Nodesat, an arithmetical tactic
for the Coq proof assistant

DANIEL HIRSCHKOFF
avril 1996

N° 96-61

Nodesat, an arithmetical tactic
for the Coq proof assistant

DANIEL HIRSCHKOFF

Résumé

Ce rapport décrit 'implantation de Nodesat, une procédure de dé-
cision arithmétique pour le systéme d’aide & la preuve Coq, qui est
développé & P'INRIA (Rocquencourt) et a I’Ecole Normale Supérieure
de Lyon. A partir d’un systéme de comparaisons entre expressions
arithmétiques, ’algorithme construit un graphe orienté et valué dans
lequel il essaye de mettre en évidence des cycles de poids strictement
positif, ce qui revient a vérifier le systéme initial. Lorsque la procédure
vérifie ce systéme, un terme de preuve est construit a partir de ce qui
est en fait une trace des différentes étapes de algorithme. Il s’agit
pour le systeme Coq d’une premiére tentative d’écriture de procédure
de décision arithmétique, un outil qui se révéle indispensable dans le
cadre du développement d’applications industrielles.

Abstract

This report describes the implementation of Nodesat, an arith-
metical decision procedure for the Coq proof assistant, a system devel-
opped at INRIA (Rocquencourt) and at the Ecole Normale Supérieure
(Lyon). The algorithm builds a directed, valuated graph representing
a system of comparisons between arithmetical expressions, and looks
for a strictly positive cycle graph in order to check the validity of the
system. If the procedure succeeds, a proof term is generated, which is
basically a trace of the various steps of the algorithm. This attempt is a
first step towards implementation of an arithmetical decision procedure
for Coq, a feature that turns out very useful for industrial applications.

Introduction

The conception of many proof checkers is based on typed A-calculi; the un-
derlying paradigm of such a design is that building a proof is analogous
to writing a program. This idea, usually referred to as the Curry-Howard
isomorphism, is a result giving two interpretations of a term in a typed A-
calculus: on one side there is an algorithm, on the other side a method to
prove a specification given by the type of the term. While this beautiful
result can indeed be used as the foundation of a proof-checking system, the
confrontation with “realistic” proofs makes visible the fact that the complex-
ity gap is quite big between terms used for implementation and terms used
for proofs. As one wants to prove a non straightforward result, technical
details often arise, even if the objects are simply and naturally implemented
into the underlaying A-calculus. This results in a waste of time, and even
more importantly in a loss of understandability in the proof scripts, where
the technical parts play the main réle. To avoid that, logical frameworks
that are designed towards real size proofs come with decision procedures,
or in other words tools for building in an automatic way technical proofs;
these decision procedures are usually concerned with topics like propositional
logic, finite state model-checking, linear arithmetic or rewriting.

We describe here Nodesat, which is a first attempt to write an arithmeti-
cal decision procedure for the Coq proof assistant [CCFT96]. Although this
tactic is not very powerful in terms of complexity of the problems treated,
it can be considered as a first tool that gives Coq users an automatic way to
avoid technical proofs using arithmetical results.

After sketching briefly the conception of the proof system, we describe
the algorithm used by Nodesat and compare it to existing systems. We then
discuss implementation, giving a few examples of the use of Nodesat, and we
conclude considering improvements that can be brought to the tactic.

1 The Coq proof assistant

1.1 The system

Coq [CCFT96] is a proof assistant based on the Calculus of Inductive Con-
structions, a higher-order logic which gives to this system a strong expressive-
ness as well as a reasonable flexibility. Inductive definitions are introduced
into the system wvia their constructors, and automatically generate elimina-
tion schemes that can be used by proofs by induction.

Coq proofs are led in a goal-directed way through the application of

tactics implementing backward reasoning: at any point in the proof a tactic
can be invoked, and if it succeeds, i.e. if it matches (in some way depending
on the tactic that is actually used) the current goal to be proved, it generates
one or several subgoals (or even none if the proof is complete).

Example Prop is the type for logical properties; the Split tactic trans-
forms a conjunctive goal into two subgoals corresponding to the two members
of the conjunction:

1 subgoal
P Prop
Q Prop
H:P
HO : Q
P/\Q
Unnamed_thm < Split.
2 subgoals
P : Prop
Q : Prop
H:P
HO : Q
P

subgoal 2 is:

Q

1.2 Arithmetic in Coq

Among other definitions, the type nat for natural integers is automatically
loaded in a Coq session. It is defined in an inductive way, following Peano’s
axiomatisation, as follows:

Inductive nat : Set :=
0 : nat
| S : nat -> nat.

This definition reads: “nat s a new inductive type of sort Set whose con-
structors are 0 of type nat (a constant) and S of type nat -> nat (the suc-
cessor function, taking a natural number and returning as a result a natural
number)”.

