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Abstract In this paper we prove that the conjectures of Frisch and Parisi in [9] and
Arneodo et al in [1] (called the multifractal formalism for functions) may fail for some
non homogenous selfsimilar functions in m dimension, m > 2. In these cases, we compute
the correct spectrum of singularities and we show how the multifractal formalism must be
modified.
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1 Introduction

The multifractal formalism for functions is an heuristic principle which says that for a
function F : R™ — R, the Hausdorff dimension d(«) of the set of points 2 where

|F(z +h) = F(z)| ~ |n]*
is equal to the Legendre transform of {(p) — m
d(a) = inf(ap — ((p) +m)
where ((p) is the LP-mean Hoélder index

/ | Fe+h) — Fz) |P do ~ b0 .

Recently many papers proved the validity of this conjecture for a large class of selfsimilar
functions (see [2], [6], [11] and [12]). The self-similarity here means that locally the graph
of the function F is a contraction of the global graph modulo an error which is more regular
than the function F itself. This means that F' satisfies:

[ MPST@) + glo) o e S5()
F(x)‘{ o) it ¢ UL, 5,(9)

which can be written as

d
F(z) =Y A\F(S; ! (2)) + g(x) (1)
i=1

where
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o |\ <1,...,| g <1; Si,...,84 are contractive similitudes in a bounded open set
Q of R™ such that
SZ(Q) cQ (2)

Si()NS;()=0 if i#j. (3)
e g is a C* function with all derivatives of order less than k having fast decay.
e There exists zo € 2 such that F is not C*(xo).

The multifractal formalism was also proved in one dimension when the S; are no more
linear and two dimension when the S; are analytic mappings of z = x4y (see [3|), and the
fundamental idea is that in a certain sense (see Lemma 1 in [3]) locally these contractions
are close to linear contractions in one dimension and “contract with the same rate” in each
direction in two dimension. However, we will prove in this paper that for contractions that
contract with different rates in each direction, the multifractal formalism for functions
fails. Then we show how it must be modified in order to be adapted to a large class of non
homogenous selfsimilar functions.

Let us first explain the terminology that will be used throughout this paper.

Definition 1 A function F : R™ — R belongs to C*(xg) for a > 0 if there exists a
polynomaial P of degree smaller than « such that

F(x) — Pla— )] < Ol — | @)
The Hélder exponent of F' at x is defined by

afz) =sup{B : FeC’x)}.
F belongs to C*(R™) if (4) holds for any z in R"™ with uniform constant C'.

Definition 2 The spectrum of singularities of F' is the function d(«) which associates to
each « the Hausdorff dimension of the set of points x where a(x) = a (conventionally the
dimension of the empty set is —00).

Now, let F' € LP and define

((q) = liminflogf |F(z+h) — F(z)|* do

)
|h|—0 log |h| ’ (5)

and let us show that ((p) is linked to Sobolev’s “smoothness” index. Let s > 0 ; if s is not
an integer, s = [s] + o with [s] integer and 0 < o < 1; let p > 1; F' belongs to the space of
Nikol’skij H*P(R™) if F' € LP and for any multi-index «y such that |y| = [s] and |h| small
enough

/ 07F (z + h) — 8"F(z)|P dv < C|h|°P. (6)

Consider
¢(p) = sup{s: F € H*/PP}.

Thus if p > 1 and ((p) < p then ((p) = &(p).



If ((p) > p then formula (5) must be modified as follows in order to be consistent with
(6): if it is equal to p, one should use the same formula but with the gradient of F', and so
on until {(p) falls between two integers multiplied by p.

£(p) is also related to Besov’s “smoothness” index. Let us recall that if 1 is a CF(R™)
radial function with all moments of order less than k£ vanishing and all derivatives of order
less than k are well localized and k large enough depending on the properties of F' we want
to analyze; then the wavelet transform of F' at the position b € R™ and the scale a > 0 is

CosF) = gz [ ploys (57 )

Now, a function F belongs to the Besov space B,>°(R™) if (see [15]) its wavelet trans-
form satisfies for a small enough

/ (Cp(F)Pdb < Ca™. (8)

And thanks to the imbeddings H*tP(R™) — By (R™) — H*"“P(R™),V e >0,p>1
and s > 0, we deduce that for p > 1

£(p) =sup{s : F € By/P®(R™)} := 1(p). (9)

It is also well known (see [13]) that the Holder regularity can be characterized in terms
of estimates on the size of the wavelet transform. In fact we have:

e Fe C*R™) if and only if

o If FF e C%xyp), then
b— «
|Cup(F)| < Ca® (1 + ﬂ) . (10)

e If (10) holds and if F' € C*(R™) for an ¢ > 0, there exists a polynomial P such that
if |z —xo |<1/2,

F(z) — Pz — m0)| < C|x—x0|alog( L ) (11)

|z — x|
and so F € C* ¢ (), Ve' > 0.

The following formulas (the so-called multifractal formalism for functions) have been
proposed for the computation of the spectrum of singularities d(c) (see [1] and [9])

d(a) = inf(ap — {(p) + m) or d(a)=inf(ap — &(p) +m) (12)

d(a) = inf(ap — n(p) + m). (13)

In the next section, we will prove the existence and uniqueness of the solution of
equation (1) for non homogenous contractions and we compute its uniform regularity.



In the third section, we show that the previous relationships between the estimates on
the size of the wavelet transform and the Holder regularity are not compatible with non
homogenous series: we obtain different lower and upper bound for the Hélder regularity
for any non homogenous selfsimilar function. So we restrict to our couterexamples for the
determination of the exact value of the Holder regularity by estimating the increments of
the function.

In the fourth section, we compute the spectrum of singularities for our couterexamples
and we show that unlike the case of homogenous selfsimilar functions, the spectrum of
singularities depends on the geometrical arrangement of the S;(€2).

In the fifth section, we compute ((p) and we prove that for our couterexamples, the
multifractal formalism fails .

In the sixth section, we replace the Euclidean norm used in the definition of the Holder
regularity by another “norm” which will be compatible with the anisotropy, we make similar
modifications for the notions that appear in the multifractal formalism and we give the
characterizations of the modified Holder regularity in termes of conditions on the size of
an adapted wavelet transform.

Finally, in the seventh section, we prove the validity of the new multifractal formalism
for a large class of non homogenous selfsimilar functions.

