E (F:1fT�`g)����2+� (E (T p)) 1+�2+�[k=2]p 1+�2+� :Now for every functional G 2 Lp; p > 1; jjG� E (G)jjp � 2jjGjjp, therefore,8 ` 2 N ; ��Cov(F:1fT�`g � �k; F:1fT�`g)�� � 72 ����F:1fT�`g����22+� � �2+� (k � [k=2])+4 ����F:1fT�`g���� 2+�1+� ����F:1fT�`g����2+� (E (T p))1+�2+�[k=2]p 1+�2+� ;which in turn implies that, for every `2 N��Cov(F:1fT�`g � �k; F:1fT�`g)�� � 72 jjF jj22+� � �2+� (k � [k=2])+4 jjF jj 2+�1+� jjF jj2+� (E (T p)) 1+�2+�[k=2]p 1+�2+� :Hence equation (10) implies that �2̀ is de�ned by an absolutely convergent sequence, uni-formly, with respect to `. As each term of the series converges towards Cov(F � �k; F ), one�nally has lim`!1�2̀ = �2.If we note that F:1fT>`g � E �F:1fT>`g� is FT -measurable and centered we obtain in thesame way: ��Cov(F:1fT>`g � �k; F:1fT>`g)�� � 72 jjF jj22+� � �2+� (k � [k=2])+4 jjF jj 2+�1+� jjF jj2+� (E (T p)) 1+�2+�[k=2]p 1+�2+� :Hence � 2̀ is also de�ned by an absolutely convergent sequence uniformly with respect to`. Since each term of the series converges towards 0, lim`!1 � 2̀ = 0.� 10



Let us prove now the Central Limit Theorem.Proof: Let F 2 L2((Rd)N;FT ;P). For every ` 2 N we writeF = �F:1fT�`g � E (F:1fT�`g)�+ �F:1fT>`g � E (F:1fT>`g)� :Then1pn n�1Xk=0 F ��k= 1pn n�1Xk=0 �F:1fT�`g � E (F:1fT�`g)���k+ 1pn n�1Xk=0 �F:1fT>`g � E (F:1fT>`g)���k:F:1fT�`g � E (F:1fT�`g) is a cylindrical function only depending on the �rst ` variables.According to proposition 2, the �rst term on the right of the equality converges in distributiontowards N (0; �2̀), for every ` 2 N , with�2̀ = �2(F:1fT�`g) = V ar(F:1fT�`g) + 2 1Xk=1 Cov(F:1fT�`g � �k; F:1fT�`g):From Lemma 1, one derives the convergence in distribution of N (0; �2̀) towards N (0; �2).Consequently, it amounts to prove that, for every " > 0,lim`!1 lim supn!1 P ����� 1pn n�1Xk=0 �F:1fT>`g � E (F:1fT>`g)� � �k����� � "! = 0:Then Bienaymé-Tchebichev's inequality yieldsP ����� 1pn n�1Xk=0 �F:1fT>`g � E (F:1fT>`g)� � �k����� � "!� 1n"2 Z(Rd)N�����n�1Xk=0 �F:1fT>`g � E (F:1fT>`g)� � �k�����2 dP:The convergence of 1n Z(Rd)N�����n�1Xk=0 �F:1fT>`g � E (F:1fT>`g)� � �k�����2 dP towards � 2̀ yields:lim supn!1 P ����� 1pn n�1Xk=0 �F:1fT>`g � E (F:1fT>`g)� � �k����� � "! � � 2̀"2 :Lemma 1 completes the proof.�Remark : This CLT is satisfactory since it holds under the same Ibragimov assumptionthat rules the standard CLT for ��mixing processes. However some recent work by Doukhan,Massart and Rio [8] shows that the (functional) CLT holds for a stationary ��mixing pro-cesses (Xn)n2N whenever Z 10 ��1(t)Q2(t)dt < +1 (12)where t 7�! ��1(t) denotes the canonical inverse of the monotonic function t 7�! �([t]) andQ denotes the quantile function of X0. 11



