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Nodesat, an arithmetical tacticfor the Coq proof assistantDaniel HirschkoffRésuméCe rapport décrit l'implantation de Nodesat, une procédure de dé-cision arithmétique pour le système d'aide à la preuve Coq, qui estdéveloppé à l'INRIA (Rocquencourt) et à l'École Normale Supérieurede Lyon. À partir d'un système de comparaisons entre expressionsarithmétiques, l'algorithme construit un graphe orienté et valué danslequel il essaye de mettre en évidence des cycles de poids strictementpositif, ce qui revient à véri�er le système initial. Lorsque la procédurevéri�e ce système, un terme de preuve est construit à partir de ce quiest en fait une trace des di�érentes étapes de l'algorithme. Il s'agitpour le système Coq d'une première tentative d'écriture de procédurede décision arithmétique, un outil qui se révèle indispensable dans lecadre du développement d'applications industrielles.AbstractThis report describes the implementation of Nodesat, an arith-metical decision procedure for the Coq proof assistant, a system devel-opped at INRIA (Rocquencourt) and at the École Normale Supérieure(Lyon). The algorithm builds a directed, valuated graph representinga system of comparisons between arithmetical expressions, and looksfor a strictly positive cycle graph in order to check the validity of thesystem. If the procedure succeeds, a proof term is generated, which isbasically a trace of the various steps of the algorithm. This attempt is a�rst step towards implementation of an arithmetical decision procedurefor Coq, a feature that turns out very useful for industrial applications.





IntroductionThe conception of many proof checkers is based on typed �-calculi; the un-derlying paradigm of such a design is that building a proof is analogousto writing a program. This idea, usually referred to as the Curry-Howardisomorphism, is a result giving two interpretations of a term in a typed �-calculus: on one side there is an algorithm, on the other side a method toprove a speci�cation given by the type of the term. While this beautifulresult can indeed be used as the foundation of a proof-checking system, theconfrontation with �realistic� proofs makes visible the fact that the complex-ity gap is quite big between terms used for implementation and terms usedfor proofs. As one wants to prove a non straightforward result, technicaldetails often arise, even if the objects are simply and naturally implementedinto the underlaying �-calculus. This results in a waste of time, and evenmore importantly in a loss of understandability in the proof scripts, wherethe technical parts play the main rôle. To avoid that, logical frameworksthat are designed towards real size proofs come with decision procedures,or in other words tools for building in an automatic way technical proofs;these decision procedures are usually concerned with topics like propositionallogic, �nite state model-checking, linear arithmetic or rewriting.We describe here Nodesat, which is a �rst attempt to write an arithmeti-cal decision procedure for the Coq proof assistant [CCF+96]. Although thistactic is not very powerful in terms of complexity of the problems treated,it can be considered as a �rst tool that gives Coq users an automatic way toavoid technical proofs using arithmetical results.After sketching brie�y the conception of the proof system, we describethe algorithm used by Nodesat and compare it to existing systems. We thendiscuss implementation, giving a few examples of the use of Nodesat, and weconclude considering improvements that can be brought to the tactic.1 The Coq proof assistant1.1 The systemCoq [CCF+96] is a proof assistant based on the Calculus of Inductive Con-structions, a higher-order logic which gives to this system a strong expressive-ness as well as a reasonable �exibility. Inductive de�nitions are introducedinto the system via their constructors, and automatically generate elimina-tion schemes that can be used by proofs by induction.Coq proofs are led in a goal-directed way through the application of1



tactics implementing backward reasoning: at any point in the proof a tacticcan be invoked, and if it succeeds, i.e. if it matches (in some way dependingon the tactic that is actually used) the current goal to be proved, it generatesone or several subgoals (or even none if the proof is complete).Example Prop is the type for logical properties; the Split tactic trans-forms a conjunctive goal into two subgoals corresponding to the two membersof the conjunction:1 subgoalP : PropQ : PropH : PH0 : Q============================P/\QUnnamed_thm < Split.2 subgoalsP : PropQ : PropH : PH0 : Q============================Psubgoal 2 is:Q1.2 Arithmetic in CoqAmong other de�nitions, the type nat for natural integers is automaticallyloaded in a Coq session. It is de�ned in an inductive way, following Peano'saxiomatisation, as follows:Inductive nat : Set :=O : nat| S : nat -> nat.This de�nition reads: �nat is a new inductive type of sort Set whose con-structors are O of type nat (a constant) and S of type nat -> nat (the suc-cessor function, taking a natural number and returning as a result a naturalnumber)�. 2



