
Multifractal Formalism and Anisotropic SelfsimilarFunctionsMourad Ben Slimane �Abstract In this paper we prove that the conjectures of Frisch and Parisi in [9] andArneodo et al in [1] (called the multifractal formalism for functions) may fail for somenon homogenous selfsimilar functions in m dimension, m � 2. In these cases, we computethe correct spectrum of singularities and we show how the multifractal formalism must bemodi�ed.Key words: Hölder exponent, Hausdor� dimension, spectrum of singularities, multifractalformalism, selfsimilar functions, wavelets.1 IntroductionThe multifractal formalism for functions is an heuristic principle which says that for afunction F : IRm 7! IR, the Hausdor� dimension d(�) of the set of points x wherejF (x+ h)� F (x)j � jhj�is equal to the Legendre transform of �(p)�md(�) = infp (�p� �(p) +m)where �(p) is the Lp-mean Hölder indexZIRm j F (x+ h)� F (x) jp dx � jhj�(p) :Recently many papers proved the validity of this conjecture for a large class of selfsimilarfunctions (see [2], [6], [11] and [12]). The self-similarity here means that locally the graphof the function F is a contraction of the global graph modulo an error which is more regularthan the function F itself. This means that F satis�es:F (x) = ( �jF (S�1j (x)) + g(x) if x 2 Sj(
)g(x) if x =2 Sdj=1 Sj(
)which can be written as F (x) = dXj=1 �jF (S�1j (x)) + g(x) (1)where�CERMICS, Ecole Nationale des Ponts et Chaussées, La Courtine, 93167 Noisy-le-Grand, France.1



� j�1j < 1; : : : ; j�dj < 1; S1; : : : ; Sd are contractive similitudes in a bounded open set
 of IRm such that Si(
) � 
 (2)Si(
) \ Sj(
) = ; if i 6= j : (3)� g is a Ck function with all derivatives of order less than k having fast decay.� There exists x0 2 
 such that F is not Ck(x0).The multifractal formalism was also proved in one dimension when the Si are no morelinear and two dimension when the Si are analytic mappings of z = x+iy (see [3]), and thefundamental idea is that in a certain sense (see Lemma 1 in [3]) locally these contractionsare close to linear contractions in one dimension and �contract with the same rate� in eachdirection in two dimension. However, we will prove in this paper that for contractions thatcontract with di�erent rates in each direction, the multifractal formalism for functionsfails. Then we show how it must be modi�ed in order to be adapted to a large class of nonhomogenous selfsimilar functions.Let us �rst explain the terminology that will be used throughout this paper.De�nition 1 A function F : IRm ! IR belongs to C�(x0) for � > 0 if there exists apolynomial P of degree smaller than � such thatjF (x)� P (x� x0)j � Cjx� x0j�: (4)The Hölder exponent of F at x is de�ned by�(x) = supf� : F 2 C�(x)g :F belongs to C�(IRm) if (4) holds for any x in IRm with uniform constant C.De�nition 2 The spectrum of singularities of F is the function d(�) which associates toeach � the Hausdor� dimension of the set of points x where �(x) = � (conventionally thedimension of the empty set is �1).Now, let F 2 Lp and de�ne�(q) = lim infjhj7!0 log R jF (x+ h)� F (x)jq dxlog jhj ; (5)and let us show that �(p) is linked to Sobolev's �smoothness� index. Let s � 0 ; if s is notan integer, s = [s] + � with [s] integer and 0 < � < 1; let p � 1; F belongs to the space ofNikol'skij Hs;p(IRm) if F 2 Lp and for any multi-index 
 such that j
j = [s] and jhj smallenough Z j@
F (x+ h)� @
F (x)jp dx � Cjhj�p: (6)Consider �(p) = supfs : F 2 Hs=p;pg:Thus if p � 1 and �(p) < p then �(p) = �(p).2



If �(p) � p then formula (5) must be modi�ed as follows in order to be consistent with(6): if it is equal to p, one should use the same formula but with the gradient of F , and soon until �(p) falls between two integers multiplied by p.�(p) is also related to Besov's �smoothness� index. Let us recall that if  is a Ck(IRm)radial function with all moments of order less than k vanishing and all derivatives of orderless than k are well localized and k large enough depending on the properties of F we wantto analyze; then the wavelet transform of F at the position b 2 IRm and the scale a > 0 isCa;b(F ) = 1am ZIRm F (t) � t� ba � dt ; (7)Now, a function F belongs to the Besov space Bs;1p (IRm) if (see [15]) its wavelet trans-form satis�es for a small enough Z jCa;b(F )jpdb � Casp: (8)And thanks to the imbeddings Hs+�;p(IRm) ,! Bs;1p (IRm) ,! Hs��;p(IRm), 8 � > 0 , p � 1and s > 0, we deduce that for p � 1�(p) = supfs : F 2 Bs=p;1p (IRm)g := �(p): (9)It is also well known (see [13]) that the Hölder regularity can be characterized in termsof estimates on the size of the wavelet transform. In fact we have:� F 2 C�(IRm) if and only if jCa;b(F )j � Ca�:� If F 2 C�(x0), then jCa;b(F )j � Ca��1 + jb� x0ja �� : (10)� If (10) holds and if F 2 C"(IRm) for an " > 0, there exists a polynomial P such thatif j x� x0 j� 1=2, jF (x)� P (x� x0)j � Cjx� x0j� log� 1jx� x0j� (11)and so F 2 C��"0(x0) ; 8"0 > 0.The following formulas (the so-called multifractal formalism for functions) have beenproposed for the computation of the spectrum of singularities d(�) (see [1] and [9])d(�) = inf(�p� �(p) +m) or d(�) = inf(�p� �(p) +m) (12)or d(�) = inf(�p� �(p) +m): (13)In the next section, we will prove the existence and uniqueness of the solution ofequation (1) for non homogenous contractions and we compute its uniform regularity.3



In the third section, we show that the previous relationships between the estimates onthe size of the wavelet transform and the Hölder regularity are not compatible with nonhomogenous series: we obtain di�erent lower and upper bound for the Hölder regularityfor any non homogenous selfsimilar function. So we restrict to our couterexamples for thedetermination of the exact value of the Hölder regularity by estimating the increments ofthe function.In the fourth section, we compute the spectrum of singularities for our couterexamplesand we show that unlike the case of homogenous selfsimilar functions, the spectrum ofsingularities depends on the geometrical arrangement of the Sj(
).In the �fth section, we compute �(p) and we prove that for our couterexamples, themultifractal formalism fails .In the sixth section, we replace the Euclidean norm used in the de�nition of the Hölderregularity by another �norm� which will be compatible with the anisotropy, we make similarmodi�cations for the notions that appear in the multifractal formalism and we give thecharacterizations of the modi�ed Hölder regularity in termes of conditions on the size ofan adapted wavelet transform.Finally, in the seventh section, we prove the validity of the new multifractal formalismfor a large class of non homogenous selfsimilar functions.2 Anisotropic Selfsimilar Functions: existence, uniquenessand global Hölder regularityFor the convenience of the notations, we consider only the case m = 2 although thestatements and proofs extend to the general case without any di�culties. Let s and t betwo integers with s < t. We construct a kind of irregular Sierpinski carpet K as follows: wedivide the unit square < = [0; 1]2 into a uniform grid of rectangles of height 1=t and width1=s, we choose a �nite subset A of f0; 1; : : : ; s�1g�f0; 1; : : : ; t�1g and for each pair ! =(i; j) 2 A, we consider the a�ne map S! : < ! < , given by S!(x1; x2) = �x1s + is ; x2t + jt�and mapping the unit square < into the rectangle <! = [i=s; (i+ 1)=s]� [j=t; (j + 1)=t].K will be the unique non-empty compact set (see [10]) satisfyingK = [!2AS!(K): (14)We haveK = fx 2 < : (S!1 � � � � � S!n)�1(x) 2 [!2A<! 8 (!1; : : : ; !n) 2 Ang= 1\n=0( [j!j=n<!)where <! = (S!1 � � � � � S!n)(<) for ! = (!1; : : : ; !n) :
4
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Figure 1: The two �rst steps of the construction of the Sierpinski Carpet associated to thesubdivision A = f(0; 1); (2; 2); (1; 6)g, s = 4 and t = 8
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R(1,6),(0,1)Figure 2: A zoom in for the third step of the construction of the Sierpinski Carpet associated to thesubdivision A = f(0; 1); (2; 2); (1; 6)g, s = 4 and t = 8There is a natural onto application � from AIN to K given by�(!1; : : : ; !n; : : :) = limn 7!1S!1 � � � � � S!n(v) (for any v 2 <)= \n <(!1;:::;!n):� will be a bijection in the case where the �separated open set condition�<! \ <!0 = ; if ! 6= !0 (15)holds.Let g be a Ck function with all derivatives of order less than k well localized. We willcall a �selfsimilar� function adapted to the subdivision A, a function F satisfying:F (x) = � �!F (S�1! (x)) + g(x) if x 2 <!g(x) if x =2 S!2A<! .5