5 The law of the Iterated LogarithmThe a:s: estimates for the convergence rate obtained in paragraph 3.2 using the Gál andKoksma Theorem (see Theorem 4) are obviously weaker than those of the standard Lawof the Iterated Logarithm (LIL) property. The usefulness of these results is to providean estimate close to the iterated logarithm but under weak and natural assumptions insimulation. However it is possible to prove the true LIL under more stringent assumptionson the functional F and the stopping time T .Several results are available in the literature on the asymptotic behavior of the partial sumsn�1Xk=0 Xk of a �weakly dependent� (Xk)k2N process or on the partial sums n�1Xk=0 F (Xk; Xk+1; � � �)of a functional F depending on a �weakly dependent� process (see [3],[17]). Thus, W. Philippand W. Stout in [17] provide several invariance principles for the partial sums of �weaklydependent� random variable sequences. Among them some are related to the sum of thefunctional of a delayed �-mixing process.Philipp and Stout's Theorem: For the sake of simplicity we state Philipp and Stout'sTheorem in the �-mixing stationary case still using the same notations. We go back to thecanonical dynamic system ((Rd)N;B(Rd)
N;P; �).Theorem 6 (W. Philipp and W. Stout [17]) Let F be a centered function 2 L2+�((Rd)N ;P)for some 0 < � � 2, and (Fk)k2N an approximating sequence of Fk0 -measurable functions.We assume that:(i) There is some constant C satisfying:8 n 2 N jjF � Fnjj2+� � Cn2+ 7� : (13)(ii) E  n�1Xk=0 F � �k!2 = n +O(n1� �30 ) as n!1: (14)(iii) (Xn)n2N is a Rd-valued stationary �-mixing sequence with:�(n) = o�n�168(1+ 2� )� : (15)Then the Law of the Iterated Logarithm holds, that is: P-a:s:lim supn!1 n�1Xk=0 F � �kp2n log logn = 1 and lim infn!1 n�1Xk=0 F � �kp2n log logn = �1:�The proof of this theorem is available in chapter 8 of [17].We will apply now this theorem to FT -measurable functionals.12



Application to stopping functionals of an �-mixing process: We study now someclasses of functions depending on a stopping time. Hence we consider a (Fn0 )n2N-stoppingtime T , and a FT -measurable functional F .Theorem 7 Let (Xn)n2N be a Rd -valued stationary �-mixing sequence and � 2 (0; 2]. As-sume that �(n) = o�n�168(1+ 2� )�. If T is a stopping time and T 2 Lp(�)((Rd)N;P) for somep(�) > 2(2 + �)(1 + �)(2� + 7)�2 (4) then, for every F 2 L2+2�((Rd)N;FT ;P) with E (F ) = 0and �2(F ) > 0, the Law of the Iterated Logarithm is satis�ed, that is:P-a:s: lim supn!1 n�1Xk=0 F � �kp2n log logn = �(F ) and lim infn!1 n�1Xk=0 F � �kp2n log logn = ��(F ):Remark: Note that '(�) := 2(2 + �)(1 + �)(2� + 7)�2 is a decreasing function on (0; 2] so'(�)�'(2)=66. For any practical implementation, such a requirement amounts to assumingthat the stopping time T has moments of every order.Proof: W.l.g., one may assume that �2(F ) = 1 and �(n) is a non increasing sequence. Wewill now show that the assumptions of Theorem 6 are ful�lled. According to the proof ofProposition 3 one has:E  n�1Xk=0 F � �k!2 = n� 2 nXk=1 kCov(F � �k; F )� 2n 1Xk=n+1Cov(F � �k; F ): (16)Let p2 �2+�1+� ; p(�)�. So, one has, following Theorem 3:8F 2 L2+�((Rd)N;FT ;P) ��Cov(F � �k; F )�� << ��168(k�[k=2]) + 1[k=2]p 1+�2+�<< ��168(k) + k�p 1+�2+� (17)where << means that the left term is upper bounded by the right one up to a multiplicativeconstant. Let An := 1Xk=n+1Cov(F � �k; F ). It follows from (17) thatjAnj � 1Xk=n+1 jCov(F � �k; F )j << 1Xk=n+1��168(k) + 1Xk=n+1 k�p 1+�2+�<< n�167 + n�p 1+�2+�<< n�167 + n� �30 by setting p := 2 + �1 + � 30 + �30 2 �2 + �1 + � ; p(�)�<< n� �30 since �30 � 115 � 167:4Note that 2(2+�)(1+�)(2�+7)�2 > 2+�1+� at least on (0; 2].13



