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1 Introduction.

The first aim of this paper is to give a rigorous background to the definition of travel times in the context
of macroscopic models, with dynamic assignment as their main application field. The second aim is to
provide simple computational rules for the estimation of these travel times. Although implementation
in relation with first order models will be emphasized in this paper, nearly all results carry over without
modification to higher order models, as long as they satisfy to some basic requirements.

The motivating problem behind the estimation of travel times being dynamic assignment, a distinc-
tion must be drawn at this point, depending on whether we consider reactive or predictive assignment,
according to the terminology introduced in [PA 90]. Further distinctions can be made, relating to the
nature of traffic low. A survey of the literature concerning all possible computational methods for
travel times is out of the scope of the present paper and the reader is refered to [RB 94| and [BLL 96].
Roughly, as far as travel times are concerned, one can distinguish between:

- the experienced travel time, abbreviated as ETT, i.e. the travel time of the user who has just
completed the considered trip (for instance INTEGRATION [VA 95]),

- the predictive travel time, abbreviated as PTT, usually integrated into the flow model ([FBSTW 93|,
CONTRAM ([LGT 89|, [LTB 78|), |[RB 94]), which is an estimate of the travel time that shall
be experienced by the user who begins his trip,

- the instantaneous travel time, abbreviated as ITT, which is an index of the current state of the
network, translated into a travel time that is provided to users in real time in order to allow
them to choose between various possible paths. I'TTs constitute an essential ingredient of reactive
dynamic assignment schemes, hence their importance.

As far as traffic flow conditions are concerned, the most important single factor is whether the traffic
flow is considered as uninterrupted or is liable to be interrupted. This is of course by and large a time
scale matter, since the typical traffic flow interruption results from traffic management operations.
The time scale in the interrupted case is therefore smaller than say the cycle length in the presence of
traffic lights. Standard practice in this case is the averaging of travel times over a cycle, or the use of
queuing formulas ([WFH 94|, [JMH 94]).

Nevertheless, other causes may determine traffic interruptions: notably downstream congestion and
incidents. It is characteristic of these interruptions that their duration cannot be known beforehand,
and that they are related to traffic supply restrictions. This leads to difficulties. Indeed, the natural

estimate of the ITT of say a link [a, b] at time ¢ would be f; %, with V' (z,t) the speed at location

x and time ¢. This integral becomes infinite if the speed V(z,t) becomes locally nil. For this reason,
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several models use a minimal > 0 speed (DYNASMART [JMH 94|, METACOR |EL 96|), thus pre-
venting the divergence of the above integral. Such an approximation, usefull and generally relevant for
freeway networks, is not really satisfying for urban network traffic flow modelling.

In this paper, we shall first give rigorous definitions of the three kinds of travel time, ezperienced
travel time ETT, predictive travel time, PTT, and instantaneous travel time, I'T'T, for a link and whithin
the framework of macroscopic traffic modelling. Then, the issue of computation of the two most usefull
kinds (for reactive dynamic assignment), the link ETT and ITT, will be adressed, first in a distributed
setting, then in a discretized setting. Last, various extensions will be studied, notably the adaptation
to partial densities, intersections and path travel times. One quite separate, but important topic will
be left for future investigations: the temporal aggregation of travel times, i.e. their smoothing in
the presence of periodical travel time fluctuations. Indeed, the two problems: how to estimate travel
times, and how to aggregate them temporally in order to provide users with slow-varying and consistent
information, are basically different. The first one is a problem of traffic data collection and elaboration,
related to the state estimation level of the traffic flow modelling process, whereas the second one is a
matter of traffic control and user response to information, therefore related to the control level of the
traffic flow modelling process. Travel time estimation and travel time temporal aggregation, though
both part of the dynamic assignment process, are not situated at the same level, and the travel time
estimation is definitely the most basic of the two and must therefore be addressed first.

2 Link travel times: a general framework.

2.1 Definition of predictive and experienced travel times.

We consider now the macroscopic approximation of interrupted traffic flow. The starting point of our
analysis of possible travel time expressions is the single link, say [a,b], with its associated traffic flow
modelled with the help of the usual macroscopic variables Q(x,t) (flow), K(x,t) (density) and V (z,t)
(speed), which are considered as functions of the position z and the time ¢. The existence of these
functions expresses the continuum hypothesis, and constitutes only an approximation. A discussion of
this hypothesis and of the position of macroscopic models in the whole scale of traffic flow models can

be found in [LE 95-1].
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Essential for the sequel will be the speed field W(x,t) = (V(z,t),1), defined on the [a,b] x IR band
of the (z,t) space times time plane, and assumed to be integrable, with existence and unicity of the
corresponding field-lines. Under reasonable assumptions on the link traffic supply and demand for
instance (see [LE 95-2] for a definition of these concepts), and if a first-order LWR model is considered
(|[LW 55],|RI 56]), the field W can be shown trivially to be piecewise differentiable, with discontinuities
situated on continuous lines which are piecewise differentialble manifolds in the (x,%) plane. Let us
denote Z a vehicle trajectory associated to such a field-line of W: Z(xy, to;t) is the position at time ¢
of the user whose position at time g is zg. Z(xzg, to;t) is the solution at time ¢ of:

= Vi(x(t),t
(1) x(tog - $0( (') )

The corresponding field-line would be (Z(xy, to; t),t). We admit, and there will be no difficulty at this
point, that if (z,to) is located in the discontinuity set of V', V(zo+,t9+) is well-defined and can be
used as an initial condition for the computation of Z according to (1) (remember that V' > 0). Since
the field-lines (Z(zo, to;t),t) do not intersect in the (z,t)-plane, the field W being nonzero everywhere,
this kind of description is intrinsically in agreement with the FIFO hypothesis: in accordance with this
representation, vehicles exit the link in the precise order they have entered it. Considering a vehicle
entering the link at time ¢, we may define its exit time E(t) as

2) Et) Y inf, {5/ Z(a,t; 5) > b}



This definition is justified by the fact that the exit speed V'(b,.) may well be equal to 0 for finite time
intervals; this is precisely the expression of the hypothesis that the traffic flow can be interrupted.
The following figure, on which field-lines of the speed-field W have been depicted, illustrates such a

situation.
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The function F is increasing, piecewise continuous and admits an “inverse” I. Precisely I(t) is defined
as the time at which a vehicle about to leave the link at time ¢ has entered it. Hence:

(3) Z(a, I(t);t) = b

Whenever V(b,t) = 0 on some time interval, I(¢) is constant on the same interval. This means that
physically, it is the same vehicle that is about to leave during the whole duration of such an interval.
It follows that:

I(E(t) =t

unconditionally, and that:
=t it V(b,t) >0
B {2 1 i v 2o

The following figure illustrates again this point. The graphs of E and I are symetrical relatively to
their bisecting line.
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We can now define two fundamental quantities:
- the experienced travel time (of the user about to exit the link at time %):

(4) ETT(a,b:t) Yt —10t) |

- the predictive travel time of users entering the link at time ¢:

(5) PTT(a,b:t) e E@t) -t



The experienced travel time grows as ¢ (i.e. its derivative equals 1) if V(b,t) = 0, since then I(¢) is
constant. This is an important property we shall use later on.
Let us now consider three points a, b, ¢ in that order on a line, as depicted on the following figure:
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and let us consider the trajectory of a vehicle passing through these three points.
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The vehicle passes through points a, b, ¢ at times t4, tp, t.. It follows:

te—ty = ETT(b,c;t.) = PTT(b,c;tp)
ty—ty, = ETT(a,bjty) = PTT(a,b;t,)
te—t, = ETT(a,ct.) = PTT(a,c;ty)

and of course
te —ta = (te — ty) + (tp — ta)

It follows
PTT(a,c;ty) = PTT(a,b;t,) + PTT(b,c;tp)
with
ty =ty + PTT(a,b;t,)
and
ETT(a,c;t.) = ETT(a,b;ty) + ETT (b, c; te)
with

ty = to — ETT(b, c; t.)

