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1 Introduction.The �rst aim of this paper is to give a rigorous background to the de�nition of travel times in the contextof macroscopic models, with dynamic assignment as their main application �eld. The second aim is toprovide simple computational rules for the estimation of these travel times. Although implementationin relation with �rst order models will be emphasized in this paper, nearly all results carry over withoutmodi�cation to higher order models, as long as they satisfy to some basic requirements.The motivating problem behind the estimation of travel times being dynamic assignment, a distinc-tion must be drawn at this point, depending on whether we consider reactive or predictive assignment,according to the terminology introduced in [PA 90]. Further distinctions can be made, relating to thenature of tra�c �ow. A survey of the literature concerning all possible computational methods fortravel times is out of the scope of the present paper and the reader is refered to [RB 94] and [BLL 96].Roughly, as far as travel times are concerned, one can distinguish between:- the experienced travel time, abbreviated as ETT, i.e. the travel time of the user who has justcompleted the considered trip (for instance INTEGRATION [VA 95]),- the predictive travel time, abbreviated as PTT, usually integrated into the �ow model ([FBSTW 93],CONTRAM ([LGT 89], [LTB 78]), [RB 94]), which is an estimate of the travel time that shallbe experienced by the user who begins his trip,- the instantaneous travel time, abbreviated as ITT, which is an index of the current state of thenetwork, translated into a travel time that is provided to users in real time in order to allowthem to choose between various possible paths. ITTs constitute an essential ingredient of reactivedynamic assignment schemes, hence their importance.As far as tra�c �ow conditions are concerned, the most important single factor is whether the tra�c�ow is considered as uninterrupted or is liable to be interrupted. This is of course by and large a timescale matter, since the typical tra�c �ow interruption results from tra�c management operations.The time scale in the interrupted case is therefore smaller than say the cycle length in the presence oftra�c lights. Standard practice in this case is the averaging of travel times over a cycle, or the use ofqueuing formulas ([WFH 94], [JMH 94]).Nevertheless, other causes may determine tra�c interruptions: notably downstream congestion andincidents. It is characteristic of these interruptions that their duration cannot be known beforehand,and that they are related to tra�c supply restrictions. This leads to di�culties. Indeed, the naturalestimate of the ITT of say a link [a; b] at time t would be R ba dxV (x;t) , with V (x; t) the speed at locationx and time t. This integral becomes in�nite if the speed V (x; t) becomes locally nil. For this reason,1CERMICS, Centre d'Enseignement et de Recherche en Mathématique, Informatique et Calcul Scienti�que. ENPC(Ecole Nationale des Ponts-et-Chaussées), La Courtine, 93167 NOISY-LE-GRAND Cedex, France2The present paper provides some background material for the joint LICIT-CERMICS STRADA project as wellas two papers submitted jointly by the author and C. BUISSON and J.B. LESORT to the EURO 96 Conference theIEEE-CESA'96 Conference and accepted both for publication1



several models use a minimal > 0 speed (DYNASMART [JMH 94], METACOR [EL 96]), thus pre-venting the divergence of the above integral. Such an approximation, usefull and generally relevant forfreeway networks, is not really satisfying for urban network tra�c �ow modelling.In this paper, we shall �rst give rigorous de�nitions of the three kinds of travel time, experiencedtravel time ETT, predictive travel time, PTT, and instantaneous travel time, ITT, for a link and whithinthe framework of macroscopic tra�c modelling. Then, the issue of computation of the two most usefullkinds (for reactive dynamic assignment), the link ETT and ITT, will be adressed, �rst in a distributedsetting, then in a discretized setting. Last, various extensions will be studied, notably the adaptationto partial densities, intersections and path travel times. One quite separate, but important topic willbe left for future investigations: the temporal aggregation of travel times, i.e. their smoothing inthe presence of periodical travel time �uctuations. Indeed, the two problems: how to estimate traveltimes, and how to aggregate them temporally in order to provide users with slow-varying and consistentinformation, are basically di�erent. The �rst one is a problem of tra�c data collection and elaboration,related to the state estimation level of the tra�c �ow modelling process, whereas the second one is amatter of tra�c control and user response to information, therefore related to the control level of thetra�c �ow modelling process. Travel time estimation and travel time temporal aggregation, thoughboth part of the dynamic assignment process, are not situated at the same level, and the travel timeestimation is de�nitely the most basic of the two and must therefore be addressed �rst.2 Link travel times: a general framework.2.1 De�nition of predictive and experienced travel times.We consider now the macroscopic approximation of interrupted tra�c �ow. The starting point of ouranalysis of possible travel time expressions is the single link, say [a; b], with its associated tra�c �owmodelled with the help of the usual macroscopic variables Q(x; t) (�ow), K(x; t) (density) and V (x; t)(speed), which are considered as functions of the position x and the time t. The existence of thesefunctions expresses the continuum hypothesis, and constitutes only an approximation. A discussion ofthis hypothesis and of the position of macroscopic models in the whole scale of tra�c �ow models canbe found in [LE 95-1].
a

bEssential for the sequel will be the speed �eld W(x; t) = (V (x; t); 1), de�ned on the [a; b] � IR bandof the (x; t) space times time plane, and assumed to be integrable, with existence and unicity of thecorresponding �eld-lines. Under reasonable assumptions on the link tra�c supply and demand forinstance (see [LE 95-2] for a de�nition of these concepts), and if a �rst-order LWR model is considered([LW 55],[RI 56]), the �eldW can be shown trivially to be piecewise di�erentiable, with discontinuitiessituated on continuous lines which are piecewise di�erentialble manifolds in the (x; t) plane. Let usdenote Z a vehicle trajectory associated to such a �eld-line of W: Z(x0; t0; t) is the position at time tof the user whose position at time t0 is x0. Z(x0; t0; t) is the solution at time t of:_x(t) = V (x(t); t)x(t0) = x0 .(1)The corresponding �eld-line would be (Z(x0; t0; t); t). We admit, and there will be no di�culty at thispoint, that if (x0; t0) is located in the discontinuity set of V , V (x0+; t0+) is well-de�ned and can beused as an initial condition for the computation of Z according to (1) (remember that V � 0). Sincethe �eld-lines (Z(x0; t0; t); t) do not intersect in the (x; t)-plane, the �eldW being nonzero everywhere,this kind of description is intrinsically in agreement with the FIFO hypothesis: in accordance with thisrepresentation, vehicles exit the link in the precise order they have entered it. Considering a vehicleentering the link at time t, we may de�ne its exit time E(t) asE(t) def= infs fs =Z(a; t; s) > bg .(2) 2



This de�nition is justi�ed by the fact that the exit speed V (b; :) may well be equal to 0 for �nite timeintervals; this is precisely the expression of the hypothesis that the tra�c �ow can be interrupted.The following �gure, on which �eld-lines of the speed-�eld W have been depicted, illustrates such asituation.
Field-lines
of W

ba

t

E(t)s

I(s)The function E is increasing, piecewise continuous and admits an �inverse� I. Precisely I(t) is de�nedas the time at which a vehicle about to leave the link at time t has entered it. Hence:Z(a; I(t); t) = b .(3)Whenever V (b; t) = 0 on some time interval, I(t) is constant on the same interval. This means thatphysically, it is the same vehicle that is about to leave during the whole duration of such an interval.It follows that: I(E(t)) = tunconditionally, and that: E(I(t))� = t if V (b; t) > 0� t if V (b; t) = 0 .The following �gure illustrates again this point. The graphs of E and I are symetrical relatively totheir bisecting line.
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V(b , .) = 0

