Rate of convergence for computing expectations
of stopping functionals of an a-mixing process

Mohamed Ben ALAYA* Gilles PAGEST

Abstract

The shift method consists in computing the expectation of an integrable functional
F defined on the probability space ((R4)N, B(RY)®N, 4®N) (1 is a probability measure
on R?) using the Birkhoff’s Pointwise Ergodic Theorem : & Zz;é Fof* — E(F) a.s. as
n— +00, where @ denotes the canonical shift operator. When F lies in L?(Fp, u®Y) for
some integrable enough stopping time T', several weak (CLT) or strong (Gal-Koksma
Theorem or LIL) converging rates hold. The method successfully competes with Monte
Carlo. The aim of this paper is to extend these results to more general probability
distributions P on ((RY)N, B(R?)®N), namely when the canonical process (X, )nen is
P—stationary, a-mixing and fulfills Ibragimov’s assumption Za%ﬂ?(n) < +oo for

n>0

some & > 0 . One application is the computation of the expectation of functionals of
an a-mixing Markov Chain under its stationary distribution P,. It may provide both a
better accuracy and save the random number generator compared to the usual Monte
Carlo or to the shift method on independent innovations.

1991 MSC classification :  60F05, 60F15, 60F17.
Key words : «a—mixing process, Monte Carlo method, Rate of convergence.

1 Introduction and mathematical framework

The origin of the problem is motivated by the computation of the expectation of a func-
tional F' defined on the canonical space ((R?)N, B(R?)®N, 4®N) using the Birkhoff’s Pointwise
Ergodic Theorem. Several contributions (Bouleau [4], [5] and Ben Alaya [1],|2]) have estab-
lished some rates of convergence for a wide class of functionals, namely JF;'-measurable for
some integrable enough stopping time 7" and square integrable. As a matter-of-fact, both
strong (Gal & Koksma Theorem, Law of the Iterated Logarithm) and weak (Central Limit
Theorem) convergence rates hold in the Birkhoff’s Theorem.

To be more specific, one considers the canonical space ((R?)Y, B(R?)®N) endowed with the
product measure u®Y, the canonical projections Xy, k>0, defined for every w:= (wg)r>0 €
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(RN by Xj(w) :=w, and the (left) shift operator on (RY)N 0(X,, X1, -+) = (X1, Xy, ).
It is widely known (see e.g. [13]) that the dynamical system ((R?)N, B(R?)N, u®N 6) being
ergodic, the Birkhoff Pointwise Ergodic Theorem implies that

n—1
1
VE € LY(RYY, u®N), pN-a.s. - ZFO 0F — E(F) = /Fd,u®N.

k=0
Similarly, one can define the right shift (this time on (R%)%) by setting X,06* = X,,_;.
Then identifying L'((R)N, u®N) to a subspace of L'((R?)%, u®%)

n—1

Y Fo(0) — E(F) = /qu®N.

k=0

VF e LY((RYN, p®Ny, pN-a.s. %
The Shift on Independent Innovations Method(s) (SIIM) simply is/are the data-processing
of these convergence results. The expectation E(F') is then computed by averaging some
dependent paths while the usual Monte Carlo method (MCM) requires some independent
paths.

The main theoretical results concerning the #-shift method are summed up below (see [2]).
Let T be a F:X-stopping time(!) and F € L*(RY, B(R)®") be an F;X-measurable functional(?)
where FX :=0(Xy,- -+, X,,) denotes the natural filtration of the canonical process (X,)en-
Then if T € L?** for some p>0,

+00
o o°(F):=Var(F) +2ZCOV(F,F09k) is absolutely convergent, which in turn implies
k=1

that :
e The Gal-Koksma Theorem holds :

n—1
1
Ve >0, - ZF o —E(F) =0 (n%(log(n))ngE) pN-a.s.
k=0

e The CLT theorem holds, that is, whenever o(F)#0,

U(Fil)\/ﬁi (F otk — B(F)) = N(0;1),

where N (0;1) denotes the standard normal distribution and £, the convergence in distri-
bution.

e Moreover, if the stopping time 7 has finite polynomial moments (this assumption is slightly
relaxable), the LIL holds

S
A
i
o

(Fob" —E(F)) (Fo0" —E(F))
lim sup 2= =o(F) and lim inf £=° = —o(F).

n—00 Vv2nloglogn n—00 Vv2nloglogn

'A N-valued random variable is a F:X-stopping time if {T'<n} e F:X for every n€ N.
2FX ={Ae FX /An{T < n}e FX} for every n€ N
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Similar results are obtained in the case of 6*(see [5]). The computational performances
of the shift method SIIM lie in the use of a storage box that partially avoids to uselessly
re-simulate all the innovations X;’s when passing from a path to another while this is nec-
essary in the usual MCM. Hence, for the same number of iterations, we observed on true
simulations that the SIIM runs faster than the classical MCM (see |2]|). The time savings are
on the expenses of the data storage (dynamical or not) which is typical for the antagonism
between time complexity and storage complexity. On the other hand, the SIIM also calls the
random number generator less often than the MCM does. This may be crucial for large scale
simulations. However, when o*(F) > Var(F) the required number of iterations is higher.

o’(F)

Unfortunately no satisfactory estimate of Var (F) is known to us and it is likely that, for most
naturally encountered functionals F', this ratio is greater than 1. The balance between these
two effects depends on the choice of F'.

The aim of the paper is to extend these results to more general stationary probability
distributions P : whenever the dynamical ((R?)N, B(R?)®N P, 0) is ergodic, the Birkhoff’s
Theorem directly applied on the shifted paths of a P-integrable functional F' yields

n—1
1
P-as.  —» Fof"— E(F). (1)
n
k=0

Of course, the plain ergodicity cannot provide a rate of convergence in the Birkhoff Pointwise
Ergodic Theorem without any further assumption (see [13]). That is why we will assume
from now on that the canonical process (X,,)nen on (RN, B(R?)®N) shares a strong mixing
assumption, namely the Ibragimov a-mixing assumption, under the probability P. This
notion turns out to be the natural extension of the former of i.i.d. random variable setting
in terms of Limit Theorems for our stopping functionals.

