Multifractal Formalism for Selfsimilar Functions under the
action of Nonlinear Dynamical Systems
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Abstract. We study functions which are selfsimilar under the action of some nonlinear
dynamical systems: we compute the exact pointwise Holder regularity, then we determine
the spectrum of singularities and the Besov’s “smoothness” index, and finally we prove the
multifractal formalism. The main tool in our computation is the wavelet analysis.
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1 Introduction

Numerous experimental studies have shown the phenomenon of intermittency for the ve-
locity of fully developped turbulence: the velocity ¢} has an irregular behavior, i.e has local
Holder exponents in a certain interval [min, Qmaz] and each « in this range occurs in a
set £ (for 0 <a <1, E*={z: |9(x+h,t)—93I(z,t)| ~ |h|*as|h| — 0}, with Haus-
dorff dimension d(«) called the spectrum of singularities. We say that ¢ is a multifractal
function.

In [11], Frisch and Parisi conjectured a formula which relates d(«) with the scaling exponent
¢(p) of the structure functions of order p

Sp(h) = [ 9o+ hyt) = 0(a,t) P do ~ D) as 1] 50

by a Legendre transform
d(a) = inf(ap — ((p) +m) .

This conjecture is called the Multifractal Formalism.

Most examples of multifractal functions follow some selfsimilarity conditions: locally
the graph of the function F' is a contraction of the global graph modulo an error g. This
means that F' satisfies a functional equation of the type

F(z) = ZAiF(SEI(x)) +9(x) (1)

where the S; are contractions on a bounded set and |\;| < 1.
Our purpose is to determine the spectrum of singularities for such functions and to check
when they satisfy the multifractal formalism. (Note that some particular cases have been
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studied: Arneodo, Bacry and Muzy (see [3]|) for the primitives of multinomial measures
on =0, 1] with the “separated open set condition S;(€2) N S;(€2) = 0 pour i # j7; the
function ¢ used in the construction of wavelets bases (see [9]); and Jaffard (see [15]) when
the S; are linear and satisfy a separation condition and g is smooth).
We will describe our results in cases where strict asumptions do not hold (see [5], [4] and
[6]): for instance we will prove that the multifractal formalism holds in one dimension
when the S; are no more linear, and 2 dimension when the S; are analytic mappings of
z =z +1y.

We denote by T the new contractions and we suppose that they are defined in the
interval I = [0, 1] (respectively in a bounded open domain §2 of the complex plane C). We
suppose also that they are C¥*! (respectively complex analytic) and satisfy:

Ti(I)cI V i (2)
TU)NT(L) =0 i i # ) (3)

e there exist constants y and p such that
0<x<I|Tj(z)|<p<l Vj=1,...,d and zel (4)

and
1TV (@) |<x' ¥i=1,...dl=2..k+1 and z€l. (5)

We also assume that ¢ is a C* function with derivatives of order less than k having fast
decay, and that F is not uniformly C* in a certain closed subset of ]0, 1].
The conditions for the 2 dimensional case are identical to those of the 1 dimensional case and
from now on, the letters 2 and I can be replaced by z and the closure of © and along this
paper the results will be analogous for the two cases.

For the convenience of the notations, we will take d = 2 although the statements and
proofs extend to the general case without any modifications.

It follows from Hutchinson (see [12]) that there exists a unique non-empty compact set
K satisfying

K=T(K)UT)(K) .
For i = (41,...,in) € {1,2}", we denote by I; the branch T;, o...oT; (I). Then we

have

K = {ze€l: (Tyo...0oT;) "(z) e L UL, VY(i,...,i,) € {1,2}"}
o0
= ﬂ(UIZ) (with the convention that forn =0, I, =1I).

It follows from the separation hypothesis (3) that there is a natural bijection m from
the tree {1,2}¥ to K, given by

(i1, e yin,...) = nli)noloﬂlo...oﬂ (t)

[o¢]
= ﬂ Liy,.in) -
n=1



The value of 7(i1,...,%p,...) is independent of the initial value ¢, and we call the sequence
(115 yin,...) the code of 7(iy,...,ipn,...).

We will now give precise definitions of the notions we introduced.

A function F : R™ — R belongs to C%(z¢) for a > 0 if there exists a polynomial P of
degree at most a and a constant C such that

|F'(z) — P(z — z9)| < Clz — x| (6)
The Holder exponent of F' at x is defined by

a(z) =sup{f : FeCl)}. (7)

The spectrum of singularities of F' is the function d(«) which associates to each «
the Hausdorff dimension of the set E% of points z where a(z) = « (conventionally the
dimension of the empty set is —o0).

A function F belongs to C*(R™) if (6) holds for any = in R™ with uniform constant
C.

Now define .

¢(q) = liminf log [|F(z 4 h) — F(x)|? dz

8
|h]—0 log | h| ’ (®)

and let us recall that ((p) is related to Sobolev’s or Besov’s “smoothness” index.

Let s > 05 if s is not an integer, s = [s] + o with [s] the largest integer in s; let p > 1;
F belongs to the space of Nikol’skij H*P(R"™) if F' € LP and for any multi-index - such
that |y| = [s] and |h| small enough

/ 07 F(z + h) — O F () dz < C|h|™P | (9)

Consider
¢(p) = sup{s : F € H*/PP(R™)} ;

thus if p > 1 and ((p) < p then {(p) = &(p).

If ((p) > p, then formula (8) must be modified as follows in order to be consistent with
(9): if it is equal to p, one should use the same formula but with the gradient of F', and so
on until {(p) falls between two integers multiplied by p.