2  Anisotropic Selfsimilar Functions: existence, uniqueness
and global Holder regularity

For the convenience of the notations, we consider only the case m = 2 although the
statements and proofs extend to the general case without any difficulties. Let s and ¢ be
two integers with s < t. We construct a kind of irregular Sierpinski carpet K as follows: we
divide the unit square % = [0, 1]? into a uniform grid of rectangles of height 1/¢ and width
1/s, we choose a finite subset A of {0,1,...,s—1} x{0,1,...,¢—1} and for each pair w =
(i,7) € A, we consider the affine map S, : R — R, given by S, (x1,z2) = (% + %, 2+ %)
and mapping the unit square # into the rectangle R, =[i/s, (¢ +1)/s] x [j/t, (7 +1)/t].
K will be the unique non-empty compact set (see [10]) satisfying

K = | Su(K). (14)

weA

We have

K = {ze€®R : (Spyo0--08,) (@) e | R V(w,...,wn) € A"}

weA
(o)

= U %)

n=0 |w|=n

where

Ry =(Sy, 0:--08,, )(R) for w=(wy,...,wp) .
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Figure 1: The two first steps of the construction of the Sierpinski Carpet associated to the
subdivision A = {(0,1),(2,2),(1,6)}, s =4 and t = 8
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Figure 2: A zoom in for the third step of the construction of the Sierpinski Carpet associated to the
subdivision A = {(0,1),(2,2),(1,6)}, s=4and t =38

There is a natural onto application 7 from A¥ to K given by

(Wi, yWpy.n.) = l}Lm Sy, 0---08, (v) (for any v € R)

= m §):e(wl,...,u,vn)'

7w will be a bijection in the case where the “separated open set condition”
RoNRy =0 if w#d (15)

holds.
Let g be a C* function with all derivatives of order less than k well localized. We will
call a “selfsimilar” function adapted to the subdivision A, a function F' satisfying:

 MF(SGHw) + g(z) ifzeR,
ro={ o) it ¢ Uyea R



With the conventions F (1, 1(x)) = 0 and g(7, *(z)) = 0 for x ¢ R,,, we can write

F(z) =Y AF(S, (@) + g(x). (16)

weA
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Figure 3: The two first steps of the construction of the “selfsimilar” function adapted to the
subdivision A = {(0,1),(2,2),(1,6)}, s =4 and t = 8

Remark: If s = ¢ then the maps S, are similitudes and this case was studied by
Jaffard (see [12]) which proved the validity of the multifractal formalism for the associated
selfsimilar functions.

Iterating (16), we obtain for any N:

N-1
F(.’E) = Z Z >\w1 "'Awn g (Sujnl Sa;ll(x))
n=0

= (wl,...,wn)

+ D Ao Ay F(S5L S5 (@)

(W1yee,wn)

We will now show the existence and the uniqueness in L'(R?) of the solution of (16)
under some hypothesis on the A, and then we will determine its global Holder regularity.
Define

|>\|ma:c = ma$w6A|>\w| s |>\|mm = minweA|)\w| ;



log | Al max

log | Almi
min — d Umar = — g| |mm.

logt logt

Proposition 1 Suppose that the “separated open set condition” (15) holds and that
> wen | Aw |< st, then the functional equation (16) has a unique solution in L'(R?) given
by the series

Z Yo A A, g (S0 S (@) (18)

(wl 9 awn)

If furthermore t=% < |A|mae < 1, then F € C%min (R?).

Proof:
Distribution (18) verifies (16), its L' norm is bounded by

Z S | [ 198 @) | ds

UJ1, 7"Jn)

z > P d | [ 198T @) | de
R

wly - n)

< CZ Z | Awy *++ Aw, | Area(Rey, . wn))
(Wl, awn)
<CZ e "(ZM |>
w€eA

SC’.

For the uniqueness of the solution of (16) in L'(R?), remark that if there was two
solutions, it follows from the fact that (17) holds for any N that their difference is a
distribution supported by K and is a solution of the homogeneous equation

F=Y MFoS," (19)
w€eA

But
| FoS, lnmey=s "t "I F g

hence if 3 .4 | Aw |< st, equation (19) has zero as a solution in L'(R?).
Let us now prove that F € C®in(R?). For that we will use the Littlewood-Paley
characterization. We split F' as a sum

z) =Y Fj(z) where Fj(z)= Y A,g(S;"(z))

320 weAJ

Let % be a function in the Schwartz class such that
p(€) =0 for [€|<1 and |€[>2s

pE) =1 for 2<|¢|<s.



Set  i(z) = s*p(s'a) , Wij=Fjxp and  hyp=(g0S,") * .
Recall that a function F belongs to C”(R?) if and only if

| Fxoy(z) |< Cs ™ Vo € R2,
We have
o) =% [ 9(S51 ) (' (o~ ) dy.
Let Pg,(y) be the Taylor expansion of g at the order £ — 1 at the point z, i.e
Pg(y) = > mgifx)y”-
lyI<k—1

It follows from the cancellation of 4 and the fact that S;! is affine in each direction
that for w € A

haale) =5 [ (0055 ) = Plae S )ely = o) vls! (o =) dy

thus using the mean value theorem and the localization of g, we obtain

Cy s2ltkd
(14185 (=)

hos(@)] < / o — gl (s (@ — )] (L+ 9|21 — | + 8|2 — gl) dy

hence for j < ol with o =logs/logt
S—kltkj
L+ S5 (@)Y

|hw,l(x)| < CN(

Thus for j < ol

- y 1
Wij(2)] < On|Apgqs™ ™t ' :
j maz ng (1 + si|zy — (Sw(0))1] + t]z2 — (S,(0))2])Y

where (S,,(0))1 and (S, (0))2 are the coordinates of S, (0).
We have the following lemma

Lemma 1 For N large enough, there exists Cy > 0 such that for any = € R?

Z ! N<CN‘

weni L 87|z = (S (0))1] + |22 — (54,(0))2])

Lemma 1 is a consequence of the following one

Lemma 2 Let x € K and D large enough and denote by Bj p(x) the set of w € AT such
that

|1 = (S (0)1] < Ds™
and ‘
|zo — (Sw(0))2| < Dt 7.

The cardinality of Bj p(x) is bounded independantely of x and j by 4D2.

8



Proof:
The R, for w € Bj p(z) are disjoints, thus they are all included in the rectangle

Rj =[z1 — Ds™ w1 + Ds™] x [wy — Dt ™7, 9 + Dt
hence o o
s 9t card Bjp(z) <4D?*s It 7
whence Lemma 2.

Thanks to Lemma 1, we get for 0 < j < gl

maxr *

Wi (@) < Ons MMl
Hypothesis t 7% < |A|nqz implies that
—kl kol y (ol
Z |Wl,j(x)| < COs 17| Qs
0<j<al
= C\°

maxr
= Qs lamin,

On the other hand, for 5 > ol
(Wii(z)| < Csup|Fj(z)]

< C\}

— max

consequently

W@ < C Y M

j>al j>al
C|>\|al

maxr
Cglamin,

IN

Hence
| F s ofy(z) |< Cs™lamin vz € R?, (20)

Whence Proposition 1.

3 Pointwise Holder regularity

We want to estimate the Holder regularity of F' at every point.
Proposition 2 Ifz ¢ K then F is C* in a neighbourhood of x.

Proof:
Let zp ¢ K, if xp ¢ R then F' = g in a neighbourhood of xy.
If 79 € R then there exist N and w = (wy, ... ,wy) € AN such that g € Ry \ Uy e g Ruow's

in this neighbourhood of zy, F(z) = Zﬁf:o Aot Aw, 9((Suy 0208, ) Hz)) € CF(x).



Let us now compute the Holder exponent a(xz) of F' at each point z of K; recall that
a(z) =sup{f : F e CP)}. (21)

For that, we will assume the “separated open set condition” (15) for the subdivision A.
Define for x € K, w(=w(z)) € AN by w = 7"!(2).
If w=(w,ws...,wn,...) with w; = (4;,7;)) €A then =z = (Z?; Ul o1 i—f)

[
S
For notational convenience, set

w(n,z) = (wi,...,wn) ; Aw(n,x) = Awi Awy
and
Sw(n,:z:) = Sun ©---0 Sum'
Now let log | |
an(x) _ 08 |Aw(n,x)
logt—"
and

a(x) = I%%glf an(x).