Now we need to estimate Pnk=1 kCov(F � �k; F ). An Abel transform yields����� nXk=1 kCov(F � �k; F )����� = ����� nXk=1 k(Ak�1 � Ak)������ nXk=0 jAkj+ njAnj << n1� �30 since 0 < �30 � 115 < 1Plugging both estimates in equation (16) shows that assumption (ii) is ful�lled i:e::E  n�1Xk=0 F � �k!2 = n+O(n1� �30 ):In order to ful�ll (i), if we set Fk := F � 1fT�kg, r := 2(1 + �) and s := 2(2 + �)(1 + �)� . TheH�older inequality (applied with the conjugate exponents 2(1+�)2+� and 2(1+�)� ) along with theBienaymé-Tchebichev inequality �nally lead tojjF � Fkjj2+� � jjF jjrP(T > k) 1s � jjF jjrE �T (2+ 7� )s� 1sk2+ 7� :So (i) holds whenever T admits a moment of order 2(2 + �)(1 + �)(2� + 7)�2 . This completesthe proof. �Application: The restriction on the �-mixing coe�cient is here very drastic. In practiceit is essentially satis�ed in the geometric framework. Thus, one recovers the result of thei.i.d. setting (i:e: �(n)=0, n�1).Remark : The very same remark as that made in section 4 holds here as a recent paperby Rio (see [18]) shows that the LIL holds under assumption (12).6 Markov setting6.1 �-mixing Markov chainsWe consider here a Rd -valued Markov chain de�ned by its transition probabilities (�(x; �))x2Rd.We denote by Px the probability distribution on the canonical space ((Rd)N;B(Rd)
N;P) forwhich the sequence of canonical projections (Xn)n2N is a Markov chain with transition � andinitial distribution �x. To deal e�ciently with our expectation computation problem, it isnecessary to suppose the existence of a stationary distribution �, (i:e: �� = � in other words:8A 2 B(Rd)
N ; �(A) = ZRd �(x;A)�(dx). Let P� := ZRd Px�(dx). One has �(P�) = P� i:e:under P� the process (Xn)n2N is strictly stationary. Let us recall now a characterization ofthe �-mixing in the framework of Markov chains.14