The a-mixing Markovian setting is a natural domain of application for the techniques.
In fact, let (X,,),en be an homogeneous Markov chain on R? with transition P(x,dy) and a
starting distribution . A commonly encountered problem of Numerical Probability is to
compute (an approximate of) E, (f(Xo, -+, Xy_1)) where v denotes the invariant probability
measure — assumed to be unique — of the transition P. When the chain is positively recurrent
(resp. stable), the natural method is to apply the Law of Large Numbers along the available
paths of the chain that is, for every z € R%, for every f : (R?)* — R bounded Borel (resp.
continuous) function

n—1
1 n—+00
Vrwe Rd) EZf(Xka"'anH»lfl) i) El/(f(XOf"aXﬁfl)) PI—CL.S. (2)
k=0

The rate of convergence in (2) is ruled by several classical theorems like the Central Limit
Theorem or the Law of the Iterated Logarithm under some standard assumptions (see e.g.
[9])-

When f is no longer a function of finitely many X,,’s but is a functional F' defined on the
whole canonical space ((R?)®N, B(R?)®N) of the chain, the computation of E, (F) either by
simulation or from statistical data cannot be carried out as easily. The first natural idea is to
implement the usual Monte Carlo Method (MCM). However this approach turns out to be
costly in terms of C.P.U. time. Starting from experimental facts on the Shift on Independent



Innovation Method (SIIM), one can try using equation (1) under P, and shift on the chain
itself. We will call this method the Shift Process Method (SPM).

The Markov assumption on (X,),en Will be dropped in the theoretical part of the pa-
per. The theoretical results will then be applied to the a-mixing case. Then the three
methods (MCM, SIIM, SPM) will be compared numerically. They will be applied to two
a-mixing Markovian models —X,, .1 = h(X,,,Y;,)— where the underlying innovations Y;, are
independent.

The paper is organized as follows. Section 2 is devoted to some background on the main
tools used in the rest of the paper : the definition of an a-mixing process is recalled along
with the Ibragimov Central Limit Theorem for a-mixing sequences satisfying the Ibragimov
assumption (subsection 2.1). The Gal-Koksma Theorem in the L2-stationary setting is re-
called at subsection 2.2. This will be our basic result when dealing with the a.s. rate of
convergence (except for the Law of the Iterated Logarithm investigated in section 5).

Section 3 deals with the a.s. rate of convergence of the shift method for stopping func-
tionals. This result essentially relies on the finiteness of a pseudo-variance, denoted o?(F).
In section 4, a Central Limit Theorem is established under the same hypothesis. In sec-
tion 5, after recalling Philipp and Stout’s Theorem, a Law of the Iterated Logarithm is
established, only for a subclass of stopping functionals having finite polynomial moments.
Section 6 is dedicated to the Markov setting. Some standard c-mixing criteria for (station-
ary) Markov chains are recalled (subsection 6.1) and the simulation framework is presented
(subsection 6.2). Some numerical simulations are processed in section 7 on three a—mixing
Markov processes satisfying the Ibragimov assumption. A simple Metropolis like algorithm
(subsection 7.1) is considered in two different settings so that the invariant distribution v is
alternately explicitly known (subsubsection 7.1.1) and not explicitly known (subsubsection
7.1.2). The third example, a Vector Quantization algorithm, will illustrate some possible
false convergence phenomenon (subsection 7.2) when v is not explicitly known.

Throughout the text LP(Q2, A, P) will denote the set of A-measurable real-valued func-

1

tionals /' whose LP—norm ||F||, := (/ |F|pd]P’> " is finite. From now on the shift operator
¢ will be the canonical shift on (R?)N.

2 Some background

2.1 oa-mixing sequences and Central Limit Theorem

We are going to recall some results on a-mixing processes (see e.g. Doukhan [7]). Let « be
a sequence (a(n), n € N) of real numbers, satisfying lim,,_,., a(n) = 0, and let (X,,),en be a
R?-valued process defined on a probability space (2, A, P). (X,)nen is a-mixing if for every
k,neN n>1

VAe F§,VBe FX,,  [P(ANB) —PAP(B)| < a(n).
Intuitively if «(n) is small then B and A are essentially independent, hence for an a-mixing

process the future is asymptotically independent from the present and the past. One finds
in the literature various notions of mixing that quantify the dependence between the past



and the future. Just for comparison, in the p-mixing for example we measure the quantity
|P(B/A) —P(B)|. The notion of a-mixing is therefore weaker. It is in fact the weakest
when compared to all usual notions of strong mixing (see [7]). However, this assumption
on the sequence (X, )nen turns out to be quite adequate. Furthermore, we will say that an
a—mixing process (X, ),en satisfies the Ibragimov assumption if

Zoﬂ%é(n) < o0 for some 0 > 0. (3)
n>0

Historically, the Central Limit Theorem for a-mixing processes is due to Ibragimov (1962)
(see |7| or Hall & Heyde [12]). It essentially holds under the above assumption (3).

Theorem 1 Suppose that (X, )nen 5 a centered real valued strictly stationary(®) a-mizing

process with Za(n)z%é < 400 and E|X;,|?*° < 400 for some § > 0. Then the sequence

n=0

o = Var(Xy) + 2ZCOU(X0, Xk)

k=1
s absolutely convergent. Furthermore, if o > 0, then

Xo+Xi+---+ X,
[t B e L L5 N(0:1) as n — 400,
oy/n

where N'(0;1) denotes the standard normal distribution and Es for the convergence in

law.
[ |

Except for the fundamental underlying Central Limit Theorem for the martingale incre-
ments, this result mainly relies on the covariance inequality below (see [7] p.9).

Proposition 1 Let (X,)nen be a strictly stationary a-mizing process. Then:
Vr,p,q>1 with %+I—1)+$ =1,V F e LP(F}) andV G € LI(F3,,)

[Cou(F,@)| < 8ar (n) || F|, 1G], -

Application to cylindrical functions: Let us go back to the framework described in the
introduction i.e. the canonical projections (X,,) ey are a-mixing on the canonical dynamical
space ((RH)N B(RY)®N P) with a rate  := (a(n)),en. Then, the real valued measurable
functions F on ((RY)N, B(R?)®N P) that actually depend on finitely many components behave

like the sequence (X, )nen itself in the following sense: if F' only depends on the first N

).=Fo 0", n € N, is an ay-mixing process with rate

1 if n<N
an—N) if n>N

components then X,SF’N

ay(n) =

3A R?-valued process (X, )nen is strictly stationary if for every k€ N, (X, 1%)nen and (X,,)nen have the
same distribution that is, if P denotes the distribution of (X,,),en on the canonical space ((R?)N, B(R?)®N),
Po @ = P with the notations of section 1.