We can now de�ne two fundamental quantities:- the experienced travel time (of the user about to exit the link at time t):ETT (a; b; t) def= t� I(t) ,(4)- the predictive travel time of users entering the link at time t:PTT (a; b; t) def= E(t)� t .(5) 3



The experienced travel time grows as t (i.e. its derivative equals 1) if V (b; t) = 0, since then I(t) isconstant. This is an important property we shall use later on.Let us now consider three points a, b, c in that order on a line, as depicted on the following �gure:
a b

cand let us consider the trajectory of a vehicle passing through these three points.

ta

tb

tc
ba c

The vehicle passes through points a, b, c at times ta, tb, tc. It follows:tc � tb = ETT (b; c; tc) = PTT (b; c; tb)tb � ta = ETT (a; b; tb) = PTT (a; b; ta)tc � ta = ETT (a; c; tc) = PTT (a; c; ta)and of course tc � ta = (tc � tb) + (tb � ta) .It follows PTT (a; c; ta) = PTT (a; b; ta) + PTT (b; c; tb)with tb = ta + PTT (a; b; ta) ,and ETT (a; c; tc) = ETT (a; b; tb) +ETT (b; c; tc)with tb = tc �ETT (b; c; tc) .By taking t = ta and t = tc respectively, the following functional equations result:24 PTT (a; c; t) = PTT (a; b; t) + PTT (b; c; t+ PTT (a; b; t))ETT (a; c; t) = ETT (b; c; t) +ETT (a; b; t�ETT (b; c; t)) .(6)These equations express the combination rules that must apply to the predictive and experienced traveltimes. Obviously these travel times are not additive quantities! Hence the di�culties related to spatialaggregation.
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2.2 Analytical computation of predictive and experienced travel times.1. Analytical computation of predictive travel times can only be carried out easily in the case of a�rst-order macroscopic tra�c �ow models of the LWR type:@K@t + @@xQe(K;x) = 0with Qe the equilibrium �ow-density relationship assumed to be a concave piecewise di�erentiablefunction of the density K and piecewise continuous function of the position x. For the computationof PTT (a; b; t) at time t whithin the framework of the LWR model, only the initial condition K(:; t)on the link and the downstream tra�c supply at point b, �(b; r) (see [LE 95-2] for a de�nition of thisnotion), for times r ranging from t to E(t) are needed. Indeed, according to the characteristics method,the fastest propagation of the data at the entry point, i.e. the upstream demand �(a; r) for r � t,occurs when �(a; r) = 0 8r � t .The propagation of the entry point data follows then a line (�(r); r) de�ned by the following equation:������ d�dr = @Qe@K (K(�(r)+; r); �(r)+)�(r)jr=t = a ,(7)where the values K(�(r)+; r) depend on the initial data or the downstream supply only. SinceVe(K;x) � @Qe@K (K;x), 8x, with equality i� K = 0 (by concavity of Qe(:; x)), it follows that the�eld-line of W associated to the trajectory of the vehicle entered on the link at time t cannot crossthe line (�(r); r), r 2 [t;+1), and is in fact situated on the right-hand side of this line, dependingtherefore only on the initial data and the future downstream supply. To compute analytically PTT (t),given the initial condition and the future downstream supply, it su�cies to solve (7) with nil upstreamdemand by the method of characteristics. Further, if the downstream supply is su�cient, i.e. the linkdemand �e(K(b; r); b) is less than the supply �e(b; r) at all times r � t, then PTT (t) depends only onthe initial condition K(x; t), x 2 [a; b]. The following �gure illustrates this argument, in a situation inwhich the downstream tra�c supply is su�cient.
Ωe (. , t)

K(b , .)

ba
E(t)

t

shock-wave with low inflow
speed field-lines

characteristicsTo construct the above �gure, a low but non-zero demand has been used for illustrative purposes. Ifthe demand were exactly nil, the shock-wave would be coincident with the trajectory originating atpoint (a; t).If the downstream supply is not su�cient at all times, the picture is somewhat di�erent, as isillustrated by the following �gure, illustrating a case in which the downstream supply is less than thelink demand from time say t0 on. 5
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speed field-lines
characteristics

shock-wavesOn this �gure, the upstream demand has been assumed nil (this is the extreme possibility), hence thetrajectory originating at (a; t) and the shockwave originating at the same point are coincident till pointA. From point A on, tra�c conditions imposed by the value of the downstream supply prevail alongthe trajectory originating at (a; t).2. The analytical computation of ETT (a; b; t) can be e�ectuated by solving the following partialdi�erential equation: ������ V @T@x + @T@t = 1T (a; t) = 0 (8t) .(8)Indeed, ETT (a; b; t) = t� I(t), hence if one considers the �eld-line of W originating from point (a; s),ending at point (x; t), ETT (a; x; t) = t� s i� Z(a; s; t) = x ,which shows that dETTdt = 1along a �eld-line of W. T is equal to t along trajectories, hence T (x; t) = ETT (a; x; t).
ba

t

t - ETT (a,x;t)

x

Since the operator V @@x + @@trepresents the time-derivative along the �eld-lines of W, the formula (8) results trivially.
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3. One last point: by integrating the conservation equation@K@t + @Q@x = 0over areas (1) and (2) depicted hereafter (and bounded diagonally by a trajectory),
ba

t

E(t)

(1)

(2)

the following relationships result:N(t) def= Z ba K(�; t)d� = Z tI(t)Q(a; s)ds = Z E(t)t Q(b; s)ds ,relating the link in�ow and out�ow to the number N(t) of vehicles contained in the link at a giventime.2.3 De�nition of instantaneous travel times.Although experienced travel times may be used for reactive assignment (this is the case in the INTE-GRATION model), they do not necessarily constitute the prime choice, since an experienced traveltime re�ects more that what has just happened than what is about to happen.Another possibility is to de�ne directly an instantaneous travel time ITT (a; b; t) for the link inorder to satisfy some set of properties. A natural de�nition is given in [RB 94] and can be statedas: �The instantaneous travel time is the travel time that would result if prevailing tra�c conditionsremained unchanged�. In the present setting, this would imply that the actual speed-�eld W at timet should be extrapolated for future values of time say � � t as a time-constant �eldWi(x; �) def= (V (x; t); 1) (8� � t) .The corresponding exit-time Ei(t) computed according to this extrapolation Wi of the speed-�eldsatis�es trivially Ei(t)� t = Z ba d�=V (�; t)since the �eld Wi is time-invariant. The corresponding ITT would be given by:ITT (a; b; t) def= Z ba d�V (�; t)(9)and even more generally ITT (path; t) def= Zpath d�V (�; t)(10)since (9) is evidently additive, as a consequence of the time-invariance of the extrapolated �eld Wi.Regrettably, formulas (9) and (10) can only be used if the speed does not become equal to 0. Such aconstraint can be reasonably applied in macroscopic models for motorway tra�c, and has been applied7