£(p) is also related to Besov’s “smoothness” index. Let us recall that if ¢ is a C¥(R™)
radial function with all moments of order less than k& vanishing and all derivatives of order
less than k are well localized and k large enough depending on the properties of F' we want
to analyze; then the wavelet transform of F' at the position b € R™ and the scale a > 0 is

CaalF) = o [ it (?) dt (10)

Now, a function F belongs to the Besov space B, ”(R™) if (see [17]) its wavelet trans-
form satisfies for ¢ small enough

/ |Cop(F)Pb < Ca®. (11)



It follows from the imbeddings (cf [1])
Ve>0 HTP(R™) < By*(R™) = H “P(R™) (12)
for p > 1 and s > 0, that for p > 1
&(p) = sup{s : F € By/P®(R™)}. (13)

Since for 0 < p < 1, the “Besov-Hardy” spaces Bp'*(R™) are also defined as in (11), we
will consider
1) = supls : F € BYPSRM) . (14)

It is also well known (see [16]) that the Holder regularity can be characterized in terms
of conditions on the wavelet transform. In fact we have:

e Fe C*R™) if and only if
|Cop(F)| < Ca®.

o If FF e C%xyp), then
b— «
|Cup(F)| < Ca® (1 L o=l x“') . (15)

e If (15) holds and if F' € C*(R™) for an € > 0, then there exists a polynomial P such
that, if | z — 2o |[< 1/2,

IF(z) — Pz — 20)| < Cla — ao|* log (|x_2x0|> (16)

and so F € C %' (zg) Ve' >0.

It should be noticed that the previous characterizations given for the continuous wavelet
transform hold in the case of an orthonormal basis of wavelets (see [17] and [13]).

The following equivalent formulas (the so-called multifractal formalism for functions)
have been proposed for the computation of the spectrum of singularities d(«) (see [11], [14]
and |2])

d(a) = inf(ap —((p) +m) , d(a) = inf(ap —&(p) +m) (17)

and
d(a) = inf(ap — n(p) + m). (18)

In the next section, we will study the existence and uniqueness of the solution of
equation (1) for the general contractions T} and T and we compute its uniform regularity.
In the third section, we determine the Holder exponent a(x) of F' at any point z .

In the fourth section, we compute the spectrum of singularities.
Finally, in the fifth section, we prove the validity of the multifractal formalism.



2 Existence, uniqueness and global Holder regularity

We begin by the study of the existence and uniqueness for the solution of the equation

F(z) = ZMF(TJI(JU)) + g(z). (19)

Iterating (19), we obtain for any integer N:

N—-1
F(z) = > > Xij-di, g (T o 0T (@)
n=0 (il,...,in)

(20)
+ Y )\il...)\iNF(Tijvlo...oTi:l(x)).

(i1,.-iN)

The fundamental idea is that locally our non-linear contractions 7; can be uniformly
approximated by similarities in the following sense:

Lemma 1 There exists a constant D > 1 such that
DL (T (@) <D LTt Vel ie{1,2})"andn €N
where |I;| denotes the diameter of I; and T; =Tj, o...0T; .

Proof:
We have

| Ii |= sup |Ti(z) — T;(y)];
z,yel

Using the mean value theorem, we get

|z —y| inf |Tj(u)] < [Ti(z) — Ti(y)| < |z —y| sup |7 (u)].
uel uel

Let
m; = inf [(T; 1)'(t)] and  M; = sup |(T; 1) (t)] ;
tel; tel;

Then

inf |77 (u)| = M;' and  sup|T(u)] = m; " ;

uel u€el
Hence

ML |<m T (21)

For the complex case, we can assume that |2| = 1, so in the two cases
-1 -1
M7 <|L; |<m; . (22)

Let now ¢ : I} U I — R be the function defined by ¢(z) = log |(Tj*1)’(x)| for z € I;.
Since T} and T are C?, then ¢ is uniformly Lipschitz on each I j, with uniform Lipschitz
constant Cy < 1 because of (4) and (5).



Let

N-1
Sno(z) = > > (T ()
n=0 |i|=n
For x and y € I; with i = (iy,...,iy)
N-1
| Snole) — Swo) | < 316, @) — T L W)

n=0

N-1
< Gy Z | (71, ,ln)(x) o (;117---7in)(y)|

n=0

IN

N-1
C% EE:|hn+L"hJ
n=0

N-1
< Cy Z pN ™" (because of (4) )
n=0
S % < 0.
l—p
Hence
_ Cop “lil= :
| Snp(x) — Sno(y) |< - V NeN|i|=Nandz,y€ ;. (23)
But
N-1
Sno(z) — Snély) = gb(T(;ll’m’in)(x)) - ¢(T(;11,___,in)(y))
n=0
N-1
= > 1og (1@ )G @) = 1og (I ) (TG L))
n=0
N-1 N-1
= log (H |(Timlu)I(T(ill,...,in)(x)”) ~log (H |(Ti.i1)'(T(if,...,i.,>(y))|>
n=0 n=0
= log (|(T7)'(2)]) —log (I(T71)'(®))
@)
= log —— - .
[(T7) ()]
Thus, since m; and M; are reached, we deduce from (23) that
: e}
Mi o5 (24)
m;

ELp
Finally (22) and (24) imply Lemma 1 with D = eT-7.
As a consequence of Lemma 1 and the mean value theorem, we have the following
Lemma (we call it the Distortion Lemma)



Lemma 2 There exists a positif number D such that for any branchs i = (i1,...,i,) and

j:(]177jm)
DML I ISDIL ]I -

Let now . .
Bj={i: 277 <] ;|<2277},
log [ A |

log | A\;
Opin = liminf inf and  qypee = limsup sup M ,
j—oo i€B; log | I; | j—oo i€B; log | I; |

We will prove the following theorem

Theorem 1 Let D be the best constant in Distortion Lemma.

Assume that E?Zl | Xj || Ij |< D1 (respectively E?Zl | Aj || 5 |2< D=2 for the complex
case). Then the selfsimilar equation (19) has a unique solution in L'(R) (respectively in
LY(R?)) given by the series

Z S A g (T T (@), (25)

(lla ,Zn)

If furthermore 0 < Quin < k, then F € C®min~¢(R), Ve > 0 (respectively F € Cmin—¢(R?)
Ve >0).