Note that

0 5 o 5
Zam(n) < 400 = Zaff (n) < +o0.
n=0

n=0

So, one straightforwardly derives the following
Proposition 2 Let (X, )nen be a strictly stationary R?-valued a-mizing process. If there is
o

d > 0 satisfying Za%é(n) < 400, then for every cylindrical function F € L**(P) with

n=0

E(F)=0,

(a) the sequence o (F) := Var(F) + 2 Z Cov(F o 0% F) is absolutely convergent,
k=1

n—1

. 1 c
(b) Furthermore, if o(F) > 0, then: ———— Y Fo 0" = N(0;1) asn — +oo.
o(F)y/n kz%
2.2 Rate of almost sure convergence

As a first step we recall the Gal and Koksma Theorem, established in their article “Sur
Uordre de grandeur des fonctions sommables’(|11]). We will restrict to the L?-stationary
process setting (see |1 for a probabilistic proof in a full general setting).

Theorem 2 Let (2, A, P) be a probability space and let (X,,)nen be a L?-stationary sequence
of random variables such that E|X, + X5+ ---+ X,,|> = O(n). Then

Ve>0 X1+ Xo+---+X,=0 (n%(log(n))%“) P-a.s.

Coming back to the canonical dynamical system ((R?)N, B(R?)®N P, 6), we derive from the
previous theorem a strong ergodic result. i.e. a speed of a.s. convergence in Birkhoft’s
pointwise ergodic Theorem.

Proposition 3 Let F' € L?((R)N, B(R?)®N), P) such that E(F)=0. If
o*(F):=Var(F)+2 Z Cov(F 0 0% F) converges, then
k=1

n—1
1 1
Ve>0, — E Fof=o (nﬁ(log(n))%“) P-a.s..
n
k=0

Proof: Using the convergence of the series 0?(F') and the fact that # preserves the measure
P, we first prove that (see e.g. [1])

n—1 2 n 0o
E (ZFOG’“) = no?(F) —QZkCOU(Foek,F) —2n Z Cov(Fof* F).
k=0 k=1

k=n-+1

6



The finiteness of o%(F) along with the Kronecker lemma yield

n—1
1
lim — |§ Fo0"PdP = o*(F).
N
k=0

n—oo M, (Rd)
The Gal and Koksma’s Theorem completes the proof. Wl

By its very construction, a functional F' that can be simulated on a computer naturally
appears as a stopping functional with respect to its (a.s. finite) stopping rule 7. So from
now on, we will focus on such Fr-measurable functionals.

3 An a.s. rate of convergence for stopping functionals

3.1 A class of Fr-measurable functionals with finite o%(F)

Set F' :=0(Xy,, -, Xy) and F2:=0(Xy, k>m). T will denote a F-stopping time and F
a Fr-measurable functional. Finally [z] will denote the integral part of .

Theorem 3 below provides a bound for the covariance Cov(F o 0% F) from which the

absolute convergence of the series 0(F) = Var(F) + 2 Z Cov(F o 6% F) follows. It is the

k=1
key result of this work.

Theorem 3 Let (X,,)nen be a R?-valued stationary a-mizing process. Assume there is some
o0

d > 0 such that Za%(n) < +oo. If T is a stopping time and T € LP((RH)N,P) for some
n=0

P> %—ig then, for every F € L**°((RY)Y, Fp,P) with E(F) = 0, we have

146
5 +9
|Cov(F 0 6%, F)| <16||F|[;,5 7% (k — [k/2]) + N2 1] 45 o (4)

Proof: To establish inequality (4), first notice that
‘COU(F 9 Qk, F)‘ S ‘COU(F 9 gk, F- 1{T§[k/2]})‘ + ‘COU(F 9 0’°,F . 1{T>[k/2]})‘ . (5)

Now Fof* is F°-measurable and F - Lir<[k/2)) 18 ]—}Ekm—measurable. By applying Proposition
1 withr:1+% and p = q = 2+ 9, we obtain

)

87 (k — [k/2)) ||F - Lir<imsay ||y 5 [1Fllo s
5
< 8a? (k- [k/2]) ||F||§+5 (6)

|Cov(F o0, F - Lirciay)]

IN

For the second term on the right of inequality (5), the standard Holder inequality with

2+0
p=2+0dand q= 1—15 first provides

|Cov(F 060 F - 1prspyop)| < [[F 0 0% - Liws gy 2 1]y - (7)

7



It is straightforward that
E (|FI% 00" - 1{T>[k/2}}) < ‘COU(IFI%S o 6", 1{T>[k/2}})‘ +E (|Fl%g) P(T > [k/2])
At this stage, we observe that F' o 6% is F°-measurable and {T" > [k/2]} belongs to f(gk/z].

Still applying Proposition 1 but this time with r =1+ =, p =1+ ¢ and ¢ = 400 yields

0

B (|FH 008 1y ) <875 (5 — [b/2]) (B (IFP*)) ™ + B (|F) BT > [k/2),
that is

1 2 ;ﬂ

[[F0 8 - Lz oo |5 < (8075 (k=[k/2)) (E (1)) +E(|F|™) BT > [k/2)) ™

Plugging this bound in inequality (7) and using inequality (z +y)’ < 2% + 9%, 0 < 3 <
1, 2,y > 0 leads to

i
+0

146 5
|Cov(F 00" F - 1iprspeyop)| S82“042”(/6—[/6/2])||F||§+5+||Fll%g||F||2+5( (T > [k/Q])

~—

|+
0'1

SSa%ﬁ(k—[k/2])||F|I§+5+I|F|I%||F||2+5(( > [/20))%5 . (8)

E(1?
As T € LP((RHN, B(RY)®N P), P(T > [k/2]) < ﬁ. Hence, collecting inequalities (5), (6)
and (8) finally yield:

1445
2 (E(T7)) >+
|Cou(F 0 0*, F)| < 16||F[5,5 %7 (k = [k/2]) + 1F |23 [|Fllys v

which completes the proof. H

Remarks and improvements:

(a) A careful reading of the above proof (namely equation (8)) shows that the assumption

T € L? for some p > ﬁg can be slightly improved into

STP(T > k) < oo,
k=1

(b) As ?—ig < 2, the moment assumption on 7' is always fulfilled as soon as that: T €&

L2 (RN, B(R?)®N, P).
(c) If the functional F is bounded, then we can simply assume that 7" is integrable. Indeed,

if T' is integrable then »"° P(T > [k/2]) < +o00 and the proof can be modified - in
fact simplified! — in this setting (which formally corresponds to 6 = +00).