in some cases. But it is obviously inadequate for urban tra�c, which can be interrupted, and forthe modelling of which relatively small time-scales must be considered, allowing for no smoothing ofshort-time (less than a cycle) tra�c �ow variations.Therefore, some less obvious de�nition of ITTs must be introduced in the case of interupted tra�c.The properties we retained for our de�nition of an ITT are the following.� In the case of uncongested tra�c, speci�cally at low density and high speed, the ITT should beapproximated by (10). For a link [a; b], two possibilities can be envisionned, either the estimationof the function (x; t) �! ITT (a; x; t) (forward ITT) or the estimation of the function (x; t) �!ITT (x; b; t) (backward ITT). The forward ITT, at low density and high speed, should thereforebe given by @@xITT (a; x; t) � 1=V (x; t) ,(11)and the backward ITT, at low density and high speed, should be given by@@xITT (x; b; t) � �1=V (x; t) .(12)� In the case of strongly congested tra�c (high density and low speed) some di�erent rule must beapplied for the estimation of the ITT. A possible rule is to consider that the ITT should behaveas the ETT in such tra�c conditions, hence@@tITT (x; b; t) � 1 ,@@tITT (a; x; t) � 1 .(13)The idea here is that, in the case of interrupted tra�c �ow, (13) yields the simplest and possiblyonly possible prediction of the interruption duration, i.e. its actual duration, especially in thecase of an incident in which this duration may not by de�nition be known beforehand.� Finally, if the tra�c �ow is stationary, but nonzero, the ITT should converge towards the actualtravel time, say ATT i.e. ATT (path; t) def= Zpath d�V (�)(14)which is of course (10) again, but applied to a stationary tra�c �ow.The simplest models satisfying to the above properties are the following partial di�erential equations(15) and (16), which are obtained by interpolating linearly (13) with (11) in the case of forward ITTsand with (12) in the case of backward ITTs. More precisely, denoting Vmax the maximum speed, (15)and (16) reduce to (11) and (12) respectively if V = 0, and to (13) if V = Vmax. Let us denoteR(x; t) def= ITT (a; x; t) the forward ITT from a to x at time t, as illustrated by the following �gure.
a

bx

R (x,t)The forward ITT R will satisfy the following equation:������ V @R@x + (1� VVmax )@R@t = 1R(a; t) = 0 (8t) .(15)Let us denote now S(x; t) def= ITT (x; b; t) the backward instantaneous travel time from x to b estimatedat time t), as illustrated by the following �gure. 8
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S (x,t)The following equation results : ������ �V @S@x + (1� VVmax )@S@t = 1S(b; t) = 0 (8t) .(16)It must be emphasized at this point that the functions R and S do not have any simple relation to eachother as might be misleadingly suggested by their de�ning formulas. Indeed, the forward and backwardinstantaneous travel times have quite di�erent properties, as will be shown in the next section, andshould be considered as analogous but absolutely independent notions. For this reason, we shall usein the sequel the notations R and S, and if we really wish to introduce the notation ITT in connexionwith these quantities, we shall distinguish between ITTf (forward ITT) and ITTb (backward ITT).3 Analytical computation of instantaneous travel timesIn this section, we address speci�cally the problem of computing the analytical solutions of (15) and(16). This means that by instantaneous travel times we mean those quantities de�ned in the precedingsection, i.e. the forward and backward ITTf and ITTb as represented by the functions R and S. Inthe sequel, we shall assume Vmax to be independant of the position x, a hypothesis which will enableus to derive methods for the analytical computation of instantaneous travel times.3.1 Analytical computation of forward instantaneous travel times3.1.1 Basic ideasWe shall describe in this subsection how to compute the function R which is de�ned by (15) andrepresents the forward instantaneous travel time: R(x; t) = ITTf(a; x; t). Let us associate to (15) the�eld U(x; t) def= (V (x; t); 1 � V (x; t)Vmax ) ,(17)and the parameter u def= t+ xVmax ,which has the same dimension as t. It follows trivially, by(V; 1 � VVmax ):( 1Vmax ; 1) = 1that < U ; du >= 1with < :; : > the usual canonical bracket between �elds and di�erentials. Hence u is a proper parameterfor the �eld-lines of U , which we denote (X f (u);T f (u)) and de�ne by:264 dX fdu = V (X f ;T f )(u)dT fdu = 1� V (X f ;T f )(u)=Vmax .(18)The superscript f stands for forward. The �eld U and its �eld-lines are illustrated hereafter9



Field-line ofU
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A line u = cst

The relationship V @R@x + (1� VVmax )@R@t = 1 can be rewritten asdduR(X f ;T f )(u) = 1(19)which, with < U ; du >;= 1 means that dR = du along a �eld-line of U . Therefore, the analyticalcomputation procedure of R can be summarized by the following steps:- compute the �eld-lines (X f ;T f )(u) of U by (18),- impose the boundary condition R(a; :) = 0,- deduce R by applying (19) i.e. dR = du along �eld-lines (X f ;T f )(u). This last procedure isillustrated by the following �gure.

u initial

u final

t initial

t final

UField-line of

t
xxa b

In the above example, it results trivially that:R(x; tfinal) = ufinal � uinitial= tfinal � tinitial + (x� a)=Vmax .3.1.2 Impact of kinematical wavesThe above procedure must be detailed when kinematical shock-waves are present. Let K be such akinematical shock-wave. It is always possible to de�ne an upstream (left-hand) and downstream (right-hand) side of K, represented by the symbols � and +, since the propagation speed of kinematical shock-waves is �nite. At some point (x; t) 2 K, the �eld U admits two distinct values U(x�; t) (upstreamvalue) and U(x+; t) (dowstream value). Four situations are possible,10



1. a �eld-line of U crosses K at (x; t) with the slope of K negative,2. a �eld-line of U crosses K at (x; t) with the slope of K positive,3. two �eld-lines of U converge towards K at (x; t),4. two �eld-lines of U diverge from K at (x; t),which are illustrated by the following �gure:

Kinematical shock-waves

Field-lines of U

Case 1

Case 3 Case 4

Case 2

Situations 1 and 2 are trivial: R is continuous at (x; t) and only its derivative relative to u admitsa discontinuity at that point. In situation 3, R admits a discontinuity at point (x; t): R(x+; t) isdetermined by the �eld-line converging from the right towards K, and R(x�; t) is determined by the�eld-line converging from the left towards K.Let us examine now case 4, which is the only non-trivial one. The speed V admits a discontinuityat point (x; t) of K, let V (x+; t) and V (x�; t) be the values of the speed downstream and upstreamof the point (x; t). As the �eld-lines of U diverge from K, it follows that the slope of K must bepositive, and that V (x�; t) � V (x+; t), since the value of the angle of (V; 1� V=Vmax) with the x axisdecreases as V increases. Hence by linearity of V �! (V; 1 � V=Vmax), there exists a unique speedV fK (x; t) 2 [V (x�; t); V (x+; t)] such that (V fK (x; t); 1� V fK (x; t)=Vmax) be in the tangent space T(x;t)Kof K at point (x; t). As long as K is smooth, V fK is continuous (or of the same regularity as K). Hence,K can be de�ned as the solution of:264 dX fdu = V fK (X f ;T f )(u)dT fdu = 1� V fK (X f ;T f )(u)=Vmax ,or, extending the de�nition of U asU�(x; t) def= [(V (x�; t); 1 � V (x�; t)=Vmax); (V (x+; t); 1 � V (x+; t)=Vmax)] ,a unique de�nition results for both ordinary �eld-lines of U and kinematical shock-waves K:ddu(X f ;T f ) 2 U� .11



The result is that in case 4 the forward ITT R is continuous at K and can indeed be calculated alongK by applying the same rule as along ordinary �eld-lines, i.e. dR = du. To understand physicallythe preceding remarks, one might visualize a enlargement of the vicinity of the point (x; t) of K, asdepicted on the following �gure:
Field-lines ofU

a b
t

x

Shock-waveIn this vicinity, the �eld U might be considered to vary with a very sharp gradient from U(x�; t) toU(x+; t) while crossing K, and to take precisely the intermediate value (V fK (x; t); 1 � V fK (x; t)=Vmax),with (x; t) 2 K, resulting in �eld-lines diverging from the central �eld-line K, as depicted on thefollowing �gure.