Integers can then be defined according to Valérie Ménissier-Morain’s im-
plementation?!, as:

Inductive Z : Set :=
0Z : Z

| pos : nat -> Z

| neg : nat -> Z.

An integer (type Z) is either 0Z, or (pos n) (denoting n+1), or (neg n)
(denoting —n—1).

Along with these inductive types, the usual operations and relations are
defined on natural numbers (plus, mult, le, 1t, ge, gt) and on inte-
gers (addZ, multZ, leZ, 1tZ, geZ, gtZ), as well as the canonical injec-
tion injp (of type nat -> Z).

As one can easily guess, this very primitive implementation of integers
turns out tedious to handle in big proofs, since many straightforward results
on integers are not at all given for free with the definitions of the objects
(for example, the proof that (Z,+) is a group takes more than 350 lines in
V. Ménissier-Morain’s original implementation). Therefore, a tool for gen-
erating automatically the proofs for such straightforward results can really
be useful to the user, especially if he/she is dealing with a proof where the
arithmetical results are not important at all: the purpose is here to give to
the effectiveness of theorem proving enough power to “catch-up” the high
expressiveness of its logic.

1.3 Writing a tactic for Coq

The Coq V5.10 source CamlLight code provides user-friendly functions that
can be used to write one’s own tactics; these functions are used for parsing
or unparsing of terms, as well as for manipulating them (applying weak head
beta-reductions, for example). This makes Coq a quite open system, espe-
cially since this opportunity is documented in [CCFT96]. The integration of
extra code to the system is quite easy, and does not make the requirement
of understanding the whole system. The Coq proof assistant has already a
few tactics implementing decision procedures written this way, like Tauto for
intuitionistic propositional calculus [Muni94| and Linear for Direct Predicate

Calculus |Fil95].

!This implementation can be found in the Coq contrib/Rocq/ARITH/Chinese/ direc-
tory. Another implementation defines 7 as the symmetric completion of the semi-group
N; it can be found in the contrib/Rocq/RATIONAL/Integer directory; it is also used in
the LEGO system [LP92], for example.

2 The decision procedure

We present here the algorithm used by Nodesat; it is actually the algorithm
used by the Arith tactic of the NuPrl system [Jac94| and described in [Cha77]
under the name of “the nodesat procedure”. Roughly, this algorithm works
on comparisons between arithmetical expressions by building a graph and
representing these comparisons on it.

Other approaches can be considered, the mostly used being the Suplnf
method for Presburger formulae, as stated by Bledsoe [Ble75] and improved
by Shostak [Sho77]. The NuPrl system has actually two arithmetical tac-
tics, namely Arith (implementing the nodesat procedure) and Suplnf (im-
plementing Bledsoe’s method); this latter method is also used by the HOL
arith library |Gor, Bou92|, as well as the PVS system [SOR93|.

2.1 The nodesat procedure
2.1.1 Looking for a contradiction

The procedure described in [Cha77] is called the nodesat procedure. As will
be shown in the following, it builds a graph from a list of comparisons on
arithmetic expressions. Let us first state the form of the proposition that
has to be checked by the algorithm we shall describe:

G=HAN - -ANH,=CyV---VC,

Hi,Cj = A|-A
A=P<Q[PLQIP>Q|P2Q|FP=Q

The first basic idea of the nodesat procedure is to add the negation of the
conclusion to the system built on the hypothesis of the proposition, and to
look for a contradiction. We now have thus the system:

HAN - ANH, AN-CyA---AC, = L

In other words, from this new system of comparisons (since the negation of
a comparison on arithmetic expressions still can be formulated as a compar-
ison, think for example of =(z < y) = (¢ > y)), the algorithm will try to
prove it unsatisfiable, i.e. that no instantiation of its variables can satisfy
the constraints expressed by the comparisons. Conversely, if an instantiation
that satisfies all the comparisons can be found, the system is said satisfiable,
and the original proposition is proved false.

2.1.2 Normalisation of comparands

We now have comparisons on arithmetical expressions, and we want to work
with them in order to find a contradiction. That for, we need them to look
“all the same way”, through a normalisation of the comparands; these are
originally in the following form:

PI$|I€| —]D|131—|—132|131>k1327
and should finally look like:

P = g Ciyiny ooz

i1:0...n1 ,...,inZO...nn

In other words, we rewrite an arithmetical expression into a sum of monoms
of the various variables involved in the proposition we are considering. For
example the expression 2 (z + 1) 4+ y (2 — 3) is rewritten into 2 + 2.2 +
(—3).y + l.zy. Note that properties used for this rewriting of terms into
normal form are the basic properties of the ring of integers.