(d) Our assumptions on the process (X, ),en and the functional F' are satisfactory in the
following sense:



— Both conditions ZONH < oo and F € L** do not differ from those of the
original Ibragimov Central Limit Theorem which studies functions only depending
on one variable (i.e. F(xg, -, Zn, ) = f(xp)).

— When «(n)=0, n>1, we find again the results of |2] obtained in the independent
setting.

(e) The Fp-measurability of the functional F' for some stopping time 7" is crucial. In fact,
we cannot obtain this result as a consequence of some results on functionals that can
be approximated by a sequence (F})ren of Fa-measurable cylindrical functions so as
Yooy ||F = Fgll2 < +00. By such a simple approach (setting Fy := F.1ir<x}), we get
the result under the more stringent assumptions:

F € L**° and T has a moment of order p > (ZH)

3.2 An a.s rate of convergence

As it has been emphasized in paragraph 2.2 on the a.s. convergence rate, the condition
0?(F) < +oo is the basic assumption to apply Gal and Koksma Theorem (Theorem 2).
Therefore, we derive from the previous theorem the following a.s. convergence result.

Theorem 4 Under the assumptions of Theorem 3, one has:

1 1
Ve>0, - Z Fob#=o (n*§(log(n))%+€> P-a.s..

4 A Central Limit Theorem for stopping functionals

Theorem 5 Let (X Jnen be a R -valued stationary a-mizing process. Assume there is some

0 > 0 such that ZONH < +oo. If T is a stopping time and T € LP((RY)N,P) for some
n=0

p> ﬁg then, for every F € L>*T((RH)N, Fr, P) with E(F) =0, we have:
1 n—1
PF)>0 = ——= Y Fof* - N(0;1) as n — +oo, (9)

o(F)vn &=
where N'(0;1) denotes the standard normal distribution.

To establish the Central Limit Theorem we compute the limits of o (F.1yr<4)
and 0 (F.1{p>¢p) when ¢ tends to +oo. Indeed, if for every ¢ € N we set:

O'% = UQ(F.l{TSZ}) = VCLT(F.].{TSZ}) + 2ZCOU(F-1{T§£} O gk, F-]-{TSZ}) (10)
k=1



and

77 =0 (Flyrsg) = Var(Flipsg) +2)  Cov(Flirsgy o 6%, Flyrsy),
k=1

then we have the following results.

Lemma 1 Under the assumptions of Theorem 5,

lim 0} = 0 and lim 77 = 0. (11)
£—00 {—o00

Proof : Following Theorem 3, if we replace the function F' by F.1yp<,n—E (F.l{ng}) (still
Fr-measurable and centered), inequality (4) yields an upper bound for
‘CO’U(F.I{TSE} o 6*, F.I{Tg})‘, namely

o
|Cov(Flirepy 00", Flirey)| <16 ||Flir<y — B, (Flgr<y)| \;5 oz (k — [k/2])

E Tp 2446
[P sy — E(F-Liren) | [|[Flirn — E(FLpn)|],,, (B(m) [;/Q]QW -
Now for every functional G € L?, p > 1, ||G — E(G)||, < 2||G||,, therefore,
)
VIEN, |Cov(Fluey ot Fluey)| < 72|[Flueyll,,, 02 (k- [k/2])
L
+4

(E(T7))>

+4 HF-I{TSK}H% HF'I{TSZ}‘ ‘2+6 W

which in turn implies that, for every /€ N

|Cov(Flipepy 005, Flipey)| < T2||F|%, ;0% (k — [k/2])
(E(17))7

146 °

4||F F
AP 1Pl

Hence equation (10) implies that o7 is defined by an absolutely convergent sequence, uni-
formly, with respect to £. As each term of the series converges towards Cov(F o 6% F), one
finally has lim o} = 0.
£—00
If we note that F.1ips, — E (F.]_{T>g}) is Fr-measurable and centered we obtain in the
same way:

[Cov(Flirag 005, Flysy)| < 72||F|2, 0% (k — [k/2])
(E(17))7

146 °

/215

Hence 77 is also defined by an absolutely convergent sequence uniformly with respect to
¢. Since each term of the series converges towards 0, elim 7 =0.
— 00

FA[F 235 1 Pl
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Let us prove now the Central Limit Theorem.

Proof: Let F' € L*((R)N, Fr,P). For every ¢ € N we write
F=(Flycy —E(F 1<) + (Flgsg — E(F.1gsg)) .
Then

n—1

n n—1
1 1 1
— Fofk = F1 —E(F.1 oF + — F1 —E(F.1 0"
n ; o Jn % {T<6} E( {TSZ})) of"+ Jn z% ( {T>¢} ( {T>£})) o

Flir<py — E(F.1ip<g) is a cylindrical function only depending on the first ¢ variables.
According to proposition 2, the first term on the right of the equality converges in distribution
towards N (0, 07), for every ¢ € N, with

07 = 0*(F.lyr<py) = Var(F.lir<y) +2 Z Cov(Flgr<g o 0%, F.1irep).
k=1

From Lemma 1, one derives the convergence in distribution of N(0,07) towards N (0,0?).
Consequently, it amounts to prove that, for every ¢ > 0,
6) =0.

1 «
lim lim sup P (‘7 E (F.].{T>g} — E(F.].{T>g})) o 0| >
n
k=0

=00 pooco

Then Bienaymé-Tchebichev’s inequality yields

- )

n—

1 n—1
P ( —7’1, Z (F.].{T>g} - ]E(F]_{T>g})) e] gk
k=0

2

=

1

TL€2 (R4)N

(Flirse — E(F.1lipsg)) 0 6%| dP.