Field-lines of U

Shock-wave

Two �nal remarks:1. Everything that has been said about case 4 can be transposed trivialy to case 3, essentially byreplacing the divergence of �eld-lines by their convergence towards the shock-wave K.2. If the underlying macroscopic model is a �rst order model of the LWR kind, and if the solution setis restricted to entropy solutions thereof [AN 90], then case 4 is in fact excluded, since it impliesthat the velocity be greater downstream of the shock-wave than upstream, which is excluded bythe entropy conditions at the locus of the shock.3.2 Analytical computation of backward instantaneous travel timesThe object of this subsection is to show how to compute the function S which is de�ned by (16) andrepresents the backward instantaneous travel time: S(x; t) = ITTb(x; b; t). This whole subsectionis �symetrical� of the preceding subsection on the analytical computation of forward ITTs. For thisreason, explanations and comments will be given only as necessary, to emphasize the di�erences withthe preceding subsection. 12



3.2.1 Basic ideasLet us associate to the de�ning equation (16) of S the �eld VV(x; t) def= (�V (x; t); 1 � V (x; t)Vmax )(20)and the parameter v def= t� xVmax ,which has the same dimension as t. V and v are the analogues of U and u. It follows, since(�V; 1� VVmax ):(� 1Vmax ; 1) = 1 ,that < V; dv >= 1 ,(with < :; : > again the usual canonical bracket between �elds and di�erentials). Hence v is a properparameter for the �eld-lines of V, which we denote (X b(v);T b(v)) and de�ne by:264 dX bdv = �V (X b;T b)(v)dT bdv = 1� V (X b;T b)(v)=Vmax .(21)The superscript b stands for backward. The �eld V and its �eld-lines are illustrated hereafter
Field-lines ofV
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The relationship �V @S@x + (1� VVmax )@S@t = 1 can be rewritten asddvS(X b;T b)(v) = 1(22)which, with < V; dv >= 1 means that dS = dv along a �eld-line of V. Therefore, the analyticalcomputation procedure of S can be summarized by the following steps, which are nearly identical tothose de�ned for the computation of R:- compute the �eld-lines (X b;T b)(v) of V by (21),- impose the boundary condition S(b; :) = 0,- deduce S by applying (22) i.e. dS = dv along �eld-lines (X b;T b)(v).The second step should be modi�ed if V (b; t) = 0 for some interval t 2 [t0; t1], becoming S(b; t0) = 0,S(b; t) = t � t0, for all t 2 [t0; t1], at least if one wishes to retain the continuity of S at point b.Nevertheless this modi�cation of the boundary condition has actually no other impact or usefulness.The last step of the procedure can be illustrated by the following �gure.13



winitial

wfinal

t initial

t final

Field-line of V

t
xbx

It is trivial to check on the above example thatS(x; t) = wfinal � winitial= tfinal � tinitial + (b� x)=Vmax .3.2.2 Impact of kinematical wavesLet us analyze now the impact of kinematical shock-waves on the procedure. The method is essentiallythe same as for forward ITTs. Let K be such a kinematical shock-wave. As the propagation speedof kinematical shock-waves is �nite, we de�ne again an upstream (left-hand) and downstream (right-hand) side of K, represented by the symbols � and +. Let (x; t) be a point 2 K; at such a point the�eld V admits the two distinct values V(x�; t) (upstream value) and V(x+; t) (dowstream value). Foursituations are possible,1. a �eld-line of V crosses K at (x; t) with positive slope for K,2. a �eld-line of V crosses K at (x; t) with negative slope for K,3. two �eld-lines of V converge towards K at (x; t),4. two �eld-lines of V diverge from K at (x; t),which are illustrated by the following �gure:

Kinematical shock-waves

Field-lines of V

Case 3 Case 4

Case 2
Case 1
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Situations 1 and 2 are trivial: S is continuous at (x; t) and only its derivative relative to u admitsa discontinuity at that point. In situation 3, S admits a discontinuity at point (x; t): S(x+; t) isdetermined by the �eld-line converging from the right towards K, and S(x�; t) is determined bythe �eld-line converging from the left towards K. Furthermore case 3 implies a velocity that is greaterdownstream than upstream of the shockwave, hence contradicts the entropy condition if the underlyingmodel is a �rst order one of the LWR type.Let us examine now case 4, which is the only non-trivial one. The speed V admits a discontinuityat point (x; t) of K, let V (x+; t) and V (x�; t) be the values of the speed downstream and upstreamof the point (x; t). As the �eld-lines of V diverge from K, it follows that the slope of K must benegative, and that V (x�; t) � V (x+; t), since the angle of (�V; 1� V=Vmax) with the x axis increasesas V increases. Hence by linearity of V �! (�V; 1 � V=Vmax), there exists a unique speed V bK(x; t) 2[V (x+; t); V (x�; t)] such that (�V bK(x; t); 1 � V bK(x; t)=Vmax) be in the tangent space T(x;t)K of K atpoint (x; t). As long as K is smooth, V bK is continuous (or of the same regularity as K). Hence, K canbe de�ned as the solution of: 264 dX bdv = �V bK(X b;T b)(v)dT bdv = 1� V bK(X b;T b)(v)=Vmax ,or, extending the de�nition of V asV�(x; t) def= [(�V (x�; t); 1� V (x�; t)=Vmax); (�V (x+; t); 1 � V (x+; t)=Vmax)] ,a unique de�nition results for both ordinary �eld-lines of V and kinematical shock-waves K:ddv (X b;T b) 2 V� .The result is that in case 4 the backward ITT S is continuous at K and can indeed be calculated alongK by applying the same rule as along ordinary �eld-lines, i.e. dS = dv. Let us visualize a enlargementof the vicinity of the point (x; t) of K, as depicted in the following �gure:
Field-lines ofV

t
xb

Shock-waveIn this vicinity, the �eld V might be considered to vary very fast from V(x�; t) to V(x+; t) whilecrossing K, and to take the intermediate value (�V bK(x; t); 1 � V bK(x; t)=Vmax), resulting in �eld-linesdiverging from the central �eld-line K, as illustrated hereafter.
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Shock-wave

One �nal remark: everything that has been said about case 4 can be transposed trivialy to case 3,essentially by replacing the divergence of �eld-lines by their convergence towards the shock-wave K.Nevertheless, case 3 is here of very limited import as has been noted above.3.3 Composition of instantaneous travel timesTo derive the composition rule of ITTs, let us again consider three points on a line:
a b

cand let us consider �rst the forward ITT: ITTf . The �eld-line of U originating at point (a; ta) passesthrough points (b; tb) and (c; tc).
u = uc

u = ub

τa

τc

τb

ta

tb

tc

Field-line of U

ca b

Let xa, xb, xc be the coordinates of points a, b, c. The linest+ xVmax = u = ui def= ti + xiVmaxfor i = a; b; c intersect the line x = xa at points �i given by:�i = ti + xi � xaVmax .
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Now we deduce from (19) that:������ �c � �a = uc � ua = ITTf(a; c; tc)�b � �a = ub � ua = ITTf(a; b; tb)�c � �b = uc � ub = ITTf(b; c; tc)Considering that �c � �b = uc � ub = tc � tb + xc � xbVmax ,it follows that tb = tc + ITTf(b; c; tc)� xc � xbVmax .Finally, replacing tc by t and using the trivial relationship �c � �a = (�c � �b) + (�b � �a), one gets:ITTf(a; c; t) = ITTf(b; c; t) + ITTf(a; b; t+ ITTf(b; c; t)� xc � xbVmax ) .(23)The derivation of the composition rule of backward ITTs, i.e. ITTb, follows the same steps.
τa