With the conventions F (T�1! (x)) = 0 and g(T�1! (x)) = 0 for x =2 <!, we can writeF (x) = X!2A�!F (S�1! (x)) + g(x): (16)
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-1 (x))

(0,1) (0,1) (0,1)(x))  +  g(x)(0,1)
-1Figure 3: The two �rst steps of the construction of the �selfsimilar� function adapted to thesubdivision A = f(0; 1); (2; 2); (1; 6)g, s = 4 and t = 8Remark: If s = t then the maps S! are similitudes and this case was studied byJa�ard (see [12]) which proved the validity of the multifractal formalism for the associatedselfsimilar functions.Iterating (16), we obtain for any N :F (x) = N�1Xn=0 X(!1;:::;!n)�!1 � � � �!n g �S�1!n � � �S�1!1 (x)�+ X(!1;:::;!N ) �!1 � � � �!N F �S�1!N � � �S�1!1 (x)� : (17)We will now show the existence and the uniqueness in L1(IR2) of the solution of (16)under some hypothesis on the �! and then we will determine its global Hölder regularity.De�ne j�jmax = max!2Aj�!j ; j�jmin = min!2Aj�!j ;6



�min = � log j�jmaxlog t and �max = � log j�jminlog t :Proposition 1 Suppose that the �separated open set condition� (15) holds and thatP!2A j �! j< st, then the functional equation (16) has a unique solution in L1(IR2) givenby the series F (x) = 1Xn=0 X(!1;:::;!n) �!1 � � � �!n g �S�1!n � � �S�1!1 (x)� : (18)If furthermore t�k < j�jmax < 1, then F 2 C�min(IR2).Proof:Distribution (18) veri�es (16), its L1 norm is bounded by1Xn=0 X(!1;:::;!n) j �!1 � � � �!n j Z j g(S�1(!1;:::;!n)(x)) j dx= 1Xn=0 X(!1;:::;!n) j �!1 � � � �!n j Z<! j g(S�1(!1;:::;!n)(x)) j dx� C 1Xn=0 X(!1;:::;!n) j �!1 � � � �!n j Area(<(!1;:::;!n))� C 1Xn=0 s�n t�n X!2A j�!j!n� C 0:For the uniqueness of the solution of (16) in L1(IR2), remark that if there was twosolutions, it follows from the fact that (17) holds for any N that their di�erence is adistribution supported by K and is a solution of the homogeneous equationF = X!2A�!F � S�1! : (19)But k F � S�1! kL1(IR2)= s�1t�1 k F kL1(IR2)hence if P!2A j �! j< st, equation (19) has zero as a solution in L1(IR2).Let us now prove that F 2 C�min(IR2). For that we will use the Littlewood-Paleycharacterization. We split F as a sumF (x) =Xj�0 Fj(x) where Fj(x) = X!2Aj �!g(S�1! (x)):Let  be a function in the Schwartz class such that ̂(�) = 0 for j � j� 1 and j � j� 2s ̂(�) = 1 for 2 �j � j� s:7



Set  l(x) = s2l (slx) , Wl;j = Fj �  l and h!;l = (g � S�1! ) �  l.Recall that a function F belongs to Cr(IR2) if and only ifj F �  l(x) j� Cs�rl 8x 2 IR2:We have h!;l(x) = s2l Z g(S�1! (y))  (sl(x� y)) dy:Let Pgx(y) be the Taylor expansion of g at the order k � 1 at the point x, i.ePgx(y) = Xj
j�k�1 @
g(x)
! y
 :It follows from the cancellation of  and the fact that S�1! is a�ne in each directionthat for ! 2 Ajh!;l(x) = s2l ZIR2 �g(S�1! (y))� P (g � S�1! )x(y � x)�  (sl(x� y)) dythus using the mean value theorem and the localization of g, we obtainjh!;l(x)j � CN s2ltkj(1 + jS�1! (x)j)N Z jx� yjk j (sl(x� y))j (1 + sjjx1 � y1j+ tjjx2 � y2j)N dyhence for j � �l with � = log s= log tjh!;l(x)j � CN s�kltkj(1 + jS�1! (x)j)N :Thus for j � �ljWl;j(x)j � CN j�jjmaxs�kltkj X!2Aj 1(1 + sjjx1 � (S!(0))1j+ tjjx2 � (S!(0))2j)Nwhere (S!(0))1 and (S!(0))2 are the coordinates of S!(0).We have the following lemmaLemma 1 For N large enough, there exists CN > 0 such that for any x 2 IR2X!2Aj 1(1 + sjjx1 � (S!(0))1j+ tj jx2 � (S!(0))2j)N < CN :Lemma 1 is a consequence of the following oneLemma 2 Let x 2 K and D large enough and denote by Bj;D(x) the set of ! 2 Aj suchthat jx1 � (S!(0))1j � Ds�jand jx2 � (S!(0))2j � Dt�j:The cardinality of Bj;D(x) is bounded independantely of x and j by 4D2.8



Proof:The <! for ! 2 Bj;D(x) are disjoints, thus they are all included in the rectangleRj = [x1 �Ds�j; x1 +Ds�j]� [x2 �Dt�j; x2 +Dt�j]hence s�jt�j card Bj;D(x) � 4D2s�jt�jwhence Lemma 2.Thanks to Lemma 1, we get for 0 � j � �ljWl;j(x)j � CNs�kltkjj�jjmax :Hypothesis t�k < j�jmax implies thatX0�j��l jWl;j(x)j � Cs�kltk�lj�j�lmax= Cj�j�lmax= Cs�l�min :On the other hand, for j � �ljWl;j(x)j � C supx jFj(x)j� Cj�jjmaxconsequently Xj��l jWl;j(x)j � CXj��l j�jjmax� Cj�j�lmax= Cs�l�min :Hence j F �  l(x) j� Cs�l�min 8x 2 IR2: (20)Whence Proposition 1.3 Pointwise Hölder regularityWe want to estimate the Hölder regularity of F at every point.Proposition 2 If x =2 K then F is Ck in a neighbourhood of x.Proof:Let x0 =2 K, if x0 =2 < then F = g in a neighbourhood of x0.If x0 2 < then there exist N and ! = (!1; : : : ; !N ) 2 AN such that x0 2 <! nS!02A<!!0 ;in this neighbourhood of x0, F (x) =PNn=0 �!1 � � � �!n g((S!1 � � � � � S!n)�1(x)) 2 Ck(x).9