2.1.3 Linearisation of comparands

At this point of the algorithm, we have comparisons on “normal terms”, the
next step is the linearisation of these terms. This is actually a key step in the
nodesat procedure, since it can discard much information from the initial
problem. What we do is basically to linearise all the comparands, that is to
replace a term of the form P = 37, ¢ .. . —o .. C’ilminxlf ...xin with
a term of the form ¢ + y (¢ a constant), creating a new, fresh variable y
that will mask all the non-constant part of the original normal term. This is
needed by the forecoming steps of the algorithm, but can of course ruin all
the efficiency of the algorithm, as can be seen in the two following examples:

e suppose we have to prove
(2 <0) = (2 =0)
We first take the negation of the conclusion, and get the system
(22 <O A(z<>0)= L
The normalisation of terms gives then

(1.2 <O A (L <>0) = L

(which is still contradictory), and the linearisation of comparands cre-
ates two new variables y and z, leading to the non contradictory system

(y<O)A(z<>0)= L

The nodesat procedure will fail here, on a really simple system, be-
cause it “forgets” the relation between y(= 2?) and 2(= =) ...

e There is an even more simple example of the disaster the linearisation

can cause?: suppose we have the system

(n>0)A(-n>2)= 1
The linearisation gives
(y>0)A(z>2)= L
. which is of course not provable.

As said before, a lot of informations can get lost during this linearisation
step. Still, if we succeed to find a contradiction in the linearised system,
the original proposition is proved true; on the other hand, if we fail, we
cannot state the original proposition as false, since we cannot know if the
failure comes from a weakening of the hypothesis during the linearisation.

That is the reason why this so-called decision procedure is in fact only a

semi-decision procedure 2.

2.1.4 Normalisation of comparisons

After the linearisation step, we have a list of comparisons looking like
H=A]-4

A=P<Q|P<Q|P>Q|P2Q|P=Q

and that involve linearised terms, ie terms described by

PQ=clylecty

2Such cases are avoided in the actual implementation, due to the improvements brought
by V. Ménissier-Morain. See the next section.

°In some cases, we can be sure that there is no loss of information due to the lineari-
sation; we thus have a real decision procedure and answer “true” or “false” to the original
goal.

We transform these comparisons into normal comparisons such as
N=P>Q|P=Q|P<>Q

What we do is in fact keep the equalities and non-equalities as they are, and
transform all the inequalities into greater-than inequalities, using common
theorems such as @ < y = y > 4+ 1 (in this case, we need of course to
rewrite a term like z + 1 into a “linearised form” as described above, thus
invoking some kind of “relinearisation”, but in this case we know it is safe,
because of the form of the original terms).

2.1.5 The graph of inequalities

Building the graph Once we have all the normal comparisons of linear
terms, we can start the real procedure, namely by building the graph of
inequalities, which will be the support for our reasoning. This graph is an
oriented, weighted graph, whose nodes represent the variables we are consid-
ering (linearised variables, of course), and whose edges represent the infor-
mation we have between these nodes, in terms of greater-than inequalities;
there is an extra node for constant terms, in order to represent inequalities
such as @ > 3. On this graph, an edge from node z to node y, weighted
by constant ¢, means: ¢ > ¢+ y. The particular case of constant terms is
treated as follow: the node zero represents 0, and the inequality z > 3 is
represented by an edge from node z to node zero, of weight 3.

As we want to represent our problem on this graph, the first thing we do
is to “translate” our inequalities onto it, by drawing the corresponding edges
(for the moment, we forget about equalities and inequalities). For example
the following system of inequalities:

(z>0)Ay>2z+2)A (1> 2)

is represented by the graph:

An important fact to notice about the weight of an edge is that its role is
to represent the mazimum weight between two nodes: suppose we have the
two inequalities > y+ 1 and z > y 4+ 2, we will draw an edge of weight 2
from node # to node y, since the second inequality is more restrictive (and
hence gives more information) than the first.

Propagating the weights The main operation that we will perform on
the graph, each time we add some new information to it, is to propagate this
information; since this information is represented by the weights of the edges
on this graph, this will be done through a “propagation” of the weights. That
for, we use the transitivity of inequality, stated as follows: (z > y+¢)A(y >
z+d) = (2 > 2+ (c+d)), which translates on the graph to the assignment

Asj = max (A, maxp=o.1,...n (A + Akj)),

it A;; is the weight of the edge between nodes ¢ and j. On the previous
example, the inequalities (y > = +2) and (2 > 0) lead to the new inequality
y > 2, represented by a new edge of weight 2 from y to zero. Similarly, by
taking ¢ = 7 in the above assignment, we can deduce the weight for an edge
from one node to itself: from inequalities (z > 0) and (1 > z), we deduce
(z > 2+ 1), that is represented by a loop on the graph. If we propagate the
information while building the graph of our example, we get the following
graph:

(o =

Finding a contradiction Since what we are looking for is a contradiction,
we have to know what it means in terms of inequalities, and how it is rep-
resented on the graph. The nodesat procedure is in fact looking for cycles
with a strictly positive way, since they correspond (modulo propagation) to
an inequality of the form z > z + ¢, with ¢ > 0, which is obviously absurd.
We are hence looking for edges from a node to itself with weight > 0, such
as edges like the one from node z to z or from node zero to zero on our
example (which was trivially contradictory).

