Bisimulation proofs for the m-calculus
in the Calculus of Constructions

DANIEL HIRSCHKOFF
avril 1996

N° 96-62

Bisimulation proofs for the m-calculus
in the Calculus of Constructions

DANIEL HIRSCHKOFF

Résumé

Nous présentons une implémentation dans le systéme Coq des tech-
niques de preuves de bisimulation exposées par Davide Sangiorgi dans
[San94]. Coq [CCF*96] est un logiciel d’aide & la preuve développé
a VINRIA et a I’Ecole Normale Supérieure de Lyon. Nous décrivons
la théorie des progressions de relations sur un ensemble de processus
quelconque, que nous appliquons ensuite & I'implantation d’un mini 7-
calcul polyadique fini; nous nous intéressons en particulier & la cléture
d’une relation pour une famille de contextes. Les techniques implantées
permettent de simplifier les preuves de bisimulation entre termes.

Abstract

We present an implementation of the bisimulation proof techniques
described by Davide Sangiorgi in [San94]. The system we use is the Coq
Proof Assistant [CCFT 96], a theorem prover developped at INRIA and
at the Ecole Normale Supérieure de Lyon. We firstly implement the
theory about progressions of relations on a set of processes, and then
specialise it with our implementation of a finite polyadic w-calculus; we
consider in full detail the particular case of the closure under contexts
of a relation. This gives a toolkit to make bisimulation proofs much
shorter than the usual ones.

Introduction

We describe here what could be considered as a “mechanisation” of the theory
exposed in [San94]. This work is in relation with [Hue93|, that has been a
source of inspiration, and an example of a previous experiment implementing
in the Coq system an aspect of theoretical computer science.

Such a process often gives an opportunity to understand accurately the
constructions that are implemented, as well as a good test for the target sys-
tem, in terms of expressiveness and efficiency. With regards to formalisation
of abstract models for computation or concurrency such as the A-calculus
or the m-calculus, it can be considered as a dual approach to the actual
building of a system based on these calculi (as ML is for the A-calculus, as
Pict [Pie95] is for the m-calculus, ... and as Coq itself is for the Calculus of
Constructions!), not using the theory as a 'meta’ paradigm, but rather as a
material to work on.

The subject matter of the implementation is a part of the theory devel-
opped in [San94], that we call here the theory of progressions. It defines a new
kind of methods for proving bisimulation relations; the actual formalisation
is quite general, and as such it was interesting to see how an implementation
of general constructions can be specialised in order to focus onto one of the
applications that are described in the paper, namely w-calculus.

This paper should be self-contained; nevertheless, some familiarity with
the m-calculus and with traditional functional-style notations (in order to
read Coq text) would be preferable. In the first section, we describe briefly
the Coq proof system and the notions relative to Sangiorgi’s theory and to
the m-calculus that we shall use. We then discuss the theory of progressions
and its implementation more precisely, as well as the definition of a closure
under contexts function in the general case. The third section is devoted to
the encoding of the syntax and the semantics for the specific #-calculus we
use, and we then describe applications of Sangiorgi’s techniques to w-terms:
after adapting our definition of the closure under contexts function to the
w-calculus in the fourth section, we use it in the fifth section to prove the
uniqueness of solutions for equations in the w-calculus. We finally conclude
and discuss future work.

1 Preliminaries

1.1 The Coq system

The present work has been done using the Coq Proof Assistant [CCFT96],
a proof checker based on the Calculus of Inductive Constructions (CIC).
This system supports the definition of objects in the Calculus of Inductive
Constructions (a typed A-calculus with inductive definitions), and can in-
teractively generate proofs about these objects through the use of tactics
implementing backward reasoning. The excerpts of the implementation that
are stated in this paper are actually all written in Gallina, the specification
language of the Coq system. In order to make these statements under-
standable, let us briefly sketch the syntax of the most important Gallina
constructions:

e abstraction is written with square brackets, application as usual with
parentheses, implication is written with the symbol ->, while depen-
dent product, that can be interpreted as universal quantification, is
written with brackets as well. Let us look at an example to illustrate
that: the term (n:nat)(([x:nat]lx) n) = n denotes the proposition
Vn :nat (Az.z n) = n (nat is the type for natural numbers).

e An important feature of Gallina is the opportunity to make inductive
definitions, such as:

Inductive nat : Set :=
0 : nat
| S : nat -> nat.

This definition reads: “nat s a new wnductive type of sort Set whose
constructors are 0 of type nat (a constant) and S of type nat -> nat
(the successor function, taking a natural number and returning as a
result a natural number)”.

When necessary, a brief comment on the form of a proofin Coq will be given,
but no quotation will be made of the actual proof scripts. In the statement
of Coq objects, we will distinguish between statements that can actually
be found in Sangiorgi’s paper and lemmas that were introduced in order to
carry the proof: objects from the original text will be marked by a * and
something like (2.10), indicating their numbering in the source text.

The reader interested in a more detailed approach to the Coq Proof
Assistant should refer to [HKPM95].

We now turn to the topics that make the subject of the implementation.

1.2 Bisimulation proof techniques

A common notion for the formulation of equivalence between processes is
the ability for two equivalent processes to simulate eachother actions, called
bisimulation. In [San94], Sangiorgi presents a nice generalisation of the tech-
niques that are traditionally used to achieve bisimulation proofs. In most of
the cases, one has to explicitely exhibit an infinite relation containing the
two processes to be proven equivalent, and then prove that it is a bisimilarity.
The aim of Sangiorgi’s work is to reduce drastically the size of the invoked
relations, in order to consider finite sets.

To understand intuitively how to achieve this, let us have a look at the
definition of a bisimulation: we say that P and @ are bistmilar, written
P ~ Q, if whenever P performs an action o to become P, there exists a @)’
such that Q can perform a to become @)', and P' ~)'. The idea of Sangiorgi
is that if we look at this statement from a formal (nearly syntactic) point of
view, we can see that the ~ symbol occurs twice, once in the thesis, and once
in the conclusion. Intuitively, the non-finiteness comes from this circularity,
that has thus to be broken if we want to work with finite sets. This is what
is done in [San94|, by considering progressions from relations to relations, as
well as functions taking a relation as an argument and returning a relation.
Some properties of such functions with respect to progressions can provide
bisimulation proof techniques, confining the “non-finiteness” of the actual
bisimulation relation in these functions, that progressively build an infinite
set (the bisimilarity) starting from a finite one.

This is of course only a vague sketch of the ideas presented in the original
paper, as the exact formulation of the theory will be presented, along with
its implementation in Coq, in the next section.

1.3 The m-calculus, syntax and semantics

Syntax We consider in this paper a finite, polyadic, mini w-calculus. We
take as a reference for the “mini” w-calculus the calculus that is used by
Milner in [Mil92]. This is a calculus with no sum (4) construction, which
is not really a problem since this operator can be encoded into the mini 7-
calculus. There are other calculi inspired by the original full 7-calculus that,
with a simpler syntax, still have its expressivity, thus candidating for being a
“minimal” representation of concurrency: we can cite Boudol’s asynchronous
mini w-calculus|Bou92|, and, more recently, the join calculus [FG]J.

In our setting, we get rid of the replication operator (commonly written
1) as well, mostly for the sake of simplicity. However, the results presented
here would probably have been preserved if we had considered a “non-finite”
w-calculus, since we don’t really “execute” the processes in the proofs, thus
preventing the infinite behaviour of a replicated term to have impact on the
success of our proofs.

Our calculus is polyadic, in the sense that a communication on a given
channel involves a list of names rather than only one. Polyadic w-calculus is
described in [Mil91], which is a strong inspiration for this work, but we do
not implement the three process “species” defined in Milner’s paper (normal
processes, processes, and agents), for two reasons essentially: from the tech-
nical point of view the definition in Coq of three mutually recursive types
would have been very tedious to handle, and from the theoretical point of
view this distinction relies heavily on the task of making a clean axiomatisa-
tion of the calculus (what is called in the paper Strong Ground Fquivalence),
thus taking the sum as an essential operator to build normal forms for pro-
cesses; since we renounce to this operator here, the distinction is not really
relevant anymore.

Processes of our calculus can thus be described as:

P=0|(we)P|P|lQ|e.(0)P]|z P

For a process P, we define the sets of its bound names bn(P) by saying
that constructors v and A act as binders, free names fn(P) and names

n(P) = bn(P)U fn(P).

Semantics There are many ways to formulate the semantics for the n-
calculus in the litterature, giving different flavours to it, such as late, early
[MPW92|, barbed [MS], and open [San93|. In [San94], to apply the theory of
progressions to the w-calculus, Sangiorgi works with an early bisimulation;
we have chosen to stick to this choice in order to keep the Coq proofs as close
as possible to the original ones. The difference here comes from the fact that
we work in a polyadic setting, so the actions contain more informations than
in the monadic case.

Actions Actions have the form:

Act = z(9) | wD)zly) " | T

*side condition: Z C ¥

wp .0 P-D pl=z

0UT [P p
(v2).19)
OPEN Iid —— [f/ teqg ta
(vt)p 28 P
a(l) (vFyall] B
cLosg X —— P YV * & Fafa(x) =0
XY = (vk)(P|Q)
P p
RES
(va)P & (va)P' w & nlw)
n
PAR = bn(p) N fr(Q) =0

PlQ = P|Q

Table 1: Transition rules

This definition reads: “an action s either an wnput, or a bound output, or
the silent action 7”7. Note that an output action can be unbound if the list
of transmitted new names (here Z) is empty. The meaning of the (v2)z[y]
action is an output along channel z of the list § of names, among which
those that occur in Z are freshly created (in technical terms, we say that the
names in Z are involved in name extrusions).

We define free and bound names (respectively fn(p) and bn(p)), as well
as the set of names n(u) of an action p.

Transitions The transition relation on processes we use is defined by the
rules of table 1; they correspond to the classical formulation of early transi-
tion semantics [MPW92]|. The notation P{y := Z} is used to represent the
substitution of 7 for i in process P; note also that the symmetrical versions
for PAR and CLOSE rules are omitted.

We can now proceed to examine the actual implementation of the notions
exposed so far, and the results that have been proved with them.

2 Theory of progressions

The first section of [San94], entitled “Progressions and respectful functions”,
introduces the basic notions in order to reason about bisimilarity in a general
setting.

2.1 Progressions and bisimilarity

Sangiorgi considers transition systems of the form (Pr, Act,—), where Pr
is a domain (the set of processes), Act a set of actions and — a transition

relation included in Pr x Act x Pr (we note for example P % Q). This
translates in Coq as:

Variable Pr : Set.
Variable Act : Set.
Variable trans : Pr -> Act -> Pr -> Prop.

In the following, we are reasoning about relations, defined as follows:
Definition relation : Type := Pr -> Pr -> Prop.