By taking t = t, and ¢ = . respectively, the following functional equations result:

PTT(a,c;t) = PTT(a,b;t) + PTT(b,c;t + PTT(a,b;t))

(6)
ETT(a,c;t) = ETT(b,c;t) + ETT(a,b;t — ETT (b, c;t))

These equations express the combination rules that must apply to the predictive and experienced travel
times. Obviously these travel times are not additive quantities! Hence the difficulties related to spatial
aggregation.



2.2 Analytical computation of predictive and experienced travel times.

1. Analytical computation of predictive travel times can only be carried out easily in the case of a
first-order macroscopic traffic flow models of the LWR type:

0K 0

o+ 5 QelK ) =0

with @) the equilibrium flow-density relationship assumed to be a concave piecewise differentiable
function of the density K and piecewise continuous function of the position z. For the computation
of PTT(a,b;t) at time ¢ whithin the framework of the LWR model, only the initial condition K(.,t)
on the link and the downstream traffic supply at point b, ¥(b,r) (see [LE 95-2] for a definition of this
notion), for times r ranging from ¢ to E(t) are needed. Indeed, according to the characteristics method,
the fastest propagation of the data at the entry point, i.e. the upstream demand A(a,r) for r > ¢,
occurs when

Ala,r) =0 Vr>t
The propagation of the entry point data follows then a line (n(r),r) defined by the following equation:

= e (K (n(r)+,7),m(r)+)
(7)
n(r)|r:t =a

where the values K(n(r)+,r) depend on the initial data or the downstream supply only. Since
Ve(K,z) > %%’ (K, z), Yz, with equality iff K = 0 (by concavity of Q.(.,z)), it follows that the
field-line of W associated to the trajectory of the vehicle entered on the link at time ¢ cannot cross
the line (n(r),r), r € [t,+00), and is in fact situated on the right-hand side of this line, depending
therefore only on the initial data and the future downstream supply. To compute analytically PTT(t),
given the initial condition and the future downstream supply, it sufficies to solve (7) with nil upstream
demand by the method of characteristics. Further, if the downstream supply is sufficient, i.e. the link
demand A, (K (b,r),b) is less than the supply X¢(b,r) at all times r > ¢, then PTT'(¢) depends only on
the initial condition K (z,t), x € [a,b]. The following figure illustrates this argument, in a situation in
which the downstream traffic supply is sufficient.
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To construct the above figure, a low but non-zero demand has been used for illustrative purposes. If
the demand were exactly nil, the shock-wave would be coincident with the trajectory originating at
point (a,t).

If the downstream supply is not sufficient at all times, the picture is somewhat different, as is
illustrated by the following figure, illustrating a case in which the downstream supply is less than the
link demand from time say ¢y on.
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On this figure, the upstream demand has been assumed nil (this is the extreme possibility), hence the
trajectory originating at (a,t) and the shockwave originating at the same point are coincident till point
A. From point A on, traffic conditions imposed by the value of the downstream supply prevail along
the trajectory originating at (a,t).

2. The analytical computation of ETT(a,b;t) can be effectuated by solving the following partial
differential equation:

(8)

oT oT
T(a,t) =0 (V1)

Indeed, ETT (a,b;t) =t — I(t), hence if one considers the field-line of W originating from point (a, s),
ending at point (z,t),
ETT(a,z;t) =t —s iff Z(a,s;t) =z

which shows that

dETT _
dt
along a field-line of W. T is equal to ¢ along trajectories, hence T'(z,t) = ETT (a,z;t).
a X b
t
7777777777777777777777777777777777777777 - - ETT (ax;t)

Since the operator
Vﬁ + 2
Oxr Ot

represents the time-derivative along the field-lines of W, the formula (8) results trivially.



3. One last point: by integrating the conservation equation

0K 0Q _
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over areas (1) and (2) depicted hereafter (and bounded diagonally by a trajectory),
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the following relationships result:
def [V ¢ E(t)
N [k nie= [ Qasas= [ Qs
a I(t) t

relating the link inflow and outflow to the number N(t¢) of vehicles contained in the link at a given
time.

2.3 Definition of instantaneous travel times.

Although experienced travel times may be used for reactive assignment (this is the case in the INTE-
GRATION model), they do not necessarily constitute the prime choice, since an experienced travel
time reflects more that what has just happened than what is about to happen.

Another possibility is to define directly an instantaneous travel time ITT(a,b;t) for the link in
order to satisfy some set of properties. A natural definition is given in [RB 94| and can be stated
as: “The instantaneous travel time is the travel time that would result if prevailing traffic conditions
remained unchanged”. In the present setting, this would imply that the actual speed-field W at time
t should be extrapolated for future values of time say 7 > ¢ as a time-constant field

Wiz, 1) (V(z,1),1)  (vr>1)

The corresponding exit-time E*(t) computed according to this extrapolation W' of the speed-field
satisfies trivially

B0 = [ ag/vien

since the field W is time-invariant. The corresponding ITT would be given by:

b

def dé
9 ITT(a, b t) /
¥ @00 = ), Ve
and even more generally

def df
10 ITT (path;t) =
(10) (b ) path V/(£,1)

since (9) is evidently additive, as a consequence of the time-invariance of the extrapolated field W".
Regrettably, formulas (9) and (10) can only be used if the speed does not become equal to 0. Such a
constraint can be reasonably applied in macroscopic models for motorway traffic, and has been applied



in some cases. But it is obviously inadequate for urban traffic, which can be interrupted, and for
the modelling of which relatively small time-scales must be considered, allowing for no smoothing of
short-time (less than a cycle) traffic flow variations.

Therefore, some less obvious definition of I'T'Ts must be introduced in the case of interupted traffic.
The properties we retained for our definition of an ITT are the following.

e In the case of uncongested traffic, specifically at low density and high speed, the I'TT should be

approximated by (10). For a link [a, b], two possibilities can be envisionned, either the estimation
of the function (z,t) — ITT(a,x;t) (forward ITT) or the estimation of the function (x,t) —
ITT(x,b;t) (backward ITT). The forward ITT, at low density and high speed, should therefore
be given by

0
11 —ITT i) =1
(1) S ITT(a,at) % 1/V(,0)

and the backward ITT, at low density and high speed, should be given by
0
(12) %ITT(x,b; t) = —1/V(x,t)

In the case of strongly congested traffic (high density and low speed) some different rule must be
applied for the estimation of the ITT. A possible rule is to consider that the ITT should behave
as the ETT in such traffic conditions, hence

SITT(z,b;t) ~1
(13)
2ITT(a,2;t) =~ 1

The idea here is that, in the case of interrupted traffic flow, (13) yields the simplest and possibly
only possible prediction of the interruption duration, i.e. its actual duration, especially in the
case of an incident in which this duration may not by definition be known beforehand.