If we have such edges after construction of the graph of inequalities and
propagation of weights (like in our example), a contradiction is found and
the nodesat procedure terminates with a success; if not, we must consider
the other informations we have, namely the equalities and the inequalities:
this is the next step in the nodesat procedure.

2.1.6 Getting rid of equalities

What we want to do now is to get rid of equalities, by putting all the informa-
tion they represent on the graph of inequalities. This is done by restricting
the size of the graph according to these equalities, and propagating the in-
formation they give.

The way to proceed is this: suppose we have the graph of inequalities,
with nodes z and y representing the corresponding variables, and we know
as well the equality = y + k. What we do is delete the node = and bring
all informations about z on the node y: suppose we have an edge from node
say z to node z of weight ¢, this edge “says” z > & + ¢, and since z = y + k,
we can update the weight of the edge from z to y with weight ¢+ k& (updating
means: if there is no edge from z to y, then draw one with weight ¢ + k,
otherwise, affect to it the maximum of its weight and ¢+ k). We have in
effect

z>z+c)AN(z=y+k)= (z>y+ (c+k)).

In a similar way, an edge from z to z with weight d will lead to an update
of edge from y to z with weight d — k: at the end of this operation, we have
erased the node z by using the equality = y+ k, which relates nodes x and
Y.

In this way, we use each equality to decrease the size of the graph, by
keeping only one of the terms involved in it and transporting all the infor-
mation about the removed node onto the node that stays.

Let us remember that each modification of the graph during this step is
done using the propagation relation stated above, in order to keep for each
edge the maximum weight between the nodes. We then look for a cycle of
strictly positive weight. If we find one, nodesat succeeds; if not, we go to
the next step and take in consideration the non-equalities.

2.1.7 Getting rid of non-equalities: the actual nodesat procedure

What is really considered as the actual nodesat procedure is this step on
non-equalities, and it is kept as the last step since it can increase a lot
the size of the algorithm, in space and in time. The idea is to take in

consideration two nodes, say = and y, and the non-equalities we have between
the two corresponding variables. Suppose we have n such inequalities, such
as (z <> y+ Ci)lgign- This can be represented by the following drawing
(we suppose that the ¢; 1<i<, are sorted):

Looking at this picture, it is easy to see that

(z<>y+a)AN(z<>y+ec) A Ax<>y+c,)

(z—y<a)Va<z—y<c)V---Vig <z-y<c,) Vi, <z-—y)

In the second line of this formula, we consider the integer z —y, which is easy
to translate on the graph of inequalities, since an edge of weight a from z to
y means (z —y > ¢), and an edge of weight b from y to means y > o + b,
hence z —y < —b.

Let us look at the informations we have about x and y:

e the inequalities graph says: a < z —y < —b (if there is no edge
corresponding to a or b, we can replace them by —oo to keep the same
notation)

e the disequalities say:

(z—y<c)V(ap<z—y<ca)V---V(ey, <z2—-y<c,) Ve, <z—y)

We can remark that we get from the disequalities a disjunction of inequalities,
and since an inequality can be represented on the graph, we shall consider
each one of the cases of the disjunction, translate the corresponding inequali-
ties on the graph, and as usual propagate the weights then look for a strictly
positive cycle. That is, in the general case, if we are in the it" disjunct,
we have inequalities ¢;_; <z —yand 2 —y < ¢, i.e. © > y+ (-1 + 1)
and y > 2 4+ (1 — ¢;) (canonical form for inequalities), we can update the
edges between nodes z and y with them, and look for a contradiction after
propagation of the weights*.

At this point, if a contradiction is found, it means that the i** disjunct is
proven contradictory. But since we are dealing with a disjunction, we have

*The “extreme” branches of the disjunction, & — y < ¢; and ¢, < & — y, give only one
inequality to update the graph with.

10

to prove all the branches to be contradictory®. If this is the case, we have
proven a contradiction on the original system, and the nodesat procedure
succeeds. If there are branches that still don’t contain a contradiction, we
have to go on working on them. Before explaining how this job is done,
note that through the use of this disjunction we have replaced the initial
problem, represented on a graph, by n + 1 problems (n being the number
of disjunctions involving 2 and y), and hence n + 1 graphs: the size of the
problem has dramatically grown.

The idea to keep on working on the still satisfiable branches of the dis-
junction is to iterate the nodesat algorithm, taking two new nodes instead
of and y, and using the same algorithm as above with the non-equalities
concerning these nodes. There are in fact two nested loops: the loop on all
pairs of nodes, containing for each pair the loop on all disequalities between
the nodes of the pair.