Let us now compute the Hölder exponent �(x) of F at each point x of K; recall that�(x) = supf� : F 2 C�(x)g: (21)For that, we will assume the �separated open set condition� (15) for the subdivision A.De�ne for x 2 K, !(= !(x)) 2 AIN by ! = ��1(x).If ! = (!1; !2; : : : ; !n; : : :) with !l = (il; jl) 2 A then x = �P1l=1 ilsl ;P1l=1 jltl�.For notational convenience, set!(n; x) = (!1; : : : ; !n) ; �!(n;x) = �!1 � � � �!nand S!(n;x) = S!1 � � � � � S!n :Now let an(x) = log j�!(n;x)jlog t�nand a(x) = lim infn 7!1 an(x):Proposition 3 Let F be a �selfsimilar� function adapted to a subdivision A satisfying the�separated open set condition�. If x 2 K and a(x) is not integer, then�(x) � a(x) :Proof:Let � > 0, there exists n0 so that an(x) > a(x)� � for all n � n0, implyingj�!(n;x)j � t�n(a(x)��):Let h 2 IR2, jhj < t�n0 and n 2 IN such that t�n�2 � jhj < t�n�1, then thanks to the�separated open set condition� !(n; x+ h) = !(n; x):Let Pagx(h) be the Taylor expansion of g at the order a = [a(x)] at the point x (where thenotation [ ] denotes the integer part), i.ePagx(h) = Xj
j�a @
g(x)
! h
 :Consider PFx(h) = 1Xl=0 Pa(g � S�1!(l;x))x(h) ;PFx(h) is well de�ned because of the localization of the function g and all its derivativesof order less than k. 10



Using (17), we obtainF (x+ h)� PFx(h) = n�1Xl=0 �!(l;x) [g �S�1!(l;x)(x+ h)�� Pa(g � S�1!(l;x))x(h)]+ �!(n;x) F �S�1!(n;x)(x+ h)�� Xl�n �!(l;x) Pa(g � S�1!(l;x))x(h):It follows from the mean value theorem that the �rst term is in modulous bounded byC n�1Xl=0 j�!(l;x)j tl(a+1) jhja+1 � Cjhja+1 n0�1Xl=0 j�!(l;x)j tl(a+1) + Cjhja+1 n�1Xl=n0 j�!(l;x)j tl(a+1)� C 0jhja+1 + Cjhja+1 n�1Xl=n0 t�l(a(x)��) tl(a+1)� C 0jhja+1 + Cjhja+1 tn(a+1�a(x)+�)� C 00jhja(x)��:Thanks to the boundedness of F , the second term will be bounded by Cj�!(n;x)j, soby Ct�n(a(x)��) i.e by Cjhja(x)��.And the third term is bounded byXl�n j�!(l;x)j Xj
j�a tlj
j jhjj
j � Xl�n j�!(l;x)j tla jhja� CjhjaXl�n t�l(a(x)��) tla:which is bounded by C 0jhja(x)�� for 0 < � < a(x) � a, (a(x) > a because a(x) is notinteger).Whence Proposition 3.We shall now give an upper bound for the pointwise regularity �(x) of the �selfsimilar�function adapted to the subdivision A. Unfortunately, we can easily show that thereare not �good� relationships between the regularity of such functions and the size of thewavelet transform, the reason is that unlike the wavelet transform which is homogenousin frequency, the contractions which appear in the non homogenous selfsimilar functioncontract with di�erent rates in each direction. The two-microlocalization condition (10)gives up only �(x) � ��1a(x) which is much larger than the lower bound a(x). Thus,the only method to determine the exact value of the pointwise Hölder regularity is to useDe�nition 1. Obviously, this argument is not easy, so we will restrict to our couterexamplesfor the multifractal formalism. We take g(x) = �(x1)�(x2) with �(u) = min(u; 1 � u)if u 2 [0; 1] and 0 else. Here g is C1. We suppose that the �! are positive and that8! 2 A ; <! � [1=s; (s� 1)=s]� [1=t; 1=2] (22)or 8! 2 A ; <! � [1=s; (s� 1)=s]� [1=2; (t � 1)=t]: (23)11
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but �(yn;1) � 1=s, thus jF (x+ hn)� F (x)j � s�1t�1�!(n;x)� Ct�n(a(x)+�)� Cjhnja(x)+� :In the case of the asumption (23), we choose hn = (0; t�(n+1)) and the proof is identical.The lower and upper bounds for �(x) yield the following theoremTheorem 1 Let F be the L1 solution ofF (x) = X!2A�!F (S�1! (x)) + �(x1)�(x2)with P!2A j�!j < st and the asumptions (15) and (22) or (23). Then for x 2 K anda(x) < 1 �(x) = a(x):4 The spectrum of singularitiesWe want now to determine the Hausdor� dimension of the set of points x where �(x) isequal to a given 0 < � < 1.For technical reasons, we shall assume another separation conditionif ! = (i; j) 2 A then (i� 1; j) =2 A: (24)This condition requires that if column i of the grid contains points of K, the two adjacentcolumns do not.On the sets of singularities E�, we will concentrate a suitable family of probabilitymeasures with certain scaling properties and then use the Lemma below (see [7]) to estimatethe dimension of these sets: each measure gives us an upper bound and one of them willgives the equality.Lemma 3 Let Hs be the Hausdor� measure of dimension s. Let � be a probability measureon IRm, E � IRm and C such that 0 < C <1� If lim supr!0 � (B(x; r))rs < C 8x 2 E then Hs(E) � �(E)C .� If lim supr!0 � (B(x; r))rs > C 8x 2 E then Hs(E) � 2sC .For q 2 IR, de�ne �(q) by P!2A �q!s�(q) = 1; i.e �(q) = � log(P!2A �q!)= log s.Set P!(q) = �q!s�(q) and let �q be a probability measure on K such that8(!1; : : : ; !n) 2 AIN ; �q(<!1;:::;!n) = P!1(q) : : : P!n(q):The construction of such measure by induction is straightforward (see [10], [14] or [16]).14
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No rectangles R ωFigure 6: The condition (24) for the construction of the �selfsimilar� functionFor r > 0 and ! = (!1; : : : ; !n; : : :) 2 AIN with !n = (in; jn) 2 A, de�ne the approxi-mate square Q(!; r) with approximate side r byQ(!; r) = � i1s + � � �+ ik1(r)sk1(r) ; i1s + � � �+ ik1(r)sk1(r) + 1sk1(r) �� �j1t + � � �+ jk2(r)tk2(r) ; j1t + � � � + jk2(r)tk2(r) + 1tk2(r) �where k1(r) and k2(r) are the unique integers such thats�(k1(r)+1) < r � s�k1(r)and t�(k2(r)+1) < r � t�k2(r):In [16], we have�q(Q(!; r)) = k1(r)Yl=1 [ X(il;j)2AP(il;j)(q)] k2(r)Yl=1 P!l(q)P(il;j)2A P(il;j)(q) : (25)By considering the two cases below, we will show that the spectrum of singularitiesdepends on the geometrical arrangement of the <! ; ! 2 A.15