Finally, if the traffic flow is stationary, but nonzero, the I'T'T should converge towards the actual

travel time, say ATT i.e.

.4\ def s
(14) ATT (path; t) = ath V(O

which is of course (10) again, but applied to a stationary traffic flow.

The simplest models satisfying to the above properties are the following partial differential equations
(15) and (16), which are obtained by interpolating linearly (13) with (11) in the case of forward ITTs
and with (12) in the case of backward I'TTs. More precisely, denoting V4, the maximum speed, (15)
and (16) reduce to (11) and (12) respectively if V' = 0, and to (13) if V' = V.. Let us denote

R(z,

t) def ITT(a,x;t) the forward ITT from a to x at time ¢, as illustrated by the following figure.

X .b
ao/\ﬁ/

R (x,t)

The forward ITT R will satisfy the following equation:

(15)

OR |4 OR __
V%—i—(l— sz)ﬁ_l

R(a,t) =0 (V)

Let us denote now S(z,t) ] ITT (z,b;t) the backward instantaneous travel time from x to b estimated
at time t), as illustrated by the following figure.



The following equation results :

08 V_\os
Va+tl-3)5 =1

(16)
S(bt)=0 (V)

It must be emphasized at this point that the functions R and S do not have any simple relation to each
other as might be misleadingly suggested by their defining formulas. Indeed, the forward and backward
instantaneous travel times have quite different properties, as will be shown in the next section, and
should be considered as analogous but absolutely independent notions. For this reason, we shall use
in the sequel the notations R and S, and if we really wish to introduce the notation I'TT in connexion
with these quantities, we shall distinguish between ITT'f (forward ITT) and ITTb (backward ITT).

3 Analytical computation of instantaneous travel times

In this section, we address specifically the problem of computing the analytical solutions of (15) and
(16). This means that by instantaneous travel times we mean those quantities defined in the preceding
section, i.e. the forward and backward I'T'T'f and I'T'T'b as represented by the functions R and S. In
the sequel, we shall assume V4, to be independant of the position z, a hypothesis which will enable
us to derive methods for the analytical computation of instantaneous travel times.

3.1 Analytical computation of forward instantaneous travel times

3.1.1 Basic ideas

We shall describe in this subsection how to compute the function R which is defined by (15) and
represents the forward instantaneous travel time: R(z,t) = ITT f(a,x;t). Let us associate to (15) the

field Vot
(17) U V(w1 - T8
Vmaa:
and the parameter
uwy + °
Vmaa: ,
which has the same dimension as t. It follows trivially, by
14 1
V1 . 1) =1
( Vmaa: ) (Vmaa: )
that
<U,du>=1

with < .,. > the usual canonical bracket between fields and differentials. Hence u is a proper parameter
for the field-lines of U/, which we denote (X7 (u), 7/ (u)) and define by:

a7y (X, T ()
(18)
a0 =1 V(X T (W) Vinas

The superscript f stands for forward. The field U and its field-lines are illustrated hereafter



Field-line ofU
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Vmaa:
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The relationship V& + (1 —

iR(xf,Tf)(u) =1

(19) du

=1 can be rewritten as

T Alineu = cst

which, with < U,du > = 1 means that dR = du along a field-line of &/. Therefore, the analytical
computation procedure of R can be summarized by the following steps:

- compute the field-lines (X7, 77)(u) of U by (18),

- impose the boundary condition R(a,.) =0,

- deduce R by applying (19) i.e. dR = du along field-lines (Xf,7/)(u).

illustrated by the following figure.

This last procedure is

t

a X

° " b X

o | Uina
 Ufipal

Field-line of U

L tinitial

* Ujnitial

In the above example, it results trivially that:

R(xa tfinal)

U final — Winitial

3.1.2 Impact of kinematical waves

tfinal — tinitial + (-73 - a)/Vmaa:

The above procedure must be detailed when kinematical shock-waves are present. Let I be such a
kinematical shock-wave. It is always possible to define an upstream (left-hand) and downstream (right-
hand) side of K, represented by the symbols — and +, since the propagation speed of kinematical shock-
waves is finite. At some point (z,t) € K, the field U admits two distinct values U(z—,t) (upstream
value) and U (z+,t) (dowstream value). Four situations are possible,

10



1. a field-line of U crosses K at (z,t) with the slope of K negative,
a field-line of U crosses K at (z,t) with the slope of K positive,

two field-lines of U converge towards K at (z,1),

Ll

two field-lines of U diverge from K at (z,t),

which are illustrated by the following figure:

/ -
N/

Casel Case?2
—/ —
Case 3 Case4

Kinematical shock-waves

——~——  Fidd-linesof U

Situations 1 and 2 are trivial: R is continuous at (z,t) and only its derivative relative to u admits
a discontinuity at that point. In situation 3, R admits a discontinuity at point (z,t): R(z+,t) is
determined by the field-line converging from the right towards &, and R(z—,t) is determined by the
field-line converging from the left towards IC.

Let us examine now case 4, which is the only non-trivial one. The speed V admits a discontinuity
at point (z,t) of IC, let V(z+,t) and V(z—,t) be the values of the speed downstream and upstream
of the point (z,t). As the field-lines of U diverge from K, it follows that the slope of K must be
positive, and that V(z—,t) < V(z+,1), since the value of the angle of (V,1 —V/V,,45) with the z axis
decreases as V increases. Hence by linearity of V. — (V,1 — V/Vj4s), there exists a unique speed

V,éc(x,t) € [V(z—,t), V(z+,1)] such that (V,g(x,t), 1- V,é(x,t)/Vmaw) be in the tangent space T(, ;K

of K at point (z,t). As long as K is smooth, V,g is continuous (or of the same regularity as ). Hence,
K can be defined as the solution of:

!
G = VX T (w)
f
% =1- Vlé(vaTf)(u)/VmM? )
or, extending the definition of U as

U (z,t) <

[(V(.’E—, t)a - V(.T—, t)/Vma:L‘)a (V(IE+, t)a - V(.T-I—, t)/Vmaa:)] )
a unique definition results for both ordinary field-lines of & and kinematical shock-waves IC:

d
%(Xf,Tf) cu*

11



The result is that in case 4 the forward I'TT R is continuous at K and can indeed be calculated along
K by applying the same rule as along ordinary field-lines, i.e. dR = du. To understand physically
the preceding remarks, one might visualize a enlargement of the vicinity of the point (z,t) of K, as
depicted on the following figure:

a b

Field-linesofu\/ e

Shock-wave

In this vicinity, the field & might be considered to vary with a very sharp gradient from U(z—,t) to

U(z+,t) while crossing IC, and to take precisely the intermediate value (V,g(x,t),l - V,g(x,t)/Vmax),
with (z,t) € K, resulting in field-lines diverging from the central field-line KC, as depicted on the
following figure.

Shock-wave

Field-linesa

Two final remarks:

1. Everything that has been said about case 4 can be transposed trivialy to case 3, essentially by
replacing the divergence of field-lines by their convergence towards the shock-wave K.