The full nodesat procedure explores of course all possible pairs of nodes,
and one can see that the problem grows like a tree, each level of the tree
corresponding to a pair of nodes (and hence to a conjuction of disequalities,
i.e. a disjunction of inequalities, as explained above); from another point of
view, all nodes (or leafs) at the same depth in the tree represent two branches
of the same disjunction. A leaf is reached if the corresponding situation is
proven contradictory, or when all possible pairs of nodes have been explored
without finding any contradiction. Let us remind that a subtree is generated
by a disjunctive term, and that to prove a disjunction contradictory, one has
to prove that all subterms are contradictory as well; the alternative stated
above means there are two possibilities when a leaf is reached: either it can’t
be proved contradictory, thus all the disjunctions above (fathers in terms of
trees) aren’t provable contradictory, and the procedure fails, or it has been
proved contradictory, and we must go on to the next subtree. To reformulate
this, if one of the subtrees can’t be proven contradictory, then we fail, and
hence the problem was not contradictory; in this case, since we have used
all the information that we got, the nodesat procedure fails: the linearised
problem was not provable.

To prevent as much as possible the size of problem to explode, we apply
the nodesat procedure on each strongly connected component of the graph.

®To prove AV B = L, one needs to prove A= L and B = L.

11

3 The implementation

This work started from a CamlLight implementation of the nodesat proce-
dure by Valérie Ménissier-Morain. It was actually an integration of the code
into the Coq system, a process that sometimes turned out a bit unelegant
or unnatural, mostly because the Coq system, which is not as flexible as the
CamlLight language, forced to rewrite part of the code in order to increase
the precision and the “atomicity” of some functions. As we will not enter the
detail of these modifications here, we just want to stress that the reason for
which the whole tactic has not been written for the Coq proof assistant from
scratch is basically a lack of time. We shall describe here the main steps of
this integration.

3.1 CamlLight types
Here are the important CamlLight types for the nodesat objects:

type term =
Const of integer

| Var of int

| Add of term * term

| Sub of term * term

| Minus of term

| Mult of term * term
55
type comp =

Eq of term * term | Neq of term * term
| Le of term * term | Lt of term * term | Ge of term * term | Gt of term * term
55
type weight = None | Some of integer

EE]

The type comp represents comparisons between arithmetical expressions im-
plemented as elements of type term. A graph is a vector of vectors of elements

of type weight.
For the proof, the relevant types are:

type arith_pf =

PR of int * string * (term list) (* Pattern and *)
(* Rewrite *)
| RC of string * (constr list) (* Pattern and *)

(* Rewrite with *)
(* constr arguments *)
| RE of int * term * term * (arith_pf t) (* Pattern and *)

12

(* Replace *)

| RN of bool *int * term * int (* Replace a nat term *)
(* true for >0 *)

| CC of string * term * term * (arith_pf t) (* Cut on a *)
(* comparison *)

| CG of constr * (arith_pf t) (* Cut on a Coq *)
(* comparison *)

| AA (* Assumption or Auto *)
(* *)

| PS of int * term * int (* Pattern and Simpl *)
(* *)

| AP of string * (term list) (* Apply a rule *)

| AG of string * (constr list) (* Apply with constr *)
(* arguments *)

| IN (* Intro *)

| NO (* null tactic *)

| DIS of (term list) * (arith_pf t) * (arith_pf t)
(* Elim for *)
(* disjunction *)

type var_type =
ZINT of constr
| INJ of constr;;

The type arith_pf is used for a proof step, each step corresponding (roughly)
to a Coq tactic with its arguments when necessary. The proof generated by
Nodesat is a queue of elements of type arith_pf; once we know that the
nodesat procedure succeeds, we remove the elements from the queue one
after another and translate them in order to build the Coq proof term.
The type var_type is used to implement the variables collected during
the parsing, the constructor ZINT is used for variables of type Z, while the
constructor INJ is used for variables of type nat (see below for more details).
Nodesat works with integers, as they are implemented in the files of the
subdirectory Zlemmas of the tactic. The actual lemmas used by Nodesat are
in the subdirectory Rules; they are in fact mainly ad hoc statements of the
results proved in the Zlemmas files, expressed as the tactic needs them.

3.2 Following the proof steps

Let us sketch the various steps of the algorithm and the kind of proof terms
they generate. As the type pr_type shown above suggests, the proof steps
correspond very closely to Coq tactics (or in some cases tacticals): Node-

13

sat could probably be able to give as a result a proof script in a Coq file,
instead of generating the proof term and submit it directly to the system.

It is important to notice that the actual proof term coming from a trace
of the execution of nodesat is built only when the tactic succeeds, otherwise
the proof so far is forgotten; this translation from objects of type arith_pf
into Coq A-terms is a quite long process, so we can say that if the user has to
wait, this means that nodesat has succeeded and the proof will terminate,
in other words if the user has to wait, he should be full of hope (or of fear
of a bug in Nodesat!) ...