0 1/s 2/s (s-1)/s
1

1/t

2/t

3/t

(t-1)/t

1

s-2 s-1

0

1

2

3

t-1

t-2

0 1 2

1/2 1/2
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Denote by B(x; r) the ball of center x and diameter 2r. In [14] and [16], the followinglemma was provedLemma 4 If ! 2 AIN and n 2 IN, thenB(�(!); s�n) \K � Q(!; s�n) � B(�(!); (s+ t)s�n):Thanks to Lemma 4lim infr&0 log�q(B(�(!); r))log r = lim infr&0 log �q(Q(!; r))log r (27)whence lim supr&0 �q(B(�(!); r))r��(q)+q��1a(�(!))+� = +1 8� > 0: (28)Let E� = fx : �(x) = �g; We can assume that �max � 1, so Theorem 1 implies thatfor � < 1, E� = f�(!) : a(�(!)) = �g. Equation (28) and the second part of Lemma 3imply that d(�) � q��1�� �(q) 8q 2 IRso d(�) � infq (q��1�� �(q)):We will now prove that the previous in�mum is reached. For that we will look for thegood measure that will gives the equality.We can easily show that �(q) is strictly concave and analytic, so for � 2]� log �maxlog s ;� log �minlog s [,there exists a unique q 2 IR such that � = � 0(q). Hence for � 2]�min; �max[ there existsa unique q 2 IR such that ��1� = � 0(q).With the probability ~�q = �q � �, the Xj = logP!j (q) are a sequence of i.i.d randomvariables; the strong law of large number implies that for ~�q�a:a ! = (!1; : : : ; !n; : : :) 2AIN 1n nXj=1 logP!j (q) 7! X!02AP!0(q) logP!0(q) as n 7! 1= �(q) log s� q� 0(q) log s (29)because X!02AP!0(q) logP!0(q) = X!02A�q!0s�(q) (q log �!0 + �(q) log s)= �(q) log s+ qP!02A �q!0 log �!0P!02A �q!0= �(q) log s� q� 0(q) log s:Thus for ~�q � a:a ! 2 AINlog�q(Q(!; r))log r = k1(r)log r 1k1(r) k1(r)Xj=1 logP!j (q) 7! q��1�� �(q) as r & 0:17
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Figure 8: Second case: only one column containing all the <! ; ! 2 AIt follows from Lemma 4 that for ~�q � a:a ! 2 AINlimr&0 log �q(B(�(!); r))log r = q��1�� �(q): (30)Take E = f�(!) : limr&0 log �q(B(�(!);r))log r = q��1���(q)g; then (30) implies that �q(E) =1 and Lemma 3 yields that the Hausdor� dimension of E is equal to q��1�� �(q).But for � < 1, � 2]�min; �max[ , E � E�, whence d(�) � q��1�� �(q).We conclude that d(�) = infq(q��1�� �(q)).4.2 Second case: only one column containing all the <! ; ! 2 AProposition 6 Assume that there is only one column containing all the <! ; ! 2 A.Then for � < 1, d(�) is concave, equals to �1 outside [�min; �max] and on this intervald(�) = infq (q�� ��(q))and it is analytic.Proof:In this case, we have �q(Q(!; r)) = k2(r)Yl=1 P!l(q) (31)= sk2(r)�(q) k2(r)Yl=1 �q!l :18



Thus log�q(Q(!; r))log r = �(q) k2(r)log r log s + q logQk2(r)l=1 �!llog r :Since k2(r)log r log t 7! �1 as r& 0, thenlim infr&0 log �q(Q(!; r))log r = ���(q) + qa(�(!))and thanks to Lemma 4lim infr&0 log�q(B(�(!); r))log r = lim infr&0 log �q(Q(!; r))log r (32)whence lim supr&0 �q(B(�(!); r))r���(q)+qa(�(!))+� = +1 8� > 0: (33)It follows from Lemma 4 and (33) thatd(�) � q�� ��(q) 8q 2 IRi.e d(�) � infq (q�� ��(q)):On the other hand, for � < 1, � 2]�min; �max[, there exists a unique q 2 IR such that� = �� 0(q), thus for ~�q � a:a ! 2 AINlog �q(Q(!; r))log r = k2(r)log r 1k2(r) k2(r)Xj=1 logP!j (q) 7! q�� ��(q) as r & 0whence by argument similar to the one of the �rst case, we deduce thatd(�) = infq (q�� ��(q)):Remark: The spectrum of singularities of the second case is di�erent from the one ofthe �rst case, whereas for an homogenous selfsimilar function (i.e if s = t) the spectrum ofsingularity and the Lp-mean Hölder index �(p) are the same in the two cases; this meansthat they don't depend on the choice of the <!. We will now prove that unlike d(�), theLp-mean Hölder index �(p) does not depend on the geometrical arrangement of the chosen<! and so the multifractal formalism will fail.5 The failure of the Multifractal FormalismWe will now prove that the equivalent formulas (12) and (13) for � < 1, that have beenproposed for the computation of the spectrum of singularities d(�) fail for the two previouscases.In order to compute �(q) = lim infjhj7!0 log R jF (x+h)�F (x)jq dxlog jhj , we need to �nd goodupper and lower bounds for Sp(h) = R jF (x+ h)� F (x)jp dx.19



(0,1),(2,2)

(2,2),(1,6)

(2,2),(2,2)

(1,6),(0,1)

2 3

0

1

3

4

5

0

2

1/4 2/4 3/4 10

1/8

3/8

4/8

5/8

6/8

7/8

1

2/8

R (1,6)

R

R

(2,2)

(0,1)

R

R

R

R

7

6

∆Φ

∆(1,6)

∆(2,2)

∆(0,1)Figure 9: �! for ! 2 A = f(0; 1); (2; 2); (1; 6)g, s = 4 and t = 8Lemma 5 Let p > 0 such that ��(p) + 1 + � < p. For any � > 0, there exist C > 0 and asequence of hN 6= (0; 0) with limN 7!1 jhN j = 0 so thatSp(hN ) � CjhN j��(p)+1+�+� :Proof:For n 2 IN� and ! = (!1; : : : ; !n) 2 An, let �! = <! nS!02A<!!0 where the notation <!!0denotes the rectangle <(!1;:::;!n;!0). Set �; = < nS!02A <!0 .We haveSp(h) = Z�; jF (x+ h)� F (x)jp dx + X!2A Z<! jF (x+ h)� F (x)jp dx:By iteration, we get for any integer NSp(h) = NXn=0 X!2An Z�! jF (x+ h)� F (x)jp dx + X!2AN+1 Z<! jF (x+ h)� F (x)jp dx:Consider �0h;! = fx 2 �! : x+ h =2 �!g:Observe that asumptions (15) and (22) or (23) imply that for ! 2 An, if jhj < t�(n+2) andx 2 �0h;! then x+ h 2 S!02A�!!0 . 20



0

1

2

3

t-1

t-2

s-2 s-10 1 2

R ω

s

t -n

s -(n+1)

t-(n+1)

∆ ω

R ’ωω

-nFigure 10: �!, <!, <!;!0
R ω

Rωω’

t -(n+1)

s -(n+1)

-n

-ns

t

Rωω’ ’ h

∆h

∆ω

’