We then proceed to define the first notions, namely progressions, bisimula-
tions and bisimilarity:

* Definition 2.1 (progression (2.1)) Given two relations R and S, we
say that 'R progresses to S, written R— S, if PR implies:

1. whenever P55 P!, there is Q' s.t. Q 5 Q' and P' S Q';

2. the converse, i.e., whenever Q %5 Q’, there is P' s.t. P55 P’ and
P S Q.

* Definition 2.2 (bisimulation, bisimilarity (2.2, 2.3)) R is a bisim-
ulation relation 1f R progresses to itself, i.e. R— R holds; two processes
P and Q) are bisimilar, written P ~ @ if PRQ holds for some bisimulation
relation R.

These definitions translate in Coq as:

Definition progress : relation -> relation -> Prop :=
[R,S:relation]
(p,q:Pr)(Rp q) ->
(
((p’:Pr)(mu:Act) (trans p mu p’) ->
(Ex [q’:Pr] ((trans g mu q’) /\ (S p’ q9’))))

/\
((q?:Pr)(mu:Act) (trans q mu q’) ->
(Ex [p’:Pr] ((trans p mu p’) /\ (S p’ q’))))
).

Definition bisimulation : relation -> Prop :=
[R:relation] (progress R R).

Inductive bisimilar : Pr -> Pr -> Prop :=
bisim_pr : (p,q:Pr)(R:relation)(bisimulation R) -> (R p q)
-> (bisimilar p q).

The latter object, namely the bisimilar relation, is defined inductively; this
is the natural way to implement the “there exists” phrase in its mathemat-
ical definition: to build an object of type (bisimlar p q), we must apply
constructor bisim_pr to a specific relation R.

2.2 Functions

To build the machinery we need for proving bisimilarities between processes,
we consider what Sangiorgi calls first-order functions, i.e. functions on rela-
tions, briefly called functions. We first define two properties on functions:

* Definition 2.3 (soundness (2.4)) A function F s sound if, for any R,
R— F (R) implies R C~.

* Definition 2.4 (respectfulness (2.5)) A function F is respectful if when-
ever RC § and R — S holds, then F (R) C F(S) and F (R) — F(S)
also holds.

and in Coq:

Definition r_incl : relation -> relation -> Prop :=
[R,S:relation] (p,q:Pr) (R p q) -> (S p q).

Definition sound : (relation -> relatiomn) -> Prop :=
[F:relation->relation] (R:relation) (progress R (F R)) ->
(r_incl R bisimilar).

Definition respectful : (relation -> relation) -> Prop :=
[F:relation->relation] (R,S:relation)
(r_incl R S) -> (progress R S) ->
((r_incl (F R) (F S)) /\ (progress (F R) (F S))).

r_incl represents of course the inclusion relation for elements of type relation.
We can now state our first result, namely that respectfulness implies sound-
ness; this gives a first proof technique for proving bisimilarities. To achieve
this, we need two lemmas (from the original text by Sangiorgi):

* Lemma 2.5 (2.8) Let R = U;e; Ri and suppose for all ¢ € I there is
j€l st. Ri — Rj holds. Then R 1is a bisimulation relation.

* Lemma 2.6 (2.9)
1. If, for some 1 € I, S — Ry, then also S — (U;er Ri):

2. 1If, foralli e I, R; — S, then also (U;er Ri) — S.

To implement these lemmas in Coq, we have to define the union of relations
indexed by a countable set I'; we have chosen to consider the most general
case where we have a sequence of relations (that we call suite here), and
we build the infinite union of the members of this sequence. The finite
case would have required a more complicated machinery in Coq, if we had
renounced to build an infinite sequence from a finite number of relations
(taking for example for i > N R; = Ry for a given N).

Variable suite : nat -> relation.

Definition union : (nat->relation) -> relation :=
[seq:nat->relation] [P,Q:Pr](Ex [n:nat] ((seq n) P Q)).

We can remark as above that a classical way to implement an infinite set in
Coq is to make an inductive definition. We use here the Ex construction, to
stay close to a mathematical text, but this hides actually the inductive type
ex, so we recover in fact an inductive object.

We keep in the Coq implementation the lemma numbering from the orig-
inal paper, in order to distinguish lemmas of this origin from technical lem-
mas introduced especially for the proof. The proof of the lemmas are quite
trivial and involve only basic manipulations on hypotheses and existential
quantifiers. Their statements in Coq are:

Lemma lemma_2_8 : ((i:nat) (Ex [j:nat] (progress (suite i) (suite j))))
-> (bisimulation (union suite)).

Lemma lemma_2_9_1 : (S:relation)(i:nat) (progress S (suite i))

-> (progress S (union suite)).

Lemma lemma_2_9_2 : (S:relation) ((i:nat) (progress (suite i) S))
-> (progress (union suite) S).

To stick to the text of the paper, we prove as well a little corollary:

* Corollary 2.7 (2.10) If for alli € I thereisj € J s.t. R; — S; holds,
then also (U;e; Ri) — (Ujej S;).

This lemma requires the declaration of another sequence of relations to rep-
resent (S;);er.

Variable suite2: nat -> relation.

Lemma corollary_2_10 :
((i:nat) (Ex [j:nat] (progress (suite i) (suite2 j))))
-> (progress (union suite) (union suite2)).

We now have our first theorem:

* Theorem 2.8 (soundness of respectful functions (2.11)) IfF us re-
spectful, then F 1s sound.

Theorem theorem_2_11 :
(F:relation -> relation) (respectful F) -> (sound F).

Proof To prove this theorem, we consider a relation ‘R such that R —
F(R) holds, and we show that R C~; for this purpose, we define a relation
sequence R, the following way:

Ro = R
Rit1 = F(R)UR,

This is implemented by the F_suite function in Coq.

Definition Union : relation -> relation -> relation :=
[R,S:relation] [P,Q:PrJ(R P Q) \/ (S P Q).

Fixpoint F_suite [F:relation->relation;R:relation;n:nat] : relation :=
<relation>Case n of
R
[n’:nat] (Union (F (F_suite F R n’)) (F_suite F R n’))
end.

We use a fact to achieve the proof of our theorem:
* Fact 2.9 For alln > 0, it holds that

1. Rn g 7zn—l—l

2. Rn — Rn-l—l
and in Coq:

Fact fact_1 : (F:relation -> relation)(R:relation)
(n:nat) (r_incl (F_suite F R n) (F_suite F R (S n))).

Fact fact_2 : (F:relation->relation)(respectful F) ->
(R:relation) (progress R (F R)) ->
(n:nat) (progress (F_suite F R n) (F_suite FR (S n))).

The original proofs of these results easily translate in Coq; we then prove
the theorem by showing that |J, R, (denoted by the term (union (F_suite
F R))) is a bisimulation relation.

This theorem gives us a general technique for proving bisimulation rela-
tions: if we want to prove bisimilarity between two processes p and ¢, it is
sufficent to consider a “small” relation R containing (p, ¢), and a respectful
function F . By showing that R progresses to F (R), we get the bisimilarity
between processes p and ¢, as expressed by the tech lemma below.

Lemma tech : (p,q:Pr) (R:relation) (R p q) ->
(F:relation -> relation)
(respectful F) -> (progress R (F R)) ->
(bisimilar p q).

An example of the application of such a machinery will be given for the
w-calculus.

2.3 Constructors

The next step is to exhibit some respectful functions, and even to build some
of them. To achieve this, Sangiorgi introduces the notion of constructors,
i.e. applications that take functions as argument and return a function (a
“function” being here a function from relations to relations), or in other terms
what could be considered second-order functions.

Definition 2.10 (Respectfulness of a constructor) A constructor is re-
spectful if whenever its first-order function arqguments are respectful, then also
the first-order function result 1s respectful.

This translates straightforwardly in Coq for binary constructors:

10

Definition constructor : Type :=
(relation -> relation) -> (relation -> relation)
-> (relation -> relation).

Definition respectful_constr : constructor -> Prop :=
[c:constructor]
(f,g:relation -> relation) (respectful f)
-> (respectful g) -> (respectful (¢ f g)).

We then define a few objects that can be viewed as a “toolkit” in order to
build respectful functions; functions Z and U are defined as:

I(R) = R
UR) = ~

* Lemma 2.11 (identity and constant-to-~ functions (2.13)) The iden-
tity function T and the constant-to-~ function U are respectful.

This is still easy to implement in Coq:

Definition Ident : relation -> relation := [r:relation]r.
Definition U : relation -> relation := [_:relation]bisimilar.
Lemma lemma_2_13_1 : (respectful Ident).

Lemma lemma_2_13_2 : (respectful U).

To combine these functions, we define three constructors, namely composition
(o), union (U) and chaining (7).

(GoF)R) = G(F(R))

(VierF)(R) = Uier(Fi(R))

(G"R)R) = GR)F(R)
)

We define G(R)F(R) = {(P, P’
F(R)}.

; for some P”, (P, P") € G(R) and (P", P') €

* Lemma 2.12 (composition, (2.14)) Composition is a respectful con-
structor.

* Lemma 2.13 (union, (2.15)) Union is a respectful constructor.

11

* Lemma 2.14 (chaining, (2.16)) Chaining is a respectful constructor.

We give two definitions in Coq for the union constructor, union (to define
the union of two functions) and union_inf (to define the union of a sequence
of functions). We prove respectfulness only in the finite case, since when in
the following an infinite union of functions is considered, we prefer to build
it “by hand” in Coq, instead of using the union_inf constructor, in order
to simplify proofs. The union_inf constructor is actually never used in our
implementation.

Definition composition : constructor :=
[F,G:relation->relation]
[R:relation] (F (G R)).

Definition union : constructor :=
[F,G:relation->relation]
[R:relation] [P,Q:Pr1((FR) P Q) \/ ((GR) P Q).

Definition union_inf
(nat -> (relation -> relation)) -> relation -> relation :=
[Fi:nat -> (relation -> relation)][R:relation][P,Q:Pr]
(Ex [i:nat] ((Fi i R) P Q)).

Definition chaining : constructor :=
[F,G:relation->relation] [R:relation]
[P,Q:Pr](Ex [P’:Pr] ((F R) P P’) /\ ((GR) P’ Q)).
Lemma lemma_2_14 : (respectful_constr composition).
Lemma lemma_2_15 : (respectful_constr union).

Lemma lemma_2_16 : (respectful_constr chaining).

The proofs of the lemmas follow the original text with no particular diffi-
culty; we basically just “unfold” the definitions of the constructors and of the
respectfulness property, and the results become straightforward.

We can now build some more complicated respectful functions:

D, = I7...7Z,ntimes (n>0)
B = UITU
T = Un>0Dn

12

B is the classical bisimulation up-to~, as in Milner’s book [Mil89]!, while
T(R) is the transitive closure of a relation R. As stressed above, we directly
define T in Coq instead of using the union_inf constructor.