τb

Field-line of V

tb

ta

v = va

v = v
b

tc τc=

a b c

We denote vi def= ti � xiVmaxfor i = a; b; c, and call �i the intersections of the linest� xVmax def= v = viwith the line x = xc, for i = a; b; c. The �i are given by�i = ti � xi � xcVmax .Now we deduce from (22) that:������ �a � �c = va � vc = ITTb(a; c; ta)�b � �c = vb � vc = ITTb(b; c; tb)�a � �b = va � vb = ITTb(a; b; ta)From tb � ta = �b � �a + xb � xaVmax17



we deduce tb = ta � ITTb(a; b; ta) + xb � xaVmax .Replacing ta by t and using again �a � �c = (�a � �b) + (�b � �c) it follows that:ITTb(a; c; t) = ITTb(a; b; t) + ITTb(b; c; t+ xb � xaVmax � ITTb(a; b; t)) .(24)Remarks. The ITTs may �converge� towards R: d�V (�;:) and be nearly additive under two conditions.The �rst one is that the �ow be nearly stationary, hence @@t � 0, leaving V @@x � 1. The ETT �converges�towards R: d�V (�;:) under the same condition. The second condition is that the product (1� VVmax ) @@t � 0,i.e. V � Vmax. This condition is speci�c of ITTs. The above formulas (23) and (24) show thisnear-additivity clearly. Indeed, if ITTb(b; c; t) � xc�xbVmax or if ITTb(a; b; t) � xb�xaVmax , then both formulassimplify as: ITT (a; c; t) � ITT (a; b; t) + ITT (b; c; t) .4 Semidiscretized models.This very short section is devoted to semidiscretized models, mainly as a tribute to the historicalimportance of the subject for theoretical studies on assignment. It must be noted that more and moredoubts on the relevance of this type of models express themselves in the literature, as for instancein [DA 95], [HA 96] (and the references therein). For this reason, our review of this subject will beextremely cursory, and limited to the illustration of the PTT concept. By semidiscretized models wemean models continuous in time and discretized in space, with the link as space discretization unit.As indicated above, the link PTT (t) is essentially a function of the link state K(:; t) at time t and thedownstream tra�c �ow supply �(b; s) for s 2 [t; E(t)]. In �uid tra�c conditions (downstream tra�c�ow supply always su�cient to accomodate the tra�c demand of the link), and at the zero-th orderapproximation, one might consider PTT (t) as a function of N(t). This is the basis of some �ow modelsfor assignment problems ([FC 94], [FBSTW 93], [AS 96], [RHB 96]). In such models the link tra�c�ow dynamics are described by a model of the following kind:ddtN(t) = u(t)� v(t)(u(t) the link in�ow and v(t) the link out�ow), supplemented by a model for the PTT (t), which isusually called �(t) in this context: �(t) = f(N(t))and the FIFO condition, which in the present case does not result naturally from the model. This lastcondition implies ([AS 96]) that: v(t+ �(t)) = u(t)1 + d�dt (t) = u(t)dEdt (t)(25)by expressing that users entering the link at time t exit it at time t+ �(t). With the FIFO hypothesis,the following integral relationships result, similar to those already stated in the continuous case:N(t) = Z tI(t) u(s)ds = Z E(t)t v(s)ds .It can be shown that the only consistent FIFO model of this kind is the one associated to a lineartravel time function: �(t) = �+ �N(t) .This result was suggested in [DA 95], the su�ciency of this linear form was demonstrated in [FBSTW 93],and its necessity in [LL 96]. The linear part represents the average time lost in the queue at the exit18



of the link, which is somewhat at odds with the hypothesis that the downstream tra�c supply can beneglected. It is not known to the author of the present paper whether non-FIFO models of the abovekind can be built. The analysis of such models might proove di�cult since they would not admit anyclosed expressions such as (25) for the link out�ow.5 Fully discretized macroscopic models.5.1 Discretization: principlesWe shall consider in the sequel discretizations of the following kind: links are divided into cells say(s) = [xs�1; xs], of length ls, containing N ts vehicles at time t�t, with the average cell exit �ow Qtsduring time-step [t�t; (t + 1)�t], estimated at the cell exit point xs. (A notable exception to thiskind of approach to discretized macroscopic modelling is the particle discretization approach, as inINTEGRATION).
x s-1 x s

t
s

Q

s
t

N Vs
tNo hypothesis is made on the macroscopic model itself, and on the exact manner in which the abovequantities are computed. Nevertheless, we expect the discretization to respect some basic rules, andwe shall refer to discretizations satisfying to those rules as proper discretizations.The �rst requirement will be that the ratio�s def= Vs;max�tls ,(26)be less than 1, with of course �t the time-step, ls the length of cell (s) and Vs;max the maximum speedin cell (s). Another signi�cant ratio is �ts def= Qts�tN ts ,(27)which will also be expected to be less than 1, as such a condition expresses that the number of vehiclesexiting a cell during a time-step be less than the number of vehicles present in the cell at the beginningof the time-step. It is only if �ts � 1 is satis�ed that it will be possible to keep track of vehiclepropagation in the model. To summarize, a proper discretization in our sense satis�es to:� �s � 1�ts � 1 .For travel-time estimation, we need some relevant expression of the speed. For discretized macroscopicmodels as we consider here, either there exist no intrinsic estimates of speed (1st order models), or,if such estimates exist, they may yield irrealistic values of the travel times. Hence we propose tointroduce a speci�c speed, which we shall call cell exit speed and de�ne asV ts = QtsKts = QtslsN ts(28)with Kts def= N ts=ls de�ned as the mean cell density at time t�t. The signi�cance of this choice is that itpermits to emulate FIFO behaviour whithin each cell, which, as has been noted previously, is intrinsicto the interpretation of macroscopic models with the speed �ow. As is illustrated by the following�gure, 19
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dxthe out�ow during a time step, Qts�t, will thus be equal to the mean cell density Kts times the distancecovered during the time-step at speed V ts , i.e. KtsV ts�t, which is the precise translation of the FIFOhypothesis if the density is assumed uniform in cell (s). Associated to this cell exit speed, it is possibleto de�ne the following ratio: �ts = V tsVs;max .(29)Regrettably, most models do not give any guarantee that if the discretization is proper, the inequality�ts � 1will be satis�ed. Nevertheless, in the case of �rst-order models of the LWR kind, discretized byGodunov's method [LE 95-2], this property holds true, and will therefore be used occasionnally. Letus note �nally that �s�ts = �ts .5.2 ETT estimation: the naive approach5.2.1 IntroductionThe most straightforward approach to the numerical calculation of ETTs in the framework de�nedin the preceding subsection would be to hold an account of the entry-time of every vehicle in everycell, and to process vehicles inside a cell in the order de�ned by their entry-time, letting them exitthe cell in the precise order they entered it. In fact, if the tra�c �ow is relatively �uid, or if thereexists some lower bound on speeds (a hypothesis which has already been discussed and is usuallyrelevant for motorway networks), this idea may prove quite e�cient, as the cell traversal time will thenbe bounded from above. The boundedness of traversal times is an essential feature if one wishes toprevent an occasional but uncontrollable in�ation of the data relative to vehicle cell entry times. Tosummarize, the approach described here is feasable for motorway networks, with the correspondingmacroscopic model endowed with a lower bound for speed.One last remark: in the context of a formally similar problem i.e. the propagation of partial den-sities in a discretized macroscopic freeway model, whose equations for compositions �d are given by[LE 95-2]: V @�d@x + @�d@t = 0 ,Daganzo [DA 94] proposed an algorithm of the same family as the one proposed hereafter.5.2.2 The algorithmLet us now consider a cell (s) as depicted hereafter:
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and let us de�ne the following quantities:rts;0 = N tsrts;1 = N t�1s �Qt�1s �t... ...rts;i = N t�is � iXj=1Qt�js �t... ...with rts;i being by de�nition the number of vehicles left over at time t�t from the vehicles present inthe link at time (t� i)�t. Further we de�ne Its as:Its def= Minfi = rts;i � 0ga de�nition which means that if I = Its, then rts;I � 0 and rts;I�1 > 0. This de�nition is completelyconsistent, since the quantities rts;i are decreasing with i, as is shown by the following straightforwardcalculation: rts;i � rts;i+1 = N t�is �N t�i�1s +Qt�i�1s �t= Qt�i�1s�1 �t� 0 ,since the N t�is satisfy to the conservation equationN t�is = N t�i�1s +Qt�i�1s�1 �t�Qt�i�1s �t .At time t�t the following set summarizes the information relative to the entry time of the vehiclesin cell (s): Rts def= frts;i = i = 0; Itsg .(30)To expand on previous remarks, if the cell traversal time increases, Its, which measures the quantity ofdata relative to cell entry times that is stored for the algorithm, increases in the same measure.Let us now consider an iteration, and show how Rt+1s is deduced from Rts. By de�nition of thequantities rts;i, ������� rt+1s;0 = N t+1srt+1s;i = rts;i �Qts�t (8i)It+1s = Minfi = rt+1s;i � 0g(hence the rt+1s;i should be computed only as long as rts;i�1 �Qts�t > 0). The initialization of the Rtsat time say t = 0 is relatively straightforward. Known at time t = 0 are the N0s and the Q0s. It su�cesto assume that the tra�c situation prior to the initialization has been stationary to deduce:���� r0s;i = N0s � iQ0s�tI0s = Minfi = i � N0s =Q0s�tg .Whatever the initialization error, it will be eliminated in �nite time, i.e. the time it takes for the N0sinitial vehicles to exit the cell (s). After that time, the initial set R0s will no longer have any in�uenceon the actual set Rts.Finally, let us address the problem of estimating the ETT from the data contained in the sets Rts.The clue to the result is the fact that :rts;i � rts;i+1 = Qt�i�1s�1 �t � 021