N
N

ω,

hN

Figure 11: �!, <!, <!;!0 , �0hN ;! in the case of asumption (22)21



Take hN = (0; t�(N+2)) in the case where asumption (22) holds (and hN = (0;�t�(N+2))for asumption (23)), thenSp(hN ) � NXn=1 X!2An Z�0hN;! jF (x+ hN )� F (x)jp dx:For x 2 �0hN ;! with ! = (!1; : : : ; !n) 2 An, we have !(n; x+ hN ) = !(n; x) = !, hencejF (x+ hN )� F (x)jp = j nXj=0 �(!1;:::;!j) g(S�1(!1 ;:::;!j)(x+ hN ))+ �!(n+1;x+hN ) g(S�1(!1;:::;!n;!n+1(x+hN ))(x+ hN ))� nXj=0 �(!1;:::;!j) g(S�1(!1 ;:::;!j)(x))jp:If j � n� 1 theng(S�1(!1;:::;!j)(x+ hN )) � g(S�1(!1;:::;!j)(x))= ��(S�1(!1;:::;!j)(x+ hN ))1� [��(S�1(!1;:::;!j)(x+ hN ))2� � ��(S�1(!1;:::;!j)(x))2�]� s�1[(S�1(!1;:::;!j)(x+ hN ))2 � (S�1(!1;:::;!j)(x))2]� s�1tjt�(N+2):And for j = n, S�1(!1;:::;!n)(x) 2 �; and S�1(!1;:::;!n)(x + hN ) 2 �!n+1(x+hN ), so sincehN = (0; t�(N+2)) and n � N then S�1(!1;:::;!n)(x) 2 [1=s; (s � 1)=s]� [0; 1=2], henceg(S�1(!1;:::;!n)(x+ hN )) � g(S�1(!1;:::;!n)(x)) � s�1tnt�(N+2):And since the �! and g are positive, then taking r(n; p) = 1 if p � 1 and (n + 1)p�1 if0 < p < 1, we get for x 2 �0hN ;! with ! 2 AnjF (x+ hN )� F (x)jp � 0@ nXj=0 �(!1;:::;!j) [ g(S�1(!1;:::;!j)(x+ hN )) � g(S�1(!1;:::;!j)(x)) ]1Ap� nXj=0 �p(!1;:::;!j) s�ptjpt�(N+2)p r(n; p):Hence Sp(hN ) � NXn=1 X!2An(Area�0hN ;!) nXj=0 �p(!1;:::;!j) s�ptjpjhN jp r(n; p)� NXn=1 X!2An s�njhN j nXj=0 �p(!1;:::;!j) s�ptjpjhN jp r(n; p):22



Let a denotes the cardinality of A. It follows from the equalityX!2An nXj=0 tjp �p(!1;:::;!j) = nXj=0 tjpan�j(X!2A �p!)jthat Sp(hN ) � CpjhN jp+1 NXn=1 s�nr(n; p) nXj=0 tjpan�j(X!2A�p!)j :If tpX!2A �p! > a (34)we obtain Sp(hN ) � CpjhN jp+1 NXn=1 s�nr(n; p)tnp(X!2A �p!)nand if s�1tpX!2A�p! > 1 (35)we get Sp(hN ) � CpjhN jp+1s�Nr(N; p)tNp(X!2A �p!)N� CpjhN jp+1jhN j�jhN j�pjhN j��(p)+�� CpjhN j��(p)+1+�+�:Remark that ��(p) + 1+ � < p is equivalent to t�1s�1tpP!2A �p! > 1 and thus yields(35), and since the cardinality of A is smaller than st, it yields (34).Whence, for p > 0 such that ��(p) + 1 + � < p, we obtain�(p)(= lim infjhj7!0 logSp(h)log jhj ) � ��(p) + 1 + � : (36)Now, we shall give the exact value of �(p) and we will show that unlike d(�), �(p) (or�(p)) is the same for the two previous cases and so it doesn't depend on the geometricalarrangement of the chosen rectangles <!. This fact gives also a reason for the failure ofthe multifractal formalism.In order to give good upper bound for Sp(h), we will assume that j�jmin > 1=t, (i.e theHölder regularity of any point is smaller than 1).Lemma 6 Let p > 0 such that ��(p) + 1 + � < p. Then for any � > 0, there exists C > 0such that for jhj small enough Sp(h) � Cjhj��(p)+1+��� :
23
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ThusNXn=0 X!2An Z�00h;! jF (x+ h)� F (x)jp dx � C NXn=0 X!2An nXj=0 r0(n; p)j�(!1;:::;!j)jptjpjhjps�nt�n= jhjp NXn=0 r0(n; p)s�nt�n nXj=0 tjpan�j(X!2A �p!)j ;hence if (34) holds then the previous term will be bounded byjhjp NXn=0 r0(n; p)s�nt�ntnp(X!2A �p!)n ;and if ��(p) + 1 + � < p, then it will be estimated by Cjhj��(p)+1+��".We will now estimate the term P!2AN+1 R<! jF (x + h) � F (x)jp dx; for that, remarkthat !(N;x+ h) = !(N;x) = (!1; : : : ; !N ), sojF (x+ h)� F (x)j � jN�1Xl=0 �(!1;:::;!l) �g(S�1(!1;:::;!l)(x+ h)) � g(S�1(!1;:::;!l)(x))� j+ j�(!1;:::;!N )j�jF (S�1(!1;:::;!N )(x+ h))j+ jF (S�1(!1;:::;!N )(x))j� :From the fact that g is C1 and F is bounded, the previous quantity will be bounded byCjhjN�1Xl=0 j�(!1;:::;!l)jtl + Cj�(!1;:::;!N )j:Thanks to the asumption j�jmin > 1=t, we getjF (x+ h)� F (x)j � CjhjN j�(!1;:::;!N )j tN +Cj�(!1;:::;!N )j ;hence jF (x+ h)� F (x)jp � C 0Npj�(!1;:::;!N )jp:Hence X!2AN+1 Z<! jF (x+ h)� F (x)jp dx � CNps�N t�N X!2AN+1 j�(!1 ;:::;!N )jp� Cjhj��(p)+1+���:Let us now estimate the term PNn=0P!2An R�0h;! jF (x+ h)�F (x)jp dx. By analogousarguments, for x 2 �0h;! and ! 2 An, jF (x+ h)� F (x)jp will be bounded byCp0@ j�(!;!n+1(x+h))jpjg(S�1(!;!n+1(x+h))(x+ h))jp + nXj=0 r0(n; p)j�(!1;:::;!j)jptjpjhjp1A ;25



thus NXn=0 X!2An Z�0h;! jF (x+ h)� F (x)jp dx� C NXn=0 X!2An Z�0h;! j�(!;!n+1(x+h))jpjg(S�1(!;!n+1(x+h))(x+ h))jp dx (37)+Cjhj NXn=0 s�n X!2An nXj=0 r0(n; p)j�(!1;:::;!j)jptjpjhjp (38)The term (38) is smaller than Cjhj��(p)+1+���. Now, for the term (37), we haveZ�0h;! j�(!;!n+1(x+h))jpjg(S�1(!;!n+1(x+h))(x+ h))jp dx� Cs�nt�nj�!jp Z�h;n jg �S�1!n+1(S!(y)+h)(y + (snh1; tnh2))� jp dywith �h;n = S�1! (�0h;!) = fy 2 �; : y + (snh1; tnh2) 2 [!02A�!0 g :And by integrating the previous integral respectively onfy 2 �h;n : S�1!n+1(S!(y)+h)(y + (snh1; tnh2)) 2 [0; 12 ]� [0; 12 ]g ;fy 2 �h;n : S�1!n+1(S!(y)+h)(y + (snh1; tnh2)) 2 [0; 12 ]� [12 ; 1]g ;fy 2 �h;n : S�1!n+1(S!(y)+h)(y + (snh1; tnh2)) 2 [12 ; 1]� [0; 12 ]g ;and fy 2 �h;n : S�1!n+1(S!(y)+h)(y + (snh1; tnh2)) 2 [12 ; 1]� [12 ; 1]g ;we can easily show thatZ�0h;! j�(!;!n+1(x+h))jpjg(S�1(!;!n+1(x+h))(x+ h))jp dx � Cs�nt�nj�!jptnpjhjp ;and thus the term (37) is bounded by Cjhj��(p)+1+� .Lemmas 5 and 6 yield the following propositionProposition 7 Assume that j�jmin > 1=t. Let p0 > 0 such that P!2A(t�!)p0 = st (i.e��(p0) + 1 + � = p0); then for p > p0, we have ��(p) + 1 + � < p and so�(p) = ��(p) + 1 + � :
26