Proposition 3 Let F be a “selfsimilar” function adapted to a subdivision A satisfying the
“separated open set condition”. If x € K and a(x) is not integer, then

a(z) > a(z) .

Proof:
Let € > 0, there exists ng so that a,(z) > a(z) —e for all n > ng, implying

|>‘w(n,a:)| < t—n(a(a:)—e).

Let h € R? |h| < t7™ and n € N such that t772 < |h| < t7"7!, then thanks to the
“separated open set condition”

w(n,z + h) = w(n, ).

Let P,gs;(h) be the Taylor expansion of g at the order a = [a(z)] at the point z (where the
notation | | denotes the integer part), i.e

Pagw(h) = Z 87g($) hY.

|
Iv|<a 7

Consider
(0.0

PEy(h) = ZPa(g °© S;(ll@))x(h) ;
=0

PF,(h) is well defined because of the localization of the function g and all its derivatives
of order less than k.

10



Using (17), we obtain

F(a+h) = PE() = > My [9 (S50 (@ + 1)) = Palg 0 S5 4))alh)]

It follows from the mean value theorem that the first term is in modulous bounded by

n—1 no—1 ne1i
CZ [ Aw(t,z)] flatl) pjatl < oplet! Z Moo gllatl) 4 o|p|att Z Mot (at1)
1=0 o =
n—1
< OB 4 Ofpfett Y gt e) = gty
[=ng
< C'|h*t 4 Cpjett grletimalo)te
< Cll|h|a(:c)—e.

Thanks to the boundedness of F', the second term will be bounded by C|A, )|, 80
by Ct=™@(@)=9) j e by C|h|u®) e,
And the third term is bounded by

Y Pagayl Do R <Y Al RS

I>n 7I<a I>n
C|h|a Z t—l(a(a:)—e) e

I>n

IA

which is bounded by C'|h|*®)~€ for 0 < € < a(x) — a, (a(z) > a because a(x) is not
integer).

Whence Proposition 3.

We shall now give an upper bound for the pointwise regularity a(x) of the “selfsimilar”
function adapted to the subdivision A. Unfortunately, we can easily show that there
are not “good” relationships between the regularity of such functions and the size of the
wavelet transform, the reason is that unlike the wavelet transform which is homogenous
in frequency, the contractions which appear in the non homogenous selfsimilar function
contract with different rates in each direction. The two-microlocalization condition (10)
gives up only a(z) < o 'a(z) which is much larger than the lower bound a(z). Thus,
the only method to determine the exact value of the pointwise Holder regularity is to use
Definition 1. Obviously, this argument is not easy, so we will restrict to our couterexamples
for the multifractal formalism. We take g(z) = A(z1)A(z2) with A(u) = min(u,1 —u)
if v €[0,1] and 0 else. Here g is C''. We suppose that the A, are positive and that

Vwe A, R, C[1/s,(s—1)/s] x [1/t,1/2] (22)

or

Vwe A, Ry, C[1/s,(s—1)/s] x[1/2,(t - 1)/1]. (23)

11
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Figure 4: The condition (22) for the construction of the “selfsimilar” function

Remark: in the sixth section, we will prove that if we take anisotropic contractions in
the wavelet transform, then we can find good relationships between estimates of the size
of the wavelet transform and the “anisotropic Hoélder regularity”.

Proposition 4 Let F be the L' solution of
F(z) =Y MF(S; (2) + Alz)Ax2)
w€eA

with ) 4 |Xo| < st and the asumptions (15) and (22) or (23). Then for z € K and
a(z) <1, we have
a(z) < a(z).

Proof:
In the case of the asumption (22), we choose h, = (0, —t~("*1) with n large enough so
that Ay >t @@+9),
Since  w(l,x + hy) =w(l,z) forany [ =1,...,n then

n—1
Fm+hy)—F(z) = > Ao 9 (Sc;(ll,a:) (z + hn)) —9 (S;(lm) ("’"))]
=0
S

+ Ao [F (S;(ln,x)(erhn)) _F( L;(ln,a:)(x))]'
Set y, = S;(ll w)(x) = (y1,1,y2) for 1 =0,...,n. We have

Yy € §sz+1(:€) C[1/s,(s=1)/s] x [1/2,(t —1)/t]

12
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Figure 5: A geometric justification for the property w(n,x + hy) = w(n, )
and

Sty @+ hn) =y + (0, — =),

sofor0<[{<n-—1

9 (8@ +hn)) =g (S,0@) = g+ (0, ) — ()
= Aly,) (A(yl,Z — =)y — A(yl,Z))
= Ayin) (yl,Q — (D) yl,g) (because of (22))
= —t" DA (y).

Yn + (0, —t7") & Uyea Ro thus  F(yn + (0,—t7")) = g((yn + (0,—t ")) and from (16)

F(yn) = Aoy (@) F (Yn+1) + 9(yn)-
Thus
F (S @+hn)) = F (S34 @) = Flun+(0,t™) = F(ya)

A(yn,l) (A(yn,2 - t_l) - A(yn,Q)) - )‘wn+1(w)F(yn+1)
= =t AMyn1) = Aops () F Uns1)-

And since F is positive then

n—1

[F(@+ha) = F(@)] = > Auga) Myia) 70
=0

+ Aw(n,x) ¢! (A(yn,l) + >‘wn+1(m)F(yn+l))

13




but A(yy,,1) > 1/s, thus

\F(z + hy) — F(2)] s Ana)
Cp-la(z)+0)

C|hn|a(w)+6.

vV v Vv

In the case of the asumption (23), we choose hy, = (0, (1)) and the proof is identical.
The lower and upper bounds for «(z) yield the following theorem

Theorem 1 Let F' be the L' solution of
F(z) =Y AF(S5'(2) + Ai)A(z2)
w€eA

with Y 4 |Xo| < st and the asumptions (15) and (22) or (23). Then for z € K and
a(z) <1

4 The spectrum of singularities

We want now to determine the Hausdorff dimension of the set of points x where a(z) is
equal to a given 0 < a < 1.
For technical reasons, we shall assume another separation condition

if w=(i,j)eA then (i£1,j)¢A. (24)

This condition requires that if column ¢ of the grid contains points of K, the two adjacent
columns do not.

On the sets of singularities £%, we will concentrate a suitable family of probability
measures with certain scaling properties and then use the Lemma below (see |7]) to estimate
the dimension of these sets: each measure gives us an upper bound and one of them will
gives the equality.

Lemma 3 Let H® be the Hausdorff measure of dimension s. Let u be a probability measure
on R™, E CR™ and C such that 0 < C < oo

oIflimsupM<C Vz e B thean(E)ZM.

C
r—0 e

B s
. ]flimsupM>C Vo€ E  then H*(E) < %.
T

r—0

For ¢ € R, define 7(q) by > ca Ms™(@) =1;ie7(q) = — log(},ca ML)/ log s.
Set P,(q) = A,s5™(@ and let ftq be a probability measure on K such that

v((")13 s 7wn) € ANa /"Lq(éRwly---;wn) = PUJl (q) e Pwn(Q)

The construction of such measure by induction is straightforward (see [10], [14] or [16]).