Proposition 4 (cf. [7]). Let (Xn)n2N be a Markov chain with stationary distribution � andtransition probabilities (�(x; :))x2Rd. Iflimn!+1ZRd supA2B(Rd) j�n(x;A)� �(A)j �(dx) = 0then the process (Xn)n2N is �-mixing under the stationary distribution P� with�(n) � 2 ZRd supA2B(Rd) j�n(x;A)� �(A)j �(dx).We provide the proof for the reader's convenience.Proof: Let A 2 Fk0 and B 2 F1k+n. Set h(x) := Ex(1B). We will denote by k�k thetotal variation of a signed measure � (i:e: k�k := j�j(Rd)). First note that there is some~B 2 F10 s.t. B = (�n+k)�1( ~B). Hence h(x) := Ex(1 ~B � �n+k). The stationarity of � impliesthat �(h)=Z �(dx)E x(1 ~B��n+k)=Z �(dx)E x(1B) = P�(B). ThenjP�(A \B)� P�(A)P�(B)j = ��E � �1A(E � (1 ~B � �n+k=Fn+k0 )� P�(B))���= ��E � �1A(EXn+k (1 ~B)� P�(B))���= jE � (1A(h(Xn+k)� �(h)))j= ����E � �1A ZRd h(x)(�n(Xk; dx)� �(dx))������ E � (1A k�n(Xk; dx)� �(dx)k khk1)As the functions h and 1A are [0; 1]-valued, it follows thatjP�(A \B)� P�(A)P�(B)j � E � (k�n(Xk; :)� �k) = ZRd k�n(x; �)� �k�(dx):The inequality k�k�2 supA2B(Rd) j�(A)j completes the proof.�Connection with the ergodicity properties of a Markov chain: In the Markov chainliterature, two classes have especially been studied. Let A be a non negative function suchthat ZRd A(x)�(dx) < +1. We assume thatsupB2B(Rd) j�n(x;B)� �(B)j � A(x)un with limn!1un = 0: (18)If un := �n, 0 < � < 1, (18) is called the geometric ergodicity property and if un := 1n
 ; 
 > 0,(18) is called the Riemann recurrence property. In all cases, under P� , we have an �-mixingMarkov chain with �(n) = O(un).General remark: Concerning the convergence in distribution, one has to note that resultswhich are stated below exclusively hold under P� . On the other hand all results dealing withalmost sure convergence, established under the distribution P� , remain true under Px for �almost every x. 15



Comment: Theorem 7 stresses the interest of the Strong Ergodic Theorem obtained insection 3.2 as it yields a rather similar result but under much looser assumptions on the�-mixing coe�cient. Thus Theorem 5 holds in the case of Riemann recurrence as soon as
 > 1 + 2� while 
 > 168(1 + 2� ) is necessary to get the LIL.6.2 Mathematical and simulation frameworkLet (Xn)n2N be an homogeneous Markov chain admitting a representation of the formXn+1 = h(Xn; Yn+1); n � 0; X0 L��0 (19)where h : Rd�Rp �! Rd is a Borel function (5), (Yn)n2N is an i.i.d. sequence of � distributedinnovations and �0 is a (starting) distribution on Rd . One can notice that, if F is a functionalof the Markov chain (Xn)n2N starting at x2 Rd , there is some functional G on Rd�RN suchthat F (X0; X1;� � �; Xn;� � �) = G(x; Y1; Y2;� � �; Yn; � � �):So, the shift on independent innovation method (SIIM) naturally yields an estimate and anerror bound for E x(F )=ZRNG(x; y1;� � �; yn;� � �)d�
N(y0; y1; : : : ; yn; : : : ; : : :).It is possible the same way round to approximate E �0 (F ) with some similar weak andstrong error bounds whenever the starting distribution �0 of X0 can be simulated from thedistribution � of the innovation Y0 (i:e: there exists some ' s.t. '(Y0) � �0).Among all the possible starting distributions �0 for the chain, the invariant one plays anessential role for obvious reasons related to Statistics or Simulation. However the computa-tion of functional expectations under P� makes problem when this invariant distribution isnot explicitly known from the distribution of the innovation �. This is usually due to thefact that no information is available on � except for its existence and uniqueness. One wayto apply the SIIM or the MCM is to prove that L(Xn) converges fast enough to � for anystarting value x2 Rd (that is ��n(dy) ! �(dy) in distribution or, if possible, in variation).This will be the case when the chain (Xn)n2N has further properties as Doeblin or geometricalergodicity, Riemann recurrence or even stability (see below and [9] or [7]).Anyway, whatever method is used � MCM or SIIM � getting an approximate for E � (F )needs, prior to the simulation of every independent trial of F (or every F��k), to re-simulatean approximately �-distributed starting value. Practically, it amounts to assigningX0 :=Xn0for a large enough n0. Such preliminary simulations are C.P.U time and random numberconsuming. The major drawback eventually remains that the method actually converges toEL(Xn0 )(F ) with no available control on the bias.On the other hand, if the chain (Xn)n2N is ergodic, the Birkho�'s Theorem applied on((Rd)N;B(Rd)
N;P�) to the canonical shift � yieldsP� -a:s: 1n n�1Xk=0 F � �k �! E � (F ) as n! +1: (20)5For notational convenience we will assume that p=1.16