If we de�ne f(�) by f(�) = infp>p0(�p� �(p) + 2) (39)then for � = �� 0(q) with q > p0, the in�mum in the previous Legendre transform isattained for q, and f(�) = �q � ��(q) + 1� �> �q � ��(q)� infp (�p� ��(p)):Thus, in the second case, d(�) < f(�):So the multifractal formalism doesn't hold.In the �rst case, since the cardinality of A is smaller than s, then for any 0 < p � 1,t�1s�1tpP!2A �p! < 1; hence p0 > 1 and so for � = �� 0(q) with q > p0, we getinfp>p0(�p� �(p) + 2) � �d(�) + 1� �> d(�)because d(�) � dimK = log alog s < 1. So the multifractal formalism fails too.Remark: Even the version of the multifractal formalism studied by Daubechies andLagarias in [6], which says that �(p) is the Legendre transform of d(�) � 2, fails for theprevious two cases. Indeed, for the �rst case, since d(�) = infq(q��1�� �(q)) and �(q) isconcave and continue, then ��(q) = inf�(q� � �d(�)); thus for p > 1 such that ��(p) +1 + � < p, (36) implies that �(p) � inf� (q�� �d(�) + 1 + �);but d(�) < 1, so �(p) < inf� (q�� d(�) + 2) :Identically for the second case.6 The Anisotropic Multifractal FormalismWe have shown that the multifractal formalism fails for the two previous cases: the Eu-clidean norm used in the de�nitions of the pointwise regularity does not interact in a goodway with the anisotropic contractions.We propose instead an �homogenous norm� that was used by Calderón and Torchinsky onone side (see [4] and [5]), Folland and Stein on the other one (see [8]) to develop a theoryof anisotropic Hp spaces.We begin by de�ning the homogenous norm and describing some of its basic properties,for proofs and more details we refer to [8].For r > 0, consider the dilation group of anisotropic linear transformation of IRmAr(x1; : : : ; xm) = (rd1x1; : : : ; rdmxm)27



where 1 = d1 � d2 � : : : � dm. We de�ne the homogenous norm of x 2 IRm by: �(x) = 0if x = 0, and for x 6= 0, �(x) is the unique value of r for which jA�1r (x)j = 1, jxj denotingthe Euclidean norm of x. The function � is continuous and homogenous in the sense that�(Ar(x)) = r�(x): (40)Remark that in the isotropic case d1 = 1 = d2 = : : : = dm and �(x) coincides with theEuclidean norm.Lemma 7 There exist positive constants C1; C2 and 
 such thatC1jxj � �(x) � C2jxj1=dm whenever �(x) � 1 (41)C1=dm1 jxj1=dm � �(x) � Cdm2 jxj whenever �(x) � 1 (42)�(x+ y) � 
(�(x) + �(y)) 8x; y 2 IRm (43)j�(x+ y)� �(x)j � 
�(y) 8x; y 2 IRm ; �(y) � �(x)=2 (44)(1 + �(y))�s � 
s(1 + �(x))�s(1 + �(x� y))s 8x; y 2 IRm and s > 0: (45)The �-Mean Value Theorem: there exist C > 0 and � > 0 such that for all functionf of class C(1) on IRm and all x; y 2 IRmjf(x+ y)� f(x)j � C mXj=1 �(y)dj sup�(h)���(y) j@xjf(x+ h)j:We adopt the following multiindex notation for higher order derivatives. For I =(i1; : : : ; im) 2 INm, we set @I = @i1x1 : : : @imxm and xI = xi11 : : : ximm . Further we set jIj =i1+ : : :+ im and d(I) = d1i1+ : : :+dmim. Thus jIj is the order of the di�erential operator@I , while d(I) is its degree of homogeneity, or, as we shall say, its homogenous degree. Weshall denote by � the additive sub-semigroup of IR generated by 0; d1; : : : and dm. In otherwords, � is the set of all numbers d(I) as I ranges over INm. We observe that IN � � sinced1 = 1.Let now P be a polynomial i.e P =PI aIxI , aI 2 IR. We de�ne its homogenous degreeto be maxfd(I) : aI 6= 0g. There is a version of Taylor's theorem with remainder for thehomogenous norm �.The �-Taylor Inequality: suppose � 2 � (� > 0), and k = [�]. There is a constantC� > 0 such that for all functions f of class C(k+1) on IRm and all x; y 2 IRm,jf(x+ y)� Px(y)j � C� XjIj�k+1 ; d(I)>� �(y)d(I) sup�(h)��k+1�(y) j@If(x+ h)jwhere Px is the Taylor polynomial of f at x of homogenous degree �.We will now replace the Euclidean norm by the homogenous one in the terminologythat appear in the formulation of the multifractal formalism, in order to be adapted tothe geometric anisotropy. Then we will show that the anisotropic wavelet transform gives�good� characterizations for the new pointwise regularity for a large class of anisotropicselfsimilar functions. 28



De�nition 3 Let � > 0, � =2 � and x0 2 IRm; by de�nition a function F : IRm ! IRbelongs to C�� (x0) if there exists a polynomial P of homogenous degree smaller than � suchthat jF (x)� P (x� x0)j � C�(x� x0)�: (46)The �-Hölder exponent of F at x is de�ned by��(x) = supf� : F 2 C�� (x)g: (47)And we say that F belongs to C�� (IRm) if (46) holds for any x in IRm with uniformconstant C.Let us �rst de�ne the anisotropic wavelet transform.Let  in the L.Schwartz class S(IRm), supported in jxj � 1, and with vanishing moments;and let ' be another function of S(IRm) whose Fourier transform '̂ has compact supportdisjoint of the origin and has the property that for all x 6= 0,Z 10 '̂(Arx) ̂(Arx) dr=r = 1: (48)Let �x = (2d1 ; : : : ; 2dm); �'(x) = '(x� �x); � (x) =  (x+ �x), and for a > 0 set�'a(x) = 1aQ �'(A�1a x)where Q = d1 + : : :+ dm:Given a tempered distribution F , a > 0 and b 2 IRm, the anisotropic wavelet transformof F is de�ned byC�(a; b)(F ) = (F � �'a)(x) = 1aQ Z F (x) �'(A�1a (x� b)) dx: (49)F is reconstructed from its anisotropic wavelet transform by (see [4])F (x) = Za>0 ZIRm C�(a; b)(F ) � a(x� b) db da=a (50)i.e F (x) = 1aQ+1 Za>0 ZIRm C�(a; b)(F ) � (A�1a (x� b)) db daOne of the fondamental properties of the anisotropic wavelet transform is that it char-acterizes the �-Hölder regularity by conditions analogous to those of the classic wavelettransform for the isotropic case.Proposition 8 1. F 2 Cs�(IRm) if and only ifjC�(a; b)(F )j � Cas: (51)2. If F 2 Cs�(x0) then jC�(a; b)(F )j � Cas�1 + �(b� x0)a �s : (52)29