Integers can then be de�ned according to Valérie Ménissier-Morain's im-plementation1, as:Inductive Z : Set :=OZ : Z| pos : nat -> Z| neg : nat -> Z.An integer (type Z) is either OZ, or (pos n) (denoting n+1), or (neg n)(denoting �n�1).Along with these inductive types, the usual operations and relations arede�ned on natural numbers (plus, mult, le, lt, ge, gt) and on inte-gers (addZ, multZ, leZ, ltZ, geZ, gtZ), as well as the canonical injec-tion injp (of type nat -> Z).As one can easily guess, this very primitive implementation of integersturns out tedious to handle in big proofs, since many straightforward resultson integers are not at all given for free with the de�nitions of the objects(for example, the proof that (Z;+) is a group takes more than 350 lines inV. Ménissier-Morain's original implementation). Therefore, a tool for gen-erating automatically the proofs for such straightforward results can reallybe useful to the user, especially if he/she is dealing with a proof where thearithmetical results are not important at all: the purpose is here to give tothe e�ectiveness of theorem proving enough power to �catch-up� the highexpressiveness of its logic.1.3 Writing a tactic for CoqThe Coq V5.10 source CamlLight code provides user-friendly functions thatcan be used to write one's own tactics; these functions are used for parsingor unparsing of terms, as well as for manipulating them (applying weak headbeta-reductions, for example). This makes Coq a quite open system, espe-cially since this opportunity is documented in [CCF+96]. The integration ofextra code to the system is quite easy, and does not make the requirementof understanding the whole system. The Coq proof assistant has already afew tactics implementing decision procedures written this way, like Tauto forintuitionistic propositional calculus [Mu~n94] and Linear for Direct PredicateCalculus [Fil95].1This implementation can be found in the Coq contrib/Rocq/ARITH/Chinese/ direc-tory. Another implementation de�nes Zas the symmetric completion of the semi-groupN; it can be found in the contrib/Rocq/RATIONAL/Integer directory; it is also used inthe LEGO system [LP92], for example. 3



2 The decision procedureWe present here the algorithm used by Nodesat ; it is actually the algorithmused by the Arith tactic of the NuPrl system [Jac94] and described in [Cha77]under the name of �the nodesat procedure�. Roughly, this algorithm workson comparisons between arithmetical expressions by building a graph andrepresenting these comparisons on it.Other approaches can be considered, the mostly used being the SupInfmethod for Presburger formulae, as stated by Bledsoe [Ble75] and improvedby Shostak [Sho77]. The NuPrl system has actually two arithmetical tac-tics, namely Arith (implementing the nodesat procedure) and SupInf (im-plementing Bledsoe's method); this latter method is also used by the HOLarith library [Gor, Bou92], as well as the PVS system [SOR93].2.1 The nodesat procedure2.1.1 Looking for a contradictionThe procedure described in [Cha77] is called the nodesat procedure. As willbe shown in the following, it builds a graph from a list of comparisons onarithmetic expressions. Let us �rst state the form of the proposition thathas to be checked by the algorithm we shall describe:G = H1 ^ � � � ^Hn ) C1 _ � � � _ CmHi; Cj = A j :AA = P < Q j P � Q j P > Q j P � Q j P = QThe �rst basic idea of the nodesat procedure is to add the negation of theconclusion to the system built on the hypothesis of the proposition, and tolook for a contradiction. We now have thus the system:H1 ^ � � � ^Hn ^ :C1 ^ � � � ^ :Cm ) ?In other words, from this new system of comparisons (since the negation ofa comparison on arithmetic expressions still can be formulated as a compar-ison, think for example of :(x � y) � (x > y)), the algorithm will try toprove it unsatis�able, i.e. that no instantiation of its variables can satisfythe constraints expressed by the comparisons. Conversely, if an instantiationthat satis�es all the comparisons can be found, the system is said satis�able,and the original proposition is proved false.4