Parsing Nodesat begins with applying the tactic Intros to the current
subgoal. Then it builds the list of the variables occurring in the conclu-
sion of the goal, and taking them as relevant variables, looks in the context
for comparisons on integer or natural expressions containing these relevant
variables, called relevant comparisons. For each relevant comparison, Node-
sat updates the list of relevant variables with the variables occurring in this
comparison, and goes on building the list of relevant comparisons. At the
end of this process, the tactic has a list of comparisons in the context and a
conclusion, and the nodesat procedure can begin.

Remark about the nat type: An important feature of Nodesat is to
work with objects of type nat, i.e. natural numbers. The idea is to apply
to each variable the natural injection injp from nat to Z, adding to the
system an inequality expressing the fact that a natural number is always
positive. More precisely, when the parser has to deal with a comparison
of two expressions of type nat, say for example (1le E1 E2), it applies the
corresponding injection lemma, here

Lemma inj_le: (ni1,n2:nat) (leZ (injp n1) (injp n2)) -> (le nil n2).

As a result, we now get a comparison on integers ((injp n1) and (injp
n2)); we then “propagate” the injp construct inside each expression, that is
for example if n1 is (plus ml m2), we replace (injp n1) with (addZ (injp
ml) (injp m2)), and so on, until we reach terms like (injp n), with n a
variable of type nat: at this point, we add the inequality (geZ (injp n)
0Z), which is easily proved, to the system, and we store the variable (injp
n) in the list of parsed integer variables (if it has not been already parsed
before). The file Naturals.v contains the lemmas used for the treatment of
terms of type nat.

The current version of Nodesat does not treat conjunctive hypotheses
and disjunctive conclusions, as the nodesat algorithm does: the user has to

14

split them “manually” in order to use the tactic; however, a pre-treatment of
the goal in order to avoid this should’nt be very difficult to implement.

Negating the conclusion To try to prove a contradiction by taking the
negation of the conclusion and add it to the comparisons from the context,
Nodesat has to use a decidability lemma.

That for, the file Decidable.v contains the following Coq statements:

Definition decidable := [P:Prop] (P\/"P).
Lemma repl_but: (G: Prop) (decidable G) -> (G -> False) -> G.

Decidability is also proved for each comparand on integer and natural expres-
sions, which allows to use the lemma repl_but to replace for example a goal
with a conclusion of the form (1eZ a b) with a goal where the conclusion
is False and the hypothesis “(1eZ a b) is added to the context.

Normalising and simplifying The CamlLight function cring in the file
terms.ml is used to normalise the arithmetic expressions; each time a rewrit-
ing rule is used by this function, a “Pattern and Rewrite” term is added to
the proof, in order to trace exactly the modifications that are brought to the
term. The Pattern tactic is used to isolate the subterm of the expression to
which the rewriting rule is applied, and to preserve other possible occurences
of this subterm from being modified. When a comparison is treated by the
nodesat procedure, it is first brought into the conclusion of the Coq subgoal
by using the Cut tactic®, then all the Rewrite tactics are applied in order to
normalise the terms of the comparison, and the new form of the comparison
is reintroduced in the context by Intro.

Example Suppose we have the hypothesis (1eZ (neg 0) (addZ x (pos
0))) (i.e. =1 <a+1,x is of course of type Z here), we have something like:

x : Z
H : (leZ (neg 0) (addZ x (pos 0)))

We first bring H into the conclusion of the goal:

toto < Cut (leZ (neg 0) (addZ x (pos 0))); Try Assumption.
1 subgoal

5The Generalize tactic would be more clever here.

15

x : Z
H : (leZ (neg 0) (addZ x (pos 0)))

(1eZ (neg 0) (addZ x (pos 0))) -> False

Then the normalisation gives the inequality —1 < 1+ 1.2 (we skip here
several “Pattern and Rewrite” proof steps):

x : Z
H : (leZ (neg 0) (addZ x (pos 0)))

(1eZ (neg 0) (addZ (pos 0) (multZ (pos 0) x))) -> False

. and we can introduce the normalised comparison into the context.

The simplifications of the comparisons (for example replacing z+y > y+2
by & > z) are done by using the Cut tactic on the simplified comparison,
and for the generated subgoal by applying the corresponding lemmas (in
this example the lemma would look like Lemma simpl_1_r : (x,y,z:Z)
(geZ (addZ x y) (addZ y z)) -> (geZ x z).). Note that all properties
used so far, for the normalisation (mainly Rewrite tactic) and for the sim-
plification (mainly Apply tactic) involve basically only the properties of the
ring of integers (those properties that are proved in the files of the Zlemmas
subdirectory, actually).

In the implementation of the nodesat procedure by Valérie Ménissier-
Morain, some refinements are added to the plain algorithm in order to in-
crease its strength. These improvements are mainly concerned with the nor-
malisation of terms and comparisons, looking for sensible simplifications to
do before the linearisation in order to reduce the loss of information during
this step.