Proof:
Since |A1] < 1, |A2] < 1 and g is bounded, then series (25) is well defined. It is easily seen
that it verifies (19). Remark that for z € K,

o0
n=0
where (i1(z),...,i,(x),...) is the code of z.
For i = (i1,...,ip), set A\; =X, ... N\, and T; =T;, o...0oT; ; thus

Flow <> Y Ia |/|g )| de

n=0i= (Zly aln)

YOy |A|/|g< Ua)) | d

n=04= (Zlv aln

< CZ oo N

n=0 i=(i150e050n)

IN

(for the complex case, | I; | is replaced by | Q; |?).
By Distortion Lemma

DD Lo L | <L <DLy | ]



Hence

00 2
IFllp@ <CY DO 1AL )" <oo.
n=0 j=1

For the uniqueness of the solutions of (19) in L'(R), remark that if it has two solutions,
it follows from the fact that (20) holds for any N that their difference F is a distribution
supported by K and verifies the homogeneous equation

2
F=) MNFoT;". (26)
7=1

But
| FoT |l = / P (2)||T )| de

which, by Lemma 1, is bounded by DI|I;| || F |1 (r); hence if E?Zl | Aj I| I; |< D71, then
F has zero norm in L'(R).
For the complex case, for z =  + iy (with i such that i? = —1), we write
Tj(2) = Uj(z,y) + iV;(z,y)
and we set
O(z,y) = (Uj(z,y), Vj(2,y))
and

Fol;'(z) = f(® ! (z,9)) - (27)

Since Tj is complex analytic then ® = (U;, V;) is C! on R? and has the properties that

0, U; = 0yV;, 0,U; = =0,V (28)
TJI(Z) = 81Tj(z) = 0,U; (z,y) + i@IVj(:c,y) (29)
and
Tj(z) = —i0,Tj(z) = —i(9,U;(z,y) +1i0,Vj(z,y)); (30)
hence
I EoT gy = I fo® " llLige

= [ V@)l 12U 0)0,Vi(.0) — 0,Us(e,0)0.Vy(w.9) | dody
= [ 1] [©0:U;w,)? + @V (o 1))?)ddy
— [ T + i) dody
and we conclude as above. The argument(27) and the properties (28), (29) and (30) will
be always used for the complex case to compute integrals.

Let us now prove that F' is C*min~¢(R) for any ¢ > 0. For that we will use the
Littlewood-Paley characterization.



We split F' as a sum

x) = ZFJ(.T) where Fj(z) = Z Xig(T; !

§>0 i€B,;
Let % be a function in the Schwartz class such that
P(€)=0 for |€£]<1 and |€[>8

h(e) =1 for 2<[¢[<4.

Let 1/);(:5) = 2l1,b(2l$) , Wi = FJ * ’L/)l and hi,l = (g o T'Z.*l) * Q;bl .
We recall that a function F' belongs to C"(R) if and only if

| Fxapy(z) [ C27" Yz €R.

We have

e |—|/ ) i —y) dy| -

Denote by Prg,(h) the Taylor developpement of order k of g at x:

Pkgw Zg

q<k

It follows from the cancellation of 1 that
iate)l = 21 [ GO70) = P 1(g o Tty — ) 2~ )yl

g being a C* function with derivatives of order less than k well localized, then

i ()] < 2 / (2! (z —y))] ( sup |(g OTZ-_I)('“)(UH) |z —y|* dy .
u€lw,y]
Lemma 1 implies that for s € B; and wu € I;
DY <DL ST (w)| <DL | TS DY (31)

Besides, (4) and (5) imply that |(7;1)®) (u)| < C27 for all p < k; thus thanks to the
localization of g and all its derivatives of order less than k, we get

2ki
(goT; P (u)] < Cn —
‘ (L + 177 (w) N
C 29 h T
< - it i = 1
- N(1+D*12J*1|u—xi|)N (with ; (0))
C 29 1+2 N
< _ —
S O gy 2l D
2k

< C : 1+ 2|z —y)
S OVagp iy gy L T2l

9



Therefore

2ki ! l j N k
e oY | 2 e )l (2l =)V =yl ay.

| hz’,l(x) < Cn

Hence for 5 <1
2kj2—kl

h < ; )
| hig(z) [< O (1+D 120 Lz — z;[)N

Whence, for 7 <1

ok(i—1)

; <C Ai - .
|wl,y($) |<Cn Z | A | (1+D 121 |z —x; )N

iEBj

Lemma 3 For N large enough, there exists a number C' > 0 such that for any x € R

> ; <c
(1+D 12 | g —mx )N —

1€B;
Lemma 3 is a consequence of the following one.
Lemma 4 Let z € K and L large enough and set Bj(z) ={i € B; : |z —x; |< L2779},

The cardinality of B;(x) is bounded independantely of x and j by CL (CL?* for the complex
case).

Proof:
Thanks to the separation condition (3), we can suppose that the intervals I; for i € Bj(x)
are disjoint and are all included in the interval of lenght ~ L2777, centered on x. Thus

277 card Bj(z) < CL277.

Hence Lemma, 4.
Using Lemma 3, we obtain for 57 </
|wij(z) | < C(sup | A |).280D
iEBj
< CQ(*amin+€)j2k(jfl) ‘

Thus
Z |wj(z) | < Cc27¥ Z o(—min+etk)j
0<y5<! 0<s5<!
< ool-ominte)l
On the other hand, for j > {
|wij(z) | < Csup| F(z) |
< Csup | A
iEBj
< C2-ominte)i

10



thus
>~ lwy (o) |< C2(zomntal
>l
Whence for any € > 0
| F iy (z) |< 02 (@min=ell (32)

And so F € C*min~¢(R) for any £ > 0.
For the complex case, the same arguments give us F € C®mi»n=¢(R?), Ve > 0.

3 Pointwise Holder regularity

We want now to estimate the Hdlder regularity of F' at every point.
Proposition 1 Ifz ¢ K then F is C* in a neighbourhood of x.

Proof:

Let zp ¢ K, if xp ¢ I then F = g in a neighbourhood of zy;

If 2o € I then there exist N and i = (i1,...,iy5) € {1,2}" such that g € I; \ Ui’€{1,2} L

in this neighbourhood of ¢, F(z) = Zﬁf:o Ny i, g((Ty, 0--- 0Ty, )" Y(2x)) € CF(x).
Now we give the value of the pointwise regularity a(x) for any point x of K.

Theorem 2 Suppose that oy, > 0. Let x € K ; then
log [Aiy (2) - - - Ain ()]

(33)

a(xz) = liminf
(=) =limn log |1;, (@)...in ()]
Proof:
We divide the proof into two steps:

3.1 Upper bound for pointwise Holder regularity

We shall first prove the upper bound for «(z) using the wavelet transform size charac-
terization (15) (the so-called two-microlocal condition) and an asumption on the uniform
regularity (F' € C°(R) for an € > 0).