3. If (52) holds and if F 2 C�� (IRm) for � > 0, there exists a polynomial P such that if�(x� x0) � 1=2,jF (x)� P (x� x0)j � C�(x� x0)s log� 1�(x� x0)� : (53)Proof:1. If F 2 Cs�(IRm)jC�(a; b)(F )j = 1aQ jZ F (x) �'(A�1a (x� b)) dxj= 1aQ jZ F (x)'(A�1a (x� b)� �x) dxj= 1aQ jZ F (x+Aa�x)'(A�1a (x� b)) dxj ;Since '̂ has compact support disjoint of the origin thenjC�(a; b)(F )j = 1aQ jZ (F (x+Aa�x)� P (x+Aa�x� b))'(A�1a (x� b)) dxj� 1aQ Z C �(x+Aa�x� b)sj'(A�1a (x� b))j dxwhich by property (43) will be bounded byC 1aQ Z 
s(�(Aa�x) + �(x� b))sj'(A�1a (x� b))j dx� C 1aQ Z (�(Aa�x)s + �(x� b)s)j'(A�1a (x� b))j dx� Cas + C asaQ Z �(A�1a (x� b))sj'(A�1a (x� b))j dx� 2Cas:Conversely, F is expressed in terms of C�(a; b)(F ) as in (50). LetW (a; x) = 1aQ ZIRm C�(a; b)(F ) � (A�1a (x� b)) db:If (51) holds then jW (a; x)j � Cas (54)and j@IW (a; x)j � Cas�d(I): (55)Let x0 2 IRm, and set � = maxfd(I) : d(I) < sg and PWa(x � x0) the Taylorpolynomial of W (a; :) at x0 of homogenous degree �PWa(x� x0) = XI : d(I)�� @IW (a; xo)I! (x� x0)I30



and P (x� x0) the one of F , thenjF (x)� P (x� x0)j = jZa>0 (W (a; x)� PWa(x� x0)) da=aj� Z �(x�x0)0 (jW (a; x)j + jPWa(x� x0)j) da=a+Z 1�(x�x0) jW (a; x)� PWa(x� x0)j da=a:It follows from (54) and (55) that the �rst term is bounded byZ �(x�x0)0 0@Cas + XI : d(I)<sCas�d(I)j(x� x0)I j1A da=abut from the de�nition of � j(x� x0)I j � �(x� x0)d(I)hence the previous term is estimated byC Z �(x�x0)0 0@as�1 + XI : d(I)<sCas�d(I)�1�(x� x0)d(I)1A da� C�(x� x0)s:Let l = [�], since W (a; :) is of class C(l+1), then using the �-Taylor inequality, thesecond term will be bounded byZ 1�(x�x0) C� XjJj�l+1 ; d(J)>� �(x� x0)d(J) sup�(h)��l+1�(x�x0) j@JW (a; :)(x0 + h)j da=a� C� XjJj�l+1 ; d(J)>� �(x� x0)d(J) Z 1�(x�x0) as�d(J) da=a� C�(x� x0)s:2. If F 2 Cs�(x0), thenjC�(a; b)(F )j = 1aQ jZ (F (x+Aa�x)� P (x+Aa�x� x0))'(A�1a (x� b)) dxj� 1aQ Z C �(x+Aa�x� x0)sj'(A�1a (x� b))j dx� C 1aQ Z (�(Aa�x)s + �(x� x0)s)j'(A�1a (x� b))j dx� Cas + C 1aQ
s Z (�(b� x0)s + �(x� b)s)j'(A�1a (x� b))j dx� Cas + C�(b� x0)s + Cas� Cas�1 + �(b� x0)a �s :31



3. Conversely if (52) holds and if F 2 C�� (IRm) for an � > 0, thenjW (a; x)j � 1aQ Z Cas�1 + �(b� x0)a �s j � (A�1a (x� b))j db� 1aQ Z Cas�1 + �(x� b)a �s j � (A�1a (x� b))j db+C 1aQ�(x� x0)s Z j � (A�1a (x� b))j db:Hence jW (a; x)j � Cas�1 + �(x� x0)a �s (56)and similarly j@IW (a; x)j � Cas�d(I)�1 + �(x� x0)a �s : (57)Thus jF (x)� P (x� x0)j � Z �(x�x0)s=�0 jW (a; x)j da=a+Z �(x�x0)�(x�x0)s=� jW (a; x)j da=a+Z �(x�x0)0 jPWa(x� x0)j da=a+Z 1�(x�x0) jW (a; x)� PWa(x� x0)j da=a:Using (54) (with s remplaced by �), the �rst term will be bounded byC Z �(x�x0)s=�0 a� da=aso by C�(x� x0)s.(56) implies that the second term is estimated byZ �(x�x0)�(x�x0)s=� C(as + �(x� x0)s) da=a� 2C�(x� x0)s Z �(x�x0)�(x�x0)s=� da=a� C�(x� x0)s log 1�(x� x0)also, from (57) the third term will be bounded byZ �(x�x0)0 C XI : d(I)<s as�d(I)�1 + 0a�s �(x� x0)d(I) da=a� C�(x� x0)s 32



and we use the Taylor inequality to estimate the fourth term byZ 1�(x�x0) C� XjJj�l+1 ; d(J)>� �(x� x0)d(J) sup�(h)��l+1�(x�x0) j@JW (a; :)(x0 + h)j da=a� C� XjJj�l+1 ; d(J)>� �(x� x0)d(J) Z 1�(x�x0) as�d(J) sup�(h)��l+1�(x�x0)�1 + �(h)a �s da=a� C XjJj�l+1 ; d(J)>� �(x� x0)d(J) Z 1�(x�x0) as�d(J) da=a� C�(x� x0)s:Whence (53).The proof of Proposition 8 is now achieved.Now we will make similar modi�cations for the Besov spaces.De�nition 4 Suppose s 2 IR and p > 0, we say that F belongs to the homogeneousanisotropic Besov space Bs;1�;p (IRm) if for a small enoughZ jC�(a; b)(F )jpdb � Casp; (58)and we set ��(p) = supf� : F 2 B�=p;1�;p g : (59)This de�nition does not depend on the choice of the wavelet ' nor  : let � and 	be two other functions satisfying the same properties, since the supports of b' and b� aredisjoint of the origin then there exist two positive numbers � and � such that 't � �l = 0for t=l =2 [�; �]. Thanks to the property (48)F � ��l = F � ��l � Z 10 't �  t dt=t= F � ��l � Z 10 'lt �  lt dt=t= Z �� F � 'lt � ��l �  lt dt=t= Z �� F � �'lt(:�Alt�x) � ��l �  lt dt=t ;hence kF � ��lkLp(IRm) � k��kL1k kL1 Z �� kF � �'ltkLp(IRm) dt=t ;whence using the Young inequality in the multiplicative group IR�+, we obtainkl�skF � ��lkLp(IRm)kL1(IR�+) � C Z �� ts dt=t kl�skF � �'lkLp(IRm)kL1(IR�+)� Ckl�skF � �'lkLp(IRm)kL1(IR�+):We also modify the de�nition of the Hausdor� dimension and Hausdor� measure inorder to be adapted to the anisotropy as follows (see [17]).33