2.1.2 Normalisation of comparandsWe now have comparisons on arithmetical expressions, and we want to workwith them in order to �nd a contradiction. That for, we need them to look�all the same way�, through a normalisation of the comparands; these areoriginally in the following form:P = x j k j � P j P1 + P2 j P1 � P2;and should �nally look like:P = Xi1=0:::n1;:::;in=0:::nn Ci1:::inxi11 : : :xinnIn other words, we rewrite an arithmetical expression into a sum of monomsof the various variables involved in the proposition we are considering. Forexample the expression 2 (x + 1) + y (x � 3) is rewritten into 2 + 2:x +(�3):y + 1:xy. Note that properties used for this rewriting of terms intonormal form are the basic properties of the ring of integers.2.1.3 Linearisation of comparandsAt this point of the algorithm, we have comparisons on �normal terms�, thenext step is the linearisation of these terms. This is actually a key step in thenodesat procedure, since it can discard much information from the initialproblem. What we do is basically to linearise all the comparands, that is toreplace a term of the form P = Pi1=0:::n1;:::;in=0:::nn Ci1:::inxi11 : : : xinn witha term of the form c + y (c a constant), creating a new, fresh variable ythat will mask all the non-constant part of the original normal term. This isneeded by the forecoming steps of the algorithm, but can of course ruin allthe e�ciency of the algorithm, as can be seen in the two following examples:� suppose we have to prove(x2 � 0)) (x = 0)We �rst take the negation of the conclusion, and get the system(x2 � 0) ^ (x <> 0)) ?The normalisation of terms gives then(1:x2 � 0) ^ (1:x <> 0)) ?5



(which is still contradictory), and the linearisation of comparands cre-ates two new variables y and z, leading to the non contradictory system(y � 0)^ (z <> 0)) ?The nodesat procedure will fail here, on a really simple system, be-cause it �forgets� the relation between y(= x2) and z(= x) : : :� There is an even more simple example of the disaster the linearisationcan cause2: suppose we have the system(n > 0) ^ (�n � 2)) ?The linearisation gives (y > 0)^ (z � 2)) ?: : : which is of course not provable.As said before, a lot of informations can get lost during this linearisationstep. Still, if we succeed to �nd a contradiction in the linearised system,the original proposition is proved true; on the other hand, if we fail, wecannot state the original proposition as false, since we cannot know if thefailure comes from a weakening of the hypothesis during the linearisation.That is the reason why this so-called decision procedure is in fact only asemi-decision procedure 3.2.1.4 Normalisation of comparisonsAfter the linearisation step, we have a list of comparisons looking likeH = A j :AA = P < Q j P � Q j P > Q j P � Q j P = Qand that involve linearised terms, ie terms described byP;Q = c j y j c+ y2Such cases are avoided in the actual implementation, due to the improvements broughtby V. Ménissier-Morain. See the next section.3In some cases, we can be sure that there is no loss of information due to the lineari-sation; we thus have a real decision procedure and answer �true� or �false� to the originalgoal. 6



We transform these comparisons into normal comparisons such asN = P � Q j P = Q j P <> QWhat we do is in fact keep the equalities and non-equalities as they are, andtransform all the inequalities into greater-than inequalities, using commontheorems such as x < y ) y � x + 1 (in this case, we need of course torewrite a term like x + 1 into a �linearised form� as described above, thusinvoking some kind of �relinearisation�, but in this case we know it is safe,because of the form of the original terms).2.1.5 The graph of inequalitiesBuilding the graph Once we have all the normal comparisons of linearterms, we can start the real procedure, namely by building the graph ofinequalities, which will be the support for our reasoning. This graph is anoriented, weighted graph, whose nodes represent the variables we are consid-ering (linearised variables, of course), and whose edges represent the infor-mation we have between these nodes, in terms of greater-than inequalities;there is an extra node for constant terms, in order to represent inequalitiessuch as x � 3. On this graph, an edge from node x to node y, weightedby constant c, means: x � c + y. The particular case of constant terms istreated as follow: the node zero represents 0, and the inequality x � 3 isrepresented by an edge from node x to node zero, of weight 3.As we want to represent our problem on this graph, the �rst thing we dois to �translate� our inequalities onto it, by drawing the corresponding edges(for the moment, we forget about equalities and inequalities). For examplethe following system of inequalities:(x � 0) ^ (y � x + 2) ^ (1 � x)is represented by the graph:
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An important fact to notice about the weight of an edge is that its role isto represent the maximum weight between two nodes: suppose we have thetwo inequalities x � y + 1 and x � y + 2, we will draw an edge of weight 2from node x to node y, since the second inequality is more restrictive (andhence gives more information) than the �rst.Propagating the weights The main operation that we will perform onthe graph, each time we add some new information to it, is to propagate thisinformation; since this information is represented by the weights of the edgeson this graph, this will be done through a �propagation� of the weights. Thatfor, we use the transitivity of inequality, stated as follows: (x � y+c)^ (y �z + d)) (x � z + (c+ d)), which translates on the graph to the assignmentAij := max(Aij ; maxk=0;1;:::;n(Aik + Akj));if Aij is the weight of the edge between nodes i and j. On the previousexample, the inequalities (y � x+2) and (x � 0) lead to the new inequalityy � 2, represented by a new edge of weight 2 from y to zero. Similarly, bytaking i = j in the above assignment, we can deduce the weight for an edgefrom one node to itself: from inequalities (x � 0) and (1 � x), we deduce(x � x+1), that is represented by a loop on the graph. If we propagate theinformation while building the graph of our example, we get the followinggraph:
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1Finding a contradiction Since what we are looking for is a contradiction,we have to know what it means in terms of inequalities, and how it is rep-resented on the graph. The nodesat procedure is in fact looking for cycleswith a strictly positive way, since they correspond (modulo propagation) toan inequality of the form x � x + c, with c > 0, which is obviously absurd.We are hence looking for edges from a node to itself with weight > 0, suchas edges like the one from node x to x or from node zero to zero on ourexample (which was trivially contradictory).8