Let 9(x) be a wavelet, set
-b
Yusl) = S9(0)

and let Cop(F) and w,p(g) be respectivly the wavelet transform of F' and g. From the
functional equation (20) satiafied by F, we get

ZZA/%I; Nt + 3 x [ bu®OF @ @) d

n=0 |i|=n lil=N

a

thus
o) = 33 [ us@iengezio a
n=0 |i|=n (34)
3 / G (T (1) F(HYTL(8) dit

li|=N

11



To estimate the size of the wavelet transform, we will give asymptotic developpements for
the composition of a wavelet by contraction 7;. These developpements will be well adapted
with the wavelet analysis.

Lemma 5 Let ¢ be a real even compactly supported wavelet with enough smoothness and
vanishing moments. Let b € I; and a > 0 small enough, then

¢a,b(Ti(t)) = |( )( )| @ba\ —1) |T—1()(t)

k—1k—1+4p (o) o)
[—p P, p, 35
" pzl g;; @ AT Yy (35)

+ (R, ()

where YD () = thp®) (t) is a compactly supported wavelet;

Al(p’l)(b) _ l [( 1+l Z2<q1, <k H l(b)) 7

!
g Gt.Agp=l M1
APV < I( ~—1>'(b>| ;
and (Rfl,b)(k)( ) is a function supported in | t —T;*(b) |< Ca|(T; 1) (b)| such that
|(Re )™ ()] < Ca* vt (36)
and .
(R )™ ()1 wy < Ca®|(T7) (0)] - (37)

For the complex case, the analogous of Lemma 5 is

Lemma 6 Let ¢ be a radial wavelet of R? with compact support and enough smoothness
and cancellation. Let b = by +iby € Q; and a > 0 small enough and denote by g p(2) the

function
Pap(2) = %@b (_(u,v) — (bl’b2)> for z=u+iv.
a a
Then
bap(Tj(2)) = [(T; 1) (D) bapersty @), ) ()
l,p (aal) (a’l)

* %:zp:zl:“ A7 O Pyt ) (38)

© (RO
where the () (2) are compactly supported wavelets; | (b)| (T _l)l(b)|2; and
(Ri,b)(k)( ) is a function supported in | z — ( )< C’a|( Y (b)| such that

(R ,)* ()|<Ca’° ? (39)

12



and
(R )W) (2)]] 11 ey < CaF[(T; 1) () (40)

Proofs:
We will only give the proof for any k for the one-dimensional case and for £k =1 and k = 2
for the complex case, the proof for & > 3 is similar.

The support of 1, 5(T;(t)) is given by | T( ) —b|< Ca. Slnce b € I;, then the mean
value theorem and Lemma 1 imply that | ¢ — T, *(b) |[< Ca|(T; 1) ()] -

For the real case and for k =1,

Yap(Ti(t)) = —9

_ L, <T;(Tf(b>><t — 1,1 (0) + O (|t — 1(b)|2)>
where O ([t — T, (0)) < |t = T, (B sup T]| = O(a?) (e < Ca?).
Hence
1p—1 _ 1
oty = Ly (HELONCTO) o)
r(p—1 _ =1
_ 21/) (Tz(Tz (b))g T; (b))> L loz(ﬂl)(o(a))
where Ofpl)(u) < |u| sup |4']; thus since 1 is even then
Pas i) = [T O Yyay s @) + E)OO)
with (R )M (t) = O(1).
Since (Ré,b)(l (t) is supported in | t — 7,1 (b) |[< Ca|(T7 1) (b)], then

1(Re )P Oy < Cal(T7) (B)]-

Hence Lemma 5 for k = 1.
Now, for £ > 2 and in the real case

(1) — T(T !
Pap(Ti(t) = %¢ (Tz(t) T(T; (b))>

a

g’

k
— ¢( [Z L0110 (tTil(b>>q+0§’“+”(tTﬂ(b)’f“)]) ,

where OV (1t — 77 (b)) < [t = T (0)[** sup [T*+)| = O(a*+1). Thus
Yap(Ti(t) = ( Z ) (t—T; 1 (b)) + o<ak>>

13



k—1 _ -1 k

ey () liZqﬂTf”(Til(b» (4T, (6" + Olat)
p=1 g q=2

—i—é O(ak)

Remark that

(I I R ’

: EZETZ' (T; H(b) (t—T; *(b)? + O(aF)
q=2

11 Fl (@) (r—1 -1 ’ k—1

== ZETZ. (17 () (¢ =T ()| + O(a*)

_ ,71 qm
R i0) L
2<(I17 7qP§k m=1 qm
11 : (gm) (p—1 (t_Tiil(b))qm
-y 7o) ) L

3
5

2<q1,9p<k
q1+...+qp<k+p

11 o g 1y (E= T (B))0
+;J Z HTz (T; (b))#
2<q1,mgp<k  ™=1
q1+...+qp>k+p

+0(a*h
and that forany 1 <p <k —1and any 2 < ¢1,...,qp < k such that ¢1 +... + ¢, > k +p,

1 2 t— Im 11 ak+p
— H (Im ))| —| ( )| < c= a‘11+ -+ap < O < Oak 1
aP qm| a aP aP p+1

QI'—‘

m=1

Hence 1)q(75(t)) is equal to

(i)

k—1 , k—1+p 1 P (gm) 1
1 1 t—T. (b)) 1 T (b
+Z_ _p(t_ l—l(b))l¢(p) < 711 ,( )) ' H i ( 7,' ( ))
p=1 1=2p “ a(T;)'(0) /) pr 2<q1,0qp<k m=1 m
q1+...+qp=l
+(Bi,) ™ (2)
with (Ri,b)( )(t) a function supported in | t — T, 1(b) |< Cal(T; ') (b)| and bounded by

CaF~", thus '
(R P @) gy < Ca®|(T71) ()]

14



Forp=1,...,k—1land 2p <[l <k—1+p, set
PP (8) = tp®) ()

and

Az(p’l)(b) == )L Zz<q1 Sp<k H ( ) .
qit+..+gp=l
Hence (38). And thanks to (4) and (5)

AP ()] < (771 (b)) -

— 7

Whence Lemma 5.