14
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Figure 6: The condition (24) for the construction of the “selfsimilar” function

For r > 0 and w = (w1,...,wy,...) € AY with w, = (is,j.) € A, define the approxi-
mate square Q(w,r) with approximate side r by

N O Y N SO 1o R
Qw,r) = [3 4+ 4 F) s 4+ 4 1 () + 3k1(r)]
By el G e ]
- [t Tt e 7 T o) +tk2(r)]
where ki (r) and ky(r) are the unique integers such that
and
g (R2(r)+1) o« y—ka(r)
In [16], we have
k:l(T') kZ(T')
P (q)
pe(@w,r)) = |1 Pl 3)(@)] l : (25)
ll;[l Gaen z[[l 2 (i P (@)

By considering the two cases below, we will show that the spectrum of singularities
depends on the geometrical arrangement of the R, , w € A.

15
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Figure 7: First case: each column of the grid contains at most one R,

4.1 First case: each column of the grid contains at most one R,

Proposition 5 Assume that each column of the grid contains at most one R, .

Let a < 1 and d(c) be the Hausdorff dimension of the set E* of points © where a(z) = «.

Then d(a) is concave, equals to —oo outside [Qmin, maz] and on this interval

1

d(c) = inf(go™ e —7(q))

and it 1s analytic.

Proof:
In this case (25) implies that for w = (wy,...,wp,...) € A¥ and r >0

:uq(Q(w’T)) = H Pw;(‘])

=1
k1(r)
= k7@ H e
=1
Thus afr)
1 1 R
Og,U«q(Q(U),'I")) :T(q) kl(r) 10g3+ q Ongzl 1 .
logr log r log r
Since If;gr) logs+— —1 as r\ 0, then
1
hminfw = —7(q) + qo ta(n(w)).

\0 logr

16



Denote by B(z,r) the ball of center z and diameter 2r. In [14] and [16], the following
lemma was proved

Lemma 4 Ifw € AY and n € N, then
B(r(w),s ")NK C Q(w,s ") C B(n(w), (s +1)s™").
Thanks to Lemma 4

log p1q(B(m(w), 7)) log 114(Q(w, 7))

lim inf = lim inf (27)
\0 logr \0 logr
whence B
lim sup q(B(r(w), 7)) =+o00 Ve>D0. (28)

r\0 r—7(@)+qo " ta(m(w))+e

Let E* = {z : a(x) = a}; We can assume that e, < 1, so Theorem 1 implies that
fora <1, B* = {r(w) : a(r(w)) = a}. Equation (28) and the second part of Lemma 3
imply that

d(e) <qo'a—71(q) VYgER

SO

d(a) < ilgf(qafla —7(q)).

We will now prove that the previous infimum is reached. For that we will look for the
good measure that will gives the equality.
We can easily show that 7(g) is strictly concave and analytic, so for 5 €]—

1Og Amaz _ log Amin [
logs ? logs D

there exists a unique ¢ € R such that g = 7'(q). Hence for o €]amin, maz| there exists
a unique ¢ € R such that o=t = 7/(q).
With the probability fig = pg o m, the X; = log P, (q) are a sequence of i.i.d random

variables; the strong law of large number implies that for fi;,—a.c w = (w1,...,wp,...) €
AIN
1 n
EZlongj Z P, (q) log Py(q) asmn— oo
= w'eA
= 7(q)logs —q7'(g)log s (29)
because
Z P,(q) logP,y(q) = Z )\q,s ) (qlog A + 7(q) log s)
w'eA w'eA

Ew’EA )\Z), IOg A
Zw’eA AZ}’
= 7(q)logs — q7'(q) log s.

= 7(q)logs+q

Thus for ji, — a.a w € AY

log 1 (@, 7)) _ Fu(r) 1 y
log P, (q _ '
logr logr Ky (7 Zl og Py (q) = qo a—1(q) asr\0
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t1—=
(it

t2 —=

o - o

Figure 8: Second case: only one column containing all the R, , w € A

It follows from Lemma 4 that for fi; — a.a w € A¥

}1{% 1Og :U‘Q(‘;Ro(g’];(w)? T)) — qo_—la o T(Q) (30)

Take ' = {m(w) : lim,\o W = go~la—7(q)}; then (30) implies that p,(E) =

1 and Lemma 3 yields that the Hausdorff dimension of F is equal to go ta — 7(q).
But for @ < 1, @ €]amin, Omaz| , E C E®, whence d(a) > qo ta — 7(q).

We conclude that d(a) = inf, (g0~ ta — 7(q)).
4.2 Second case: only one column containing all the R, , w € A

Proposition 6 Assume that there is only one column containing all the R, , w € A.
Then for a < 1, d(a) is concave, equals to —oo outside [min, Qmaz] and on this interval

d(a) = inf(qa — o7(q))
q
and it is analytic.

Proof:

In this case, we have

pe(Qw,r)) = Fu(q) (31)

e~
Il
_

ka(r)
= 0@ ] A,
=1
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Thus

log 1 (Qr7) _ k() 10T A

:T(q) @ og s +

log r log r
Since If;gr) logt — —1 as 7\ 0, then
1
lim inf 28AQWT) Ly a(r(w))

N0 log r
and thanks to Lemma 4

log piy(B(m(w),)) log 114(Q(w, ))

lim inf = lim inf (32)
\0 logr \0 log r
whence (B(r(w).r))
. Nq Y r
llIfl\ililp (@) raa(m@) e =400 Ve>0. (33)

It follows from Lemma 4 and (33) that
dla) <ga—o7(q) VgeR
ie
d(a) < inf(ga — o7(q)).
q

On the other hand, for @ < 1, & €]min, Amaz|, there exists a unique ¢ € R such that
a = o7'(q), thus for i, — a.a w € A¥

log p1g(Q(w, 7)) _
log F,,; — 0
log logr k2 Z og )= ga—ot(q) as TN\,

whence by argument similar to the one of the first case, we deduce that
d(a) = inf(gae — 07(q)).
q

Remark: The spectrum of singularities of the second case is different from the one of
the first case, whereas for an homogenous selfsimilar function (i.e if s = t) the spectrum of
singularity and the LP-mean Holder index ((p) are the same in the two cases; this means
that they don’t depend on the choice of the R,. We will now prove that unlike d(«), the
LP-mean Holder index ¢(p) does not depend on the geometrical arrangement of the chosen
R, and so the multifractal formalism will fail.

5 The failure of the Multifractal Formalism

We will now prove that the equivalent formulas (12) and (13) for o < 1, that have been
proposed for the computation of the spectrum of singularities d(«) fail for the two previous

cases.
In order to compute ((¢g) = liminf}, g logI‘F(Iltg‘)g'F(INq dm, we need to find good

upper and lower bounds for S,(k) = [|F(z + h) — F(z)|P dz.
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Figure 9: A, for w e A =1{(0,1),(2,2),(1,6)}, s=4and t =8

Lemma 5 Let p > 0 such that oT(p) + 1+ 0 < p. For any € > 0, there exist C > 0 and a
sequence of hy # (0,0) with limy, o |hn| = 0 so that

S (hN) > C|h |(77' p)+1l+o+te .