It follows that the convergence also holds Px-a:s: for �-almost every x2 Rd . So, whenever the(Xn)n2N is ��mixing the above theoretical results would provide some valuable informationabout expectation computation based on a direct shifting of the (Xn)n2N's (SPM). The SPMhas the same possible advantages as the SIIM (shift on the innovations): preservation ofthe random number generator, (more) time saving by a drastic reduction of the numericalcomputations. Besides it converges to the true value E � (F ) and there is no longer theoreticalbias. On a more practical point of view, no preliminary simulation (or computation) of anapproximately �-distributed starting value Xn0 is really necessary.7 Applications and simulationsMost stopping times used in simulations actually are some hitting time TA of a given Borelset A that is TA :=minfn2 N =Xn 2 Ag:So we will concentrate in the examples below to functionals related to such stopping times(these functionals can be the stopping time itself).7.1 A simple Metropolis like algorithmThe simpli�ed version of the Metropolis algorithm used below for the testing procedure ismentioned in [19]. Let � be a [0; 1]-valued function de�ned on the whole real line and setXn+1 :=� Xn if Un+1 > �(Xn)Zn+1 if Un+1 � �(Xn) (21)where Yn :=(Un; Zn)n�1 is a sequence of i.i.d. random vectors with distribution U([0; 1])
�.Usually, such a procedure is implemented to provide some approximately �-distributednumbers. It looks a bit like the rejection method except that the number of trials beforegetting one (almost)-� distributed number can be a priori bounded.As soon as Z ��1d�<+1, � := ��1d�R ��1d� is the unique invariant distribution for the chain.7.1.1 A �rst example (� is explicitly known)When � has a compact support, say the unit interval [0; 1], it is obvious that for every [0; 1]-valued starting value x, the whole process (Xn)n2N lives in [0; 1]. Then, if � is continuouslyde�ned on [0; 1], the transition (�(x; dy))x2[0;1] is Feller on [0; 1]. Under the above uniquenessassumption of the invariant probability distribution, the chain is then �-stable.For example, if � := �(a + 1; 1) and �(x) :=8<: 0 if x � 0x if x 2 [0; 1]1 if x � 1 then �-stability holds for� = �(a; 1). In that special setting, one can show following [8], that the chain is in fact�-mixing (even �-mixing). 17



For our purpose it is more signi�cant to focus on a rather general stopping time, sayF :=T := inffn � 1; nXk=1 Xk 62 [�10; 10]gas the simulated functional.Numerical comparison of the methods: This �rst set up makes possible a sketch ofcomparison between the three methods: MCM, SIIM (shift on the innovations) and SPM(shift on the chain itself), in terms of C.P.U. time, random number generator, etc. As amatter of fact an exact simulation procedure for the invariant distribution � is available (setX0 :=U 1a0 for some uniformly distributed r.v. U0).The results are following for a :=2C.P.U. time (s) Used random numbers E� (F )Iterations MCM SIIM SPM MCM SIIM SPM MCM SIIM SPMn=1 000 0.370 0.180 0.060 27 064 12 508 1 714 15.740 15.796 15.796n=5 000 1.770 0.790 0.240 135 627 61 695 8 412 15.792 16.091 15.691n=10 000 2.650 1.990 0.360 272 721 123 514 16 811 15.930 15.994 15.657n=50 000 13.190 11.780 2.420 1361 032 616 114 83 384 15.916 15.910 15.973n=100 000 32.440 18.480 4.610 2 722 984 1 229 784 167 019 15.932 15.925 15.872The table of the C.P.U. time shows that, for a given number of iterations, the SPM methodis 7 times faster than the MCM while the SIIM method is roughly speaking twice faster. Ofcourse such factors are strongly depending of the setting and can in no way be adopted asgeneral rules.INSERT FIGURE 1 AROUND HERETaking into account these factors, while n iterations are processed for the MCM algorithm,7n (resp. 2n) iterations are processed for the SPM (resp. SIIM) algorithm. The graphicin Figure 1 was plotted so that the abscissa axis represents the C.P.U time (expressed inequivalent MCM iteration number). Thus, above n := 2:104 are plotted the approximates ofE � (T ) obtained by the three methods while 2:104 iterations were processed by the MCM.It turns out that the speed improvement of the method satisfactorily compensates theincrease of �2(T ). Finally the gain true essentially lies in the saving of the random numbergenerator.7.1.2 A second example (� is not explicitly known)When �>"0, one readily checks that the transition�(x; dy) := (1� �(x))�x(dy) + �(x)�(dy) � "0�(dy)is Doeblin recurrent, hence �-mixing. We set for this example �(x)=0:25 + 0:5� e�jxj and� :=N (0; 1).
18