0

i

2

—

n—

(F.l{T>g} — E(F.I{T>g})) O Qk
0

dP towards 77 yields:
2
> 6) < T—l.

Remark : This CLT is satisfactory since it holds under the same Ibragimov assumption
that rules the standard CLT for a—mixing processes. However some recent work by Doukhan,
Massart and Rio [8] shows that the (functional) CLT holds for a stationary a—mixing pro-
cesses (X, )nen Whenever

1
The convergence of — /
v J(®d)

i

n— 00

n—1
) 1
limsupP | |—= Z (F-l{T>l} - E(F-I{T>€})) o 0
Vg

Lemma 1 completes the proof.
[ |

/1 a HH)Q*(t)dt < +o0 (12)

where ¢ — a!(t) denotes the canonical inverse of the monotonic function ¢ — «([t]) and
() denotes the quantile function of Xj.

11



5 The law of the Iterated Logarithm

The a.s. estimates for the convergence rate obtained in paragraph 3.2 using the Gal and
Koksma Theorem (see Theorem 4) are obviously weaker than those of the standard Law
of the Iterated Logarithm (LIL) property. The usefulness of these results is to provide
an estimate close to the iterated logarithm but under weak and natural assumptions in
simulation. However it is possible to prove the true LIL under more stringent assumptions
on the functional F' and the stopping time 7.

Several results are available in the literature on the asymptotic behavior of the partial sums

n—1 n—1
Z X, of a “weakly dependent” (Xj)gen process or on the partial sums Z F( Xk, Xki1,--0)
k=0 k=0

of a functional F' depending on a “weakly dependent” process (see [3],[17]). Thus, W. Philipp
and W. Stout in [17] provide several invariance principles for the partial sums of “weakly
dependent” random variable sequences. Among them some are related to the sum of the
functional of a delayed a-mixing process.

Philipp and Stout’s Theorem: For the sake of simplicity we state Philipp and Stout’s
Theorem in the a-mixing stationary case still using the same notations. We go back to the
canonical dynamic system ((R?)N, B(R?)®N P, 6).

Theorem 6 (W. _Philipp and W. Stout [17]) Let F be a centered function € L*Y((R)NP)
for some 0 < § < 2, and (Fy)ren an approzvimating sequence of Fr-measurable functions.
We assume that:

(i) There is some constant C' satisfying:

C
VneN  ||F = F,|las < —. (13)
n2+g
(i)
n—1 2
E(ZFOH’“) :n—i-O(nl_%) as n — oo. (14)
k=0
21 n)nen 48 a R*-valued stationary a-mixing sequence with:
s X . Rd l d . . . . h
a(n) =o (n’ws(H%)) . (15)

Then the Law of the Iterated Logarithm holds, that is:  P-a.s.

n—1 n—1
Z Fofpk Z Fofpk
lim sup —-=2 and lim inf —=2

L ——— k=0
nsoo  V2nloglogn n—oo +/2nloglogn

= —1.
|

The proof of this theorem is available in chapter 8 of [17].
We will apply now this theorem to Fp-measurable functionals.

12



Application to stopping functionals of an a-mixing process: We study now some
classes of functions depending on a stopping time. Hence we consider a (F{'),en-stopping
time 7', and a Fp-measurable functional F'.

Theorem 7 Let (X,,)nen be a R-valued stationary a-mizing sequence and § € (0,2]. As-
sume that a(n) = o (n_168(1+%)). If T is a stopping time and T € LPO) ((RY)N,P) for some

p(0) > 2(2+6)(1;6)(26+ ) (*) then, for every F € L**2((RY)N, Fp, P) with E(F) =0

and 0?(F) > 0, the Law of the Iterated Logarithm is satisfied, that is:

n—1 n—1
Y Fott Y Foft

P-a.5. limsup ————w—— = o(F) and liminf == = —¢(F).

n—300 \/inoglogn: ( n—00 \/2n10g10gn:

Remark: Note that ¢(0):= 2(249)(1 (; 9)(20 +7)

©(0) > ¢(2) =66. For any practical implementation, such a requirement amounts to assuming
that the stopping time 7" has moments of every order.

is a decreasing function on (0, 2] so

Proof: W.l.g., one may assume that o%(F) = 1 and a(n) is a non increasing sequence. We
will now show that the assumptions of Theorem 6 are fulfilled. According to the proof of
Proposition 3 one has:

n—1 2 n 00
E(ZF09k> :n—2ZkCOU(F09k,F) —2n Z Cov(F o6 F). (16)
k=0

k=1 k=n+1
Let pe (f—ig,p(é)). So, one has, following Theorem 3:
1

1445

/23
<< 1(k) + kP (17)

VF € L*Y(RYN, Fp, P) |Cov(F ot F)| << o "*(k—[k/2]) +

where << means that the left term is upper bounded by the right one up to a multiplicative

constant. Let A, := Z Cov(F o 0, F). Tt follows from (17) that

k=n+1
Al < Y [Cov(F ot F) << Y a7k + Y kR

k=n+1 k=n+1 k=n-+1

<< pol7 4o PES
24630446 2496

<< n7167+n’% by setting p:zl—i(S 3—5 € (1_1571,(5))
<< n . 0 < 1 < 167

n since — < — .

30 — 15

“Note that w > % at least on (0, 2].

13



Now we need to estimate Y, _, kCov(F o 0% F). An Abel transform yields

ZkCO’U(F 00" F)

k=1

D k(Apo1 — Ap)
k=1

- ) 1
< §|Ak|+n|An| << nlwm since()<%§1_5 <1

Plugging both estimates in equation (16) shows that assumption (ii) is fulfilled i.e.:

n—1 2
E<2F09k> :n—i—O(nl_%).
k=0

2(2+ 6)(1 + 0)

In order to fulfill (i), if we set Fy := F - Lip<py, 7 := 2(1 + ) and s := . The

Hoélder inequality (applied with the conjugate exponents 2(21;“56) and 2(1;6)) along with the
Bienaymé-Tchebichev inequality finally lead to

E (T(2+%)s) s

1
8
k2+§

1F = Filla4s < |[FI[P(T > k)s < [[F]],
224+0)(1+0)(20+7)

5 . This completes

So (i) holds whenever T" admits a moment of order
the proof. W

Application: The restriction on the a-mixing coefficient is here very drastic. In practice
it is essentially satisfied in the geometric framework. Thus, one recovers the result of the
i.i.d. setting (i.e. a(n)=0, n>1).