2. If the underlying macroscopic model is a first order model of the LWR kind, and if the solution set
is restricted to entropy solutions thereof [AN 90|, then case 4 is in fact excluded, since it implies
that the velocity be greater downstream of the shock-wave than upstream, which is excluded by
the entropy conditions at the locus of the shock.

3.2 Analytical computation of backward instantaneous travel times

The object of this subsection is to show how to compute the function S which is defined by (16) and
represents the backward instantaneous travel time: S(z,t) = ITTb(x,b;t). This whole subsection
is “symetrical” of the preceding subsection on the analytical computation of forward ITTs. For this
reason, explanations and comments will be given only as necessary, to emphasize the differences with
the preceding subsection.

12



3.2.1 Basic ideas
Let us associate to the defining equation (16) of S the field V

Viz,t
(20) V) (V1 - 0D,
Vmaaz
and the parameter
v def ; T
Vmaa: ,
which has the same dimension as ¢t. V and v are the analogues of & and u. It follows, since
V 1
-V,1- (= D=1 |
( Vma:v) ( Vma:v )
that
<V,dv>=1 |

(with < .,. > again the usual canonical bracket between fields and differentials). Hence v is a proper
parameter for the field-lines of V, which we denote (X°(v), 7°(v)) and define by:

WX — Y (X, T?)(v)
(21)
AT — 1 — V(X T (0)/Vinas

The superscript b stands for backward. The field V and its field-lines are illustrated hereafter

t
b X

e

Field-lines of V -~ Linev=cst

The relationship —V'92 + (1 — Vn‘;x)% = 1 can be rewritten as

(22) d%S(X”, T () =1

which, with < V,dv >= 1 means that dS = dv along a field-line of V. Therefore, the analytical
computation procedure of § can be summarized by the following steps, which are nearly identical to
those defined for the computation of R:

- compute the field-lines (X°, 7?)(v) of V by (21),
- impose the boundary condition S(b,.) =0,
- deduce S by applying (22) i.e. dS = dv along field-lines (X, 77°)(v).

The second step should be modified if V' (b,t) = 0 for some interval ¢ € [to, t1], becoming S(b,ty) = 0,
S(b,t) =t — ty, for all ¢ € [to, 1], at least if one wishes to retain the continuity of S at point b.
Nevertheless this modification of the boundary condition has actually no other impact or usefulness.
The last step of the procedure can be illustrated by the following figure.

13



Field-line of V

Winitial
It is trivial to check on the above example that

S(z,t) = Wrinal — Winitial
= tlfinal — tinitiat + (b — )/ Vinaa

3.2.2 Impact of kinematical waves

Let us analyze now the impact of kinematical shock-waves on the procedure. The method is essentially
the same as for forward I'TTs. Let K be such a kinematical shock-wave. As the propagation speed
of kinematical shock-waves is finite, we define again an upstream (left-hand) and downstream (right-
hand) side of K, represented by the symbols — and +. Let (z,t) be a point € K; at such a point the
field V admits the two distinct values V(z—,t) (upstream value) and V(z+,t) (dowstream value). Four
situations are possible,

[a—y

a field-line of V crosses K at (z,t) with positive slope for I,
2. a field-line of V crosses K at (z,t) with negative slope for IC,
3. two field-lines of V converge towards K at (x,t),

4. two field-lines of V diverge from K at (z,1),

which are illustrated by the following figure:

\
\
Casel \ \
Case 2
k\ o
Kinematical shock-waves
————  Fidd-linesof V
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Situations 1 and 2 are trivial: S is continuous at (z,¢) and only its derivative relative to w admits
a discontinuity at that point. In situation 3, S admits a discontinuity at point (z,t): S(z+,t) is
determined by the field-line converging from the right towards K, and S(z—,t) is determined by
the field-line converging from the left towards . Furthermore case 3 implies a velocity that is greater
downstream than upstream of the shockwave, hence contradicts the entropy condition if the underlying
model is a first order one of the LWR type.

Let us examine now case 4, which is the only non-trivial one. The speed V admits a discontinuity
at point (z,t) of K, let V(z+,t) and V(z—,t) be the values of the speed downstream and upstream
of the point (z,t). As the field-lines of V diverge from I, it follows that the slope of I must be
negative, and that V(z—,t) > V(z+,1), since the angle of (=V,1 —V/Vjnq,) with the z axis increases
as V increases. Hence by linearity of V. —s (=V,1 — V/Vj;4z), there exists a unique speed V2 (z,t) €
[V (z+,t),V(z—,t)] such that (—=V(z,t),1 — V&(2,t)/Vinez) be in the tangent space T(y)K of K at
point (z,t). As long as K is smooth, V2 is continuous (or of the same regularity as K). Hence, K can
be defined as the solution of:

b
U=V T ()
b
= =1 - VXY, T (v)/Vinaz
or, extending the definition of V as

Vi, t) A [~V (= 1),1 = V(e—, 1)/ Vinas), (=V (@+,8), 1 — V(z+,8)/Vinaz)]

a unique definition results for both ordinary field-lines of V and kinematical shock-waves I:

d
%(Xb,Tb) e V*

The result is that in case 4 the backward ITT S is continuous at X and can indeed be calculated along
K by applying the same rule as along ordinary field-lines, i.e. dS = dv. Let us visualize a enlargement
of the vicinity of the point (z,t) of K, as depicted in the following figure:

{
b X

Field-lines of V N

Shock-wave *

In this vicinity, the field V might be considered to vary very fast from V(z—,t) to V(z+,t) while
crossing K, and to take the intermediate value (—V2(z,t),1 — V2(2,t)/Vinaz), resulting in field-lines
diverging from the central field-line K, as illustrated hereafter.
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One final remark: everything that has been said about case 4 can be transposed trivialy to case 3,
essentially by replacing the divergence of field-lines by their convergence towards the shock-wave K.
Nevertheless, case 3 is here of very limited import as has been noted above.

3.3 Composition of instantaneous travel times
To derive the composition rule of ITTs, let us again consider three points on a line:
./\o/ ’
a b

and let us consider first the forward ITT: ITT f. The field-line of U originating at point (a,t,) passes
through points (b,t,) and (c,t.).

T def Zj

t+

Vma:v Vmaaz
for © = a, b, ¢ intersect the line z = z, at points 7; given by:

Ty — Tq

Vmaa:

7 =1 +
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Now we deduce from (19) that:

Te—Ta = Uc—ug = ITTf(a,c;t,)
T — Ta Up — Ug ITT f(a, b;ty)
Te = Tp = Uec— Up ITTf(ba (4 tc)

Considering that

Te — T
Te — Tp = Ue — Up = tc — Ty + )
maxr
it follows that
Te— X
ty = to + ITTf(b,c;te) — ——"
Vmaa:

Finally, replacing ¢. by ¢ and using the trivial relationship 7. — 7, = (7. — 7) + (7 — 74 ), One gets:

)

(23) ITTf(a,c;t) = ITTf(b,c;t) + ITTf(a,b;t + ITTf(b,c;t) — =20

max

The derivation of the composition rule of backward I'TTs, i.e. ITTb, follows the same steps.