If we have such edges after construction of the graph of inequalities andpropagation of weights (like in our example), a contradiction is found andthe nodesat procedure terminates with a success; if not, we must considerthe other informations we have, namely the equalities and the inequalities:this is the next step in the nodesat procedure.2.1.6 Getting rid of equalitiesWhat we want to do now is to get rid of equalities, by putting all the informa-tion they represent on the graph of inequalities. This is done by restrictingthe size of the graph according to these equalities, and propagating the in-formation they give.The way to proceed is this: suppose we have the graph of inequalities,with nodes x and y representing the corresponding variables, and we knowas well the equality x = y + k. What we do is delete the node x and bringall informations about x on the node y: suppose we have an edge from nodesay z to node x of weight c, this edge �says� z � x+ c, and since x = y + k,we can update the weight of the edge from z to y with weight c+k (updatingmeans: if there is no edge from z to y, then draw one with weight c + k,otherwise, a�ect to it the maximum of its weight and c + k). We have ine�ect (z � x+ c) ^ (x = y + k)) (z � y + (c+ k)):In a similar way, an edge from x to z with weight d will lead to an updateof edge from y to z with weight d� k: at the end of this operation, we haveerased the node x by using the equality x = y+k, which relates nodes x andy. In this way, we use each equality to decrease the size of the graph, bykeeping only one of the terms involved in it and transporting all the infor-mation about the removed node onto the node that stays.Let us remember that each modi�cation of the graph during this step isdone using the propagation relation stated above, in order to keep for eachedge the maximum weight between the nodes. We then look for a cycle ofstrictly positive weight. If we �nd one, nodesat succeeds; if not, we go tothe next step and take in consideration the non-equalities.2.1.7 Getting rid of non-equalities: the actual nodesat procedureWhat is really considered as the actual nodesat procedure is this step onnon-equalities, and it is kept as the last step since it can increase a lotthe size of the algorithm, in space and in time. The idea is to take in9



consideration two nodes, say x and y, and the non-equalities we have betweenthe two corresponding variables. Suppose we have n such inequalities, suchas (x <> y + ci)1�i�n. This can be represented by the following drawing(we suppose that the ci;1�i�n are sorted):
c c c nc.........1 2 3Looking at this picture, it is easy to see that(x <> y + c1) ^ (x <> y + c2) ^ � � � ^ (x <> y + cn)�(x� y < c1) _ (c1 < x� y < c2) _ � � � _ (cn1 < x� y < cn) _ (cn < x� y)In the second line of this formula, we consider the integer x�y, which is easyto translate on the graph of inequalities, since an edge of weight a from x toy means (x� y � c), and an edge of weight b from y to x means y � x+ b,hence x� y � �b.Let us look at the informations we have about x and y:� the inequalities graph says: a � x � y � �b (if there is no edgecorresponding to a or b, we can replace them by �1 to keep the samenotation)� the disequalities say:(x�y < c1)_ (c1 < x�y < c2)_� � �_ (cn1 < x�y < cn)_ (cn < x�y)We can remark that we get from the disequalities a disjunction of inequalities,and since an inequality can be represented on the graph, we shall considereach one of the cases of the disjunction, translate the corresponding inequali-ties on the graph, and as usual propagate the weights then look for a strictlypositive cycle. That is, in the general case, if we are in the ith disjunct,we have inequalities ci�1 < x � y and x � y < ci, i.e. x � y + (ci�1 + 1)and y � x + (1 � ci) (canonical form for inequalities), we can update theedges between nodes x and y with them, and look for a contradiction afterpropagation of the weights4.At this point, if a contradiction is found, it means that the ith disjunct isproven contradictory. But since we are dealing with a disjunction, we have4The �extreme� branches of the disjunction, x� y < c1 and cn < x� y, give only oneinequality to update the graph with. 10