The linearisation step As far as the proofis concerned, the linearisation
step does not involve any proof term at all: what Nodesat does is only rename
internally some terms into fresh variables, and we keep track of this in order
to build the Coq proof terms, but no trace of this step is kept in the proof.
In other words, if Nodesat creates a new “linear” variable T" to denote the
monom .y, what we need to know is only that ulterior proof terms involving
T have to be built with z.y replacing 7.

16

The graph The structure itself of the graph is not actually visible in the
Coq proof. What we keep during the nodesat procedure is an exact image of
what the edges of the graph say in the context: each time an edge is updated,
the corresponding inequality is added to the context. In particular, when
the propagation rule stated above is used to add a new edge, the tactic
Nodesat applies a Cut on the new resulting comparison, and the lemma
corresponding to the propagation rule is applied to the generated subgoal in
order to prove it.

The nodesat procedure succeeds whenever a strictly positive cycle can
be found in the graph; it can then be reduced to an edge from a node to itself
with a strictly positive weight: when this occurs, Nodesat uses a lemma of
the form (z,c:Z) (gtZ c 0Z) -> (geZ z (addZ z c¢)) -> False to ter-
minate the proof.

The nodesat procedure This part of the algorithm basically uses the
tools described above for the manipulation of the graph. The only important
lemma that is used here is the disjunction lemma, stating that 2z <> y
implies (z < y) V (z > y). The Coq tactic used with this lemma is of course
Elim, and this is done each time a new subtree is generated by “splitting” a
disjunction.

3.3 Examples of the use of Nodesat

We give here a few examples of how Nodesat works on common arithmetical
goals; we assume that the reader is familiar with the Coq syntax.

Rewriting

1 subgoal

(plus m (plus (S p) n))=(S (plus (plus n m) p))

Unnamed_thm < Nodesat.
Subtree proved!

17

Hiding terms

1 subgoal

(z:2)(le 0 (f 2))

Unnamed_thm < Nodesat.
Subtree proved!
Unprovable goals

1 subgoal

(1e (s 0) 0)

Unnamed_thm < Nodesat.
Nodesat: that seems false..
1 subgoal

(1e (s 0) 0)

Unnamed_thm <

Failure of Nodesat
1 subgoal

(x:nat)(le 0 (mult x x))

Unnamed_thm < Nodesat.
I can’t prove that (either a linearisation problem or a bug...)
1 subgoal

(x:nat)(le 0 (mult x x))
Unnamed_thm <
This is a typical case where the procedure fails because of the linearisation

step, that replaces (mult x x) with a new fresh variable.

18

4 Conclusion and future work

Nodesat is not very efficient in terms of time (when the tactic succeeds, the
actual construction of the proof can take a minute long or even more) and
of space (printing a proof term generated by Nodesat reveals a big amount
of irrelevant proof steps, coming mostly from the normalisation process).
However, it is a first step towards automation of reasoning about numbers, a
feature that definately has to be part of a system designed for applications,
as Coq turns to. Actually, as the system becomes more complex, the proofs
done in Coq are more and more concerned with “real size” applications, such
as hardaware checking [CGJ] or protocol verification [BGLHT 95|, rather than
in various branches of pure mathematics, as it happened firstly with the task
of showing the system’s expressiveness. Even in this field, a big amount of
work has to be done on real numbers implementation (following the ideas of
[Hir92], for example) and it turns out that for such proofs (be they about in-
dustrial problems or about mathematical analysis), an arithmetical decision
procedure such as Nodesat is very useful.

Nodesat can be improved in many ways. A first modification is the
ability to treat Coq’s pred and minus constructs, that behave in a very
particular way because of their types: pred is of type nat -> nat, and thus
(pred 0) has to be an absurd value (actually it is 0), and minus is of type
nat -> nat -> nat, (minus 0 n) returning 0 for any n. In the examples
below, we can see how the tactic succeeds when these constructs can be
erased by simplification, but fails otherwise.

1 subgoal

(n:nat)(le (pred (S (S 0))) n)->(gt n 0)

Unnamed_thm < Nodesat.
Subtree proved!

. but ...

1 subgoal

(minus n 0)=n

Unnamed_thm < Nodesat.
Parsing of minus and pred constructs will be available soon...

19

1 subgoal

(minus n 0)=n

The solution to deal with that is to consider, for each term of the type (pred
E) with E a non constant expression, the case where E is equal to zero, and
the case where E> 0. The size of the problem thus grows (for the (minus E
E’) case, we have to consider two possibilities as well: E < E’ and E > E’),
and each proof has to be done “twice”. A first version of Nodesat with the
ability of treating pred and minus is in preparation, but still has some bugs.