Field-line of V

We denote
vi def L Z;
' ' Vmaa:
for 1 = a, b, ¢, and call 7; the intersections of the lines
T def
t— = v =u;
Vma:v '

with the line x = x., for ¢ = a,b,c. The 7; are given by

Ty — T

Vmaa:

T =1t —

Now we deduce from (22) that:

Ta—Te = vg—v, = ITTb(a,c;ty)
T —Te = vp—v, = ITTbH(b,c;tp)
Ta—Tp = Ug— Up ITTb(a,b;ty)

From
Ty — Tq

Vmaw

ty —tqg =Tp — Tq +
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we deduce
Tp— &
ty = to — ITTb(a, by ty) + ——2

max

Replacing t, by t and using again 7, — 7. = (14 — ) + (75, — 7¢) it follows that:

Lp — Tq

(24) ITTb(a,c;t) = ITTb(a,b;t) + ITTH(D, c;t + — ITTb(a,b;t))

max

Remarks. The ITTs may “converge” towards [ % and be nearly additive under two conditions.

The first one is that the flow be nearly stationary, hence % ~ 0, leaving Va% ~ 1. The ETT “converges”

towards [ % under the same condition. The second condition is that the product (1 — %)% ~ 0,

ie. V = Vpyee. This condition is specific of ITTs. The above formulas (23) and (24) show this
near-additivity clearly. Indeed, if ITTb(b,c;t) =~ % or if ITTb(a,b;t) =~ %, then both formulas
simplify as:

ITT (a,c;t) = ITT(a,b;t) + ITT (b, c;t)

4 Semidiscretized models.

This very short section is devoted to semidiscretized models, mainly as a tribute to the historical
importance of the subject for theoretical studies on assignment. It must be noted that more and more
doubts on the relevance of this type of models express themselves in the literature, as for instance
in [DA 95|, [HA 96] (and the references therein). For this reason, our review of this subject will be
extremely cursory, and limited to the illustration of the PTT concept. By semidiscretized models we
mean models continuous in time and discretized in space, with the link as space discretization unit.
As indicated above, the link PTT'(t) is essentially a function of the link state K(.,t) at time ¢ and the
downstream traffic flow supply (b, s) for s € [¢, E(¢)]. In fluid traffic conditions (downstream traffic
flow supply always sufficient to accomodate the traffic demand of the link), and at the zero-th order
approximation, one might consider PT'T'(t) as a function of N(¢). This is the basis of some flow models
for assignment problems ([FC 94|, [FBSTW 93], [AS 96], [RHB 96]). In such models the link traffic
flow dynamics are described by a model of the following kind:

d
ZN () = ult) ~ ()

(u(t) the link inflow and wv(¢) the link outflow), supplemented by a model for the PTT(t), which is
usually called 7(¢) in this context:
7(t) = f(N(F))

and the FIFO condition, which in the present case does not result naturally from the model. This last
condition implies ([AS 96]) that:

u(t) _ u(?)

(25) v(t+7(t) = T L T

by expressing that users entering the link at time ¢ exit it at time ¢ 4+ 7(¢). With the FIFO hypothesis,
the following integral relationships result, similar to those already stated in the continuous case:

N(t) = /IZt) u(s)ds = /tE(t) v(s)ds

It can be shown that the only consistent FIFO model of this kind is the one associated to a linear
travel time function:

7(t) = a+ BN (t)

This result was suggested in [DA 95|, the sufficiency of this linear form was demonstrated in [FBSTW 93],
and its necessity in [LL 96]. The linear part represents the average time lost in the queue at the exit
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of the link, which is somewhat at odds with the hypothesis that the downstream traffic supply can be
neglected. It is not known to the author of the present paper whether non-FIFO models of the above
kind can be built. The analysis of such models might proove difficult since they would not admit any
closed expressions such as (25) for the link outflow.

5 Fully discretized macroscopic models.

5.1 Discretization: principles

We shall consider in the sequel discretizations of the following kind: links are divided into cells say
(8) = [ws_1,7s], of length I, containing N! vehicles at time tAt, with the average cell exit flow @
during time-step [tAt, (t + 1)At], estimated at the cell exit point zs. (A notable exception to this
kind of approach to discretized macroscopic modelling is the particle discretization approach, as in
INTEGRATION).

No hypothesis is made on the macroscopic model itself, and on the exact manner in which the above
quantities are computed. Nevertheless, we expect the discretization to respect some basic rules, and
we shall refer to discretizations satisfying to those rules as proper discretizations.

The first requirement will be that the ratio

€ S ma:L‘At
(26) o, & Tomall

be less than 1, with of course At the time-step, [ the length of cell (s) and V yqp the maximum speed
in cell (s). Another significant ratio is

LAL
1) R =

NS
which will also be expected to be less than 1, as such a condition expresses that the number of vehicles
exiting a cell during a time-step be less than the number of vehicles present in the cell at the beginning
of the time-step. It is only if B, < 1 is satisfied that it will be possible to keep track of vehicle
propagation in the model. To summarize, a proper discretization in our sense satisfies to:

as <1
pl<1

For travel-time estimation, we need some relevant expression of the speed. For discretized macroscopic
models as we consider here, either there exist no intrinsic estimates of speed (1st order models), or,
if such estimates exist, they may yield irrealistic values of the travel times. Hence we propose to
introduce a specific speed, which we shall call cell exit speed and define as

QL Qlls
(28) Y= P _ Hsts
P T KT N

with K! 2 N!/ls defined as the mean cell density at time tAt. The significance of this choice is that it
permits to emulate FIFO behaviour whithin each cell, which, as has been noted previously, is intrinsic
to the interpretation of macroscopic models with the speed flow. As is illustrated by the following
figure,
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the outflow during a time step, Q. At, will thus be equal to the mean cell density K! times the distance
covered during the time-step at speed VY, i.e. K!VIAt, which is the precise translation of the FIFO
hypothesis if the density is assumed uniform in cell (s). Associated to this cell exit speed, it is possible
to define the following ratio:

S

Vt

Vs,maa:

Regrettably, most models do not give any guarantee that if the discretization is proper, the inequality
vh <1

will be satisfied. Nevertheless, in the case of first-order models of the LWR kind, discretized by
Godunov’s method [LE 95-2], this property holds true, and will therefore be used occasionnally. Let
us note finally that

asyz = Bﬁ

5.2 ETT estimation: the naive approach
5.2.1 Introduction

The most straightforward approach to the numerical calculation of ET'Ts in the framework defined
in the preceding subsection would be to hold an account of the entry-time of every vehicle in every
cell, and to process vehicles inside a cell in the order defined by their entry-time, letting them exit
the cell in the precise order they entered it. In fact, if the traffic flow is relatively fluid, or if there
exists some lower bound on speeds (a hypothesis which has already been discussed and is usually
relevant for motorway networks), this idea may prove quite efficient, as the cell traversal time will then
be bounded from above. The boundedness of traversal times is an essential feature if one wishes to
prevent an occasional but uncontrollable inflation of the data relative to vehicle cell entry times. To
summarize, the approach described here is feasable for motorway networks, with the corresponding
macroscopic model endowed with a lower bound for speed.

One last remark: in the context of a formally similar problem i.e. the propagation of partial den-
sities in a discretized macroscopic freeway model, whose equations for compositions x4 are given by
[LE 95-2]:

OXa | OXa

Ve Tt =0

Daganzo |[DA 94| proposed an algorithm of the same family as the one proposed hereafter.