to prove all the branches to be contradictory5. If this is the case, we haveproven a contradiction on the original system, and the nodesat proceduresucceeds. If there are branches that still don't contain a contradiction, wehave to go on working on them. Before explaining how this job is done,note that through the use of this disjunction we have replaced the initialproblem, represented on a graph, by n + 1 problems (n being the numberof disjunctions involving x and y), and hence n + 1 graphs: the size of theproblem has dramatically grown.The idea to keep on working on the still satis�able branches of the dis-junction is to iterate the nodesat algorithm, taking two new nodes insteadof x and y, and using the same algorithm as above with the non-equalitiesconcerning these nodes. There are in fact two nested loops: the loop on allpairs of nodes, containing for each pair the loop on all disequalities betweenthe nodes of the pair.The full nodesat procedure explores of course all possible pairs of nodes,and one can see that the problem grows like a tree, each level of the treecorresponding to a pair of nodes (and hence to a conjuction of disequalities,i.e. a disjunction of inequalities, as explained above); from another point ofview, all nodes (or leafs) at the same depth in the tree represent two branchesof the same disjunction. A leaf is reached if the corresponding situation isproven contradictory, or when all possible pairs of nodes have been exploredwithout �nding any contradiction. Let us remind that a subtree is generatedby a disjunctive term, and that to prove a disjunction contradictory, one hasto prove that all subterms are contradictory as well; the alternative statedabove means there are two possibilities when a leaf is reached: either it can'tbe proved contradictory, thus all the disjunctions above (fathers in terms oftrees) aren't provable contradictory, and the procedure fails, or it has beenproved contradictory, and we must go on to the next subtree. To reformulatethis, if one of the subtrees can't be proven contradictory, then we fail, andhence the problem was not contradictory; in this case, since we have usedall the information that we got, the nodesat procedure fails: the linearisedproblem was not provable.To prevent as much as possible the size of problem to explode, we applythe nodesat procedure on each strongly connected component of the graph.5To prove A _B ) ?, one needs to prove A) ? and B ) ?.11



3 The implementationThis work started from a CamlLight implementation of the nodesat proce-dure by Valérie Ménissier-Morain. It was actually an integration of the codeinto the Coq system, a process that sometimes turned out a bit unelegantor unnatural, mostly because the Coq system, which is not as �exible as theCamlLight language, forced to rewrite part of the code in order to increasethe precision and the �atomicity� of some functions. As we will not enter thedetail of these modi�cations here, we just want to stress that the reason forwhich the whole tactic has not been written for the Coq proof assistant fromscratch is basically a lack of time. We shall describe here the main steps ofthis integration.3.1 CamlLight typesHere are the important CamlLight types for the nodesat objects:type term =Const of integer| Var of int| Add of term * term| Sub of term * term| Minus of term| Mult of term * term;;type comp =Eq of term * term | Neq of term * term| Le of term * term | Lt of term * term | Ge of term * term | Gt of term * term;;type weight = None | Some of integer;;The type comp represents comparisons between arithmetical expressions im-plemented as elements of type term. A graph is a vector of vectors of elementsof type weight.For the proof, the relevant types are:type arith_pf =PR of int * string * (term list) (* Pattern and *)(* Rewrite *)| RC of string * (constr list) (* Pattern and *)(* Rewrite with *)(* constr arguments *)| RE of int * term * term * (arith_pf t) (* Pattern and *)12