Fixpoint Dn [n:nat] : relation -> relation :=
<relation -> relation>Case n of

Ident
[n’:nat] (chaining Ident (Dn n’))
end.

Definition B : relation -> relation :=
(chaining U (chaining Ident U)).

Definition T : relation -> relation :=
[R:relation] [P,Q:Pr] (Ex [n:nat] ((Dn n R) P Q)).

The fact that T represents the transitive closure of a relation is not obvious
on the above definition; this notion would “classically” be implemented in
Coq with an inductive definition, as:

Inductive T’ [R:relation] : relation :=
T R : (P,Q:Pr) (RP Q) -> (T’ RP Q)
| T'_t : (P,Q,S:Pr) (T’ RPQ) -> (T’ RQS) -> (T’ R P S).

Constructor T’ _R “says” that two processes that are in R are in (T’ R), and
constructor T’ _t implements the transitivity: it “says” that if two processes
P and S arein (T’ R), and if S and Q are in (T’ R) as well, then P and Q
are in (T’ R). Definitions for T and T’ are of course equivalent:

Lemma T_T’ : (R:relation) (P,Q:Pr) (TR P Q) -> (T’ RP Q).
Lemma T’_T : (R:relation) (P,Q:Pr) (T’ RP Q) -> (TR P Q).

In our proofs, the T’ function will be easier to use, since the Coq system
supplies a wide range of tactics to handle inductively defined types.

Since functions D,, B and 7T are defined by the application of respectful
constructors to respectful functions, they are respectful. This is not difficult
to check in Coq, except for the trasitive closure of a relation, which is not
defined by a constructor (we thus need to check its respectfullnes “by hand”):

!Note that this does not imply that the argument of the B constructor is a bisimulation
itself.

13

Lemma Dn_resp : (n:nat)(respectful (Dn n)).
Lemma B_resp : (respectful B).

Lemma T’_resp : (respectful T’).

2.4 Closure of a relation under contexts

We now turn to the implementation of the subsection number 2.1 of San-
giorgi’s paper, entitled “Closure of a relation under contexts”. To define a
context, we must define more precisely the shape of elements of the set of
processes Pr;in [San94], Sangiorgi considers a term algebra over a one-sorted
signature X

Definition 2.15 (term algebra over a one-sorted signature) Let 3 be
a set of operators, each operator having an arity n > 0. The term algebra
over signature 3, written Pry, 1s the least set of strings which satisfy:

o if [is an operator wn X with arity 0, then f 1s in Pry

o if [is an operator in X with arity n > 0, and ty,...,t, are already n
Prs, then f(t1,...,t,) is in Pry.

To implement this definition in Coq, we use two mutually inductive types,
the type Pr for the actual processes (with constructors const for the first
rule stated above, and funct for the second one), and the type p_list for
non-empty lists of processes (in order to build the argument for an operator
of arity n > 0).

Variable E : Set.
Variable arity : E -> nat.
Mutual Inductive Pr : Set :=
const : (x:E) (arity x)=0 -> Pr
| funct : (x:E) (p_list (arity x)) -> Pr
with p_list : nat -> Set :=
one : Pr -> (p_list (S 0))
| cons : (m:nat) Pr -> (p_list n) -> (p_list (S mn)).
We can now define X-contexts:
Definition 2.16 (X-context) We note by [.] a symbol not in 3, called hole.

Y([.]) us the signature which has all operators in ¥ as before, and in addition

14

symbol [.] with arity 0. A X-context 1s an element of Pry) (the term algebra
over 3([.]), also written Prs([.])) with at most one occurrence of the hole [.]
mn it.

In our Coq implementation, we define as above two mutually inductive types.

Mutual Inductive context : Set :=
hole : context
| Cconst : (x:E) (arity x)=0 -> context
| Cfunct : (x:E) (Cp_list (arity x)) -> context
with
Cp_list : nat -> Set :=
Cone : context -> (Cp_list (S 0))
| Ccons_y : (n:nat) context -> (p_list n) -> (Cp_list (S n))
| Ccons_n : (n:nat) Pr -> (Cp_list n) -> (Cp_list (S mn)).

Type context is for contexts, and is defined by saying that a context is
either the hole, or a constant process, or the application of an operator of
arity n > 0 to a list of type Cp_list. The type Cp_list is for non-empty
lists of contexts with at most one occurrence of the hole. This property is
ensured by the two constructors Ccons_y and Ccons_n: we can either build a
list from a context and list of processes (the Ccons_y case: if the hole occurs,
it can only be found in the first element of the list), or take a process and
add it to a list of type Cp_list (in this case, we have no extra hole since we
add a process: it is the Ccons_n constructor).

We use (' to range over X-contexts. If C'is a X-context and P € Pry, then
C[P] € Pry is the process obtained from C' by filling the hole [.] with P. We
define the corresponding Coq functions C2Pr and C2Pr_1 by “destructuring”
a context with the Case operator:

Fixpoint C2Pr [C:context] : Pr -> Pr :=
[P:Pr]<Pr>Case C of
P
[x:E][H: (arity x)=0] (const x H)
[x:E][1:(Cp_list (arity x))](funct x (C2Pr_1 (arity x) 1 P))
end
with
C2Pr_1 [n:nat;1:(Cp_list n)] : Pr -> (p_list n) :=
[P:Pr]l<[n:nat] (p_list n)>Case 1 of
[C:context] (one (C2Pr C P))
[n:nat][C:context][1’:(p_list n)](cons n (C2Pr C P) 1°)
[k:nat][Q:Pr]1[1’:(Cp_list k)](cons k Q (C2Pr_1 k 1’ P))
end.

15

The definition of the closure of a relation under contexts requires the defini-
tion of a certain class of contexts, namely the faithful ones.

* Definition 2.17 (faithfulness of context sets and of contexts, (2.17))
A set Cont of X-contexts is a faithful context-set if for all C' € Cont and
P € Pry whenever C[P] 2 R, there exist C' € Cont s.t. either

e R=C'[P] and, for all Q, it holds that C[Q] % C"[Q], or

o there are P' € Prg and A € Act s.t. P 25 P' and R = C'[P'] and,
moreover, for all Q,Q" € Pry s.t. Q A Q' it holds that C[Q] &
Q.

A Y-context C' 1s faithful of C' € Cont, for some faithful context-set
Cont.

i . . A
To make definitions more concise, we adopt a new notation: P = () means

“P=Qor P KN ()”; we can this way merge the two previous properties:

* Remark 2.18 (2.18) With the previous notations, Cont is faithful if there
are P’ € Pry and X s.t. P i> P’ and R = C'[P'] and, moreover, for all
Q,Q' € Prs s.t. Q 25 Q' it holds that C[Q] %5 C'[Q).

We directly implement the 2 notation in Coq, by defining a new transition
relation hat:

Variable Act : Set.
Variable trans : Pr -> Act -> Pr -> Prop.

Definition Act_eq : Set := (Act+{Truel}).

Inductive hat : Pr -> Act_eq -> Pr -> Prop :=
hat_tr : (P,Q:Pr)(a:Act) (trans P a Q)
-> (hat P (inleft Act True a) Q)
| hat_eq : (P:Pr) (hat P (inright Act True I) P).

The type Act_eq is the sum of types Act (the type for actions) and {True}
(a type with only one element, to denote the case where we have equality).
Constructors for hat are hat_tr if we have actually a transition (hence the
hypothesis (trans P a Q)) and hat_eq if we have equality between pro-
cesses.

We then define predicates faithful_cont_set (over a set of contexts,
denoted itself as a predicate over contexts) and faithful_cont (over con-
texts):

16

Definition faithful_cont_set : (context -> Prop) -> Prop :=
[Cont:context -> Prop]
(C:context)(Cont C) ->
(P:Pr)(mu:Act) (R:Pr) (trans (C2Pr C P) mu R) ->
(Ex [C’:context]
((Cont C?) /\
(Ex [P’:Pr] ((Ex [lam:Act_eq] (
(hat P lam P’) /\ (R = (C2Pr C’ P’)) /\
((Q,Q’:Pr) (hat Q lam Q’) -> (trans (C2Pr C Q) mu (C2Pr C’ Q’)))
).

Inductive faithful_cont : context -> Prop :=

f_cont : (C:context) (P:context -> Prop) (P C) ->
(faithful_cont_set P) -> (faithful_cont C).

The closure under contexts function Cx can now be introduced:

Definition 2.19 (closure under contexts)

Cx(R) = |J {(C[PLCQ) (PQ) e R}
C' faithful
and in Coq:
Inductive context_closure [R:(relation Pr)] : (relation Pr) :=

cont_clos : (C:context) (faithful_cont C) ->
(P,Q:Pr) (RP Q) ->
(context_closure R (C2Pr C P) (C2Pr C Q)).

After all this definition machinery, we can state our result:

* Lemma 2.20 (closure under contexts, (2.23)) The functionCyx, is re-
spectful.

To state this result in Coq, we have to use the definition of respectful
given above, instanciating the variable Pr with our inductively defined type
Pr. This is achieved using Coq’s modularity: more precisely, we enclose the
definitions of the previous subsections into a Coq Section; when we close
this section, a universal closure upon the declared variables is built. We then
use the Require command to recover the definitions included in a separate
Coq file. In our case, the definition of the respectful property has been
abstracted over the set Pr of processes, the actions Act and the transition
relation trans; we thus need to instanciate them in the statement of the
theorem, as follows:

17

Lemma lemma_2_23 : (respectful Pr Act trans context_closure).

Here again, the original proof in [San94] can be ported to the Coq system
without modifications. The result comes actually from a straightforward
application of the faithfulness property for a context; in Coq, the proof steps
are sometimes a bit tedious, but what we do is basically unfold definitions
and apply the related properties. To shorten the proof, we use two auxiliary
lemmas, that state an intermediate result of Sangiorgi’s proof: aux_lemma
is the implementation of the property if R — § and R C 8, for every

(P, Q) € R, whenever P A P, the following diagram commutes:

P R Q
Al Al
PS Q

aux_lemma?2 is the symmetrical version of this lemma, which is not men-
tioned in Sangiorgi’s proof, but that we need in our implementation 2.

Lemma aux_lemma : (R,S:(relation Pr))
(progress Pr Act trans R S) -> (r_incl Pr R S) ->
(P,Q:Pr) (R P Q) ->
(P’:Pr) (lam:Act_eq) (hat P lam P’) ->
(Ex [Q’:Pr] ((S P’ Q’) /\ (hat Q lam Q’))).

Lemma aux_lemma2 : (R,S:(relation Pr))
(progress Pr Act trans R S) -> (r_incl Pr R S) ->
(P,Q:Pr) (R P Q) ->
(Q’:Pr) (lam:Act_eq) (hat Q lam Q’) ->
(Ex [P’:Pr] ((S P’ Q’) /\ (hat P lam P’))).