Proof:
Forn € N* and w = (wy,...,wp) € A", let A, = R, \ U, c 4 Ruw where the notation R,/
denotes the rectangle R, o, o). Set Ag =R\ ey Ror-

We have

Sy(h) = /A |F(z +h) — F(z)|Pdz + Z/ F(z + h) — F(z)[P da.
0 weEA

By iteration, we get for any integer N

ZZ/ F(z+h) - F(z)fdz + Z/ F(z +h) — F(z)]? dz.

n=0wecA" WEAN+1

Consider
={z e, : z+h¢A,}

Observe that asumptions (15) and (22) or (23) imply that for w € A™, if |h| < t~("*2) and
T € A;l,w then z +h € (Jcq Auwr-
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Take hy = (0,t~(N+2)) in the case where asumption (22) holds (and hy = (0, —t~ (N +2))
for asumption (23)), then

Sy(hw) >Z ¥ / Fz+ hy) — F(@)P da.

n=1weA" hpw

For z € A}, with w = (w1,...,wn) € A", we have w(n,z + hy) = w(n, ) = w, hence
Fla+hy) = F@F = 13 Moroay 95T o 0+ )
j=0

+ >‘w(n+1,a:+hN) g(S(;ll,...,wn,wn_;,_l(a:+hN)) (m + hN))

- )‘(wl,...,wj) g(S(z)ll’wa)(x)Hp

If  <n—1 then

IS @ +hn) = 95k @)
= A ((STh o @+ ) IA (ST (@ + h)2) = A (ST (@)2)]
> TS @+ i) = (SL ) (@):]

> s~ Li=(N+2)

And for j = n, S(;ll,m,wn)(:c) € Ay and S(?ull,...,wn)(x + hn) € Ay, (a+hy) SO since
hy = (0,42 and n < N then S(_wl1 mwn)(x) €[l/s,(s—1)/s] x [0,1/2], hence

9(Seh @ HhN)) = g(SEE (@) > s hm (VD)

(wl yeenyWn

And since the A, and g are positive, then taking r(n,p) = 1if p > 1 and (n + 1)P ! if
0<p<1,weget for z € A%Nyw with w € A"

p
|F(z+hy) — F (kal, S0;) S(wll, w )(x‘i‘hN)) - g(S(wll, w)(x))])
0

—ppips—(N+2
> YNy PP T (),
J
Hence

N
S) 2 3 Y (Aready ) SN, Tl o)

|Mz
M
@

)8 PP [P r(n, p).
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Let a denotes the cardinality of A. It follows from the equality

> itjp Motygoy) = itjpanfj(z L)
=0

weA™ j=0 weA
that
Sp(hn) = Cplhn Py " s Mr(n,p) Y e (D M)
n=1 7=0 w€eA
If
Y N, >a (34)
wEA
we obtain
N
Sp(hn) = Cplhn[PFEY s " r(n, p)t™ (D AL)"
n=1 weA
and if
sTHPY N> 1 (35)
weA
we get
Sp(hn) = Cplhn P s™Nr(N,p)t"P (D AN
wEA
> Cplhn [P |7 || 7P |h] TR
> Cp|hN|UT(p)+1+U+€.

Remark that o7(p) + 1 +0 < p is equivalent to ¢~ 1s~1#? Y wea A, > 1 and thus yields
(35), and since the cardinality of A is smaller than st, it yields (34).
Whence, for p > 0 such that o7(p) + 1 + 0 < p, we obtain

¢(p)(= lim inf

=Rt AN B 1 . 36
h—0  log |h| J<orlp)+1+o (36)

Now, we shall give the exact value of {(p) and we will show that unlike d(«), {(p) (or
&(p)) is the same for the two previous cases and so it doesn’t depend on the geometrical
arrangement of the chosen rectangles R,. This fact gives also a reason for the failure of
the multifractal formalism.

In order to give good upper bound for Sy(h), we will assume that |A|,:, > 1/t, (i.e the
Holder regularity of any point is smaller than 1).

Lemma 6 Let p > 0 such that o7(p) + 1+ 0 < p. Then for any € > 0, there exists C > 0
such that for |h| small enough

Sp(h) < C|h|0’T(p)+1+0'76 )
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Figure 12: Ay, Ry, Ry o, Ahw A%,w =A,\ A;LM

Proof:
Let t=(Nt2) < || < t=(V+D and define A} | = A\A), , e

ho=1TE€A, : T+heEA,}.

We have
N
Sy(h) = ZZ/ |F(z 4 h) — F(z)Pdz + ZZ/ F(z +h) — F(z)]P dz
n=0wecA" ’,w n=0wecA™ ”
- / F(z + h) — F(a)[? da.
wEAN+1 hd
For z € Ag,w with w € A"
n
F(e 4 1) = F@)P =] S Ny 905 @+ 1)) = g(ST @) P

J=0

Consider 7'(n,p) =1if 0 <p <1 and (n+ 1)P~tif p > 1.
Thanks to the fact that ¢ is C' (uniformly Lipschitz)

|F(z + h) — |p<z (11,2) [N, [PEP I .
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N N n
> > / , Feth) —F@Pds < O30 30 3 rmn) e PP

n=0wecA" n=0weA"™ j=0
N
- |h|pz s M ”Ztﬂ’a" J Z)\P
n=0 weA

hence if (34) holds then the previous term will be bounded by

N

P S (n,p)s (S AL

n=0 w€eA

and if o7(p) + 1 + o < p, then it will be estimated by C|h|7(P)+1+o—¢
We will now estimate the term ) n+1 f%w |F(z + h) — F(z)|P dz; for that, remark
that w(N,z + h) = w(N,z) = (w1,...,wN), SO

Fle+h) = F@)| < |3 Moros (9050 e+ 1) = (5L (@)
[

+ Pl (IFSTL @+ W)+ IFSTL o @)])-

=

Il
<)

From the fact that ¢ is C' and F is bounded, the previous quantity will be bounded by
ClAL Y Poron [+ ClA o) |-

Thanks to the asumption |A|mim > 1/t, we get

| (2 +h) = F(x)] < ClhIN Ay, wn)| Y+ ClAg,,..

,wN)| ;

hence
|F(z+h) — F(z)[” < C'"NP|A,,..om)|P-

Hence

3 / F(z+h) —F@)Pdr < CNPs™ NN S A, ol

eAN+1 UJEAN+1
< C|h|0’T p)+1l4+o— €

Let us now estimate the term YV Ywean Jar |F(z+h)—F(z)|P do. By analogous
h,w
arguments, for z € A} and w € A", |F(z + h) — F(z)[P will be bounded by

( |>‘ (w,wn+1(z+h)) | |g( wlwn+1(x+h))($ + h))|p + Z Tl(nap)A(wl,...,w])ptjphp) )
=0
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thus

ZZ/, Fz +h) — F(z)|? dz

n= OweA”

ey Y / s P19y @+ WP dz (3)
n= OweA"