Now for the complex case, set d = Tj_l(b) = dy +ids, 0 = (d1,d2), £ = (u,v) and let
D® = D(Uj;,Vj) be the differential of ® (recall that ®(z,y) = (Uj(z,y), Vj(z, )) and that
Uj(z,y) +iVj(z,y) = Tj(z + iy)), then

bap(Tj(2)) = — 9

D®(6).(€ —6) + O(a2)>

with (R] ) (2) = O(1/a), so

18) D @)llps ey < Cal(T5 ) B
It is easy to show that properties (28), (29) and (30) imply

2 = 17\ (0)]
[FI0]

Thus, since %) is radial then
bap(Tj(2)) = |(T; 1) (0) Yoyt y ) ) (2) + (R ) (2) .

Hence Lemma 6 for k = 1.
For k =2,

= |Tj(d)] [l — o]l = ID®(0).(§ = Il ;

@ba,b(Tj z

a

1 [ DE(d).(€ = 0) +1/2D?p(9).( — 8)* + O (Jlg - o]1*)
(=) = 9

15



where

O (|l = 811%) < ||¢ — o]1* sup | D3@|| = O(a®).

Hence,

ban(T3(2) = 7¢(

Thanks to the fact that v is radial, we obtain

Yap(Tj(2)) = ng(ﬁ>

J

#1120 () FBU0)-w -0’

J

w112 o () B0 - b

+0(1).

Whence Lemma 6 for & = 2.
Now, let Ctgpb’l)(F) and w(gp,;l)(g) be respectively the (P! -wavelet transform of F and g.
Using Lemma 5 and equation (34), the i-wavelet transform of F' will satisfy the following

16



equation

N-1

Can(F) = D D N ITTY O @yt 2y (9T7)

+ 2 M O Coamy o) (FT)

=N
k—1k—1+p N-1 o) o)
— i p, p, /
DIDIXEDY Z A ATEO) gy 2 9T
=l =2 20 fi=n
(41)
' vl () o)
— . b, b, /
¥ 2 a7 D NATO) Oty FT
p=1 [=2p li|l=N

N-1 .
D IDIEY / (R ,)W(¢) g(t) T (t) dt

n=0 |i|=n

+ YA / (R )0 (t) F(t) T)(t) dt

li|=N

For the complex case, using Lemma 6, we get an equation similar to the previous one
(|(T;71)'(b)| will be replaced by |(T;1)'(b)|%, T} by |T!|* and the indexes (p,I) by the
(0, 1)).

We are now ready to estimate the size of the wavelet transform near each point of K.
Define

Aj(@) = sup ||
1€B; ()
and
j .
Li(w) =Y M()27"0™D with A > amag -
I=1

And let us first estimate the order of the magnitude of the A; for i € B;.

Lemma 7
log L log A .
i inf 8E @) g 108A@) e e 1081
imoo —jlog2  jmoo —jlog2 j—oo ieBj(z) log | I |

— hming 28 Ri@) - i)
n—oco  log |Ii1(:n)...in($)|

and Vr € R and @ € B;

X | CLy@) (1 +27 |2 —a )2 (42)

17



Proof:
Clearly because Lj(x) > Aj(x), it suffices to show that

log L;(x) > lim inf log Aj(z)

lim inf . ;
j—oo  —jlog2

j—oo  —jlog2

this holds because 274! < A;(z). Now, inequality (42) is trivial for ¢ € B;(x) because
Ai < Aj(z) < Lj(z). And for i ¢ Bj(z), let ¢ be the largest subbranch such that ¢ € B;(z),
clearly |z — z;| ~ || and |\;| < Ay(z) with [ such that |I;] ~ 27!, (because all the |);| are
< 1), so that

=

U0) < 1y (@)24070 < L(0)(C2 ] — mi))?

1< [

~

hence Lemma 7.
We shall now prove the following proposition:

Proposition 2 Let € K, J € N large enough such that Aj(z) > LL,(z), then there
exists a branch j° = (49, ...,3%) in By(z), b € Ljo and a ~ 2=/ such that

|b—z| < Ca

and
| Cap(F) = O(a¥) [> CA;(2) .

Proof:
Let 5 be a branch of By(z) for which A(z) = SUpP;c, (g |Ail 1s reached (59 exists because

of Lemma 4) and a ~ 277,
We can write equation (41) differently

J-1
Ca,b(F) = Z Z Ai |(Ti_1)l(b)| wa|(T;1)f(b)|,T;1(b)(gTil) (43)
j=0ieB;
+ Z Ai |(Ti_1)l(b)| Ca|(T;1)f(b)\,T;1(b) (FT7) (44)
t€EBy
k—1k—14p J—1 oD o)
- 4o, D, /
T2 AT Y NATO) ity 0T (49)
p=1 [=2p Jj=01i€B;
k—1k—1+4p (o) o)
- Al D, /
22 a7 Z A AT 0) Oy (FTD) (46)
p=1 [=2p 1€By
+0(a") ;

O(a*) comes from the estimation of

J—1 .

)P IP IALICPOEAOr ()
j=0i€B;

s [P0 PO T . (a9
1€By

18



For the term (47), we use the localization of g to bound it by

> Y [ ) () d

Jj=01:€B;
<CZZ|A| /| (L+D 2 p—a VM A+ =T ))M2 7 at
j=01ieB;

which by Lemma 7 and for M large enough, will be bounded by

J—1
>N Limya+D 2 b— g )V CaF~1279(1 + Ca2)M dt
i=0icB; |t~T7 ()| <Cal (7Y (0)]

af- 1ZL ) > (A+D b - ) Ma

1€B;

and thanks to Lemma 3), it will be bounded by Ca* EJ 1 L;(b) so by Cak.
For the term (48), we use the boundedness of F' to estlmate it by

> Il / CaF=277 at

) T (B <Cal (17 ()

< Ca® )|

i€By
< C'a"

We shall first estimate the term (44) corresponding to the branch i = j°: by asumption,
F is not uniformly C* on a non empty closed subset K of ]0,1[; thus thanks to the
characterization of the uniform Hoélder regularity by the wavelet transform, there exist
an, — 0, b, € K and C,, — +oo such that