In [San94], a sufficient condition for faithfulness of a set of contexts is given,
using the notion of transition rules in unary De Simone format. We have not
implemented this part of the paper, since it would have required complicated
definitions in order to represent transition rules and the unary De Simone
format; the given results require as well technical proofs, and are not of
special interest for us, since we need to redefine completely the closure under
contexts function in our application for the w-calculus. Furthermore, we can
say that in a way they do not belong directly to the theory of progressions,
so we can skip them without significant loss of meaning.

2 Actually, Sangiorgi treats only one of the cases for progression (when the process on
the left makes a transition); in Coq, of course, both cases, even if symmetrical, have to be
treated.

18

See the conclusion for further considerations about the contrast between
the implementation of general results about an abstract theory and the par-
ticularisation to a specific case.

3 The mw-calculus and its semantics

We describe here the implementation of the w-calculus terms and of the early
transition relation.

Processes are implemented in the Coq system through inductive defini-
tions for types name, 1_name (for name lists) and pi (for m-calculus terms).
Following the implementation style of [Hue93|, we adopt a de Bruijn rep-
resentation for names. In this framework (see [dB72|), bound names are
represented by the depth of their binding inside a term, and free names are
considered to belong to a list (that can be viewed as an environment) coming
with the process (i.e. their binding depth goes “above” the term). The ad-
vantage of de Bruijn indexes, traditionally, is that they supply a-conversion
for free, since two « convertible terms share the same representation. Fur-
thermore, in the specific case of the w-calculus, they allow to discard many
side conditions in the definition of the semantics, as stressed in [Amb91],
since terms are safer in this representation with respect to name clash prob-
lems. Of course, this improvement does not come for free, and we will see
in the following that such an implementation requires many technical def-
initions in order to manipulate de Bruijn indexes; in addition to that, the
proofs of Sangiorgi’s results will show that in some way, “what s gained on
bound names is lost on free names” (see next section).

Many implementations of the w-calculus using de Bruijn notation exist.
In [Amb91], Ambler defines a de Bruijn notation for processes and proves
the correspondence between a transition relation defined with this notation
and a transition relation of the w-calculus; this is not our approach, since
we directly implement 7-terms with de Bruijn indexes, and in our case such
results come as “meta” theorems that are implicitly admitted. The Mobility
WorkBench [VM94] is another example of m-calculus implementation using
de Bruijn indexes; it is a tool for checking open bisimulations equivalences on
a polyadic version of the w-calculus that is used to describe mobile concurrent
systems. We can cite as well Pict [Pie95], a programming language built on
a mini asynchronous w-calculus where names are represented by De Bruijn’s
indexes.

Regarding formalisation of 7w-calculus into logical frameworks, an impor-
tant amount of work has been done in HOL [Mel94, Ait94]; this implementa-

19

tion is a definition of automatic methods to check bisimilarity between pro-
cesses that are represented in a “deep” way in the HOL system (see [Mel94]
for more details); for this application, the de Bruijn notation has not been
chosen, and « conversion has to be “manually” implemented.

We shall see in the following that the de Bruijn notation strongly influ-
ences the implementation style of the constructions we are manipulating, and
that sometimes even the shape of some proofs is dictated by index managing
considerations.

3.1 Syntax

In the de Bruijn notation, a variable is represented by a natural number; we
thus define types name and 1_name the following way:

Inductive name : Set := Ref : nat -> name.

Inductive 1_name : Set :=
Nil : 1_name
| Cons : name -> 1l_name -> l_name.

The w-calculus has two binding constructions, namely restriction and ab-
straction. In the polyadic case, both notions deal with lists of names instead
of one name at a time. However, we have not treated v and A the same
way in our implementation; more precisely we keep a monadic meaning for
the restriction operator v, whereas the abstraction is truly polyadic. This
distinction comes from the fact that manipulating lists of names is rather
tedious in Coq, and we thus prefer to stick as much as possible to a monadic
approach. We believe that while reception is strongly polyadic in our =-
calculus, because a communication can involve many names at the same
time, the definition of a new list of names can be split into several “monadic”

definitions with no significant loss of meaning®.
These choices motivate to the following definition of the inductive type
pi for processes in Coq:

Inductive pi : Set :=
Skip : pi
| Res : pi -> pi
| Par : pi -> pi -> pi
| Inp : name -> nat -> pi -> pi
| Out : name -> 1l_name -> pi -> pi.

We will see in the following how we can still define in a simple way a bound output
involving a list of names, thus achieving name extrusion with a polyadic flavour.

20

The Res constructor takes no argument more than the subject process (and
thus acts only as a “monadic” binder), while the Inp constructor requires
a name (where the communication occurs), an arity (of type nat) and a
continuation, to define an abstraction: in other words, in (Inp x k P), k

names are bound by the abstraction.
Other constructors are self-explanatory. As an example, the process P =
(vz) y.[z](Z | y.(A(a,b))a) can be represented in Coq by the definition:

Definition P : pi :=
(Res (Out (Ref (S 0)) (Cons (Ref 0) Nil)
(Par
(Out (Ref (S (S 0))) Wil Skip)
(Inp (Ref (S 0)) (S (S 0))
(Out (Ref (S 0)) Nil Skip))))).

Note that the representation of free variables y and z is in no way “canonical”
(here y is denoted by index 1 and z by 2, but we could have actually chosen
any two different integers greater than 0); we will discuss this point later
on. Another interesting fact is that we do not implement sorts in this work:
on our example, the y channel is first used to emit a single name, then to
receive a list of two names; the definition of the process P would normally
generate a sorting error for the y channel.

We proceed now to the definition of semantics, by implementing the tran-
sition relation given in the first section. The forecoming paragraphs involve
considerations about the implementation of de Bruijn indexes that are pretty
technical; the reader interested in a not too detailed approach should directly
refer to the subsection entitled “Implementing the semantics”, skipping the
technical stuff.

3.2 Managing de Bruijn indexes in a communication

Before defining the transition relation in the Coq system, let us have a look
at the transformations on de Bruijn indexes that are involved in a commu-
nication. Consider the two processes of Figure 1 that are put in parallel: on
the left, an abstraction of the form (Inp x n P) is about to receive a list
of names 1 from the term (Res .. (Res (Out x 1 Q))) on the right; the
concretion (i.e. the emitting process) has k restrictions on top that corre-
spond to name extrusions (i.e. communications of private names); we also
note that the length of list 1 has to be equal to n, because we want to preserve
arity. In the receiving process P, the n first names are bound by abstraction;
we consider two occurences of such names, represented by arrows 1 and 2

21

VvV
/ L
’/ Vv Vo
I [
X X |
3 2y
0, o
A\ o\\)\ [I] O///
V2 0 o
\ k4
N A
\ \ / 1 @
“P

Figure 1: Before communication: z.(A)P | (v2) z.[[jQ

(we will see in the following how they differ); arrow 3 represents a name free
in (Inp x n P), that can be considered as being bound “above” the term
(Par (Inp x n P) (Res .. (Res (Out x 1 Q)))). In the emitted list 1,
we consider two references, one pointing to a name that is free in the emit-
ting process, the other one pointing to a name that is transmitted via name
extrusion.

Figure 2 represents both terms after the communication occured; let us
see how the diffferent entities are modified.

Both terms have now the k restrictions in common, because of name ex-
trusion. References in the process have not changed, which is quite natural
with respect to semantics: intuitively, a concretion emits an information and
then goes on its own way.

For the abstraction, things are much more complicated, since many events
have to be considered: first of all the n “unknown” names that were bound by
a A now have a meaning (they are instanciated), and among them some (k of
them to be precise) are new; furthermore, with all these changes, references
to “free” names in the continuation process P have to be kept coherent. The
possible cases for a name in P are illustrated by the behaviour of arrows 1,
2 and 3 of figure 1:

e Arrow 1 corresponds to a variable, bound by abstraction, that is in-
stanciated with a newly created name (name extrusion), and becomes
arrow 1’ on figure 2. From the point of view of de Bruijn references,
this variable is viewed at the same depth in the term coming from the

22

Figure 2: After communication: (VZ)(P{Q‘::T} | Q)

abstraction as in the list that is emitted by the concretion: the instan-
ciation thus suffices to get the index right in this case, with no extra
manipulation.

e This also holds for the variable represented by arrow 2 on figure 1, that
gets instanciated with a name free in (Res .. (Res (Out x 1 Q)))
and becomes arrow 2': since its depth is the same after the commu-
nication as it was in the list 1, instanciation is the only operation to
perform.

e Arrow 3, that pointed to a reference above the Par construct, say i,
now must point to reference i-n+k to indicate the same binder: it has
not to pass over the n names that were bound by the Inp construct
anymore (hence the -n), but over the k newly transmitted names (hence
the +k).

Let us sum up these considerations, and state precisely the general algo-
rithm for updating a name of the form (Ref i) that occurs in the process P
at depth d; we consider three cases:

e If 0<i<d, the name is not freee in P, and remains unchanged.

o If d<i<d+n (recall that n is the length of list 1), the name was bound
by abstraction, and has to be instanciated. This is done by lifting all
references in list 1 by d (this way we “translate” them and get their
meaning at depth d), and taking the (i-d)th coordinate of this list. As
seen above, this is enough to get references right in this case.

23

o [f d+n<i, i represents a name that was freein (Inp x n P); i becomes
thus i+k-n.

3.3 Coq functions on de Bruijn indexes

We now consider the Coq functions that are defined in order to implement
the de Bruijn index manipulations shown above. Each operation is usually
implemented in three steps, namely with a function that takes a name as
argument, a function on name lists, and finally the function on processes;
although the function that really implements the machinery on indexes is the
one for names (where de Bruijn notation actually appears), most of the time
we will only invoke the function on processes, which itself calls the other two
functions.

Lifting a term When working with de Bruijn indexes, we always look at
a term considering that we are at a given binding depth n. This means that
each reference to an index smaller than n will correspond to a bound name,
while each reference to an index greater than n will go “outside the bounds
of the term”, and thus will represent a free name.

The first basic operation on de Bruijn indexes that we need to perform is
name lifting, i.e. adding an integer k to all free names of a term. Reasoning
at a given depth n, we make a test on the integer i that represents a name:
if n<4, then we have a free name, i is replaced by i+k, while if n>1i, i, as a
bound name, remains unchanged. This simple algorithm translates in Coq
as:

Definition lift_na : name -> nat -> nat -> name :=
[na:name] [n,k:nat]<name>Case na of
[i:nat] (Ref <nat>Case (test n i) of
[L:(1le n i)](plus k 1)
[L:(gt n 1)]i
end)
end.

The test object is a lemma stating the disjunction we use, namely that for
any two natural numbers n and m, we have n<m or n>m.

We then propagate this definition to treat name lists and finally processes,
using the Fixpoint construction for recursively defined functions, associated
to the Case operator that destructs a term:

24

Fixpoint lift_In [1:1_name] : nat -> nat -> l_name :=
[n,k:nat]<1l_name>Case 1 of
1

[na:name] [1’:1_name] (Cons (lift_na na n k) (1ift_1n 1’ n k))
end.