which has been proven above. This result means that rts;i � rts;i+1 represents the number of vehicleshaving entered the cell (s) during the time interval [(t � i � 1)�t; (t � i)�t]. Now let us denote, inorder to simplify notations, I = Its .By de�nition, rts;I�1 > 0 and rts;I � 0.
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Let us represent rts;I�1 and rts;I as depicted on the above �gure. The �rst vehicle that has entered thecell (s) at time (t � I)�t is located at location � and has exited the cell before time t�t. The lastvehicle having entered the cell at time (t � I + 1)�t is located at point � inside cell (s). Finally, atpoint xs is located a vehicle about to leave cell (s); downstream of this vehicle there are �rts;I vehiclesout of the Qt�Is�1�t vehicles that have entered the cell during time interval [(t � I)�t; (t � I + 1)�t].Therefore, with the usual assumption that the in�ow has been constant during that time-interval, itfollows that the time of entry of the vehicle about to leave the cell at time t�t is(t� I)�t+ �rts;IQt�Is�1 .It follows that ETT ts is t�t minus the above entry time, hence replacing Qt�Is�1�t by �rts;I + rts;I�1, itfollows that ETT ts = (I + �rts;Irts;I�1 � rts;I )�t .(31)This formula entails no errors other than those resulting from the discretization and from the interpo-lation of ETT ts . Notably, there will be no error propagation from one time-step to the next. Let usnote also that: I�t � ETT ts < (I + 1)�t .Finally, it must be noted that the preceding method gives us no clue as how to combine the cell ETTsin order to obtain link ETTs. In fact, the simplest method would be to apply directly the precedingformula (31) to a link with, of course, the cell subscript s being changed into a link subscript.5.3 Calculation of ETTs according to (8)Let us recall (8) ������ V @T@x + @T@t = 1T (a; t) = 0 (8t) .The setting is the same as in the rest of this section. In order to discretize (8), we shall need to choose acell speed; we shall again use the cell exit speed as de�ned by (28). The basic ideas of the discretizationare the following: 22



� the approximate speed �eld say ~W will be de�ned as piecewise constant:~W(�; �) def= (V ts ; 1) i� � 2 [xs�1; xs] and � 2 [t�t; (t+ 1)�t] ,� the function T is approximated by a piecewise linear function ~T (�; �) taking valuesT ts def= ~T (xs; t�t)at the node points,� The value T t+1s will be derived from ~T (:; t�t)jcell (s) by applyingdETTdt = 1along �eld-lines of ~W .
x

s-1
xs

∆t(t+1)

∆tt
yt

s

Ts-1
t

Ts-1
t+1

Ts
t

Ts
t+1

Hence let us de�ne yts def= xs � V ts�tthe �rst coordinate of the intersection point (yts; t�t) of the �eld-line of ~W originating at point (xs; (t+1)�t) (which is a line of direction (V ts ; 1) with the line � = t�t. It follows:T t+1s = ~T (yts; t�t) + �twith ~T (yts; t�t) = �tsT ts�1 + (1� �ts)T tsby the linearity of ~T . The boundary condition is expressed by:T t0 = 0 .Hence: � T t+1s = �tsT ts�1 + (1� �ts)T ts +�tT t0 = 0 ,(32)with �ts de�ned by (27).The preceding method is related to the method of characteristics, as described in [PI 88] and appli-cable to the convection equation yielding T . But in the present case, the method has been restricted toa single time-step, which is of course very convenient from a practical point of view, since the algorithmreduces to the simple recursive smoothing formula (32). Of course, the complete characteristics method(implying backward computation of the �eld-lines of ~W till the boundary � = a is encountered) wouldbe exact for ~W but extremely unwieldy and would require as much storage space as the naive method.In the context of tra�c problems, the usual tradeo� between precision and computational e�ciencymust favour the latter.Remarks 23



1. If S = 1, the formula (32) becomes:8<: T t+1 = (1� �t)T tT t = 0�t+1 = Qt�t=N t ,by dropping the subscript s. This formula was introduced on a purely heuristic basis in [BLL 95-96].2. It is interesting to introduce the cell travel timesETT ts def= T ts � T ts�1 .From (32) it follows: ETT t+1s = T t+1s � T t+1s�1= �T t+1s�1 + �tsT ts�1 + (1� �ts)T ts +�t= �(T t+1s�1 � T ts�1) + �t+ (1� �ts)ETT ts .(33)Further from (32) it is possible to deduce:T t+1s � T ts = �t� �tsETT ts ,and, combining these last identities, it follows:ETT t+1s = �tsETT ts�1 + (1� �ts)ETT ts .(34)This last equation shows that, if initially, the cell travel times are positive, they stay so at all times.As a consequence, it follows also that at all times�t� (T t+1s � T ts) � 0 .3. Further, if V ts � Vs;max, i.e. �ts � 1, a condition satis�ed for instance by the Godunov schemeapplied to the LWR model, one can deduce from (32) that:T ts � sXi=1 liVi;max .(35)Indeed, if this inequality is satis�ed initially, it follows by recurrence that if (35) holds at time t�t forall s, then (35) holds at time (t+ 1)�t for all s:T t+1s = �tsT ts�1 + (1� �ts)T ts +�t� [�ts + 1� �ts] s�1Xi=1 liVi;max + (1� �ts) lsVs;max +�t .Hence: T t+1s � sXi=1 liVi;max � �t� (1� �ts) lsVs;max= �t(1� �ts) � 0 .
24