Remark : The very same remark as that made in section 4 holds here as a recent paper
by Rio (see [18]) shows that the LIL holds under assumption (12).

6 Markov setting

6.1 a-mixing Markov chains

We consider here a R?-valued Markov chain defined by its transition probabilities (r(x, -)) ycra-
We denote by P, the probability distribution on the canonical space ((RY)YN, B(R?)*N,P) for
which the sequence of canonical projections (X,,)nen is a Markov chain with transition 7 and
initial distribution ¢,. To deal efficiently with our expectation computation problem, it is
necessary to suppose the existence of a stationary distribution v, (i.e. vm = v in other words:

VA € B(RH)®N [v(A) = / m(z, A)v(dz). Let P, ::/ P,v(dx). One has (P,) = P, i.c.
d Rd
under P, the process (X,,)nen is strictly stationary. Let us recall now a characterization of

the a-mixing in the framework of Markov chains.

14



Proposition 4 (cf. [7]). Let (X,)nen be a Markov chain with stationary distribution v and
transition probabilities (m(x,.)) era. If

lim sup |7 (xz, A) —v(A)|v(dr) =0
n——+00 Rd AEB(Rd)

then the process (X )nen 18 a-mizing under the stationary distribution P, with

a(n)gz/R sup |7z, A) — v(A)| v(da).

4 AeB(R4)

We provide the proof for the reader’s convenience.

h(z)
total variation of a signed measure p (i.e. ||pl| :=
Be F° s.t. B=(0""*)"1(B). Hence h(z):=E,(1

that v(h) = / U(d)Es (1,00™+) = / (d2)E. (1) = P, (B). Then

Proof: Let A € F} and B € FX,. Set h E, (13). We will denote by |[|p|| the
(R

|u|(R?)). First note that there is some
5 0 0"F). The stationarity of v implies

IP,(ANB) —P,(A)P,(B)| = |E, (14(E, (15 00" /F**) —P,(B)))|
(

E, (14 EXn+k B)— ]P’,,(B)))‘
E, (1a(h(Xnyx) —v(R)))|

E, <1A / W) (" (X, da) — V(dx))> ‘
Rd
< By (Lo |7 (X, da) — v(da) || [[2]]s0)
As the functions h and 14 are [0, 1]-valued, it follows that

[P, (AN B) =P, (A)P,(B)| <E, (7" (X, ) = v) / [7" (, ) = vllv(dz).

The inequality ||p||<2 sup |u(A)| completes the proof.
AeB(R4)

Connection with the ergodicity properties of a Markov chain: In the Markov chain
literature, two classes have especially been studied. Let A be a non negative function such

that / A(z)v(dzr) < +oo. We assume that
Rd

sup |7"(xz,B) —v(B)| < A(x)u, with lim u, =0. (18)
If u, :=p", 0 < p <1, (18) is called the geometric ergodicity property and if u,, := n%, v >0,
(18) is called the Riemann recurrence property. In all cases, under P,, we have an a-mixing
Markov chain with a(n) = O(uy,).

General remark: Concerning the convergence in distribution, one has to note that results
which are stated below exclusively hold under P,. On the other hand all results dealing with
almost sure convergence, established under the distribution P,, remain true under P, for v
almost every x.

15



Comment: Theorem 7 stresses the interest of the Strong Ergodic Theorem obtained in
section 3.2 as it yields a rather similar result but under much looser assumptions on the
a-mixing coefficient. Thus Theorem 5 holds in the case of Riemann recurrence as soon as
v > 1+ 2 while v > 168(1 + 2) is necessary to get the LIL.

6.2 Mathematical and simulation framework

Let (X, )nen be an homogeneous Markov chain admitting a representation of the form
c
Xny1 = h(Xna Yn+1)7 n >0, Xo~ pp (19)

where h : RIXRP — R is a Borel function (%), (Y;,)nen is an i.i.d. sequence of y distributed
innovations and fi is a (starting) distribution on R¢. One can notice that, if F' is a functional
of the Markov chain (X, ),en starting at 2 € R?, there is some functional G on R? xRY such
that

F(Xo, X1, Xpyr o) = Gz, Y1, Yo, -, Yy, - 0).

So, the shift on independent innovation method (SIIM) naturally yields an estimate and an

error bound for E, (F) :/ Gy, Yno VA (Yor Yty oo Yny oo e o).
RN

It is possible the same way round to approximate E,, (F') with some similar weak and
strong error bounds whenever the starting distribution o of Xy can be simulated from the
distribution p of the innovation Yy (i.e. there exists some ¢ s.t. ¢(Yp) ~ pp).

Among all the possible starting distributions po for the chain, the invariant one plays an
essential role for obvious reasons related to Statistics or Simulation. However the computa-
tion of functional expectations under P, makes problem when this invariant distribution is
not explicitly known from the distribution of the innovation p. This is usually due to the
fact that no information is available on v except for its existence and uniqueness. One way
to apply the SIIM or the MCM is to prove that £(X,) converges fast enough to v for any
starting value z € R? (that is un™(dy) — v(dy) in distribution or, if possible, in variation).
This will be the case when the chain (X, ),en has further properties as Doeblin or geometrical
ergodicity, Riemann recurrence or even stability (see below and [9] or |7]).

Anyway, whatever method is used - MCM or SIIM — getting an approximate for E, (F)
needs, prior to the simulation of every independent trial of F (or every Fof¥), to re-simulate
an approximately v-distributed starting value. Practically, it amounts to assigning Xg:= X,
for a large enough ngy. Such preliminary simulations are C.P.U time and random number
consuming. The major drawback eventually remains that the method actually converges to
E¢(x,,)(F) with no available control on the bias.