De�nition 5 Let E � IRm and R" the set of all coverings of E by sets of �-diameter atmost ". Let M�("; d) = infr2R" XEi2r(�� diamEi)dthen, by de�nition the d-dimensional �-Hausdor� measure of E is(d� ��Mes)(E) = lim sup"!0 M�("; d) :The �-Hausdor� dimension of E isD = inf fd : (d� ��Mes)(E) = 0g = sup fd : (d� ��Mes)(E) = +1g :Finally we call the anisotropic multifractal formalism the property that the �-Hausdor�dimension d�(�) of the set of points x where ��(x) = � is equal to the Legendre transformof ��(q)�Q d�(�) = inf(�q � ��(q) +Q): (60)Now we will introduce the class of anisotropic selfsimilar functions for which theanisotropic multifractal formalism will be valid. This new class will contain the familyof �selfsimilar� functions of the two previous cases.7 Validity of the Anisotropic Multifractal Formalism forAnisotropic Selfsimilar FunctionsLet 
 be a bounded open set of IRm; k > 0; 1 = d1 � d2 � � � � � dm; �1 < 1; : : : ; �L < 1and V1 2 IRm; : : : ; VL 2 IRm. Set Si(x) = A�i(x) + Vi. Assume that (2) and (3) hold andlet g be a Ck� function such that all its derivatives of order less than k have fast decay. Wewill call a (d1; : : : ; dm)-k-selfsimilar function, a function F satisfying:F (x) = LXi=1 �i F (S�1i (x)) + g(x) (61)such that F is not uniformly Ck� in a certain non empty closed subset of 
.The �selfsimilar� functions given in the �rst part of this paper are (1; log tlog s)-1-selfsimilar.Let �min = infj=1;:::;L log j �j jlog�j and �max = supj=1;:::;L log j �j jlog�j : (62)We will study the existence of the solutions of (61) in the anisotropic Hp�(IRm) spacesde�ned by Calderón as follows.De�nition 6 Let for a > 0 the maximal function associated with F beMa(x) = sup�(b)�ra jC�(a; x+ b)(F )j:For 0 < p � 1 F 2 Hp�(IRm) if Ma(x) 2 Lp(IRm):34



This property of Ma(x) is independent of the choice of ' and a. We de�ne the Hp�(IRm)norm of F as the norm of Ma(x) in Lp(IRm).A k-atom � is a bounded function with compact support and with vanishing momentsof all orders less than or equal to k. The p-norm of the atom � is de�ned ask�kp = infM jBj1=p (63)where M is a bound for j�j and jBj is the measure of a ball B = fx : �(x � x0) � rg(which is an ellipse in the euclidean space) containing the support of �. If 0 < p � 1 andk � Q=p� 1, then � 2 Hp�(IRm) andk�kHp�(IRm) � Ck�kp (64)where the constant C depends on k and the choice of the norm in Hp�(IRm).In the case where the solution will be a function, we will compute its global and point-wise anisotropic Hölder regularity and then we will show that the anisotropic multifractalformalism holds.We are now ready to state our main results.Proposition 9 Suppose that PLj=1 j �j j �Qj < 1; in this case (61) has a unique distribu-tion solution, which is an L1 function and given by the series1Xn=0 X(i1;:::;in) �i1 : : : �ing �S�1in : : : S�1i1 (x)� : (65)If furthermore 0 < �min < k, this function belongs to C�min� (IRm).Suppose that PLj=1 j �j j �Qj � 1; in that case (61) may have several distributionsolutions; let p < 1 such that PLj=1 j �j jp �Qj < 1; if g is Ck� with k > Q=p � 1, and ifthe moments of g of order less than k vanish, (65) converges in the anisotropic Hardy realspace Hp�(IRm), so that (61) has at least one solution in that space of distributions.Furthermore, these results are optimal.Proposition 10 Let K be the unique non-empty compact set satisfying K = SLj=1 Sj(K).If x =2 K, F is Ck� in a neighbourhood of x.Proposition 11 Suppose that �min > 0. Let T be the tree constructed in the �time-frequency half-space�: the root is conventionally the point (0; 1) 2 IRm � IR+, this root islinked to the L �rst nodes, which are the (Sj(0); �j), each point (Sj(0); �j) is linked to the(SjSk(0), �j�k); : : :Let x 2 K and Bj(x) be the set of branches (i1; :::; in) of the tree such that�(Si1 � � �Sin(0)� x) � �i1 : : : �inand 2�j � �i1 � � � �in < 2�(j�1):Then ��(x) = lim infj!1 infi2Bj(x) Logj�ijLog�i : (66)35



Proposition 12 De�ne a function � by the equation PLj=1 j�j ja���(a)j = 1. Let � < kand de�ne d�(�) as the �-Hausdor� dimension of the set of points x where ��(x) = �.Then d�(�) equals �1 outside [�min; �max], and on this interval,d�(�) = infa (a�� �(a)): (67)Proposition 13 Let F be a (d1; : : : ; dm)-k-selfsimilar and let q such that �(q) � kq �Q.Then ��(q) = �(q) +Q:Theorem 2 Let F be a (d1; : : : ; dm)-k-selfsimilar. If �min > 0, the function d�(�) equals�1 outside the interval [�min; �max] and is analytic and concave on this interval. Itsmaximal value d�;max satis�es X�d�;maxi = 1:Let �0 be the value for which this maximum is attained.If g is C1� ; if � � �0, d�(�) can be obtained by computing the Legendre transform of��(q)�Q.If g is Ck� , let p0 be de�ned by �(p0)+Q = kp0 and let �1 be the Legendre transform atp0 of the function �(q) (i.e �1 = � 0(p0)); if � � �1 then for � � �1, d�(�) can be obtainedby computing the Legendre transform of ��(q)�Q.Notice that in order to show that F belongs to Hp�, we split F as a sum F =Pj�1 Fjwhere Fj is the series (65) restricted to the indexes i 2 Ij such that 2�j � �i < 2�(j�1)and that the regularity and the cancellation that we requested for g is consistent with theatomic decomposition of the Fj ; thus the Hp� norm of Fj , using (63), (64) and the fact thata+ b � (ap + bp)1=p for a > 0, b > 0 and 0 < p � 1, is bounded bykXi2Ij �ig � S�1i kHp� � 0@Xi2Ij k�ig � S�1i kpHp�1A1=p
� C0@Xi2Ij k�ig � S�1i kp1A1=p
� C0@Xi2Ij j�ijp�Qi 1A1=pthis quantity is exponentially decreasing with j, so that F belongs to Hp�.The solution F given by the series (65) looks like an anisotropic wavelet decomposi-tion. The proofs follow from the properties of the homogenous norm �, Proposition 8 andarguments similar to those of Ja�ard's paper [12]; in all situations Q served as a substitutefor the space dimension m: the anisotropic wavelet transform of F satis�es a functionalequation similar to (61)C�(a; b)(F ) = JXj=1 X2�j��i<2:2�j �iC�( a�i ; S�1i (b))(g)36



+ X2�J��i<2:2�J �i C�( a�i ; S�1i (b))(F ) ;hence, we prove that its order of the magnitude near the tree is large, more precisely, near(Si1 : : : Sin(0); �i1 : : : �in), it is � j�i1 j : : : j�in j.The dimensions of the singularities will be obtained by constructing invariant measures onthe sets of singularities and using an adapted lemma 3.For the proof of the anisotropic mulifractal formalism, we show that for q such that �(q) �kq �Q Z jC�(a; b)(F )jqdb � am+�(q) :Acknowledgement: The author is thankful to Stéphane Ja�ard for having drawn hisattention on this problem and for many enlightening discussions, and to Yves Meyer forsuggesting the use of the homogenous norm.
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