(* Replace *)| RN of bool *int * term * int (* Replace a nat term *)(* true for >0 *)| CC of string * term * term * (arith_pf t) (* Cut on a *)(* comparison *)| CG of constr * (arith_pf t) (* Cut on a Coq *)(* comparison *)| AA (* Assumption or Auto *)(* *)| PS of int * term * int (* Pattern and Simpl *)(* *)| AP of string * (term list) (* Apply a rule *)| AG of string * (constr list) (* Apply with constr *)(* arguments *)| IN (* Intro *)| NO (* null tactic *)| DIS of (term list) * (arith_pf t) * (arith_pf t)(* Elim for *)(* disjunction *);;type var_type =ZINT of constr| INJ of constr;;The type arith_pf is used for a proof step, each step corresponding (roughly)to a Coq tactic with its arguments when necessary. The proof generated byNodesat is a queue of elements of type arith_pf; once we know that thenodesat procedure succeeds, we remove the elements from the queue oneafter another and translate them in order to build the Coq proof term.The type var_type is used to implement the variables collected duringthe parsing, the constructor ZINT is used for variables of type Z, while theconstructor INJ is used for variables of type nat (see below for more details).Nodesat works with integers, as they are implemented in the �les of thesubdirectory Zlemmas of the tactic. The actual lemmas used by Nodesat arein the subdirectory Rules; they are in fact mainly ad hoc statements of theresults proved in the Zlemmas �les, expressed as the tactic needs them.3.2 Following the proof stepsLet us sketch the various steps of the algorithm and the kind of proof termsthey generate. As the type pr_type shown above suggests, the proof stepscorrespond very closely to Coq tactics (or in some cases tacticals): Node-13



sat could probably be able to give as a result a proof script in a Coq �le,instead of generating the proof term and submit it directly to the system.It is important to notice that the actual proof term coming from a traceof the execution of nodesat is built only when the tactic succeeds, otherwisethe proof so far is forgotten; this translation from objects of type arith_pfinto Coq �-terms is a quite long process, so we can say that if the user has towait, this means that nodesat has succeeded and the proof will terminate,in other words if the user has to wait, he should be full of hope (or of fearof a bug in Nodesat !) : : :Parsing Nodesat begins with applying the tactic Intros to the currentsubgoal. Then it builds the list of the variables occurring in the conclu-sion of the goal, and taking them as relevant variables, looks in the contextfor comparisons on integer or natural expressions containing these relevantvariables, called relevant comparisons. For each relevant comparison, Node-sat updates the list of relevant variables with the variables occurring in thiscomparison, and goes on building the list of relevant comparisons. At theend of this process, the tactic has a list of comparisons in the context and aconclusion, and the nodesat procedure can begin.Remark about the nat type: An important feature of Nodesat is towork with objects of type nat, i.e. natural numbers. The idea is to applyto each variable the natural injection injp from nat to Z, adding to thesystem an inequality expressing the fact that a natural number is alwayspositive. More precisely, when the parser has to deal with a comparisonof two expressions of type nat, say for example (le E1 E2), it applies thecorresponding injection lemma, hereLemma inj_le: (n1,n2:nat) (leZ (injp n1) (injp n2)) -> (le n1 n2).As a result, we now get a comparison on integers ((injp n1) and (injpn2)); we then �propagate� the injp construct inside each expression, that isfor example if n1 is (plus m1 m2), we replace (injp n1) with (addZ (injpm1) (injp m2)), and so on, until we reach terms like (injp n), with n avariable of type nat: at this point, we add the inequality (geZ (injp n)OZ), which is easily proved, to the system, and we store the variable (injpn) in the list of parsed integer variables (if it has not been already parsedbefore). The �le Naturals.v contains the lemmas used for the treatment ofterms of type nat.The current version of Nodesat does not treat conjunctive hypothesesand disjunctive conclusions, as the nodesat algorithm does: the user has to14