5.2.2 The algorithm

Let us now consider a cell (s) as depicted hereafter:
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and let us define the following quantities:
t t
Ts,() = N s

ha = NI Qb

i
e = NS YA
Jj=1

with Ti,z’ being by definition the number of vehicles left over at time tAt from the vehicles present in
the link at time (¢ — i)At. Further we define I! as:

'Y Minfi / +!; <0}
a definition which means that if I = I!, then 7“2,1 < 0 and 7"27 7—1 > 0. This definition is completely

consistent, since the quantities Ti,z’ are decreasing with ¢, as is shown by the following straightforward
calculation:

rhi—rhin = NI NTTR QU AL
— Qt i— 1
> 0

Y

since the N!~* satisfy to the conservation equation
Ntfi — Ntfi 1 Qt i— 1 At — QtfiflAt
S S S

At time tAt the following set summarizes the information relative to the entry time of the vehicles

in cell (s):
def .

(30) Ry = {rei/i=0,1}
To expand on previous remarks, if the cell traversal time increases, I, which measures the quantity of
data relative to cell entry times that is stored for the algorithm, increases in the same measure.

Let us now consider an iteration, and show how R.! is deduced from R.. By definition of the
quantities réyi,

t+1 — Nst+1
rt+1 = rl,— QAL (Vi)
I;“ = Mm{z/ r“‘l <0}

t+1

(hence the 7" should be computed only as long as 7“5 i1 — QLAt > 0). The initialization of the R.

at time say t = 0 is relatively straightforward. Known at time ¢ = 0 are the N2 and the Q°. It suffices
to assume that the traffic situation prior to the initialization has been stationary to deduce:

rd. = NJ—iQAt
19 = Min{i/i>N2/Q°At}

Whatever the initialization error, it will be eliminated in finite time, i.e. the time it takes for the N?
initial vehicles to exit the cell (s). After that time, the initial set RY will no longer have any influence
on the actual set RY.
Finally, let us address the problem of estimating the ETT from the data contained in the sets R..
The clue to the result is the fact that :
Tt' Sl+1 Qt ' lAtZO

S0
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which has been proven above. This result means that rg,i - Tﬁ,i 41 represents the number of vehicles
having entered the cell (s) during the time interval [(¢ — i — 1)At, (¢ — 7)At]. Now let us denote, in
order to simplify notations,

I=1
By definition, 7"27[71 > (0 and 7"2,1 <0.
cell (s) cel (st+1)

a Xs P
‘ \
NE ‘st
‘ o ‘

Qs—l At

Let us represent rg, 7—1 and rg, ; as depicted on the above figure. The first vehicle that has entered the
cell (s) at time (¢t — I)At is located at location # and has exited the cell before time tA¢. The last
vehicle having entered the cell at time (¢ — I + 1)At is located at point « inside cell (s). Finally, at
point z, is located a vehicle about to leave cell (s); downstream of this vehicle there are —réy ; vehicles

out of the Q'_{ At vehicles that have entered the cell during time interval [(t — I)At, (t — I + 1)At].

Therefore, with the usual assumption that the inflow has been constant during that time-interval, it

follows that the time of entry of the vehicle about to leave the cell at time tAt is

_Tg,l
i—1
s—1

(t — I)At +

It follows that ETT! is tAt minus the above entry time, hence replacing Q') At by —7"27 ;+ 7“27 71, 1t
follows that .
(31) ETT! = (I + ——>L At

T g—1 — Tsr
This formula entails no errors other than those resulting from the discretization and from the interpo-
lation of ETT!. Notably, there will be no error propagation from one time-step to the next. Let us

note also that:
IAt < ETT! < (I +1)At

Finally, it must be noted that the preceding method gives us no clue as how to combine the cell ETTs
in order to obtain link ETTs. In fact, the simplest method would be to apply directly the preceding
formula (31) to a link with, of course, the cell subscript s being changed into a link subscript.
5.3 Calculation of ETTs according to (8)
Let us recall (8)
oT or _
Vor tar =1
T(a,t) =0 (V1)

The setting is the same as in the rest of this section. In order to discretize (8), we shall need to choose a
cell speed; we shall again use the cell exit speed as defined by (28). The basic ideas of the discretization
are the following:
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e the approximate speed field say W will be defined as piecewise constant:

W, ) Y (V1) iff €€ [my1,a5) and T € [tAL, (t+ 1AL

e the function 7" is approximated by a piecewise linear function T(é’ ,7) taking values
Tt Pay, tAL)

at the node points,

e The value ! will be derived from T7(., tAt)‘ cell (s) by applying

dETT _
da
along field-lines of W.
t+1 t+1
! Ts—l s
(t+1) At ; ;
Lt 1
Tsa / TE;
t At : :
| yt |
s
XS-l Xg

Hence let us define .
yt 2 zs — VEIAL

the first coordinate of the intersection point (y!,tAt) of the field-line of W originating at point (z, (t+
1)At) (which is a line of direction (V!,1) with the line 7 = tAt. It follows:

THL = T(yt tAL) + At

with ~
T(ys, tAt) = BTy + (1 = B;) T}

by the linearity of T . The boundary condition is expressed by:
TS =0

Hence: t+1 trt b\t
(32) { Tst = IBSTS—I + (1 - IBS)TS + At
;=0
with B¢ defined by (27).
The preceding method is related to the method of characteristics, as described in [PI 88] and appli-
cable to the convection equation yielding 7'. But in the present case, the method has been restricted to

a single time-step, which is of course very convenient from a practical point of view, since the algorithm
reduces to the simple recursive smoothing formula (32). Of course, the complete characteristics method

(implying backward computation of the field-lines of W till the boundary ¢ = a is encountered) would

be exact for W but extremely unwieldy and would require as much storage space as the naive method.
In the context of traffic problems, the usual tradeoff between precision and computational efficiency
must favour the latter.

Remarks

23



1. If S =1, the formula (32) becomes:

Tt+1 — (1 _ Bt)Tt

Tt =0

B = Q'AL/N'
by dropping the subscript s. This formula was introduced on a purely heuristic basis in [BLL 95-96].
2. It is interesting to introduce the cell travel times

def
ETT! = T! T,
From (32) it follows:
ETT!™t = T -1

T + BITL + (1— BYTL + At
= —(TH —T! )+ At+ (1 - BYETT!

(33)

Further from (32) it is possible to deduce:

TH Tt = At — BLETT! |
and, combining these last identities, it follows:
(34) ETT!*' = BLETT!_, + (1 — BY)ETT!

This last equation shows that, if initially, the cell travel times are positive, they stay so at all times.
As a consequence, it follows also that at all times

At — (THY = TH >0

3. Further, if V! < Vjmaq, 1. 5 < 1, a condition satisfied for instance by the Godunov scheme
applied to the LWR model, one can deduce from (32) that:

S ll
(35) T > .
=1

— V;,maa:

Indeed, if this inequality is satisfied initially, it follows by recurrence that if (35) holds at time tAt for
all s, then (35) holds at time (¢ + 1)At for all s:

TS = BT+ (L= BT + At
s—1 I I
13 S
> [B+1-Bl> 5+ (1= B)j—— + At
i—1 Vimazx s,mazx
Hence:

TH! — zs: s Ao (1-pYH be

’ i—1 Vi,max - y Vs,maa:
= At(1-1vl)>0

24



4. From (33) one deduces trivially that:

l ls l l
BITS — g = —(T0 = Tom) = g + A+ (L= B) (BT = g7) + (1= )
ls
= (T =T+ (- (BT - )

which shows the convergence of cell travel times towards

Lo
VET Jeell (s) V(€ tA)

when the traffic flow conditions tend towards stationary conditions.