+C|h|Zs’" > Z 1, D) [N o) [P | B (38)

weA™ j=0

The term (38) is smaller than C|h|77®)*1+7=¢ Now, for the term (37), we have

. Pinstarmn P05 iy a + )P da

h,w
<ol [ 19 (S2L sty e Py
with
Apn =S5 (Ah) ={y €Dy : y+ (s"h,t"ha) € | A}
w'eA
And by integrating the previous integral respectively on
1 1
. —1 n n .
{y € Ah,n . Swn+1(5w(y)+h)(y + (S hlvt h2)) € [07 5] x [Oa 5]} )
1 1
. g1 .
{y € Ah,n : SwnJrl(Sw(y)"_h/) (y + (thlvtnh2)) € [07 5] x [57 1]} )
1 1
. -1 n n - - .
(0 € D = 551 sy B (57, 8h2) € [5,1] 0, 5]}
and 1 1
. g1 .
{y € Ah,n ' SwnJrl(Sw(y)"_h/) (y + (thlvtnh2)) € [ia 1] X [57 1]} )

we can easily show that

[ Pl 0L sy @+ WP do < CsT AP P

h,w

and thus the term (37) is bounded by C|h|7(P)+1+0
Lemmas 5 and 6 yield the following proposition

Proposition 7 Assume that |A[pnin > 1/t. Let po > 0 such that ) . 4 (tA,)P° = st (i.e
oT(po) + 1+ 0 = po); then for p > py, we have oT(p) + 14+ 0 < p and so

C(p)=0or(p)+1+0.
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If we define f(a) by

f(e) = inf (ap = C(p) +2) (39)

then for a = o7'(q) with ¢ > pp, the infimum in the previous Legendre transform is
attained for ¢, and

fle) = ag—or(g)+1-0
> aq — o7(q)
2 inf(ap — o7 (p)).

Thus, in the second case,
d(a) < f(a).

So the multifractal formalism doesn’t hold.
In the first case, since the cardinality of A is smaller than s, then for any 0 < p < 1,
t~ls—1tp > wea Xo < 1; hence pg > 1 and so for a = o7'(q) with ¢ > po, we get

inf,sp(ap = C(p) +2) >od(a) +1 -0
> d(a)

because d(a) < dimK = }gg‘; < 1. So the multifractal formalism fails too.

Remark: Even the version of the multifractal formalism studied by Daubechies and
Lagarias in [6], which says that ((p) is the Legendre transform of d(a) — 2, fails for the
previous two cases. Indeed, for the first case, since d(c) = inf,(go~ a — 7(g)) and 7(q) is
concave and continue, then o7(q) = infy(ga — od(a)); thus for p > 1 such that o7(p) +

1+ 0 < p, (36) implies that
¢(p) < inf(ga — od(a) +1+0),

but d(a) < 1, so
C(p) < igf(qa —d(a)+2).

Identically for the second case.

6 The Anisotropic Multifractal Formalism

We have shown that the multifractal formalism fails for the two previous cases: the Eu-
clidean norm used in the definitions of the pointwise regularity does not interact in a good
way with the anisotropic contractions.
We propose instead an “homogenous norm” that was used by Calderén and Torchinsky on
one side (see [4] and [5]), Folland and Stein on the other one (see [8]) to develop a theory
of anisotropic H? spaces.
We begin by defining the homogenous norm and describing some of its basic properties,
for proofs and more details we refer to [8].

For r > 0, consider the dilation group of anisotropic linear transformation of R

Ar(xla"'axm):(r Liy...,T xm)



where 1 = dy < ds < ... < d,,. We define the homogenous norm of 2z € R by: p(z) =0
if z =0, and for z # 0, p(x) is the unique value of 7 for which |A;!(z)| = 1, |z| denoting
the Euclidean norm of . The function p is continuous and homogenous in the sense that

p(Ar(x)) = rp(z). (40)

Remark that in the isotropic case dy = 1 = dy = ... = d,;, and p(z) coincides with the
Euclidean norm.

Lemma 7 There exist positive constants C1,Cy and v such that
Cilz| < p(z) < Colz|Y¥  whenever p(x) <1 (41)

Cll/dm|$|1/dm < p(z) < Cgm|x| whenever p(z) > 1
p(z +1y) < y(p(z) + ply)) Va,y €R™

lp(z +y) — p(x)| < vply) Va,y €R™; p(y) < p(w)/2
(L+p)° <Y (L+p(@) (1 +plz —y))* Vr,y €R™ and s > 0.

42
43
44

(
(
(
(45

)
)
)
)

The p-Mean Value Theorem: there exist C > 0 and v > 0 such that for all function
f of class C) on R™ and all z,y € R™

fl@+y)— f@)] <O py)%  sup |0y f(x+h)|.
j=1 p(h)<vp(y)

We adopt the following multiindex notation for higher order derivatives. For I =
(i1, .-, im) € N, we set 0! = 9L ...0im and o' = i .. xim. Further we set |I| =
i1+...+ iy and d(I) = dyi1 + . .. + dpin. Thus |I] is the order of the differential operator
0!, while d(I) is its degree of homogeneity, or, as we shall say, its homogenous degree. We
shall denote by A the additive sub-semigroup of R generated by 0,d,... and d,,. In other
words, A is the set of all numbers d(I) as I ranges over N™. We observe that N C A since
dy = 1.

Let now P be a polynomialie P =), arz’ | ar € R. We define its homogenous degree
to be maz{d(I) : a; # 0}. There is a version of Taylor’s theorem with remainder for the
homogenous norm p.

The p-Taylor Inequality: suppose § € A (6 > 0), and k = [0]. There is a constant

Cs > 0 such that for all functions f of class C**1) on R™ and all z,y € R™,

|f(x+y) — Pi(y)| < Cs Z p(y)d(I) sup |8If(g;_|_h)|
[[|<k+1,d(1)>6 p(h)<vk+1p(y)

where P, is the Taylor polynomial of f at x of homogenous degree 4.

We will now replace the Euclidean norm by the homogenous one in the terminology
that appear in the formulation of the multifractal formalism, in order to be adapted to
the geometric anisotropy. Then we will show that the anisotropic wavelet transform gives
“good” characterizations for the new pointwise regularity for a large class of anisotropic
selfsimilar functions.
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Definition 3 Let « > 0, a ¢ A and zyp € R™; by definition a function F : R™ — R
belongs to C’g‘(xg) if there exists a polynomial P of homogenous degree smaller than « such
that

F(z) - P(z — 20)| < Cplz — m0)°. (46)

The p-Holder exponent of F' at x is defined by
ap(z) =sup{f: Fe C’g(x)} (47)

And we say that F belongs to Cy(R™) if (46) holds for any x in R™ with uniform
constant C'.

Let us first define the anisotropic wavelet transform.
Let 1 in the L.Schwartz class S(R"), supported in |z| < 1, and with vanishing moments;
and let ¢ be another function of S(R") whose Fourier transform ¢ has compact support
disjoint of the origin and has the property that for all = # 0,

/0 ” G(Arz)p(Apz) dr/r = 1. (48)

Let Z = (24,...,2%); ¢(z) = p(x — ); () = (x + ), and for a > 0 set

1
Ga(x) = a—QgB(A;lx)where Q=di+...+dn.

Given a tempered distribution F', ¢ > 0 and b € R™, the anisotropic wavelet transform
of F' is defined by

Cab)(F) = (Frp.)(o) = o5 [ F@)p(A; o~ b)) da. (19)

F' is reconstructed from its anisotropic wavelet transform by (see [4])

Fz) = / L Cola Y~ b vdofa (50)
F(r) = e /a>0 [ Cyla.b)(F)(a; ! (@ = b)) dbda

One of the fondamental properties of the anisotropic wavelet transform is that it char-
acterizes the p-Holder regularity by conditions analogous to those of the classic wavelet
transform for the isotropic case.