split them �manually� in order to use the tactic; however, a pre-treatment ofthe goal in order to avoid this should'nt be very di�cult to implement.Negating the conclusion To try to prove a contradiction by taking thenegation of the conclusion and add it to the comparisons from the context,Nodesat has to use a decidability lemma.That for, the �le Decidable.v contains the following Coq statements:Definition decidable := [P:Prop] (P\/~P).Lemma repl_but: (G: Prop) (decidable G) -> (~G -> False) -> G.Decidability is also proved for each comparand on integer and natural expres-sions, which allows to use the lemma repl_but to replace for example a goalwith a conclusion of the form (leZ a b) with a goal where the conclusionis False and the hypothesis ~(leZ a b) is added to the context.Normalising and simplifying The CamlLight function cring in the �leterms.ml is used to normalise the arithmetic expressions; each time a rewrit-ing rule is used by this function, a �Pattern and Rewrite� term is added tothe proof, in order to trace exactly the modi�cations that are brought to theterm. The Pattern tactic is used to isolate the subterm of the expression towhich the rewriting rule is applied, and to preserve other possible occurencesof this subterm from being modi�ed. When a comparison is treated by thenodesat procedure, it is �rst brought into the conclusion of the Coq subgoalby using the Cut tactic6, then all the Rewrite tactics are applied in order tonormalise the terms of the comparison, and the new form of the comparisonis reintroduced in the context by Intro.Example Suppose we have the hypothesis (leZ (neg O) (addZ x (posO))) (i.e. �1 � x+1, x is of course of type Z here), we have something like:x : ZH : (leZ (neg O) (addZ x (pos O)))============================FalseWe �rst bring H into the conclusion of the goal:toto < Cut (leZ (neg O) (addZ x (pos O))); Try Assumption.1 subgoal6The Generalize tactic would be more clever here.15



x : ZH : (leZ (neg O) (addZ x (pos O)))============================(leZ (neg O) (addZ x (pos O))) -> FalseThen the normalisation gives the inequality �1 � 1 + 1:x (we skip hereseveral �Pattern and Rewrite� proof steps):x : ZH : (leZ (neg O) (addZ x (pos O)))============================(leZ (neg O) (addZ (pos O) (multZ (pos O) x))) -> False: : : and we can introduce the normalised comparison into the context.The simpli�cations of the comparisons (for example replacing x+y � y+zby x � z) are done by using the Cut tactic on the simpli�ed comparison,and for the generated subgoal by applying the corresponding lemmas (inthis example the lemma would look like Lemma simpl_l_r : (x,y,z:Z)(geZ (addZ x y) (addZ y z)) -> (geZ x z).). Note that all propertiesused so far, for the normalisation (mainly Rewrite tactic) and for the sim-pli�cation (mainly Apply tactic) involve basically only the properties of thering of integers (those properties that are proved in the �les of the Zlemmassubdirectory, actually).In the implementation of the nodesat procedure by Valérie Ménissier-Morain, some re�nements are added to the plain algorithm in order to in-crease its strength. These improvements are mainly concerned with the nor-malisation of terms and comparisons, looking for sensible simpli�cations todo before the linearisation in order to reduce the loss of information duringthis step.The linearisation step As far as the proof is concerned, the linearisationstep does not involve any proof term at all: whatNodesat does is only renameinternally some terms into fresh variables, and we keep track of this in orderto build the Coq proof terms, but no trace of this step is kept in the proof.In other words, if Nodesat creates a new �linear� variable T to denote themonom x:y, what we need to know is only that ulterior proof terms involvingT have to be built with x:y replacing T .16



The graph The structure itself of the graph is not actually visible in theCoq proof. What we keep during the nodesat procedure is an exact image ofwhat the edges of the graph say in the context: each time an edge is updated,the corresponding inequality is added to the context. In particular, whenthe propagation rule stated above is used to add a new edge, the tacticNodesat applies a Cut on the new resulting comparison, and the lemmacorresponding to the propagation rule is applied to the generated subgoal inorder to prove it.The nodesat procedure succeeds whenever a strictly positive cycle canbe found in the graph; it can then be reduced to an edge from a node to itselfwith a strictly positive weight: when this occurs, Nodesat uses a lemma ofthe form (z,c:Z) (gtZ c OZ) -> (geZ z (addZ z c)) -> False to ter-minate the proof.The nodesat procedure This part of the algorithm basically uses thetools described above for the manipulation of the graph. The only importantlemma that is used here is the disjunction lemma, stating that x <> yimplies (x < y) _ (x � y). The Coq tactic used with this lemma is of courseElim, and this is done each time a new subtree is generated by �splitting� adisjunction.3.3 Examples of the use of NodesatWe give here a few examples of how Nodesat works on common arithmeticalgoals; we assume that the reader is familiar with the Coq syntax.Rewriting1 subgoaln : natm : natp : nat============================(plus m (plus (S p) n))=(S (plus (plus n m) p))Unnamed_thm < Nodesat.Subtree proved! 17