Fixpoint lift_pi [p:pil : nat -> nat -> pi :=
[n,k:nat]<pi>Case p of
Skip
[q:pil(Res (1ift_pi q (S n) k))
[p1,p2:pil(Par (1ift_pi pl n k) (lift_pi p2 n k))
[na:name] [i:nat] [q:pi]
(Inp (lift_na na n k) i (lift_pi q (plus n i) k))
[na:name] [1:1_name] [q:pi]
(Out (lift_na na n k) (1lift_1n 1 n k) (lift_pi q n k))
end.

As expected, in the definition of 1ift_pi, whenever we cross a binder, the
depth increases: it becomes (S n) if we cross a Res construct, it becomes
(plus n i) if we cross an Inp construct with arity i.

We will see in the following that this 1ift_pi function is often useful.

Substitution We just give here the definition of functions project and
subst_na that implement substitution for names, the definition of the cor-
responding functions for name lists and processes being a straightforward
“propagation”, following the model for the lifting functions.

In our setting, if we want to substitute a list of variables in a term with
a given list of names 1 of length n, we must replace the ith bound name
of this term, for i<n, by the ith coordinate of 1. We thus must have a
function project, that takes a list and a position in the list and returns the
corresponding element:

Fixpoint project [1:1_name] : nat -> name :=
[n:nat]<name>Case 1 of
(Ref 0)
[na:name] [1’:1_name]<name>Case n of na
[n’:nat] (project 1’ n’) end
end.

To write the function subst_na, that implements substitution for a name,

we must take binding depth in account, thus considering three cases for an
index k at depth depth:

25

1. if the corresponding name is bound, but is not among the n first names
that are bound in the term, that means that the index does not point
to one of the names of the list: it is thus left unchanged (we are in the
case where depth>k)

2. if the name is bound and has to be instanciated with a name of the
list, i.e. if depth<k<depth+n, we use the project function to get the
(k-depth)th coordinate of list 1

3. if the name is free (i.e. i1>depth+n), it is left unchanged

The Coq implementation uses the test2 lemma to distinguish these three
cases:

Definition subst_na : name -> 1l_name -> nat -> name :=
[na:name] [1:1_name] [depth:nat]<name>Case na of
[k:nat]<name>Case (test2 k depth (plus depth (1_length 1))) of
[C:{(gt depth k)}+{(le depth k) /\ (gt (plus depth (1_length 1)) k)1}]
<name>Case C of
[_: (gt depth k)Ina
[_:(le depth k)/\ (gt (plus depth (l_length 1)) k)]
(project 1 (minus k depth))
end
[_:(1le (plus depth (1_length 1)) k)Ina
end
end.

We also define a function low_subst, to implement the algorithm de-
scribed in the previous section for the implementation of an input action.
low_subst_na behaves as subst_na, except for free names: a free name (Ref
k) is replaced by (Ref (k-n)); we will see in the following how this function
is used to implement the algorithm stated above.

Definition low_subst_na : name -> l_name -> nat -> nat -> name :=
[na:name] [1:1_name] [depth,n:nat]<name>Case na of
[k:nat]<name>Case (test2 k n (plus n (1_length 1))) of

[C:{(gt n k)}+{(1le n k) /\ (gt (plus n (1_length 1)) k)1}]
<name>Case C of
[_:(gt n k)Ina
[_:(le n k) /\ (gt (plus n (1_length 1)) k)](project 1 (minus n k))
end
[L:(le (plus n (1_length 1)) k)J(Ref (minus k n))
end
end.

26

3.4 Implementing the semantics

Actions

Inductive action : Set :=

Ain : nat -> name -> 1_name -> action
| Aou : nat -> name -> l_name -> action
| Tau : action.

A term of the form (Aou k na 1) represents the output action of the list 1
along channel na, with k name extrusions (i.e. implicitly the application of
the Res constructor k times).

To implement an input action, we also need to know how many new
names are communicated to the receiving process; as we will see in the next
paragraph, this is due to the “early” choice for the transition relation, that
leads to de Bruijn index manipulation, in order to “create” new names in the
abstraction (see below).

We also implement some functions about actions, namely lower_action,
that “lowers” all names occuring in an action with step one, bound_action,
that returns the number of names bound in the action (i.e. for non-7 actions,
the first argument of the constructor), and occ_act, a function that checks
if the name (Ref 0) occurs in an action. We omit the definitions of these
objects here, since they are straightforward and not very interesting.

Transition relation Let us state the inductive definition of the type
commit, implementing the transition relation over processes, and then discuss

each of its constructors (that can be interpred as rules).
We have in Coq:

Inductive commit : pi -> action -> pi -> Prop :=
comm_in : (na:name)(n:nat)(p:pi)
(k:nat)(1:1_name)
(commit (Inp na k p) (Ain n na 1)
(low_subst_pi (lift_pi pn k) 1 0 n))
| comm_ou : (na:name)(l:1_name)(p:pi)
(commit (Out na 1 p) (Aou O na 1) p)
| comm_op : (na:name)(k:nat)(1l:1_name)(x,p:pi)
(commit x (Aou k na 1) p)
-> “(na = (Ref (S k))) -> (occ_n_1n 1 (S k))
-> (commit (Res x) (Aou (S k) na 1) p)
| comm_ci : (x,y:pi)(na:name)(k:nat)(1l:1_name)(p,q:pi)
(commit x (Ain k na 1) p) -> (commit y (Aou k na 1) q)

27

-> (commit (Par x y) Tau (add_nus k (Par p q)))

comm_c2 : (x,y:pi)(na:name)(k:nat)(1l:1_name)(p,q:pi)

(commit x (Ain k na 1) p) -> (commit y (Aou k na 1) q)
-> (commit (Par y x) Tau (add_nus k (Par q p)))

comm_pl : (x,p:pi)(a:action) (commit x a p) ->

(y:pi) (commit (Par y x) a
(Par (lift_pi y 0 (bound_action a)) p))

comm_pr : (x,p:pi)(a:action) (commit x a p) ->

(y:pi) (commit (Par x y) a
(Par p (1ift_pi y O (bound_action a))))

comm_re : (x,p:pi) (a:action) (commit x a p) -> ~(occ_act a)

-> (commit (Res x) (low_action a) (Res p)).

e comm_in: this is an atomic transition rule, defining the committment
for an abstraction process; it says that the process (Inp na k p) is
susceptible to receive a list 1 at channel na, with n new names trans-
mitted, and then become (low_subst_pi (lift_pi p n k) 1 0 n).
To understand how the latter process is built, the reader should refer
to the explanations in the previous section: we first lift all free names
in (Inp na k p) by n (or equivalently lift all free names in p at depth
k by n, thus the (1ift_pi p n k)), and then apply the low_subst_pi
function stated above.

What is important to notice here is that the transmission of n new
names results in a lifting of the term p, to actually “make room” for
these new names. In other words, the de Bruijn setting gives an opera-
tional meaning to the v constructor, that actually builds new names in
a term. In fact, each time the 1ift function is invoked, it corresponds
to a creation of new names, which is the most natural way of avoiding
clashes that one can encounter in a non-de Bruijn approach; this gives
a hint on how the side conditions of table 1 are dismissed with this
framework.

comm_ou and comm_op: these two rules define the transitions that can
be performed by a concretion; the comm_ou rule defines unbound output
(hence the 0 as a first argument to the action constructor), while the
comm_op defines how to “add” a restriction to an output to perform
name extrusion. There are premisses to this rule, to check that the
name being restricted is among the transmitted names (in order to
transmit a private name), and that the communication channel is not
the subject of this restriction, since communication cannot occur on
a private channel. comm_ou and comm_op are direct translations of
respectively rules OUT and OPEN of table 1.

28

e comm_cl and comm_c2: these rules define communication between pro-
cesses; they represent the two symmetrical versions of rule CLOSE from
table 1. If a communication occurs with k name extrusions, the result-
ing process will be made of the two actors in parallel with k restrictions
on top of them. This is achieved with the add_nus function, that adds
a given number of restrictions on top of a term (thus partly recover-
ing a polyadic flavour for restriction, as hinted in the paragraph about
m-terms syntax).

e comm_pl and comm_pr: these are the two symmetrical rules implement-
ing PAR: here again, the side condition to avoid name clash translates
into a lifting of one of the terms, in order to make room for the new
names that are transmitted (recall that the function bound_action
returns the number of new names involved in an action).

e comm_re: thisis the translation of the RES rule; here the side condition
remains, since we still have to check that the restricted name (refer-
enced by 0, since a Res constructor binds the first free name in a term)
is not involved in the action. Note that this rule has to be related with
comm_op, since in the latter case we can add a restriction and perform
an action even if the name (Ref 0) occurs in the action, provided it
is not the location of this action.

Having implemented in the Coq system our w-calculus and its semantics,
we can now use our previous results on progression theory to prove results
about w-terms.

4 Closure under contexts in the m-calculus

4.1 Applying the theory to the w-calculus

While our implementation of Sangiorgi’s paper has been kept very close to
the original text so far, our work will now begin to differ from Sangiorgi’s pre-
sentation, basically for technical reasons depending on our implementation
choices.

As stressed in [San94|, the general theory about progression of relations
has to be a little updated in order be used for w-calculus processes. This is
mainly due to the fact that our machinery has to be defined more precisely,
in order to tackle questions related to name substitutions, a crucial problem
in the m-calculus. Our treatment of this difficulty differs from Sangiorgi’s

29

one, because of the de Bruijn representation we adopt for names; however, it
is important to notice that although technical problems are not treated the
same way in this implementation and in the original paper, they basically
have the same source.

Let us first have a look at how Sangiorgi reformulates his theory in order
to take in account the problem of name instanciation, before discussing our
own presentation.

The original definitions. First of all, the classical problem of a-conversion,
that naturally arises in a calculus with binders for variables, is not precisely
treated in [San94]; it is just mentioned that “we shall identify processes which
only differ on the choice of the bound names”. This means that from the point
of view of relations between processes, if for two processes P and () we have
a relation R such that PRQ, we have P"RQ’ for any P’ and @’ obtained by
changing bound names in respectively P and). We will see below how this
question, which is naturally tackled with our de Bruijn implementation for
names, in some way arises elsewhere, namely for free names.

Moreover, since bound and free names share the same representation
in Sangiorgi’s setting, one has to avoid clashes between them whenever an
action involving instanciation of names is performed by a process. This forces
to redefine progression between relations with a side condition, to ensure the
“freshness” of bound names of an action, as follows:

* Definition 4.1 (4.1) A progression R—S, between two relations R and
S on w-calculus processes, holds if for all PRQ)

o whenever P & P with bn(p) N fu(Q) = 0, there is Q' s.t. Q 5 Q'
and P'SQ)’,

and the symmetric clause, on the actions by ().