5. Let us suppose the flow has been disaggregated according to attribute value d, which might be a
destination (global or local), an OD pair value, a category of users (informed, uninformed), etc ....
Then the macroscopic model provides also the values of the relevant partial quantities:

th Kdt

th _l Kdt
th th/Kdt
/Bdt thAt/l

(partial flows, densities, number of vehicles, cell exit speeds). Note that in the special case where the
model is FIFO-like, then:

Kd,t
Qi = =2-q!
S
and the formula for the %! simplifies as 3%' = 3.
Formula (32) can be generalized without any difficulty to disaggregated flows, by substituting to
superscript t the superscripts d, t:

dit
(et -
TO’ - 0

6. The generalization of (32) to paths is straightforward, as it suffices to divide the path into cells as
if it were a link. Let us note that if link travel times are the only quantities available, then (34) can
be iterated along the path, with the subscript s in (34) refering in that case to links instead of cells.

7. It is also possible to generalize (32) to exchange zones as defined in the STRADA model for
intersection modelling [BLL 95-96]. Using the notations and definitions provided in that reference for
network modelling, for zone exit point j of zone say z, one may define the exit speed

def QO ;

t
VO, ; = NOt

Az

with A\, the zone length scale, QOi,j the zone outflow through its exit point j during time-interval

[tAt, (t +1)At], and N Oi,j the number of vehicles about to exit zone z through exit point j. Finally,
we define:

¢ def At QOE,J

Yo NO,
and deduce trivially a single cell formula for the experienced traversal time of the zone z at time tA¢
from any entry point to exit point j:

T = At + (1 - B2 )T7

The zone might also be included into one or several paths, as illustrated herafter, and would then
contribute to the path ETT estimation as any other ordinary cell of the path.
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€4

5.4 Discretization: forward ITT

Let us recall that the forward ITT, ITT f(a,xz;t) = R(x,t), is defined as the solution of the following
equation (15):

OR V_\OR _
Ve +1l—3—)% =1

R(a,t) =0 (Vt)
The principle of the discretization is exactly the same as for the ETT T'.
- The field U is approximated by a piecewise constant field U:

- Vt
Ule,t) Y (vi1- )

V:s,maw

with € [zs_1,%5] and ¢ € [tAt, (t + 1)At].

- The function R is approximated by a continuous and piecewise linear function R defined by the
values

R Rz, tAt)

- The values R! are calculated every time-step using the relationship dR = du along the field-lines of
U, with u =7 — &/ Vs

Rt+1 t+1

(t+1) At S S
T; / |

ot ot

t At | R&l | Rs
| t |

y

Xs-l s X

In the space x time plane, which shall be denoted here the (¢, 7)-plane, the field-line of u originating
at point (zs, (¢ + 1)At) intersects the line & = z, 1 at point (x5 1,7!), or the line t = tAt at point
(y,tAt), depending on the relative value of V!.

Let us consider first intersection point (y%,tAt). This point is given by

Ts — yé Vst
=0
At 1- Vst/Vs,max
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hence
. VIAL
Ts —Ys =

o 1- (Vst/VS,maa:)

It must be noted that, in the present case, it is necessary that v} < 1, where ! has been defined as
the ratio vt = V! /V; mas. Let us also remind that:

asV£ = 52

Now, zs — ¢y} < l5 imposes
vt 1
S
< — )

1—vl =
le.
(36) st

714 o

Equality in (36) is equivalent to 85 = 1 —v.. Now, applying dR = du along the approximate field-line
[(yL, tAt), (zs, (t + 1)At)], it follows that:

R = R(yL, tAL) + u(ws, (t + 1)At) — u(yl, tAt)

By linearity of R,

t ¢
. - —Ts_
Ryt tAt) = Rt Zs—Ys | pr¥s = Tl
Ls Ls
hence, if V! < l—l—las (i.e. at low speed),
At T, —y! A
RZ+1:1_ t+RZ—1 sl ys+R§ys lsl
Vg s s

Let us now consider intersection point (zs_1,7!). 7! results from:

S

ls Vst
=0
(t+ 1)At—7’§ 1 —‘/st/‘/s,maa:
hence: . .
(t+1)At — 1t = At 5

This quantity is less than At iff

1—vl <pl=aut

le.:
1

14+ ay

t
vy >

From dR = du again, applied here along the approximate field-line [(zs, (t + 1)At), (zs_1,7!)], we
deduce that:

BT = R, mh) + ulos, (64 1AL — u(we 1, 7))
= Rl@e1,m) +(E+ DAL =7 +

~ At
= R(ws_l,Tst)—i-— ,
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and by linearity of R,

. Tt — At (t+ 1)At — 7t
R(xS*laTg) = Rt+1 At Rsl At >
At t+1ﬂs+u 1 . 1=t
= FrEAT g YR

1
14+as

Finally, if v¢ > (i.e. at high speed),

R = o [At +RI(BL+ V- 1) + R (1 — D)

S

The end result is:

RIYY = [At+ﬁt St (L= v = BOR]
if vg < 1
(37) R = gig[AHR (B4 vt = 1) + RL (1= )
if vt> 1+1as
RGtT =0

Properties of the R!
1. Introducing the link travel times

it R R,

it follows from (37) that:

TTf§+1 = iz yt [At—i—(l—l/ _ﬁs)TTf]_ (RZ+11 Rs 1)
if vt < H_%

TTf = A[At— (1 )R - RL )]
if vt> 1-1-1043

This last formula can also be rewritten as

TTft+1 V_\:t — (1 — /BS )[TTfs - _] (Rz—i—ll RS 1)
1f l/t S 1+Oé

TTfM — iy = —I5ARE - R
lf Vt 2 1+a

which illustrates the convergence of cell travel times towards

Iy d¢
{75 /ceu S V()

under traffic conditions that tend towards stationary traffic conditions. The question of whether those
cell travel times T'T f! remain > 0 at all times is open. It is possible to prove the following somewhat
weaker result:

2. If, for all s =1,.5, and for some initial time ¢ = ¢y, the following inequality holds:

l
REZZ—S;

i:l,s s,max
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then it holds for all subsequent instants ¢ > ¢y. This inequality means that the forward I'T'T numerical
estimate of the travel time is always greater than the smallest possible experienced travel time. The
result is a consequence of the inequality

‘/s,maa: > VVst

(i.e. ! < 1), and of a technical result which we shall state now. Before stating this technical result,
let us first introduce the following notations:

t+1  def it Ls
S
i=1l,s S
t def t Ls
%= Ri- )
i=1l,s S
We can now state the technical result:
41 _ t BL st
€S+ - 1— yt5 ( 1_y§)5s
1f ug < 1+a
1 1 Ve 1—vty t+1
et = 5t -1t (1 - Jesth
lf Vg 2 1+a

as a trivial consequence of (37) and of the identity

¢ ls

At =B

3. The extension of (37) to partial flows is trivial. We adopt the notations and setting of the remark
5 of the preceding subsection relative to the discretization of ETTs, which we complete with the
introduction of the following notation:

it et v
s V:s,maw
In the case of a FIFO model, we would of course have
z/;“ = Vﬁ Vd

as a trivial consequence of V&' = V! for all d. Now, (37) can be rewritten as:

_Rél’Hl - 1 dt[At+/8dtRs 1+(1_V Igdt)Rdt]
1f th < 1+
Qg
R = el Bt )
d,t+1 ! th S 1+as
| Ry =0

In a similar spirit, what was told in the case of ETTs about generalizations to zones holds also true
here, by replacing in (37) subscripts s by the couple z,j of zone and zone exit point. Of course, the
following definition would have to be added to those already given:

t

¢
def VO,
Vai = U

Y

Vz,max

with V ;mae the relevant desired speed parameter associated to the zone equilibrium supply and demand
functlons and VO! »,; the outflow speed relative to exit point j of zone z.