Hiding terms1 subgoalf : Z->nat============================(z:Z)(le O (f z))Unnamed_thm < Nodesat.Subtree proved!Unprovable goals1 subgoal============================(le (S O) O)Unnamed_thm < Nodesat.Nodesat: that seems false...1 subgoal============================(le (S O) O)Unnamed_thm <Failure of Nodesat1 subgoal============================(x:nat)(le O (mult x x))Unnamed_thm < Nodesat.I can't prove that (either a linearisation problem or a bug...)1 subgoal============================(x:nat)(le O (mult x x))Unnamed_thm <This is a typical case where the procedure fails because of the linearisationstep, that replaces (mult x x) with a new fresh variable.18



4 Conclusion and future workNodesat is not very e�cient in terms of time (when the tactic succeeds, theactual construction of the proof can take a minute long or even more) andof space (printing a proof term generated by Nodesat reveals a big amountof irrelevant proof steps, coming mostly from the normalisation process).However, it is a �rst step towards automation of reasoning about numbers, afeature that de�nately has to be part of a system designed for applications,as Coq turns to. Actually, as the system becomes more complex, the proofsdone in Coq are more and more concerned with �real size� applications, suchas hardaware checking [CGJ] or protocol veri�cation [BGLH+95], rather thanin various branches of pure mathematics, as it happened �rstly with the taskof showing the system's expressiveness. Even in this �eld, a big amount ofwork has to be done on real numbers implementation (following the ideas of[Hir92], for example) and it turns out that for such proofs (be they about in-dustrial problems or about mathematical analysis), an arithmetical decisionprocedure such as Nodesat is very useful.Nodesat can be improved in many ways. A �rst modi�cation is theability to treat Coq's pred and minus constructs, that behave in a veryparticular way because of their types: pred is of type nat -> nat, and thus(pred O) has to be an absurd value (actually it is O), and minus is of typenat -> nat -> nat, (minus O n) returning O for any n. In the examplesbelow, we can see how the tactic succeeds when these constructs can beerased by simpli�cation, but fails otherwise.1 subgoal============================(n:nat)(le (pred (S (S O))) n)->(gt n O)Unnamed_thm < Nodesat.Subtree proved!: : : but : : :1 subgoaln : nat============================(minus n O)=nUnnamed_thm < Nodesat.Parsing of minus and pred constructs will be available soon...19



1 subgoaln : nat============================(minus n O)=nThe solution to deal with that is to consider, for each term of the type (predE) with E a non constant expression, the case where E is equal to zero, andthe case where E> 0. The size of the problem thus grows (for the (minus EE') case, we have to consider two possibilities as well: E � E' and E > E'),and each proof has to be done �twice�. A �rst version of Nodesat with theability of treating pred and minus is in preparation, but still has some bugs.Moreover, if we want to prove arithmetical lemmas automatically in theCoq system, the issue of e�ciency is very important: already existent sys-tems suggest that the point is not really to have complex procedures, thatcan handle a large number of problems, but rather to solve common prob-lems quickly and with proofs as simple as possible. This task was alreadythe main motivation of Shostak's improvements of the Bledsoe method in[Sho77], and is clearly expressed in the design of HOL's arith library [Bou92].This suggests that an arithmetical tactic for the Coq proof assistant shouldeventually be totally rewritten, remembering that the role of such a tool isto supply quick answers to simple common problems that arise very often intechnical proofs.Another important point about the Coq system is that its design doesnot really allow the presence of �black boxes�, i.e. tools that check a formulawithout giving a proof term for it (technically, this compels to de�ne anaxiom for formulas proved with such a black box, an axiom that should beconsidered in this case as a �commonly admitted result�). This is the chosensolution for the PVS proof system, that is de�ned in [Rus] as a system withan �impure� interpretation for its tactics (as opposed to HOL), using, tosolve decidable problems, decision procedures that do not return any proofterm. Of course, the improvement in e�ectiveness and rapidity is noticeableand gives PVS the status of an e�ective proof system with a wide rangeof industrial applications; however, such an option is not possible in Coq,where the intent is rather to consider an arithmetical proof in no way simpleror less informative than any other proof: Coq �nds its place among theso-called fully-expansive theorem provers, as opposed to partially-expansiveones, and a Coq proof has thus always to be given in its full extent. Sucha choice becomes quite critical if the applications come from �elds wheresecurity and/or safety are very important issues, i.e. systems like nuclearpowerstation controllers or defense systems, as stressed in [Bou92]. A fully-20
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