Our implementation. Within the framework of de Bruijn indexes for
names, two a-convertible terms share the same representation, and thus
cannot be distinguished. Consequently, a relation on terms of type pi in Coq
naturally solves the a-conversion problem that arises in a classical setting.

Furthermore, we do not need to add an extra side condition in the defini-
tion of progression, since there is a real distinction between bound and free
names in the de Bruijn notation, which ensures automatically the “freshness”
of names coming from an action.

30

Unfortunately, as we get rid of those problems, a difficulty arises, that
could be stated as: “with the de Bruijn notation, what is gained on bound
names is lost on free names”. Let us try to explain what a relation between
processes should be in our setting, in order to understand how free names
are represented. As we saw in the implementation of the transition relation
(type commit), when a process performs an input and receives a list 1 of
names, k of them being new (name extrusion), “room” is made for these k
names by lifting the de Bruijn indexes in the term?. In this process, a free
name represented by index say ¢ at depth 0 is represented after the lifting
by index ¢ + k; however, what we say is that indexes ¢ and 7 + k& actually
represent the same name at different moments of its “history”. Therefore,
relations involved in progressions (i.e. intuitively, relations where names have
an “history”) should be preserved by operations like lifting of names; in other
words, for two given processes P and (), we are interested in relations R such
that whenever PRQ), for all k, if P’ and)’ are obtained by lifting processes
P and @ with step k, we have P"RQ’ (remind that lifting involves only free
names, and bound names are left unchanged). An important remark is that
lifting is not the only operation on terms that should preserve a relation for
us: for example, in the definition of the comm_in constructor above, what we
do, after performing a lift, is actually to lower free names in the receiving
process, in parallel with the name instanciations. However, we will see below
that for our proofs, a condition on relations involving only lifting of terms
is enough. We leave for future work the precise study of admitted operators
for which a relation should be preserved in our setting®.

We thus consider in Coq a specific class of relations over processes (i.e.
objects of type pi -> pi -> Prop), namely those who satisfy the predicate
liftable stated below, asserting that a “liftable” relation is preserved by
lifting any two related processes:

Definition liftable : (pi -> pi -> Prop) -> Prop :=
[R:pi -> pi -> Prop]

*As mentioned before, this is the “de Bruijn translation” of a side condition: instead
of checking that newly received names are not already known in the process, we create
dynamically k names for the process as it receives them.

®Actually, we think that the basic operations consisting in lifting free names in a term
of a given integer k and from a given depth, and the converse, i.e. lowering, are enough to
represent any substitution on the free names of a term. Of course, the lower operator has
to be handled with care, since we cannot lower by k at depth d < k: this would transform
a free name into a bound one, or even return a negative index for a name! ... Because of
the complications arising with this operator, and since the proofs can be carried without
considering 1t in the definition of “good” relations, we have not implemented this kind of
results.

31

(p,q:pi) (R p q)
-> (k,depth:nat) (R (lift_pi p depth k) (1lift_pi q depth k)).

Since we do not consider any relation on objects of type pi, but only a class
of such relations, the general theory that we have implemented cannot be
used; nevertheless, what we do is just to rewrite all the definitions and proofs
stated in the section about the theory of progressions, adding a variable
good of type ((Pr -> Pr -> Prop) -> Prop) (a predicate over relations), and
adding to each quantification over a relation the condition stating that the
quantified relation satisfies predicate good. This is in no way difficult, and
more importantly does not affect at all our proofs; let us just state as an
example our new formulation of the soundness property:

Variable good : (Pr -> Pr -> Prop) -> Prop.

Definition sound : (relation -> relatiomn) -> Prop :=
[F:relation->relation] (R:relation) (good R) ->
(progress R (F R)) -> (r_incl R bisimilar).

We use in the following this new version of the general theory, in order
to reason about liftable relations (instanciating the good variable with the
liftable function).

4.2 Contexts for m-calculus terms

Contexts Because we have to take in account the substitutions on names
that are involved in the transition relation on w-calculus processes, the gen-
eral results about the closure under contexts function have to be revisited.
The gap between the actual complexity of the implementation in the gen-
eral case and in the specific case of the w-calculus is quite impressive, as the
following will show. We first define monadic contexts for processes of type

pi:

Inductive context : Set :=
Hole : context
cRes : context -> context
cP_1 : context -> pi -> context

I

I

| cP_r : pi -> context -> context

| ¢cInp : name -> nat -> context -> context
I

cOut : name -> 1_name -> context -> context.

This definition is quite easy to understand: a context has globally the shape
of a w-term, and if we encounter a Par branch, we must decide in which

32

branch the hole is located. We then define the ¢c2pi function, that given a
context C[.] and a process P, returns the process C[P], obtained by replacing
the hole in C' by the process P:

Fixpoint c2pi [c:context] : pi -> pi :=

[p:pil<pi>Case ¢ of
1%
[d:context] (Res (c2pi d p))
[d:context] [q:pil(Par (c2pi d p) q)
[q:pil[d:context] (Par q (c2pi d p))
[na:name] [n:nat] [d:context] (Inp na n (c2pi d p))
[na:name][1:1_name] [d:context] (Out na 1 (c2pi d p))

end.

We also implement the usual machinery about de Bruijn indexes for terms
of type context (lifting a context, checking occurences of free names in a
context, ...).

4.3 The closure under contexts function

Because of substitutions coming from communications, in a process C[P],
the context C' can “modify” the process P; thus, to say things intuitively,
it is not sound to prove only P ~ @ if we have to prove C[P] ~ C|[Q], for
P ~ @ might not imply C[P] ~ C[Q]. Therefore, we introduce the guardness
property for a context, saying that a process C' is guarded if the hole occurs
in C' under a prefix construction. The definition of the closure under contexts
function C is the following;:

* Definition 4.2 (Closure under contexts function)

Cx(R) = Uc non—guardea{(C[P],C[Q)) = (P,Q) € R} U

Uc guarded{ (C[P],C[Q)) : (Po,Qc) € R, for all substitutions o}

We easily implement in Coq the two predicates guarded and unguarded
about contexts:

Fixpoint guarded [c:context] : Prop :=
<Prop>Case c of

False
[d:context] (guarded d)
[d:context] [_:pil] (guarded d4)
[_:pi]l[d:context] (guarded d4)
[_:name] [_:nat][_:context]True
[_:name] [_:1_name] [_:context]True

33

end.

Fixpoint unguarded [c:context] : Prop :=
<Prop>Case c of
True
[d:context] (unguarded d)
[d:context] [_:pi] (unguarded d4)
[_:pi]l[d:context] (unguarded d)
[_:name] [_:nat][_:context]False
[_:name] [_:1_name][_:context]False
end.

The closure function is defined in two steps: we first implement a function
close_cons, taking a context ¢ and a relation R over processes, and returning
the condition on R corresponding to the guardness of the context ¢, from
the above definition of C,; (dec_guarded is a lemma stating that a context
satisfies either predicate guarded or predicate unguarded); we then define
Close, the closure under contexts function, in an inductive way:

Definition close_cons :
context -> (pi -> pi -> Prop) -> pi -> pi -> Prop

[c:context]<(pi -> pi -> Prop) -> pi -> pi -> Prop>Case (dec_guarded c¢) of
[_:(guarded c)]
([R:pi -> pi -> Prop]l[p,q:pil
(1:1_name) (R (pi_subst p 1) (pi_subst q 1)))
[_:(unguarded ¢)]
([R:pi -> pi -> Propllp,q:pil(R p q))
end.

Inductive Close [R:pi -> pi -> Prop]l : pi -> pi -> Prop :=
Clo_cons : (c:context)(p,q:pi)(close_cons ¢ R p q) ->
(Close R (c2pi ¢ p) (c2pi ¢ q)).

4.4 Respectfulness theorem
We now come to our result:

*Proposition 4.3 (5.2) Function C is respectful.

As seen before, since we are taking advantage of Coq’s modularity, we have
to instanciate the definition of respectful with the sets of processes and
actions (pi and action), the transition relation (commit), the predicate over
relations (1iftable) and the actual argument of the respectful predicate,
the closure function (Close). We thus write in Coq:

34

Lemma Close_respectful : (respectful pi action commit liftable Close).

Proof Our proofis close to the one in [San94]| in its global form; the tech-
nical parts require of course much more attention in our work and generally
do not follow the hints given by the original text, mainly for implementation
reasons.

We consider for this proof two liftable relations on 7-terms R and §; we
suppose R C § and R — S. The proof of C(R) C C.(S) is straightfor-
ward; we also have to check that C(R) — C,(S) holds. We thus consider
(C[P),C[Q]) € Cx(R), an action pu and a process R such that C[P] & R.
We must exhibit €7, P’ and @’ such that

R=C'P], ClQ]L C'[Q, and (C'[P'],C'[Q]) € Cx(S)

As in the original proof, we proceed by induction on the structure of the
context C'; we will focus here on the technical difficulties that appear in our
proof.

4.4.1 C = Hole

This case is easy, since we have for any process P, C[P] = P, so the property
comes from the hypothesis R — S.

4.4.2 C = (cRes C1)

In this case, the hypothesis C[P] 2 R translates in Coq as (comnmit (c2pi
(cRes C1) P) mu R), and, by unfolding the definition of function c2pi, as
(commit (Res (c2pi €1 P)) mu R). We apply the Inversion tactic to this
hypothesis, which generates two subgoals coresponding to the two possible
constructors used to derive this hypothesis, namely comm_op and comm_re®.
The proofs are then quite easy and involve basic application of the definitions

we use.

443 C = (cP_.1 C1 T)or¢C = (cP_r T C1)

The proofs of those two cases are very similar to eachother; although they
have to be given explicitely in the implementation, we will consider just the
first case here, namely where a context is built by adding a process T to

®To learn more about the Inversion tactic, the reader should refer to [CCF196].

35

the right of a context C1 with the parallel constructor. As in the previous
case, we apply the Inversion tactic to the hypothesis (commit (Par (c2pi
C1 P) T) mu R), stating the transition relation between the two processes.
Let us examine the four subgoals generated by this tactic (again, the role of
the Inversion tactic is, by looking at the structure of an inductive term, to
derive for each possible constructor of its type the necessary conditions that

should hold):

1. The first subcase corresponds to the constructor comm_c1: a commu-
nication occurs between the processes, (c2pi €1 P) is the receiving
process and T is emitting. The induction hypothesis allows us to build
easily the context ¢’ and processes P’ and @' in order to prove our
result.

2. This subcase is symmetrical with respect to the latter: process (c2pi
C1 P) emits and T is the receiving process; here again, the proof is not

difficult.

3. The third subcase corresponds to the case where T performs an action
and (c2pi C1 P) does not; this is actually the tricky situation where
our hypothesis on relations R and S (the so-called “liftability”) has to
be used.