Numerical comparison of the methods: This second set up is in some sense more real-istic as it requires a preliminary simulation of the invariant distribution. This preprocessing,supposed to geometrically converge due to Doeblin recurrence, was made using n0 = 1 000trials of the chain (see section 6.2). The simulations are displayed in Figure 2.INSERT FIG. 2 AROUND HEREThe three methods clearly converge but, seemingly, toward two separate limits: theMCM and SIIM methods going on one side, the SPM on another. Two interpretationscan reasonably be proposed: either the SPM method is too slow and a false convergencephenomenon occurs or the SPM value is right and both MCM and SIIM (which estimateEL(Xn0 )(T )) are wrong i:e: EL(Xn0 )(T ) 6� E � (T ).Taking into account the theoretical properties of the methods developed in subsection6.2, along with some further simulations processed below with another algorithm: the Com-petitive Learning Vector Quantization, we guess that the best estimate is the one providedby the SPM method. However this remains debatable and would need some large scalesimulations to draw some general rule.7.2 A Vector Quantization Algorithm (1-dim setting)The 1-dim Competitive Learning Vector Quantization algorithm: Let � be a prob-ability measure on [0; 1]. One de�nes on F+n :=fu2 [0; 1]n = 0<u1< � � �<un<1g the so-calledn-distortion E�n(x) of a n-tuple x :=(x1; � � � ; xn)2 F+n byE�n(x1; � � � ; xn) := Z min1�i�n(xi � u)2�(du):This function measures how the n-tuple (x1; � � � ; xn) can be considered as a good �skeleton"or �quanti�cation" of the distribution �: the lower E�n(x) is, the better x quanti�es �. Themulti-dimensional version of the distortion is widely used in Automatic Classi�cation tooptimally reduce the size of a data set. Some applications to Numerical Integration are alsodeveloped (see [15] or [16]). So it is important to reach an element of argminF+n E�n .It is well-known (see e:g: [6]) thatrE�n(x1; � � � ; xn) = 2�Z ~xi+1~xi (xi � u)�(du)�1�i�n where ~xi := xi + xi+12 ; 2 � i � n� 1;~x1 :=0; ~xn+1 :=1. Note that rE�n admits an obvious continuous extension on the closure F+nof F+n . A classical deterministic minimizing procedure xt+1 := xt � "rE�n(xt) (" 2 (0; 1=2)seems intractable because of the integral form of the gradient when the � is not uniform. Onthe other hand, whenever � has a simple simulating procedure, the so-called �CompetitiveLearning Vector Quantization" related stochastic gradient descentX02 F+n ; X t+1i := X ti � "1] ~Xti ; ~Xti+1](!t+1)(X ti � !t+1); ; (!t) i.i.d. & �-distributed (22)can straightforwardly be implemented on a computer. Note that the CLVQ algorithm isalso mentioned in the Neural Network literature as the Kohonen algorithm with 0 neighbor.Although such an algorithm with constant step cannot converge in the a:s: sense, most19