Proposition 8 1. F € C3(R™) if and only if

Cpla,b)(F)| < Ca’. (51)

2. If F € Cj(xo) then



3. If (52) holds and if F € Cg(Rm) for B >0, there exists a polynomial P such that if
plw—0) < 1/2,

F(z) — Pz — w0)| < Cpla — 0)* log (ﬁ) . (53)
Proof:
I If F e C3R™)
Cola)(B)] = gl [ F@e(a7 @ b)ds
= aQ|/ Yz —b) — z)dz|

— ol [ P+ 404, o - b) dol
Since ¢ has compact support disjoint of the origin then
|Cp(a,b)(F)| = Q|/ (x + AyZ) — P(z 4 AyZ — b)) (A7 (z — b)) da|
< 5 [ Colot Ao =B lpl (@ - D) ds
which by property (43) will be bounded by
Oy [ 7 (6(Aa) + ol = D)4, (&~ )] d
< Cg [ (P(AaZ)" + plz = b)) p(Ag (= b)) | d=

< Ca® + 0% [ p(4; (x = 0)*lp(A; (z — b))| da

Conversely, F' is expressed in terms of C,(a,b)(F) as in (50). Let

1 —
Wiar) = | Colab)E)i(4; (@ - b)db
If (51) holds then
|W(a,z)| < Cd® (54)
and
10" W (a,z)| < Ca®~40), (55)

Let zy € R™, and set 6 = maz{d(I) : d(I) < s} and PW,(x — z¢) the Taylor
polynomial of W (a,.) at z¢ of homogenous degree &

o'W (a, z,
PWy(z —xy) = Z #(m—xg)l
I:d(1)<6 ’
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and P(z — xg) the one of F, then
|F(z) — P(z —zo)] = | />0 (W(a,z) — PWy(z — zg)) da/al
p(z—10)
< / (1W (a,2)| + |PWa(z — 20)|) da/a
0

+/poo |W(a,$) o PWa(fE — $0)| da/a.

(z—x0)

It follows from (54) and (55) that the first term is bounded by

p(z—w0)
/ (Ca“r > Can(I)(xaco)[) da/a
0

I:d(I)<s
but from the definition of p
(2 — z0)"| < plz — m0) ")

hence the previous term is estimated by

p(z—zo)
C/ a*~ + Z Ca*~ D=1 p(z — 20)4) | da
0 I:d(I)<s

< Cp(z — z0)°.
Let | = [0], since W (a,.) is of class CU*1) | then using the p-Taylor inequality, the

second term will be bounded by

/ Cs Z p(z — 30)%) sup |07 W (a,.)(zo + )| da/a
pe=a0) i RSV pla—a0)

<G Y ple—e)™ [T @ def

|J|<I4+1,d(J)>6 p(z—x0)
< CP(ZU — (L‘U)s.

2. If F € C)(xo), then

ColaD(F)| = gl [(F+A00) = Plo+ A48~ 20)e(4, (o~ b)) do
< 5 [ C oo+ Ao a0 lplA; (@ - D) ds
< O [(eldaa)’ + (o= 20) ol o = )| do
< 0+ Cgr [(plb—0)* + plo = 8))lpl47 (@~ V)] d
< Ca®+Cp(b—m0)® + Ca’
<

ca (14222 20)

a
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3. Conversely if (52) holds and if F' € Cg(Rm) for an B > 0, then

Wl < o [ow (1442 )) (AT (& — b))] db

< —/c (1+ b)) B(AT @ — b)) db
0ol — w0)’ / 945" — b)) db
Hence

|W (a,z)| < Ca® <1 n MY

a

and similarly

a

0'W (a,2)| < Ca*~D <1 . M) ‘

Thus
p(x Q;O)S/ﬁ
F(z) — Pla—a0)| < / W (a, 2)| da/a
0

p(z—2o)
+/ |W(a,x)|da/a
p(z—w0)*/P

p(z—o)
+/ |PWq(z — zg)| da/a
0

+/p<>0 |W(a,z) — PWy(z — z¢)| da/a.

(x—xo)

Using (54) (with s remplaced by ), the first term will be bounded by

p(x-xo)s/ﬁ
C / a’ daja
0

so by Cp(x — z¢)°.
(56) implies that the second term is estimated by

p(z—zo)
/ C(a® + p(z — z0)°) da/a
P

(x—m0)s/P
p(z—o)
<2Cp(x — xg)s/ da/a
p(z—w0)*/P
1
< Cp(x —x0)°lo
< Col o)”log p(z — o)

also, from (57) the third term will be bounded by
p(z—x0) 0)\°*
/ C Z a4 (1 + —) p(z — 20)™) da/a
0 I:d(I)<s @
< Cp(z — x9)°
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and we use the Taylor inequality to estimate the fourth term by

/ Cs Z p(z — z0)7) sup 10"W (a,.)(zo + h)| da/a
p(z—=o) |J|<I4+1,d(J)>6 p(h)<vitlp(z—wo)

< Cs Z pz — o)) / a*~4) sup (1 + @> da/a
|J|<I41,d()>0 pla—o) p(h)<vi+1p(z—x0) “

o0

<C Z pz — z9) ) / a*~ 4 da/a

|J|<I4+1,d(J)>6 p(z—x0)
< Cp(z — z0)”.

Whence (53).

The proof of Proposition 8 is now achieved.
Now we will make similar modifications for the Besov spaces.

Definition 4 Suppose s € R and p > 0, we say that F belongs to the homogeneous
anisotropic Besov space By (R™) if for a small enough

/|C’p(a, b)(F)|Pdb < Ca’?; (58)

and we set
np(p) =sup{r : F € B;,é,p’oo} . (59)

This definition does not depend on the choice of the wavelet ¢ nor v¢: let ® and ¥
be two other functions satisfying the same properties, since the supports of @ and ® are
disjoint of the origin then there exist two positive numbers « and 3 such that @ * ®; =0
for t/l ¢ [, 8]. Thanks to the property (48)

o0
Fx® = F*i)l*/ o * Py dtft
= F*(I)l*/ Wlt*¢ltdt/t
0
B _
= / F*‘Plt*q)l *¢ltdt/t
[0
5 _
= /F*S%(-—Azﬂ)*@l*l/)ztdt/t;
o

hence

_ _ B
1F 5 Bl oy < 1191 46l / \F * Gl oy dt/t

[0}

whence using the Young inequality in the multiplicative group R’ , we obtain

_ B
1PE * @l o@my lLems) < C/ tdt/t |U7°IF = @il o@m)ll Loomy)

N

< CONPIF * @il o @m) |l oo )

We also modify the definition of the Hausdorff dimension and Hausdorff measure in
order to be adapted to the anisotropy as follows (see [17]).
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Definition 5 Let E C R™ and R, the set of all coverings of E by sets of p-diameter at

most €. Let
M,(e,d) = inf (p — diam E;)?
reRe
E;er
then, by definition the d-dimensional p-Hausdorff measure of E is
(d—p—Mes)(E) = limsup M,(e,d) .

e—0

The p-Hausdorff dimension of E is
D = inf{d : (d—p—Mes)(E) =0} = sup{d : (d —p— Mes)(E) = +o0} .