On the other hand, if the chain (X,,),en is ergodic, the Birkhoff’s Theorem applied on
(RHN, B(R?)®N P,) to the canonical shift 6 yields

n—1
1
P,-a.s. = E Foff — E,(F) as n — +o0. (20)
n
k=0

5For notational convenience we will assume that p=1.
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It follows that the convergence also holds P,-a.s. for v-almost every € R?. So, whenever the
(X1 )nen is a—mixing the above theoretical results would provide some valuable information
about expectation computation based on a direct shifting of the (X,)nen’s (SPM). The SPM
has the same possible advantages as the SIIM (shift on the innovations): preservation of
the random number generator, (more) time saving by a drastic reduction of the numerical
computations. Besides it converges to the true value E, (F') and there is no longer theoretical
bias. On a more practical point of view, no preliminary simulation (or computation) of an
approximately v-distributed starting value X, is really necessary.

7 Applications and simulations

Most stopping times used in simulations actually are some hitting time 7’4 of a given Borel
set A that is
Ty:=min{ne N/ X, € A}.

So we will concentrate in the examples below to functionals related to such stopping times
(these functionals can be the stopping time itself).

7.1 A simple Metropolis like algorithm

The simplified version of the Metropolis algorithm used below for the testing procedure is
mentioned in [19]. Let p be a [0, 1]-valued function defined on the whole real line and set

L Xn if Un+1 > p(Xn)
Xn+1 _{ Zn+1 if Un+1 S p(Xn) (21)

where Y, :=(U,, Z,)n>1 is a sequence of i.i.d. random vectors with distribution U ([0, 1]) ® p.

Usually, such a procedure is implemented to provide some approximately v-distributed
numbers. It looks a bit like the rejection method except that the number of trials before
getting one (almost)-v distributed number can be a priori bounded.

As soon as /,o_ld,u< 400, V:i= fp 1: is the unique invariant distribution for the chain.
pap

7.1.1 A first example (v is explicitly known)

When g has a compact support, say the unit interval [0, 1], it is obvious that for every [0, 1]-
valued starting value z, the whole process (X,,)nen lives in [0, 1]. Then, if p is continuously
defined on [0, 1], the transition (7 (x, dy))zcfoq is Feller on [0,1]. Under the above uniqueness
assumption of the invariant probability distribution, the chain is then v-stable.

0 ifz>0
For example, if p:=3(a + 1,1) and p(z):=< = ifx € [0,1] then v-stability holds for
1 ifz>1

v = (3(a,1). In that special setting, one can show following [8|, that the chain is in fact
a-mixing (even [-mixing).
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For our purpose it is more significant to focus on a rather general stopping time, say
F:=T:=inf{n>1,> X ¢ [-10,10]}
k=1

as the simulated functional.

Numerical comparison of the methods: This first set up makes possible a sketch of

comparison between the three methods: MCM, SIIM (shift on the innovations) and SPM

(shift on the chain itself), in terms of C.P.U. time, random number generator, etc. As a

matter of fact an exact simulation procedure for the invariant distribution v is available (set
1

Xo:=Ug for some uniformly distributed r.v. Up).

The results are following for a:=2

C.P.U. time (s) Used random numbers E, (F)
Iterations | MCM | SIIM | SPM MCM | SIM | SPM | MCM | SIIM | SPM
n=1000 | 0.370 | 0.180 | 0.060 | 27 064 12 508 1714 | 15.740 | 15.796 | 15.796
n=5000 | 1.770 | 0.790 | 0.240 | 135 627 61 695 8 412 15.792 | 16.091 | 15.691
n=10 000 | 2.650 | 1.990 | 0.360 | 272 721 123 514 | 16 811 | 15.930 | 15.994 | 15.657
n=50 000 | 13.190 | 11.780 | 2.420 | 1361032 | 616 114 | 83 384 | 15.916 | 15.910 | 15.973
n—=100 000 | 32.440 | 18.480 | 4.610 | 2 722 984 | 1 229 784 | 167 019 | 15.932 | 15.925 | 15.872

The table of the C.P.U. time shows that, for a given number of iterations, the SPM method
is 7 times faster than the MCM while the SIIM method is roughly speaking twice faster. Of
course such factors are strongly depending of the setting and can in no way be adopted as
general rules.

INSERT FIGURE 1 AROUND HERE

Taking into account these factors, while n iterations are processed for the MCM algorithm,
7n (resp. 2n) iterations are processed for the SPM (resp. SIIM) algorithm. The graphic
in Figure 1 was plotted so that the abscissa axis represents the C.P.U time (expressed in
equivalent MCM iteration number). Thus, above n := 2.10* are plotted the approximates of
E, (T) obtained by the three methods while 2.10* iterations were processed by the MCM.

It turns out that the speed improvement of the method satisfactorily compensates the
increase of o(T). Finally the gain true essentially lies in the saving of the random number
generator.

7.1.2 A second example (v is not explicitly known)

When p> ¢y, one readily checks that the transition

m(z,dy) := (1 = p(x))d.(dy) + p(x)u(dy) > cop(dy)

is Doeblin recurrent, hence a-mixing. We set for this example p(x)=0.25 + 0.5 x e~ 1* and

p:=N(0;1).

18



Numerical comparison of the methods: This second set up is in some sense more real-
istic as it requires a preliminary simulation of the invariant distribution. This preprocessing,
supposed to geometrically converge due to Doeblin recurrence, was made using ny = 1000
trials of the chain (see section 6.2). The simulations are displayed in Figure 2.

INSERT FIG. 2 AROUND HERE

The three methods clearly converge but, seemingly, toward two separate limits: the
MCM and SIIM methods going on one side, the SPM on another. Two interpretations
can reasonably be proposed: either the SPM method is too slow and a false convergence
phenomenon occurs or the SPM value is right and both MCM and SIIM (which estimate
Ec(x,,)(T)) are wrong i.e. Egx, y(T) 2 E, (T).

Taking into account the theoretical properties of the methods developed in subsection
6.2, along with some further simulations processed below with another algorithm: the Com-
petitive Learning Vector Quantization, we guess that the best estimate is the one provided
by the SPM method. However this remains debatable and would need some large scale
simulations to draw some general rule.