If we look at the type of comm_pl (the one we are considering in this
subcase, actually), we see that if the action performed by T has bound
names, then the term (c2pi C1 P) must be lifted in order to “make
room” for these names. To write things more formaly, we are in the
case where C1[P] C(R) C1[Q], and T' £ 17, hence (lift*(C[P])|T) &
(lift*(C,[P])|T") (k is the number of names bound in the action p)
7. We replace lift"(C4[P]) by (Iift*(Cy))[lift"(P)], where lift’* is the
function that lifts all free names of k at depth n, if n is the depth of
the hole in €. This is implemented in Coq by the following lemma
(ct_depth is the function returning the depth of the hole in a context):

Lemma subst_c_p : (c:context)(p:pi)(l:1_name)(n:nat)
(pi_subst_n (c2pi ¢ p) 1 n) =
(c2pi (ct_subst ¢ 1 n)
(pi_subst_n p (1ift_1n 1 O (ct_depth c))
(plus n (ct_depth c)))).

"We “mix” here a mathematical notation and names referring to objects from our Coq
implementation, such as lift". We believe that this presentation is easier to read than
the actual Coq text, although less rigorous. We will use it whenever we need to describe
technical details without stating the original Coq syntax.

36

It is then quite natural to make the following proposition for C’, P’

and Q':
' = (fth ()|, P =1Lt (P), Q' =1Lft""(Q)

The proof of C[Q] & C'[Q'] is easy (we just defined €’ and Q' to
this purpose). We also have to prove C'[P'] C(S) C'[Q']: this actually
reduces to prove lift’* (P) S 1ift’*(Q), and since the relation & is liftable,
to prove PS(Q); the latter result is easily derived from R C & and
CIP] C:(R) CTQ).

4. This subcase is much easier to treat than the previous one: this time,
process (c2pi C1 P) is performing an action, while T does not. We
avoid here all the tedious work to prove the relation between processes,
since T, which is the lifted process, is not really involved in the rela-
tion (we have to deduce (Ci[P'|[lift"(T)) C.(S) (C1[Q|lift" (T)) from
C1[P'] Cz(R) C1[Q'], which is easy).

4.4.4 C = (cInp na n C1)

This is the more technical part of our proof, since a reception involves names
substitutions, an issue where tedious problems often arise, as it is the case
here.

We first remark that in this case, the context C is guarded, so the induc-
tion hypothesis “says” (R (pi_subst_n P 1 0) (pi_subst_n Q 1 0)) for
any list of names 1: this will be a key result for us. If we look at construc-
tor comm_in, we see that the committing process has a complicated shape
after the reception, namely something like (low_subst_pi (1ift_pi pO n
k) 1 0 n), for a given process p0, if k is the number of bound names in
the input action. In the original proof, we just say that if the context is
C = na.(AJ)Cy, the term becomes C1[P]{i := [}: this contrast between a
simple statement and our intricate terms is a good example of how objects
involving technical definitions become quite complicated as soon as they are
implemented in the Coq system.

It is important to notice that the really significant modification we apply
to process pO is the substitution. In our implementation, this substitution
comes along with a lifting followed by a lowering of free names; these two
operations should actually preserve the relations over processes we are con-
sidering, since they are just needed to manage free names, as already dis-
cussed above. In our proof, though, we only consider “liftable” relations, and

37

we do not allow to “lower” related terms; we will see in the following how we
tackle this difficulty by using the strong hypothesis we have about R.

Let us turn to the actual proof: the type of constructor comm_in indicates
the shape of terms C’, P’ and ()’ that we chose, in order to establish the
transition relation. These objects then appear in the proof of the C(S)
relation, as we have to prove:

low subst(lift* (C[P]),1,n) Cr(S) low_subst(lift"(C[Q]),1,n)

We use here an auxiliary lemma, in order to establish the closure under
contexts of a relation:

Lemma 4.4 Let R be a relation over w-calculus processes. If for two pro-
cesses P and @ we have Yo (Po)R(Qo), then for any context C,
C[P] Cx(R) C1Q]-

The proof of this lemma is trivial, and, in conjunction with R C & and the
subst_c_p lemma stated above, allows us to reduce our goal to:

Vo (low_subst(lif‘c’k(P)7 L,n))o R (low_subst(lif‘c’k(Q)7 l,n))o

Let us quote the Coq text corresponding to this proposition, the quantified
substitution o being here represented by a list of names 1°:

(1’ :1_name)
(R (pi_subst_n
(low_subst_pi (lift_pi P (plus n (ct_depth C)) k)
(1ift_1n 1 O (ct_depth C)) (ct_depth C) n)
1’ 0)
(pi_subst_n
(low_subst_pi (lift_pi Q (plus n (ct_depth C)) k)
(1ift_1n 1 O (ct_depth C)) (ct_depth C) n)
1’ 0))

We are now in front of the aforementioned difficulty: intuitively, the hypoth-
esis (1:1_name) (R (pi_subst_n P 1 0) (pi_subst_n Q 1 0)) allows us
to prove that the relation R between P and Q is preserved by substitution with
name lists 1 and 1°; the lifting of free names achieved by function 1ift_pi,
as well as the lowering achieved by low_subst_pi, also preserve this relation,
but “for another reason”, namely because our relations over processes should
be preserved by lifting and lowering of free names in related terms. Appar-
ently, we are therefore not able to prove this result, since we just supposed
that R is liftable, and we do not have an hypothesis about the lowering of
terms.

38

We now use a trick which allows us to conclude the proof in a quite
direct way (even if a little brutal). The idea is to represent each of the
manipulations on de Bruijn indexes that are performed on the processes by
a substitution, and this way take advantage of the aforementioned hypothesis
on R.

We define a function build_lift, that given a depth depth, an integer
k and a length max, returns a list representing the lifting of max+1 terms
by k at depth depth. The lifting operator is actually an infinite substitu-
tion that relates an index ¢ with index 1+k; we represent in our setting the
truncation of such a substitution, defining it for all indexes lower than the
maximum free index in a process (the latter notion being implemented by
function max_free, that returns the maximum free index in a term of type
pi at a given depth). For a process p, we call the build_lift function with
max:=(max_depth p depth), and we get in return a list of names that rep-
resents the lifting operator for p; this manipulation is summarized in the
following lemma:

Lemma subst_lift : (p:pi)(m,k:nat)
(lift_pi p n k) = (pi_subst_n p (build_lift (max_free p n) n k) n).

Similarly, we represent the low_subst_pi operator by a list built with a
function named low_subst, and we have:

Lemma low_subst_subst : (p:pi)(depth,k:nat)(l:1_name)
(low_subst_pi p 1 depth k)
= (pi_subst_n p
(low_subst (max_free p depth) depth k 1) depth).

We can now use these lemmas to rewrite the conclusion of our goal, in order to
get a term where three substitutions are applied to processes P and Q, namely
the one corresponding to the 1ift_pi function, followed by the one corre-
sponding to low_subst_pi (with list 1), and finally the one corresponding to
list 1’. What we do now is to represent the succession of three substitutions
by only one substitution, which will allow us to use the hypothesis about R.
We therefore need to represent the composition of two substitutions defined
by lists 11 and 12 at a given depth (function comp_subst), and we also have
to replace a substitution at depth depth by a substitution at depth 0, in or-
der to apply our composition lemma (function depth_subst). We just give
here the lemmas corresponding to these constructions:

Lemma comp_subst_pi : (p:pi)(depth:nat)(11,12:1_name)
(pi_subst_n (pi_subst_n p 11 depth) 12 depth) =

39

(pi_subst_n p (comp_subst (max_nat (l_length 11) (1_length 12))
11 12 depth) depth).

Lemma depth_subst_pi : (p:pi)(depth:nat)(l:1_name)
(pi_subst_n p 1 depth) = (pi_subst_n p (depth_subst 1 depth) 0).

After a big amount of technical reasoning on de Bruijn indexes and substi-
tutions, we can replace all substitutions by only one (no need to say that the
list involved in this substitution has a really ugly aspect in Coq!), and con-
clude the proof using the hypothesis about R. We stick to this quite informal
description of the Coq proof we are writing, in order to avoid too technical
details.

As hinted above, we somehow cheated in our proof, since we “misused”
the hypothesis (R (pi_subst_n P 1 0) (pi_subst_n Q 1 0)) in order to
tackle the difficulty about the lowering of terms related by R. However, this
has allowed to considerably simplify our proofs (replacing the liftable predi-
cate by a “lowerable” and liftable property would have been very tedious to
represent, especially since lowering free names in a term is not always safe).
Moreover, this tedious work on substitutions is also useful for some proofs
of the next section.

4.4.5 C = (cOut na 1l C’)

This case is much easier to treat than the previous one, since by definition
of the transition relation, a concretion just emits a list and continues along
its continuation. We thus do not have to handle substitutions, and the proof
is straightforward.

5 Unique solution of equations

An application of the latter proposition (respectfulness of the closure un-
der contexts function), is the proof of uniqueness of equations for the -
calculus. This result, coming from Milner’s book [Mil89], says that under
certain conditions on a given context C', all processes P such that C[P] ~ P
are bisimilar.

The proof of this result in [San94] is actually given for CCS, a simpler
calculus where communications do not carry values. Sangiorgi only mentions
that it translates into w-calculus with no significant modification, except
that we have to consider a smaller relation, written ~¢, instead of “plain”
bisimilarity; the definition of ~¢ (which is actually the congruence induced
by ~) is the following:

40

* Definition 5.1 (congruence induced by ~, (4.2)) We set P ~° @,
pronounced “P and Q) are congruent”, if Po ~ Qo, for all substitutions
.

And in Coq:

Definition bisim_c : pi -> pi -> Prop :=
[p,q:pil (1:1_name)
(bisimilar pi action commit liftable
(pi_subst_n p 1 0) (pi_subst_n q 1 0)).

In the following, we shall describe our adaptation of the original proof for
CCS to the m-calculus. We will keep references to original results from
Sangiorgi’s paper, since the various steps of the proof are exactly the same,
although they are more technical in our case (both because of an enrichment
of the calculus and of implementation issues).

For simplicity reasons, we consider monadic contexts in our result; this
means that we only have one hole in a term of type context. In [San94|,
Sangiorgi considers an arbitrary number of different holes [.],...,[.],, each
of them possibly having many occurrences. The implementation of such a
general result would have involved some tedious implementing work in Coq,
and in particular it would have not allowed us to use the results from the
previous section about the closure under contexts function; therefore, we
keep a simpler presentation, with the belief that we still have the essence
of the theory. Our Coq proofs for this part of the implementation basically
involve the same reasoning as for those of the previous section, so we just
briefly sketch their shape in a “mathematical” style without entering the
details.

5.1 Auxiliary lemmas

We first prove a few lemmas from Sangiorgi’s paper, that are useful for our
final proof.