4. From (33) one deduces trivially that:ETT t+1s � lsV ts = �(T t+1s�1 � T ts�1)� lsV ts +�t+ (1� �ts)(ETT ts � lsV ts ) + (1� �ts) lsV ts= �(T t+1s�1 � T ts�1) + (1� �ts)(ETT ts � lsV ts )which shows the convergence of cell travel times towardslsV ts � Zcell (s) d�V (�; t�t)when the tra�c �ow conditions tend towards stationary conditions.5. Let us suppose the �ow has been disaggregated according to attribute value d, which might be adestination (global or local), an OD pair value, a category of users (informed, uninformed), etc . . . .Then the macroscopic model provides also the values of the relevant partial quantities:Qd;ts ; Kd;tsNd;ts = lsKd;tsV d;ts = Qd;ts =Kd;ts�d;ts = V d;ts �t=ls(partial �ows, densities, number of vehicles, cell exit speeds). Note that in the special case where themodel is FIFO-like, then: Qd;ts = Kd;tsKts Qtsand the formula for the �d;ts simpli�es as �d;ts = �ts.Formula (32) can be generalized without any di�culty to disaggregated �ows, by substituting tosuperscript t the superscripts d; t:( T d;t+1s = �d;ts T d;ts�1 + (1� �d;ts )T d;tsT d;t0 = 0 .6. The generalization of (32) to paths is straightforward, as it su�ces to divide the path into cells asif it were a link. Let us note that if link travel times are the only quantities available, then (34) canbe iterated along the path, with the subscript s in (34) refering in that case to links instead of cells.7. It is also possible to generalize (32) to exchange zones as de�ned in the STRADA model forintersection modelling [BLL 95-96]. Using the notations and de�nitions provided in that reference fornetwork modelling, for zone exit point j of zone say z, one may de�ne the exit speedV Otz;j def= QOtz;jNOtz;j �zwith �z the zone length scale, QOtz;j the zone out�ow through its exit point j during time-interval[t�t; (t+ 1)�t], and NOtz;j the number of vehicles about to exit zone z through exit point j. Finally,we de�ne: �tz;j def= �tQOtz;jNOtz;jand deduce trivially a single cell formula for the experienced traversal time of the zone z at time t�tfrom any entry point to exit point j:T t+1z;j = �t+ (1� �tz;j)T tz;j .The zone might also be included into one or several paths, as illustrated herafter, and would thencontribute to the path ETT estimation as any other ordinary cell of the path.25
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5.4 Discretization: forward ITTLet us recall that the forward ITT, ITTf(a; x; t) = R(x; t), is de�ned as the solution of the followingequation (15): ������ V @R@x + (1� VVmax )@R@t = 1R(a; t) = 0 (8t) .The principle of the discretization is exactly the same as for the ETT T .- The �eld U is approximated by a piecewise constant �eld ~U :~U(x; t) def= (V ts ; 1� V tsVs;max )with x 2 [xs�1; xs] and t 2 [t�t; (t+ 1)�t].- The function R is approximated by a continuous and piecewise linear function ~R de�ned by thevalues Rts def= ~R(xs; t�t) .- The values Rts are calculated every time-step using the relationship dR = du along the �eld-lines of~U , with u = � � �=Vmax.
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tIn the space � time plane, which shall be denoted here the (�; �)-plane, the �eld-line of ~U originatingat point (xs; (t + 1)�t) intersects the line � = xs�1 at point (xs�1; � ts), or the line t = t�t at point(yts; t�t), depending on the relative value of V ts .Let us consider �rst intersection point (yts; t�t). This point is given by������ xs � yts V ts�t 1� V ts =Vs;max ������ = 026



hence xs � yts = V ts�t1� (V ts =Vs;max) .It must be noted that, in the present case, it is necessary that �ts � 1, where �ts has been de�ned asthe ratio �ts = V ts =Vs;max. Let us also remind that:�s�ts = �ts .Now, xs � yts � ls imposes �ts1� �ts � 1�s ,i.e.: �ts � 11 + �s .(36)Equality in (36) is equivalent to �ts = 1� �ts. Now, applying dR = du along the approximate �eld-line[(yts; t�t); (xs; (t+ 1)�t)], it follows that:Rt+1s = ~R(yts; t�t) + u(xs; (t+ 1)�t)� u(yts; t�t) .By linearity of ~R, ~R(yts; t�t) = Rts�1xs � ytsls +Rts yts � xs�1lshence, if �ts � 11+�s (i.e. at low speed),Rt+1s = �t1� �ts +Rts�1xs � ytsls +Rtsyts � xs�1ls .Let us now consider intersection point (xs�1; � ts). � ts results from:������ ls V ts(t+ 1)�t� � ts 1� V ts =Vs;max ������ = 0hence: (t+ 1)�t� � ts = �t1� �ts�ts .This quantity is less than �t i� 1� �ts � �ts = �s�tsi.e.: �ts � 11 + �s .From dR = du again, applied here along the approximate �eld-line [(xs; (t + 1)�t); (xs�1; � ts)], wededuce that: Rt+1s = ~R(xs�1; � ts) + u(xs; (t+ 1)�t)� u(xs�1; � ts)= ~R(xs�1; � ts) + (t+ 1)�t� � ts + lsVs;max= ~R(xs�1; � ts) + �t�ts ,
27



and by linearity of ~R, ~R(xs�1; � ts) = Rt+1s�1 � ts ��t�t +Rts�1 (t+ 1)�t� � ts�t= �t�ts +Rt+1s�1�ts + �ts � 1�ts +Rts�1 1� �ts�ts .Finally, if �ts � 11+�s (i.e. at high speed),Rt+1s = 1�ts [�t+Rt+1s�1(�ts + �ts � 1) +Rts�1(1� �ts)] .The end result is: 26666664 Rt+1s = 11��ts [�t+ �tsRts�1 + (1� �ts � �ts)Rts]if �ts � 11+�sRt+1s = 1�ts [�t+Rt+1s�1(�ts + �ts � 1) +Rts�1(1� �ts)]if �ts � 11+�sRt+10 = 0(37)Properties of the Rts1. Introducing the link travel times TTf ts def= Rts �Rts�1 ,it follows from (37) that:266664 TTf t+1s = 11��ts [�t+ (1� �ts � �ts)TTf ts]� (Rt+1s�1 �Rts�1)if �ts � 11+�sTTf t+1s = 1�ts [�t� (1� �ts)(Rt+1s�1 �Rts�1)]if �ts � 11+�sThis last formula can also be rewritten as266664 TTf t+1s � lsV ts = (1� �ts1��ts )[TTf ts � lsV ts ]� (Rt+1s�1 �Rts�1)if �ts � 11+�sTTf t+1s � lsV ts = �1��ts�ts (Rt+1s�1 �Rts�1)if �ts � 11+�swhich illustrates the convergence of cell travel times towardslsV :s � Zcell s d�V (�; :)under tra�c conditions that tend towards stationary tra�c conditions. The question of whether thosecell travel times TTf ts remain � 0 at all times is open. It is possible to prove the following somewhatweaker result:2. If, for all s = 1; S, and for some initial time t = t0, the following inequality holds:Rts � Xi=1;s lsVs;max ,28