Finally we call the anisotropic multifractal formalism the property that the p-Hausdorff
dimension d,(c) of the set of points  where a,(z) = « is equal to the Legendre transform

of 1,(q) — Q
’ dy(0) = inf(aq — n,(q) + Q). (60)

Now we will introduce the class of anisotropic selfsimilar functions for which the
anisotropic multifractal formalism will be valid. This new class will contain the family
of “selfsimilar” functions of the two previous cases.

7  Validity of the Anisotropic Multifractal Formalism for
Anisotropic Selfsimilar Functions
Let ©Q be a bounded open set of R™; k> 0; 1=d; <dy <---<dp; 1 <1,...,ur <1

and V3 € R™,...,V, € R™. Set S;j(x) = Ay, (z) + Vi. Assume that (2) and (3) hold and
let g be a CL‘ function such that all its derivatives of order less than k have fast decay. We

will call a (dy,...,dp)-k-selfsimilar function, a function F' satisfying:
L
F(z) =) X\ F(S7'(z)) + g(o) (61)
=1

such that F' is not uniformly Cg in a certain non empty closed subset of 2.

The “selfsimilar” functions given in the first part of this paper are (1 1ﬁg—t)—1—selfsimila1r.

’ log s
Let

log | Aj | log | A; |

(62)

Qmin =  inf ] and Qmeg = SU 1
j=L,...L logu; j=1,...,.. 108 ]

We will study the existence of the solutions of (61) in the anisotropic Hp(R™) spaces
defined by Calderén as follows.

Definition 6 Let for a > 0 the mazimal function associated with F be

Mu(@) = sup |Cyla,z +B)(F)].
p(b)<ra

For0 <p< oo
FeHOR™) if M,(z) € LP(R™).
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This property of My(zx) is independent of the choice of ¢ and a. We define the H5H(R™)
norm of F' as the norm of M, (z) in LP(R™).

A k-atom ¢ is a bounded function with compact support and with vanishing moments
of all orders less than or equal to k. The p-norm of the atom ¢ is defined as

gl = inf M|B|"/> (63)

where M is a bound for |¢| and |B| is the measure of a ball B = {z : p(z — zp) < r}
(which is an ellipse in the euclidean space) containing the support of ¢. If 0 < p <1 and
k>Q/p—1, then € HH(R™) and

16ll32@m) < Cllellp (64)

where the constant C depends on k and the choice of the norm in HLH(R™).

In the case where the solution will be a function, we will compute its global and point-
wise anisotropic Holder regularity and then we will show that the anisotropic multifractal
formalism holds.

We are now ready to state our main results.

Proposition 9 Suppose that E;Zl | A ,uJQ < 1; in this case (61) has a unique distribu-
tion solution, which is an L' function and given by the series

o0
Y g (St S @) (65)
n=0 (i1,...,in)
If furthermore 0 < aumin, < k, this function belongs to Cymin(R™).
Suppose that Z]I-’ZI | A | H]Q > 1; in that case (61) may have several distribution
solutions; let p < 1 such that EJLZI | A P ,u? < 1;if g is Cg with k > Q/p — 1, and if
the moments of g of order less than k vanish, (65) converges in the anisotropic Hardy real

space HH(R™), so that (61) has at least one solution in that space of distributions.
Furthermore, these results are optimal.

Proposition 10 Let K be the unique non-empty compact set satisfying K = U]I-’:1 Sj(K).
Ifx ¢ K, F is C;f i a neighbourhood of x.

Proposition 11 Suppose that i, > 0. Let T be the tree constructed in the “time-
frequency half-space”: the root is conventionally the point (0,1) € R™ x R*, this root is
linked to the L first nodes, which are the (S;(0),p;), each point (S;(0),pj) is linked to the

(S;Sk(0), pjitk),---
Let x € K and Bj(x) be the set of branches (i1, ...,%,) of the tree such that

p(Siy - 85, (0) — @) < piy - i,
and ' .
279 < gy e g, < 27070
Then

Log|\;
a,(x) = liminf inf Log|Ail
j—oo i€Bj(z) Logp;
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Proposition 12 Define a function T by the equation E]L:l |)\j|“u;T(a) =1. Let a < k
and define d,(a) as the p-Hausdorff dimension of the set of points x where a,(x) = a.
Then d,(«) equals —oo outside [Ctmin, maz), and on this interval,

dy(a) = i%f(aa —7(a)). (67)

Proposition 13 Let F be a (dy,...,dy)-k-selfsimilar and let q such that 7(q) < kq — Q.
Then

no(q) = 7(q) + Q.

Theorem 2 Let F be a (di,...,dy)-k-selfsimilar. If apmin > 0, the function d,(«) equals
—o0 outside the interval [aumin, ¥maz] and is analytic and concave on this interval. Its
mazimal value d, mae satisfies
dp,maa:
Dm =1

Let ag be the value for which this maximum is attained.

If g 1s CF; if a < ap, d,(a) can be obtained by computing the Legendre transform of
Mo(q) — Q.

If g is C’L‘, let py be defined by T(po) + Q = kpo and let ay be the Legendre transform at
po of the function 7(q) (i.e cn = 7'(po)); if @ < i then for a < aq, dy(cr) can be obtained
by computing the Legendre transform of n,(q) — Q.

Notice that in order to show that F' belongs to Hb5, we split F as a sum F = > j>1 F
where Fj is the series (65) restricted to the indexes i € I; such that 277 < p; < 270~
and that the regularity and the cancellation that we requested for g is consistent with the
atomic decomposition of the Fj; thus the H) norm of F}, using (63), (64) and the fact that
a+b< (@ +b)/P fora>0,b>0and 0 < p < 1, is bounded by

1/p
1Y Nigo S e < lekigosflllig
iEIj iEIj
1/p
< C D IIhgo Sl
iEIj
1/p
< O nlPug
iEIj

this quantity is exponentially decreasing with j, so that F' belongs to H5.

The solution F' given by the series (65) looks like an anisotropic wavelet decomposi-
tion. The proofs follow from the properties of the homogenous norm p, Proposition 8 and
arguments similar to those of Jaffard’s paper [12]; in all situations @ served as a substitute
for the space dimension m: the anisotropic wavelet transform of F' satisfies a functional
equation similar to (61)

J
Coat)(F) = 3 S NGS5 b))

J=127i<p;<2.279 i
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+ Y NG ST,

2-J<p;<2.2-7

hence, we prove that its order of the magnitude near the tree is large, more precisely, near
(Sl ... Sz'n(O),,uil - Hin)J it is ~ |>‘11| - |>\Zn|
The dimensions of the singularities will be obtained by constructing invariant measures on
the sets of singularities and using an adapted lemma 3.
For the proof of the anisotropic mulifractal formalism, we show that for ¢ such that 7(q) <
kq—@Q
/ 1C,(a, b) (F)|?db ~ a0
Acknowledgement: The author is thankful to Stéphane Jaffard for having drawn his

attention on this problem and for many enlightening discussions, and to Yves Meyer for
suggesting the use of the homogenous norm.
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