Finally, (37) can also be extended to paths, with the subscript s refering either to cells or links,
depending on how the path is subdivided.
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5.5 Discretization: backward ITT

The analysis will follow very closely what has been done in the preceding subsection for forward I'TTs.
The backward ITT, ITTb(x,b;t) = S(z,t), is defined as the solution of the following equation (16):

oS V_\oS _
_V% + (1 o ‘/maa:)W - 1

S(b,t) =0 (Vt)
The principle of the discretization is exactly the same as for the ETT 7" and the forward ITT R.
- The field V is approximated by a piecewise constant field V:
~ Vi
Vg (- vi1- =)

V:s,maw

with & € [zs_1,25] and 7 € [tAt, (t + 1)At].
- The function S is approximated by a piecewise linear function S defined by its values at node points

St 3y, tAL)

- The values St are calculated every time-step using the relationship dS = dv along the field-lines of
V, with v =7+ &/Vinas-

t+1 t+1
S;l\ SS+ |
(t+1) At } :
s ¢
| s
to |
At Se1! S
| Et |
X&l S Xs

The field-line of V originating at point (zs_1, (t + 1)At) of the space x time (&,7) plane intersects
either the line £ = x; at point (zs,7!), or the line 7 = tAt at point (£L,tAt), depending on the relative
value of V.

The intersection point (£L,tAt) is given by

fé —Ts—1 VVst
=0
At 1 - ‘/st/‘/s,maa:
hence
B VIAt
B 1- (Vst/VS,maa:)

Here again, the derivation relies on the inequality

52 — Ts—1

vh <1
(i.e. the relative exit speed be les than 1), a condition assumed to be true from now on till the end of

the present subsection. The condition x5 — y% <[, is equivalent to (36):

1
14+ ay

t
vy <

Y
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as with the forward I'T'T. This is of course the low-speed case. Now, using dS = dv along the approxi-
mate field-line [(zs_1, (t + 1)At), (€L, tAt)] of V, it follows that:

S — S(eL tAL) + v(ws_1, (t + 1)At) — v(EL, tAL)

Contrarily to the calculation of R, the calculation of the S{*! proceeds, starting from s = S, backwards
to s = 0, with the boundary condition Sg“ = 0. Applying the linearity of S and the definition of v,
it follows, in the case when v! < ﬁ (i.e. at low speed),

At : Bl
St+1 — 1— s St s St
s—1 1—1/§+( 1_]/;5) s—1+1_ygs
The intersection point (xs, 7¢) results from:
I, Vi
=0
(t+ 1At -7t 1 - Vst/Vs’mM
le. .
1—
(t+ 1At — 7! = Af—"3
Bs
This quantity is less than At iff
Ve
14+ ay

(the high-speed case). Applying the linearity of S, the the relationship dS = dv along the approximate
field-line [(xs,T!), (x5 1, (t + 1)At)] as well as the definition of v, we deduce that:

S§+1 = g(xsa’r;) +1)(.’L‘s_1,(t+ I)At) —U(.’L‘S,Tst)
_ ﬁ+5t+1ﬁ£+'/§_l +St1—V§
C Bs B
in the case when v! > T 4_1% (i.e. at high speed). The results are summarized by:
S = At LS+ (1 - v - B)Si_y]
t+1 1 it < o
(38) St = glAt+ (B + vl - 1S+ (1-v) S
. 1
41 lf V‘g Z 14as

Properties of the S’

Again, we follow closely what has already be done for the forward ITTs.
1. Introducing the link travel times
def
TTO, = Sy =85

it follows from (38) that:

TTOH = L[At+ (1 - vk — BOTTH) - (S5 - S1)
if vl < 1+1a5

TV = [At— (1- h) (ST - St
if V§ > 1—1—1043
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which can be rewritten as

IO = (1 [T~ ] (8 - )
lf 1/§ < o

T — s = -5 )
if 1/§ > 1+a

which illustrates the convergence of cell travel times towards

Iy d¢
{75 /ceu S V()

as traffic conditions tend towards stationary traffic conditions. The question of whether those cell
travel times TTb! remain > 0 at all times is open, but as previously it is possible to prove the following
somewhat weaker result:

2. If, for all s =1,.5, and for some initial time ¢ = ¢y, the following inequality holds:

Si12 D %

lSS smaw

then it holds for all subsequent instants ¢ > £y. This inequality means that the backward ITT numer-
ical estimate of the travel time is always greater than the smallest possible experienced travel time.
Introducing the following notations:

eltl def St Z Is

t def ot
55 = szl_ Z Vt )

we can state: 5t 5
t+1 t . t
€s T— 5705 + + (1 - yg)ésfl
t
1f v, < H_%
1— 1— u
€§+1 _ ts(;t ( ) t+1

t
El
if vl >

1+a5 )
as a trivial consequence of (38) and of the identity

l
— Qt’s
At = f3, z

The result announced above is then an easy consequence of these formulas and of the inequality
‘/s,maa: > VVst

ie. (vl <1).

3. The extension of (38) to partial flows is trivial. We adopt the notations and setting of the remark

3 of the preceding subsection relative to the discretization of forward ITTs. Now, (38) can be rewritten
as:

dyt+1 d,
[ S = el BUSE (L - 58]
1f 1/‘“ < 1+ o
Sdt-i—l _ ﬂdt[At+Sdt+1(ﬁdt+ydt 1) + 84t (1 — vdt)]
° d,t
it vt > 1+a5
s =
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The adaptations to zone travel-times are exactly the same for forward and backward ITTs and need
not be commented upon in more detail in this subsection.

Finally, (38) can also be extended to paths, with the subscript s refering either to cells or links,
depending on the way the path is subdivided.

6 Conclusion.

Much work remains to be done. Concerning the quantities defined in this report, one should mention
error analysis, and the analysis of some nontrivial, but analytically tractable case. Research is under
way concerning both those points. Other ITT estimates are of course conceivable, depending on
the properties one deems important for such quantities, since the defining properties we have used
imply by no way unicity of the I'TTs. These alternative ITT estimates should be investigated. The
problem of the time-aggregation of travel times must be adressed, especially in the case of adaptative
regulation schemes lacking periodicity. The impact of the proposed estimators on traffic assignment
and management schemes must be studied as well. Especially since one of the motivations behind
such an “axiomatic” definition of travel times as we have given here is to provide some solid ground
for assignment computations. Finally, some experimental assessment of the proposed travel time
estimators should be attempted, although it would seem difficult to separate the properties of the
estimators from those of the associated macroscopic traffic flow model.
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