Take b = Tjo(by) for n large enough and a = an|TJfo(bn)|; then
|z —b|< |z —zj0| + |zj0 —b] < L2777 +|Ip| <0277

and

| Cagtymgio () 12 Cua|(T) G)F (50)
On the other hand,
o (b)
|(T151)/(b)| | Ca‘(ijOl)/(b)"TJ vy (F'Tjo) |/¢ ( b)) F(t) T}o(t) dt|

t—T,b
21 w(ﬁ) P1) (Tp(T 1) + 0D (1t~ T, ()
]0

19



with
OB (|t — T3 (1)) < (sup [T (w)]) [t — T5" ()] < CITIo()” [t — T3 (0)] -
Thus

(T5")' ()] C (FTl) |> : Ty F(t)dt
(T Y O Coyrgry w5t o) |—W|/¢ a(T;,") (b) |

5(b)] SL(b)
O /w( b)>||F(>||t— o)t

It follows from (50) and the fact that F' is bounded that
|( 2))'(0)] |C o) OIT ()(FTJ{O) > Cnak|(7}51)l(b)|k—0a-
Therefore
Aol 1T Y O ICopr ity (FT] 2 A (@) (Cua D2 —Ca). (1)
Now, let us estimate the righthand side of (43).
Forie Bjand0<j3<J-1

(T O | wgmty

3

)T ()
-1 1(b)>
=21 () oo
~T;'(b)
I/z/)< ) (9(t
Using the mean value theorem, the previous term will be bounded by

1 =T (b) “u .f(k)u> _ kg
s (e (ue[t,@pl(m'(gm ) =17 ) d

it follows from the formula (g77)*)(u) = E’;:O C gth=a (u) Ti(q+1)(u), the asumptions
(4), (5), Lemma 1 and the localization of the derivative of order k of g, that

ON
TraT B

Cn
(1417 (b)Y
< Cn
S 0D p—m)V

7105 (977) |

'(t) dt]|

(t)
) TH(t) = Pt (9T 1y (£ = T (0)) ) .

(eTH® (W) <

(1 +u =T O™ 1T (T (0)]

1+t =1, ' O)DN T (T ()] -

)

Cn b) _ N
= ey | W () | =T o) ;o

20



and because a|(T;")'(b)| ~ 27727 < 1, the previous term will be bounded by

a*| (1) () *
1+D 12 1b— )V

Thusfor0<j<J—1

SN O | @ty (610 |

1EB;

k k
<0Y Il ol ()

PR

| A | koks
<C - 27
= GXB: A+D 21 |b—a; )N

which by the second part of Lemma 7 will be bounded by

1
(1+D 2 [b—g; )N-4

Ca* 2" L;(b) >

1€B;
< Ca*2¥1;(b) (because of Lemma 3).

Therefore
Z Z [Xil [(Z; )" (b)] |W (171 (b)],17 1 (b) (9T | < Ca" Z 2kij(b)
j<J—1i€B; j<Jd—1

IN

Ca2" L (b) (52)

because we can assume that apee < k.

Consider now the term (44) (for which we exclude i = 4%): the function F is not
uniformly C* on K, put K, = K + [—e€, €] where € is small enough so that K, stays in I.
Thus outside K, F is uniformly C*.

Recall that b = Tjo(b,) and that b, € K, thus it follows from the separation condition (3)
that Ti_l(b) ¢ K forallie By, i+ j° hence

/ 1 t—T7'(b )
| Ca\(Ti—l)/(b)LTi—l(b)(FTi) |= a‘il)’(bﬂ |/1/) <Wl()|> F(t) T; (t) dt|

(T )'(b)
1 -1, 1() o o
‘J@Tﬂﬁ”f¢&miﬂmﬂ>F@(ﬂﬂf®»+@(ﬁ—ﬂ%wmdﬂ

which is bounded by

! -1 1 t— T'lil(b)
ma o ey ¢ G yon) O

'(0)
I (rn— 1 t_Tz lb)
+OIE O s /w( . H)HHHH— o)) de
< T 0)] k|(i ) () + CIT{ (T} 1(b))l

)
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Thus

3 IO 1ty et (FT) < C2 +a)L,0). (5)
i3
Let us now estimate the terms (45) and (46): thanks to the smoothness, the cancellation
and the localization of the wavelets (P!, and the property |A§p’l)| < [(T71) (b)), the
previous arguments give us

k—1k—1+p

- 11 4®d) (p,0) /
Z Z a P Z |>\Z| |Az (b)| |Ca‘(Ti71),(b)|,Ti71(b)(FZ—%)|

p=1 [=2p lggg
k—1k—1+4+p
<0y Y aP(ah2M +a)L,(b)
p=1 [=2p
k—1
<C Z aPa®28 L7 (b)
p=1
< Caa®28' L (b)

and
k—1k—=1+p 5
> pz Al 1A O] ol Dos), o1y 0T
p=1 1=2p j=0icB; T
k—1k—1+p
SCZ Z a'Pa* 2R I, ;(b)
p=1 [=2p
k-1
< CZaPakaJLJ(b)
p=1

< Caa*2" L;(b) .

On the other hand, since F' is bounded, then

k—1k—1+p k—1k—1+p
>0 3 el AR OOy FTL < C3 3 o A()
p=1 1=2p p=1 I=2p
< Calj(x) .
Therefore

| Cual(F) = 0*) = Ajo [T Y O] Corpyioyasin(FTn) 1< Cab2 L0
Choose C), large enough, then (51) yields
1 _
CaalF) = 0@ > 3 s 1TV O | Coryamin TR - 69

Whence (51) and (54) yield Proposition 2.
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3.2 Lower bound for pointwise Holder regularity

Using definition (6), we will show the lower bound for the Hélder exponent a(x).