Following [San94], we write C to denote the closure under contexts func-
tion Cr, and if R is a relation over processes, we write RC for C(R) and RT

for T(R).
* Lemma 5.2 (3.2) IfVo (Po,Qo) € R, then (C[P],C[Q]) € (R°)7.

In the original paper, no substitution was mentioned; because of the specific
definition we have for the closure under contexts function in the case of
the m-calculus, we had to replace the hypothesis (P, Q) € R by a much

41

stronger one. While in [San94] the proof of this lemma is done by induction
on the structure of context C', it is much easier in our setting, because of
the hypothesis we have on R, together with the definition of the closure
under contexts function C. We use for the Coq proof our lemma 4.4 stated
above, and we could actually get rid of the transitive function 7, since we
do not need it in our proof. We keep it anyway to stay close to Sangiorgi’s
original text (it is useful for a proof by induction on C' to apply the induction
hyptohesis in some cases). We need of course to define the function (=¢)7
in Coq:

Definition R_C_T : (pi -> pi -> Prop) -> pi -> pi -> Prop :=
[R:pi -> pi -> Propl(T’ (Close R)).

* Lemma 5.3 ((3.3), lemma 4.13 in [Mil89]) If C s guarded and
C[P] & P, there exist a context C' and a substitution oy s.t. P' = C'[Pag],
and moreover, for any Q, C[Q] 5 C'[Q’vy].

Here again, we had to adapt the statement of this lemma to the case of the
w-calculus, since whenever p is an input action, the context can modify its
“content” P: we thus add the substitution og. The proof of this result comes
from an induction on the structure of C'; although it involves some tedious
managing of de Bruijn indexes, it is not difficult.

We now turn to a couple of lemmas that are related to our definition of
bisimilarity, in the general setting where we have a set of processes Pr, a
set of actions Act, and a transition relation trans; from the point of view of
the implementation, this means that we work within the Coq files where the
variables Pr, Act and trans have not been instanciated. These lemmas are
needed for our Coq proofs, but are not part of Sangiorgi’s paper.

Lemma 5.4 For any processes P and () such that P ~ (), whenever
P L P!, there exists a process Q' s.t. Q 25 Q' and P’ ~ Q', and the
symmetrical property for an action performed by ().

This result, which is the classical definition of a bisimulation relation, is in
our case a consequence of our definition for ~ (and hence has to be proved
in Coq). We prove another small result as well:

Lemma 5.5 (symmetry of ~) If P~ @, then Q ~ P.

These lemmas easily translate in Coq, and their proofs are straightforward.

42

5.2 The uniqueness result
We can now turn to our main result:

*Proposition 5.6 (unique solution of equations, (3.5), proposition
4.14(2) in [Mil89]) Suppose C' is a guarded context, with P ~° C[P] and
Q ~° C[Q]. Then P ~° Q.

Proof To prove P ~¢ (), we consider a substitution ¢ and prove Po ~ (Jo.
This is done by using the proof technique given by lemma tech stated in the
second section of this paper; let us remind here its formulation:

Lemma tech : (p,q:Pr) (R:relation) (good R) -> (R p q) ->
(F:relation -> relation)
(respectful pi action commit liftable F) -> (progress R (F R)) ->
(bisimilar pi action commit liftable p q).

We therefore consider the relation:

R = {(Pp,Qp), p substitution},

and prove that R — ~ (R®)7 ~ holds. The lemma tech will then allow
us to conclude Po ~ Qo, since (Po,Qo) € R.
To implement R, we define the function subst_rel the following way:

Inductive subst_rel [p,q:pi]l : pi -> pi -> Prop :=
sr_cons : (1l:1_name)

(subst_rel p q (pi_subst_n p 1 0) (pi_subst_n q 1 0)).

We also define the ~ (=°)7 ~ function, and prove its respectfulness (hence
its soundness):

Definition R_C_T_B : (pi -> pi -> Prop) -> pi -> pi -> Prop :=
[R:pi -> pi -> Prop] (B (T’ (Close R))).

Lemma resp_RCTB : (respectful pi action commit liftable R_C_T_B).
We now turn to the proof of the progression. We have:

Vp Pp~ (C[Pl)p (1)

Vo Qp ~ (C[Q])p. (2)
Suppose P 2 P’; applying (1) to our substitution ¢, and using lemma 5.4,
we get a process R s.t. (C[P])o &5 R and P’ ~ R. We then rewrite (C[P])o

43

into C'o[Pc], in order to use lemma 5.3. This gives us a new context C’ and
a substitution og s.t. R = C'[Pooy] and

VT Co[T] 5 C'[Tog). (3)

For the proof of this result, and in the forecoming steps of our proof as well,
we frequently use the constructions about substitutions from the previous
section; since we just apply the corresponding lemmas without proving any
new result about these constructs, we will not enter the technical details
of these proofs. This will of course help keeping the following as clear and
concise as possible; nevertheless, the reader should still have in mind that
these mathematical results sometimes need complicated manipulation of de
Bruijn indexes in order to be implemented.

We apply (3) with Qo; this gives C'o[Qo] 2 C'Qooy], and since we
have (2), using 5.4 and the symmetry of ~, we can exhibit a process @’ s.t.
the two following diagrams commute:

Po ~ (o[Po] ColQo] ~ Qo
o o o o
P~ C/[PUUO] C/[QUUO] N Q/

Using lemma 5.2, we show that (C'[Paag],C'[Qaog]) € (RE)7, and thus
(P',Q") € ~ (RC)T ~. This finally proves R — ~ (R)7 ~, hence
Po ~ Qo.

Conclusions and future work

We have implemented the general theory of progressions of relations on a
set Pr of processes, and then applied it to the case of the w-calculus. Quite
significantly, the proofs of the second part of this work turned out to be
considerably more tedious and complicated to handle than those on non-
specified relations. We believe that this is not due to a coincidence: while
general or abstract results translate quite straightforwardly into the Coq
system, our experience is that technical applications often require further
investigations. Moreover, it seems that in a way, “complexity grows faster
in Coq than on a paper proof”, or in other words, we need more and more
tedious work in Coq as the mathematical notions become technical. Of
course, the main point is to find good implementation paradigms in order
to tackle as much as possible of the technical aspects, but we think that it
is not entirely Coq’s responsibility: it is often the case that mathematical

44

texts do not enter very technical details. To exagerate our point of view, we
can say that one could probably define a “technical depth” in mathematical
results under which no exploration is made (or at least very rarely). The
main reason for this is clarity, because intuition gets easily lost in a long and
detailed proof; in a proof checker like Coq, we must get into all details, but
still trying to follow as much as possible the original form of the proof. The
“mathematical” proof (as opposed to the “mechanised” proof in Coq) plays
the role of a guide for the user, who has to deal with all the technical parts
needed by a rigorous approach.

We plan to implement one more result coming from Sangiorgi’s paper,
namely the proof of respectfulness for the closure under injective substitu-
tions function; this work shall probably require some tedious manipulations,
since injective substitutions do not really enjoy a natural representation in
our implementation. Nevertheless, we believe that this tool can really be use-
ful for proving bisimilarities, since it can be applied to very small relations,
as showed by an example in [San94]. It is important to notice as well that
this example is on two specific processes, while the application of the clo-
sure under contexts function, namely the proof of uniqueness of solutions for
equations, is a more general and abstract result. Our aim is indeed to supply
functions that can be used to prove bisimilarities between “real” processes,
and not only to prove properties of our implementation of the w-calculus.

Obviously, we cannot hope to achieve an efficient and automatic machin-
ery comparable to the HOL implementation of the w-calculus [Mel94, Ait94]
in the near future; we still think that our Coq implementation can be useful
for a reasonable class of bisimulation proofs, and we hope to use it in the
field of concurrent language semantics.

References

[Ait94] Otmane Ait-Mohamed. Vérification de I’équivalence du m-calcul
dans HOL. Rapport de recherche 2412, INRIA-Lorraine, Novem-
ber 1994. (In French).

[Amb91] Simon J. Ambler. A de Bruijn notation for the w-calculus. Tech-
nical Report 569, Dept. of Computer Science, Queen Mary and
Westfield College, London, May 1991.

[Bou92| Gérard Boudol. Asynchrony and the 7-calculus (note). Rapports
de Recherche 1702, INRIA Sofia-Antipolis, May 1992.

45

[CCE+96]

[dB72]

[FG]

[HKPM95]

[Hue93]

[Mel94]

[Mil89]

[Mil91]

[Mil92]

[MPW92)

[M3]

[Pie95)

C. Cornes, J. Courant, JC. Fillidtre, E. Gimenez, G. Huet,
P. Manoury, C. Munoz, C. Murthy, C. Parent, C. Paulin-
Mohring, A. Saibi, and B. Werner. The Cog Proof Assistant
Reference Manual. Projet Coq, INRIA Rocquencourt / CNRS -
ENS Lyon, 1996.

N.G. de Bruijn. Lambda Calculus Notation with Nameless Dum-
mies. In Indagationes Mathematicae, volume 34, pages 381-392.
1972.

C. Fournet and G. Gonthier. The reflexive CHAM and the join-
calculus. In POPL 96.

G. Huet, G. Kahn, and C. Paulin-Mohring. The Cog Proof As-
sistant, A Tutorial. Projet Coq, INRIA Rocquencourt / CNRS
- ENS Lyon, Février 1995.

G. Huet. Residual theory in A-calculus: A formal development.
Technical Report 2009, INRIA, Rocquencourt - France, Aoft
1993.

Tom F. Melham. A mechanized theory of the w-calculus in HOL.
Nordic Journal of Computing, 1(1):50-76, 1994.

R. Milner. Communication and Concurrency. Prentice Hall,
1989.

Robin Milner. The polyadic w-calculus: a tutorial. Technical
report, LFFCS, Dept. of Computer Science, University of Edin-
burgh, october 1991.

Robin Milner. Functions as processes. Journal of Mathematical
Structures in Computer Science, 2(2):119-141, 1992.

Robin Milner, Joachim Parrow, and David Walker. A calculus
of mobile processes, Parts I and II. 100:1-77, September 1992.

Robin Milner and Davide Sangiorgi. Barbed bisimulation. pages
685-695.

B.C. Pierce. Programming in the Pi-Calculus (Tutorial Notes).
Computer Laboratory, Cambridge - UK, November 1995.

46

[San93]

[San94]

[VM94]

D. Sangiorgi. A Theory of Bisimulation for the w-calculus. Tech-
nical report, LFCS, Department of Computer Science, University
of Edinburgh, May 1993.

D. Sangiorgi. On the bisimulation proof method. Technical re-
port, LFCS, Department of Computer Science, University of Ed-
inburgh, 1994.

B. Victor and F. Moller. The Mobility Workbench — a tool
for the mw-calculus. In D. Dill, editor, Proceedings of CAV 94,
volume 818 of Lecture Notes in Computer Science, pages 428—
440. Springer-Verlag, 1994.

47