then it holds for all subsequent instants t � t0. This inequality means that the forward ITT numericalestimate of the travel time is always greater than the smallest possible experienced travel time. Theresult is a consequence of the inequality Vs;max � V ts(i.e. �ts � 1), and of a technical result which we shall state now. Before stating this technical result,let us �rst introduce the following notations:�t+1s def= Rt+1s � Xi=1;s lsV ts�ts def= Rts � Xi=1;s lsV ts .We can now state the technical result:266664 �t+1s = �ts1��ts �ts�1 + (1� �ts1��ts )�tsif �ts � 11+�s�t+1s = 1��ts�ts �ts�1 + (1� 1��ts�ts )�t+1s�1if �ts � 11+�s ,as a trivial consequence of (37) and of the identity�t = �ts lsV ts .3. The extension of (37) to partial �ows is trivial. We adopt the notations and setting of the remark5 of the preceding subsection relative to the discretization of ETTs, which we complete with theintroduction of the following notation: �d;ts def= V d;tsVs;max .In the case of a FIFO model, we would of course have�d;ts = �ts 8d ,as a trivial consequence of V d;ts = V ts for all d. Now, (37) can be rewritten as:266666664 Rd;t+1s = 11��d;ts [�t+ �d;ts Rd;ts�1 + (1� �d;ts � �d;ts )Rd;ts ]if �d;ts � 11+�sRd;t+1s = 1�d;ts [�t+Rd;t+1s�1 (�d;ts + �d;ts � 1) +Rd;ts�1(1� �d;ts )]if �d;ts � 11+�sRd;t+10 = 0 .In a similar spirit, what was told in the case of ETTs about generalizations to zones holds also truehere, by replacing in (37) subscripts s by the couple z; j of zone and zone exit point. Of course, thefollowing de�nition would have to be added to those already given:�tz;j def= V Otz;jVz;max ,with Vz;max the relevant desired speed parameter associated to the zone equilibrium supply and demandfunctions, and V Otz;j the out�ow speed relative to exit point j of zone z.Finally, (37) can also be extended to paths, with the subscript s refering either to cells or links,depending on how the path is subdivided. 29



5.5 Discretization: backward ITTThe analysis will follow very closely what has been done in the preceding subsection for forward ITTs.The backward ITT, ITTb(x; b; t) = S(x; t), is de�ned as the solution of the following equation (16):������ �V @S@x + (1� VVmax )@S@t = 1S(b; t) = 0 (8t) .The principle of the discretization is exactly the same as for the ETT T and the forward ITT R.- The �eld V is approximated by a piecewise constant �eld ~V:~V(�; �) def= (� V ts ; 1� V tsVs;max )with � 2 [xs�1; xs] and � 2 [t�t; (t+ 1)�t].- The function S is approximated by a piecewise linear function ~S de�ned by its values at node pointsSts def= ~S(xs; t�t) .- The values Sts are calculated every time-step using the relationship dS = dv along the �eld-lines of~V, with v = � + �=Vmax.
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The �eld-line of ~V originating at point (xs�1; (t + 1)�t) of the space � time (�; �) plane intersectseither the line � = xs at point (xs; � ts), or the line � = t�t at point (�ts; t�t), depending on the relativevalue of V ts .The intersection point (�ts; t�t) is given by������ �ts � xs�1 V ts�t 1� V ts =Vs;max ������ = 0hence �ts � xs�1 = V ts�t1� (V ts =Vs;max) .Here again, the derivation relies on the inequality�ts � 1(i.e. the relative exit speed be les than 1), a condition assumed to be true from now on till the end ofthe present subsection. The condition xs � yts � ls is equivalent to (36):�ts � 11 + �s ,30



as with the forward ITT. This is of course the low-speed case. Now, using dS = dv along the approxi-mate �eld-line [(xs�1; (t+ 1)�t); (�ts; t�t)] of V, it follows that:St+1s�1 = ~S(�ts; t�t) + v(xs�1; (t+ 1)�t)� v(�ts; t�t) ,Contrarily to the calculation of R, the calculation of the St+1s proceeds, starting from s = S, backwardsto s = 0, with the boundary condition St+1S = 0. Applying the linearity of ~S and the de�nition of v,it follows, in the case when �ts � 11+�s (i.e. at low speed),St+1s�1 = �t1� �ts + (1� �ts1� �ts )Sts�1 + �ts1� �tsSts .The intersection point (xs; � ts) results from:������ ls V ts(t+ 1)�t� � ts 1� V ts =Vs;max ������ = 0i.e.: (t+ 1)�t� � ts = �t1� �ts�ts .This quantity is less than �t i� �ts � 11 + �s ,(the high-speed case). Applying the linearity of ~S, the the relationship dS = dv along the approximate�eld-line [(xs; � ts); (xs�1; (t+ 1)�t)] as well as the de�nition of v, we deduce that:St+1s = ~S(xs; � ts) + v(xs�1; (t+ 1)�t)� v(xs; � ts)= �t�ts + St+1s �ts + �ts � 1�ts + Sts1� �ts�ts .in the case when �ts � 11+�s (i.e. at high speed). The results are summarized by:26666664 St+1s�1 = 11��ts [�t+ �tsSts + (1� �ts � �ts)Sts�1]if �ts � 11+�sSt+1s�1 = 1�ts [�t+ (�ts + �ts � 1)St+1s + (1� �ts)Sts]if �ts � 11+�sSt+1S = 0 .(38)Properties of the StsAgain, we follow closely what has already be done for the forward ITTs.1. Introducing the link travel times TTbts def= Sts�1 � Sts ,it follows from (38) that:266664 TTbt+1s = 11��ts [�t+ (1� �ts � �ts)TTbts]� (St+1s � Sts)if �ts � 11+�sTTbt+1s = 1�ts [�t� (1� �ts)(St+1s � Sts)]if �ts � 11+�s31



which can be rewritten as266664 TTbt+1s � lsV ts = (1� �ts1��ts )[TTbts � lsV ts ]� (St+1s � Sts)if �ts � 11+�sTTbt+1s � lsV ts = �1��ts�ts (St+1s � Sts)if �ts � 11+�swhich illustrates the convergence of cell travel times towardslsV :s � Zcell s d�V (�; :)as tra�c conditions tend towards stationary tra�c conditions. The question of whether those celltravel times TTbts remain > 0 at all times is open, but as previously it is possible to prove the followingsomewhat weaker result:2. If, for all s = 1; S, and for some initial time t = t0, the following inequality holds:Sts�1 � Xi=s;S lsVs;max ,then it holds for all subsequent instants t � t0. This inequality means that the backward ITT numer-ical estimate of the travel time is always greater than the smallest possible experienced travel time.Introducing the following notations:�t+1s def= St+1s�1 � Xi=s;S lsV ts�ts def= Sts�1 � Xi=s;S lsV ts ,we can state: 266664 �t+1s = �ts1��ts �ts + (1� �ts1��ts )�ts�1if �ts � 11+�s�t+1s = 1��ts�ts �ts + (1� 1��ts�ts )�t+1sif �ts � 11+�s ,as a trivial consequence of (38) and of the identity�t = �ts lsV ts .The result announced above is then an easy consequence of these formulas and of the inequalityVs;max � V tsi.e. (�ts � 1).3. The extension of (38) to partial �ows is trivial. We adopt the notations and setting of the remark3 of the preceding subsection relative to the discretization of forward ITTs. Now, (38) can be rewrittenas: 266666664 Sd;t+1s�1 = 11��d;ts [�t+ �d;ts Sd;ts + (1 � �d;ts � �d;ts )Sd;ts�1]if �d;ts � 11+�sSd;t+1s�1 = 1�d;ts [�t+ Sd;t+1s (�d;ts + �d;ts � 1) + Sd;ts (1� �d;ts )]if �d;ts � 11+�sSd;t+1S = 0 . 32
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