. 108 [ A (2) iy, (2
Let z € K and a(z) = liminf,, w, for 8 < a(z) define
i1(z)...ipn

=3 Pylgot; Me(h) .
J 1EB;
We have ”
97
PF,( A .
| ZZ| | 1+D 12|z —a )V

j=01ieB;

hence thanks to Lemma 3 PF,(h) converges.
Let J such that 27/ < |h| < 2.277 and L = |h|~€ where € is small enough; write

F(z+h) = PF,(h) =Y > Xi (9(T; (@ + k) — Pig(g o Ty 1)u(h)

J<J {i€Bj : |z—x;|<L2-7}

+ > i (9(T; Mz + h)) = Pg(g o T, H)u(h)

J<J {i€eB;: \x a:l\>L2 J}

+ Y NFIT @+ h) =YY MPgy(g o T Y)a(h) -

1€EBy j>J i€B;

For each j of the series of the first term, there is O(L) terms (because of Lemma 4), thus
using the mean value theorem, the first term will be bounded by

CLZ Z Li(z)(1 + L) A | h | Bl+1 9([81+1) Clh |[ﬂ}+1 Zg—ﬂij([ﬂ]‘i‘l)Ll‘i‘A
j<Ji€B; j<d
< C|h|P L4
< Clh |ﬂ e(1+4)

IN

Now, for 4 such that | z — z; |> L277, there exists a constant C such that | z — z; |<
CL277, hence the second term is bounded by

CLZZL &“”qij

q=0j5<J 2 L)
(8]
< CZ Zg—ﬂj | b | 94j [~ N+1+A
q=0j<J
18]
< CZ | b |9 - N+1+A :
q=0

choosing N large enough the previous sum will be bounded by | h |B*€' for any ¢ > 0.
It follows from the fact that F' is bounded that the third term is bounded by CA (),
hence by C|h|**)~% because of the first part of Lemma 7 and the fact that |h| ~277.
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The fourth term is bounded by

274
CZ|h|qZZ|)\ | (1+D-12-1 |z —a; )V

j>J i€B;

We split this sum into the sets
Bjy={ieBj: 2 <| L |72 —a <27},

The cardinality of Bj; is O(2') (because of Lemma 4) and for i € Bjy, | A\ |< CLj(z)24!
(because of Lemma 7). Thus the fourth term is bounded by

CZ|h|qZZL )2412079!1=N) < chwaﬁ

i>J 1 j>J
< C|h|ﬂ.

The proof of Theorem 2 is now achieved.

4 Computation of the spectrum of singularities

To determine the spectrum of singularities, we will construct probability measures sup-
ported by the sets of singularities and then use the following Lemma (see [10]):

Lemma 8 Let H® be the Hausdorff measure of dimension s. Let v be a probability measure
on R™, ACR™ and C such that 0 < C < o0

V(B(x r)

e [flimsup <C VreA thean(A)ZV(Cf‘).

r—0

B s
. ]flimsupw>0 Vee A then HS(A)S%.
r—0 r

Let p be the probability measure on [0,1] which associates the weight | A;, i, | A™"
(with A = |A\1|+|Az2]) for each interval I;, ;. This measure is supported by K and satisfies

e (A;) There exists a constant C' > 1 such that for any branchs i = (41,...,%) and
j: (jla"'ajp)

C (L)L, j,) < pliy.igjegy) < Cu(Liy. i) p(Zj,..j,)  (for our case C = 1)
We will denote the previous property by u(1; ;) = p(l;) p(l;).
On the other hand, we have

e (As)
| Iij |=| I; || I; |  (because of the Distortion Lemma)

o (A3)
1
lim sup — log (sup | I; |> <0
n—oo T li|l=n
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By subadditivity argument, Brown, Michon and Peyriére (see [7], [18] and [20]); Col-
let, Lebowitz and Porzio (see |8]) proved that asumptions (A;) and (Ag) imply that the

sequence Cy(z,y) = +log <Z|i|:n,u(lz~)x+1 | I; |_y) has a finite limit C(z,y) for any
(z,y) € R?, that C(z,y) is C? and D?C(.,.) # 0. It results that the sequence

~ 1 _
Cnlz,y) = —log SN LY
B

goes to

C(z,y) := C(z,y) + (z + 1) log A
for any (z,y) € R?, besides C(z,y) is C? and D2C(.,.) # 0 on R

Consider the set A = {(z,y) € R? : C(z,y) < 0}. A is not empty because of (A43). On
the other hand, since C(z,y) is convex, nonincreasing as a function of & (because the |\;]
are < 1) and nondecreasing as a function of y, the set A, if it contains a point (a, b), also
contains the whole quadrant {(a+z,b—y) : = > 0andy > 0}. It results that there exists
a function ¢ : R — R nondecreasing and concave(thus almost everywhere differentiable)
such that the interior of A is identical to the set {(z,y) € R* : y < ¢(z —0)}. Moreover,
C(t,p(t)) = 0,Vt € R. Thus the inverse function theorem yields that for ¢ such that
DyC(t, (1)) #£0, @ is CL.

In [18], Michon proved that for every (z,y) € R2, there exists a probability measure
[iz,y on the tree {1,2}N such that for any branchs ¢ and j :

Nw,y(iaj) ~ Nw,y(i) Nw,y(j) (55)

and .
fay(8) m p(L) T | I | 7Y e HC) (56)

Thanks to the bijection m between the tree {1,2}N and K, denote by fi,,, the associated
probability measure supported in K. Hence for any branchs ¢ and j

fay (Lij) = figy(1;) i,y (1) (57)

and -
fiay (L) ~ [N | L |7V eI (58)

This measure is called a Gibbs measure and was studied separately by Olsen and Rand
(see [19] and [21]). The Gibbs measure will be used in Lemma 8 in order to compute the
spectrum of singularities of our selfsimilar function F'.

Proposition 3 Let o < k and d(a) be the Hausdorff dimension of the set E* of points
x where a(x) = a; Then d(a) is concave, equals to —oo outside [min, Mmaz], and on this
interval for a = ¢'(q) (hence a-a & € [Qmin, Vmaz])

d(a) = ;glf{(ap —p(p—1)).
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Proof:
Let z € K such that a(z) =a ,7>0,5>0,p € Rand j such that 277 <r <2277,
We have

ﬂpfl,np(pfl)(B(x”r)) - Z ﬂpfl,go(pfl)(li)
s ) |Ii|s
i€Bj(x)

ﬂpfl,np(pfl) (Iz)

~  sup . (because the cardinality of Bj(z) < C)
ieB; () |7

~ sup |NJP|L| 7P (because of (58) and the fact that C(t,(t)) = 0) .
1€B; ()

Suppose that s > —¢(p — 1) + pa then Theorem 2 implies that

iy 1.0(p—1) (B(z, T
lim sup fip—1,p(p-1) (B(2,7)) — oo
r—0 rs

thus, using the second point of Lemma 8, we get H*(E®) = 0.
Hence
d(a) <ap—p(p—1),Vp € R
ie

d(a) < ;glf{(ap —p(p—1)).