practitioners implement it that way to avoid the metastability problems encountered withthe algorithm with decreasing step.Equation (22) de�nes for every " 2 (0; 1=2) an homogeneous F+n -valued Markov chain.When � is di�use (i:e: weights no single point) this chain admits a Feller extension on F+n byproperly de�ning the algorithm on n-tuples having stuck components [6]. Then the existenceof an invariant probability measure �" is straightforward and it can be shown that, in fact,�"(F+n )=1. On the other hand, it has been established that whenever9O� [0; 1]; open set, s.t. �jO � ��jO (23)the CLVQ algorithm is Doeblin recurrent on F+n (and subsequently has a unique invariantprobability measure �" even if � is not di�use). Many simulations processed with thisalgorithm shows that the geometric convergence ratio � is very close to 1.This family of compactly supported distributions �"; " 2 (0; 1=2) is tight, and still as-suming that � is di�use, one may show (see [6] or [10]) that any weak limiting value �0 ofthe tight family (�")"2(0;1=2) satis�es supp(�0)� frE�n = 0g. Thus whenever frE�n = 0g isreduced to a single point x�, one has �" ) �x�.This is the case e:g: if �(du)=f(u)du where f is either strictly ln-concave or ln-concavewith f(0+)+f(1�)>0 (see [14]). Furthermore, when � :=U([0; 1]), x� :=(2k�12n )1�i�n.The simulations They were processed with the uniform distribution � :=U([0; 1]), n :=10," :=0:1. All the preliminary simulations were always processed starting from the equilibriumpoint x�. We considered the hitting timeF := T :=min�t2 N = ����X t � (2k � 12n )1�k�n����2< 1:1n � :� The MCM: Our aim was to study the convergence of the MCM method as a function ofL(Xn0) where n0 denotes the number of preliminary simulation (keep in mind that L(Xn0)geometrically converges in variation to �"). On the other hand, it has been highlightedthat the MCM actually approximates EL(Xn0 )(T ) instead of E � (T ) and that no control ofjEL(Xn0 )(T )� E � (T )j as a function of kL(Xn0)� �k=O(�n) is known.INSERT FIG 3 AROUND HEREFigure 3 shows that, actually, if convergence holds, it is surprisingly slow. Any estimateof E � (T ) obtained by the MCM method with less than 5 000 preliminary simulations of thestarting value for every path of the simulation of T provides a meaningless result.The SIIM method fails exactly for the same reasons.INSERT FIG. 4 AROUND HERE� The SPM: Figure 4 displays a simulation by the SPM method processed on 108 trials. Itshows how slow the convergence is toward an approximate value of E � (T )�5:1.INSERT FIG 5 AROUND HERE� The comparison was lead (see Figure 5) like for the Metropolis like algorithm : the abscissaaxis represents the number n of iterations of the MCM. Above every n are plotted the valuesobtained for E � (T ) by the three methods �while n iterations of the MCM were run�. Roughlyspeaking this amounts to comparing the methods vs C.P.U. time.Figure 5 shows that the SPM method converges much faster than MCM and SIIM, or tobe more speci�c, is far less costly in term of random numbers consumption.20



8 ConclusionWe have extend to ��mixing stationary process satisfying the usual Ibragimov assumption(Xn�0 � �2+� (n) < +1 for some � > 0) some weak (CLT) and strong (Gàl-Koksma and LIL)rates of convergence for the pointwise Birkho�'s Theorem on the canonical dynamical system((Rd)N;B(Rd)
N;P; �), formerly obtained in the i.i.d case (i:e: P = �
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Figure 1: � is explicitly known
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Figure 2: � is not explicitly known23



 

 

0 31. 10 32. 10 33. 10 34. 10 35. 10 36. 10 37. 10 38. 10 39. 10 41. 10

1

2

3

4

5

6

7

8

n0=1 000 
n0=2 000 
n0=3 000 
n0=4 000 
n0=5 000 
n0=10 000

Figure 3: MCM for various n0
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Figure 4: Convergence of SPM24
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