Moreover, if we want to prove arithmetical lemmas automatically in the
Coq system, the issue of efficiency is very important: already existent sys-
tems suggest that the point is not really to have complex procedures, that
can handle a large number of problems, but rather to solve common prob-
lems quickly and with proofs as simple as possible. This task was already
the main motivation of Shostak’s improvements of the Bledsoe method in
[Sho77], and is clearly expressed in the design of HOL’s arith library [Bou92].
This suggests that an arithmetical tactic for the Coq proof assistant should
eventually be totally rewritten, remembering that the role of such a tool is
to supply quick answers to simple common problems that arise very often in
technical proofs.

Another important point about the Coq system is that its design does
not really allow the presence of “black boxes”, i.e. tools that check a formula
without giving a proof term for it (technically, this compels to define an
axiom for formulas proved with such a black box, an axiom that should be
considered in this case as a “commonly admitted result”). This is the chosen
solution for the PVS proof system, that is defined in [Rus| as a system with
an “impure” interpretation for its tactics (as opposed to HOL), using, to
solve decidable problems, decision procedures that do not return any proof
term. Of course, the improvement in effectiveness and rapidity is noticeable
and gives PVS the status of an effective proof system with a wide range
of industrial applications; however, such an option is not possible in Coq,
where the intent is rather to consider an arithmetical proof in no way simpler
or less informative than any other proof: Coq finds its place among the
so-called fully-expansive theorem provers, as opposed to partially-expansive
ones, and a Coq proof has thus always to be given in its full extent. Such
a choice becomes quite critical if the applications come from fields where
security and/or safety are very important issues, i.e. systems like nuclear
powerstation controllers or defense systems, as stressed in [Bou92]. A fully-

20

expansive approach can also lead to implement for example exact arithmetic,
as it is done for ML in [MMW95].

References

[BGLH'95] D. Bolignano, J. Goubault-Larrecq, G. Huet, D. Le

[Ble75]

[Bou92]

[CCE+96]

[CGJ]

[ChaT77]

[Fi195]

[Gor]

[Hir92]

Métayer, P. Lescanne, and S. Philipakis. The VIP
Project - Verified Internet Protocols. description avail-

able at http://pauillac.inria.fr/ huet/vip.html, Décem-
bre 1995.

W. W. Bledsoe. A new method for proving certain Presburger
formulas. In Advance Papers 4th Jownt Conference on Artificial
Intelligence. Thilisi, Georgia, U.S5.5.R., September 1975.

R.J. Boulton. The HOL arith Library. Technical report, Univer-
sity of Cambridge, Computer Laboratory, Cambridge, England,
July 1992.

C. Cornes, J. Courant, JC. Fillidtre, E. Gimenez, G. Huet,
P. Manoury, C. Munoz, C. Murthy, C. Parent, C. Paulin-
Mohring, A. Saibi, and B. Werner. The Cog Proof Assistant
Reference Manual. Projet Coq, INRIA Rocquencourt / CNRS
- ENS Lyon, 1996.

S. Coupet-Grimal and L. Jakubiec. Vérification formelle de
circuits avec Coq. LIM URA CNS 1787 - Université de Provence
- Marseille.

T. Chan. An algorithm for checking PL/CV arithmetic infer-
ences. TR77-326, Cornell University, Ithaca, New York, 1977.

J.C. Filliatre. A decision procedure for direct predicate calculus.
Technical report, LIP-ENS-Lyon, 1995.

M. Gordon. HOL: A proof generating system for higher-order
logic. In G. Birtwistle and P.A. Subrahmanyam, editors, VLST
Specification, Verification, and Synthesis. Kluwer edition, 1987.

D. Hirschkoff. Construction de I’ensemble des réels en Cogq.
Rapport de stage scientifique E.N.P.C., 1992.

21

[Jac94]

[LP92]

[MMW95]

[Mun94]

[Rus|

[Sho77]

[SOR93]

P.B. Jackson. The Nuprl Proof Development System, Version
4.1 Reference Manual and User’s Guide. Cornell University,
Ithaca, NY, 1994.

7. Luo and R. Pollack. LEGO Proof Development System:
User’s Manual. Department of Computer Science, University
of Edinburgh, May 1992.

Valérie Ménissier-Morain and Pierre Weis. An exact arithmetic
package for ML. Science for Computer Programmang, 1995. To
appear.

C. Munioz. Démonstration automatique dans la logique propo-
sitionnelle intuitionniste. Master’s thesis, DEA d’Informatique
Fondamentale, Université Paris 7, September 1994.

J. Rushby. Design choices in PVS. Computer Science Labora-
tory - SRI International - Menlo Park CA USA.

R.E. Shostak. On the sup-inf method for proving Presburger
formulae. Journal of the ACM, 24(4):529-543, October 1977.

N. Shankar, S. Owre, and J.M. Rushby. The PVS Proof Checker
Reference Manual. Computer Science Laboratory - SRI Inter-
national, Menlo Park CA 94025, march 1993.

22