And in order to prove Proposition 3, we have to find p such that fi,_; ,,—1)(E%) > 0.
Using the same proof as in [20] pages 5 and 6, we can show that for a = ¢'(p) and

. . log | il
By = A lim 8L oy
{z €[0,1] 'zlm g | I | a}
li|=n,z€l;

we have .
fip-1.00-1)(Fa) > 0.
Whence this result with the fact that E, C E® yield the desired proposition.

5 Proof of the Multifractal Formalism

We shall prove that

d(e) = inf(ap —n(p) +1)
where 7 is the function defined in (14). To give the order of the magnitude of n(p), we have
to estimate the size of the wavelet transform everywhere. For i = (i1, ...,14,), consider

Ii(a) = i+] - ava[
and
Ci = Liiy,in_1)(@) = Ly i1 i) (@) -

Ifie Bj and a <|I; | then | Li(a) |~| 1; |,| C; |<| I; | and inequalities (51) and
(54) show that there exists a ~ 277 and a point b of I;(a) for which the order of magnitude
of Ca,b(F) is Aj (b)

We have also the following lemma
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< CL;(b) .

Lemma 9 Ifi€ B, a~|I; | and b€ I;(a) then |Cup(F) — O(ak)]
[FL;(b) -

Ifa<|Ii|andbe C;  then |Cop(F) — O(a¥)| < C’ak|(Ti;1nin71)’(b)

The proof is deduced from (20) and an argument similar to the proof of Proposition 2.
On the other hand, remark that
d 1

_Ca :_éa
db b g b

where éa,b is the wavelet transform due to ¢’, and

dica,b = _1 Va,b + lOa,b
a a a
where Cv’ayb is the wavelet transform due to xv)’.

We deduce from the previous lemma and remark that there exists an interval of lenght
~ a on which the order of magnitude of C,;(F) is A;j(b). Thus if we denote by A; the
interval [$277,277], then for each branch i € B there exists an interval of lenght ~ 277 in
the time frequency half-space R™ x R, located near z; and in frequency in the interval Aj
and where

| Cap(F) = O(a®) 2 C" | X |

Lemma 9 and the previous remark yield

S HNP < [ () - O Pda b (59)
i€B; Aj xR
. . kapj|>\.|p
—92 _
<Oy 27\ PtOo (27 Y NACES |kpf1
i€B; |I;|>2.2-3 '
. . 2—kpj| ). |P
<o/ | > 2P0 D % (60)
i€B; |I|>2.2-i R

where O(.) is positive.
We have

. 1 oo
0=Clp—1Lp(p—1) = lim —log | > [\f" | I [0

li]=n
SO we can write
—olp— 1
log | Y NP IL#0Y | =o(5)
|i|=n
thus
S P |=e(P=D= o(7) |
li|]=n
Define

G(j) = Z AP | I |

iEBj
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Asumption (4) and Lemma 1 yield that for j > 0 and i € B;

. . log2
i]< U

1

279 3 2 NP~ 292 (e 7 ) e D

iEBj

=2 72~ (U+ele-1)ig(y)

< Cjeo(%)Q*j2*(1+<ﬂ(P*1))j

271 57 9|\ [P > Ol Pamigm(tele=1),

) log 2
-1 <
G~ D <
thus
'Y < GG) <
Therefore
iEBj
and
iEBj
The term

270 Y

|1;]>2.2-i

is positive and bounded by

Cc27727R7 N NP L|

|1;>2.2-7

=272k Y >

1<j~22-1-1<|L;|<2!

kapjp\i |P

| L [t

Xl 1|

~ 02779 kP] Z 9—l(1—kp+p(p—1)) Z

1<j—2

2-1=1<| I <2

< ¢ I —kpj Z 2*1(1*kp+<P(P*1))G(l)

I<j

|Ag|P|I;| P~

thus if ¢(p — 1) + 1 < kp then (64) is bounded by Cje”7)2-(1+e(p=1)ig=j.

Hence

C'2 e )2 (elr-1)i < / |Cap — O(a¥)[Pda db < Cj2 /g (e

A]' xR

For the complex case, if p(p — 1) + 2 < kp then

(64)

(65)

01921 25 )9—(1+0(p—1))j < / |Cop—O(a*)Pda db < Cj272j60(§-)27(1+w(p71))j . (66)

A]‘ XR2

Whence the following proposition:
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Proposition 4 If p(p — 1)+ 1 < kp then n(p) =p(p—1)+1.
For the complez case, if p(p —1) +2 < kp then n(p) = p(p —1) +2.

Proof: .
Using (65) and the fact that lim;_, # = 0, we obtain

1
lim sup o~ (¢ @=1) o 5a) / |Cop — O(a®)Pdb>C" >0 (67)
a—0 R
and
a*(l‘Hp(p*l)) 0(;) k
limsup & ks / Cp— O(@)Pdb < C < 400 . (68)
a0 |logal R

For ¢(p—1)+1 < kp, the limits (67) and (68) don’t change if we replace Cy —O(a*)
by Cyp, similarly for the complex case. Hence Proposition 4.
Finally we have the following Theorem:

Theorem 3 Let (T}) be a system of d contractions defined on a bounded open domain in
a one dimensional line (respectively the complex plane C) and satisfying the asumptions
(2), (3), (4) and (5). Let D be the best constant in Distortion Lemma. Assume that
E?Zl | Aj || Ij |< D7 (respectively E?ﬂ | Aj || 5 |°< D72) and let F be the unique
(selfsimilar) function of L', satisfying

Then for x € K

For a < k, a € [@min, Omaz]

d(a) = ;glf{(ap —p(p—1)).

Set m = 1 for the one dimensional case and 2 for the complex case. If g is C* then for p
such that p(p — 1) +m < kp, n(p) = ¢(p — 1) + m.

Moreover, let py such that @(pg — 1) +m = kpy and «q the value of the inverse Legendre
transform of w(p — 1) at py, then for a < k, a € [min, Cmaz] such that o = ¢'(p) and
a <y (thus a-a a < ap)

d(a) = inf(ap —n(p) +m) = inf(ap — £(p) +m) .
Whence the multifractal formalism is valid.
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