7.2 A Vector Quantization Algorithm (1-dim setting)

The 1-dim Competitive Learning Vector Quantization algorithm: Let i be a prob-
ability measure on [0, 1]. One defines on F,f :={ue [0,1]" /0<u; <---<u, <1} the so-called

n-distortion E*(z) of a n-tuple x:=(xy,---,2,) € F, by
H R — i )2
Ef(zq,-++,xy) - 1I£ilgnn(xl w)”p(du).
This function measures how the n-tuple (z1,- -, z,) can be considered as a good “skeleton"

or “quantification" of the distribution u: the lower E¥(z) is, the better x quantifies u. The
multi-dimensional version of the distortion is widely used in Automatic Classification to
optimally reduce the size of a data set. Some applications to Numerical Integration are also
developed (see [15] or [16]). So it is important to reach an element of argmin .+ EF.

It is well-known (see e.g. [6]) that

Tit1 . .
VE,’{(a:l,---,xn):2</ (mi—u)u(du)> where Z; := M, 2<i<n-—1,
& 1<i<n 2

Z1:=0, Tpy1:=1. Note that VE! admits an obvious continuous extension on the closure FI
of Ff. A classical deterministic minimizing procedure z'*!:=1' — eVE!(z') (¢ € (0,1/2)
seems intractable because of the integral form of the gradient when the p is not uniform. On
the other hand, whenever p has a simple simulating procedure, the so-called “Competitive
Learning Vector Quantization" related stochastic gradient descent

X'e Ff, Xt = X] - el]ijfH}(wt“)(Xf — w5 (Wh idd. & p-distributed  (22)
can straightforwardly be implemented on a computer. Note that the CLVQ algorithm is

also mentioned in the Neural Network literature as the Kohonen algorithm with 0 neighbor.
Although such an algorithm with constant step cannot converge in the a.s. sense, most
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practitioners implement it that way to avoid the metastability problems encountered with
the algorithm with decreasing step.

Equation (22) defines for every € € (0,1/2) an homogeneous F:—Valued Markov chain.
When g is diffuse (i.e. weights no single point) this chain admits a Feller extension on F:; by
properly defining the algorithm on n-tuples having stuck components [6]. Then the existence
of an invariant probability measure v is straightforward and it can be shown that, in fact,
v*(F.;F)=1. On the other hand, it has been established that whenever

JOC [0,1], open set, s.t. o > aXo (23)

the CLVQ algorithm is Doeblin recurrent on F) (and subsequently has a unique invariant
probability measure v° even if p is not diffuse). Many simulations processed with this
algorithm shows that the geometric convergence ratio p is very close to 1.

This family of compactly supported distributions v°, € € (0,1/2) is tight, and still as-
suming that u is diffuse, one may show (see |6] or [10]) that any weak limiting value v/ of
the tight family (v°).c(0,1/2) satisfies supp(v?) C {VE# =0}. Thus whenever {VEX =0} is
reduced to a single point x*, one has v = §,-.

This is the case e.g. if u(du)= f(u)du where f is either strictly In-concave or In-concave
with f(04)4f(1-) >0 (see [14]). Furthermore, when 1:=U([0,1]), z*:=(£=1),<;<,,.

The simulations They were processed with the uniform distribution p:=U([0, 1]), n:=10,
£:=0.1. All the preliminary simulations were always processed starting from the equilibrium
point z*. We considered the hitting time
1.1 }
<— 7.
s N

e The MCM: Our aim was to study the convergence of the MCM method as a function of
L(X,,) where ng denotes the number of preliminary simulation (keep in mind that £(X,,)
geometrically converges in variation to v). On the other hand, it has been highlighted
that the MCM actually approximates E(x, )(T') instead of E,(7") and that no control of
Ezx,,)(T) — E,(T)] as a function of ||£(X,,) — v||=0(p") is known.

INSERT FIG 3 AROUND HERE

Figure 3 shows that, actually, if convergence holds, it is surprisingly slow. Any estimate
of E, (T") obtained by the MCM method with less than 5000 preliminary simulations of the
starting value for every path of the simulation of 17" provides a meaningless result.

The SIIM method fails exactly for the same reasons.

INSERT FIG. 4 AROUND HERE

e The SPM: Figure 4 displays a simulation by the SPM method processed on 10® trials. It
shows how slow the convergence is toward an approximate value of E, (7)) ~5.1.
INSERT FIG 5 AROUND HERE

e The comparison was lead (see Figure 5) like for the Metropolis like algorithm : the abscissa
axis represents the number n of iterations of the MCM. Above every n are plotted the values
obtained for E, (T') by the three methods “while n iterations of the MCM were run”. Roughly
speaking this amounts to comparing the methods vs C.P.U. time.

Figure 5 shows that the SPM method converges much faster than MCM and SIIM, or to
be more specific, is far less costly in term of random numbers consumption.

2k —1
2n

)1gk§n

F :=T:=min {te N/ ‘Xt —(
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8 Conclusion

We have extend to a—mixing stationary process satisfying the usual Ibragimov assumption
o)
(Z a2+ (n) < 4oo for some § > 0) some weak (CLT) and strong (Gal-Koksma and LIL)

n>0
rates of convergence for the pointwise Birkhoff’s Theorem on the canonical dynamical system
(RHN, B(R?)®N, P, ), formerly obtained in the i.i.d case (i.e. P = p®V).

One promising application is the computation of expectations of stopping functionals of
an a—mixing Markov chain under its stationary distribution P,. The main interest of the
shift method is that no preliminary simulation of the invariant distribution v is required
while such simulations are necessary in the MCM before every simulated path or before the
first path when shifting on the i.i.d. innovations (SIIM). Furthermore, for a given number
of iteration, it saves the pseudo-random generator by storing intermediary results.

Both the CLT and the LIL are ruled by a pseudo-variance

o*(F) := Var(F) + 2 Z Cov(F o 0%, F) which is typically greater than Var(F)(and diffi-
k=1
cult to estimate!). This may cause trouble when specifying the number of iteration of the

simulation and even partially annihilate the advantages of the SPM.

Some first tests processed on two strongly mixing Markov chains seem promising if not
completely conclusive. Some large scale tests should be carried out to check the validity of
the method on a practical point of view.

On a theoretical point of view, next question is now to investigate the recent Doukhan-
Massart-Rio assumption in relation with stopping functionals.
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Figure 1: v is explicitly known
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Figure 2: v is not explicitly known
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Figure 3: MCM for various ny
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Figure 4: Convergence of SPM
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