
Bisimulation proofs for the �-calculusin the Calculus of ConstructionsDaniel Hirschkoffavril 1996No 96-62

Bisimulation proofs for the �-calculusin the Calculus of ConstructionsDaniel HirschkoffRésuméNous présentons une implémentation dans le système Coq des tech-niques de preuves de bisimulation exposées par Davide Sangiorgi dans[San94]. Coq [CCF+96] est un logiciel d'aide à la preuve développéà l'INRIA et à l'École Normale Supérieure de Lyon. Nous décrivonsla théorie des progressions de relations sur un ensemble de processusquelconque, que nous appliquons ensuite à l'implantation d'un mini �-calcul polyadique �ni; nous nous intéressons en particulier à la clôtured'une relation pour une famille de contextes. Les techniques implantéespermettent de simpli�er les preuves de bisimulation entre termes.AbstractWe present an implementation of the bisimulation proof techniquesdescribed by Davide Sangiorgi in [San94]. The system we use is the CoqProof Assistant [CCF+96], a theorem prover developped at INRIA andat the École Normale Supérieure de Lyon. We �rstly implement thetheory about progressions of relations on a set of processes, and thenspecialise it with our implementation of a �nite polyadic �-calculus; weconsider in full detail the particular case of the closure under contextsof a relation. This gives a toolkit to make bisimulation proofs muchshorter than the usual ones.

IntroductionWe describe here what could be considered as a �mechanisation� of the theoryexposed in [San94]. This work is in relation with [Hue93], that has been asource of inspiration, and an example of a previous experiment implementingin the Coq system an aspect of theoretical computer science.Such a process often gives an opportunity to understand accurately theconstructions that are implemented, as well as a good test for the target sys-tem, in terms of expressiveness and e�ciency. With regards to formalisationof abstract models for computation or concurrency such as the �-calculusor the �-calculus, it can be considered as a dual approach to the actualbuilding of a system based on these calculi (as ML is for the �-calculus, asPict [Pie95] is for the �-calculus, : : : and as Coq itself is for the Calculus ofConstructions!), not using the theory as a 'meta' paradigm, but rather as amaterial to work on.The subject matter of the implementation is a part of the theory devel-opped in [San94], that we call here the theory of progressions. It de�nes a newkind of methods for proving bisimulation relations; the actual formalisationis quite general, and as such it was interesting to see how an implementationof general constructions can be specialised in order to focus onto one of theapplications that are described in the paper, namely �-calculus.This paper should be self-contained; nevertheless, some familiarity withthe �-calculus and with traditional functional-style notations (in order toread Coq text) would be preferable. In the �rst section, we describe brie�ythe Coq proof system and the notions relative to Sangiorgi's theory and tothe �-calculus that we shall use. We then discuss the theory of progressionsand its implementation more precisely, as well as the de�nition of a closureunder contexts function in the general case. The third section is devoted tothe encoding of the syntax and the semantics for the speci�c �-calculus weuse, and we then describe applications of Sangiorgi's techniques to �-terms:after adapting our de�nition of the closure under contexts function to the�-calculus in the fourth section, we use it in the �fth section to prove theuniqueness of solutions for equations in the �-calculus. We �nally concludeand discuss future work. 1

1 Preliminaries1.1 The Coq systemThe present work has been done using the Coq Proof Assistant [CCF+96],a proof checker based on the Calculus of Inductive Constructions (CIC).This system supports the de�nition of objects in the Calculus of InductiveConstructions (a typed �-calculus with inductive de�nitions), and can in-teractively generate proofs about these objects through the use of tacticsimplementing backward reasoning. The excerpts of the implementation thatare stated in this paper are actually all written in Gallina, the speci�cationlanguage of the Coq system. In order to make these statements under-standable, let us brie�y sketch the syntax of the most important Gallinaconstructions:� abstraction is written with square brackets, application as usual withparentheses, implication is written with the symbol ->, while depen-dent product, that can be interpreted as universal quanti�cation, iswritten with brackets as well. Let us look at an example to illustratethat: the term (n:nat)(([x:nat]x) n) = n denotes the proposition8n : nat (�x:x n) = n (nat is the type for natural numbers).� An important feature of Gallina is the opportunity to make inductivede�nitions, such as:Inductive nat : Set :=O : nat| S : nat -> nat.This de�nition reads: �nat is a new inductive type of sort Set whoseconstructors are O of type nat (a constant) and S of type nat -> nat(the successor function, taking a natural number and returning as aresult a natural number)�.When necessary, a brief comment on the form of a proof in Coq will be given,but no quotation will be made of the actual proof scripts. In the statementof Coq objects, we will distinguish between statements that can actuallybe found in Sangiorgi's paper and lemmas that were introduced in order tocarry the proof: objects from the original text will be marked by a * andsomething like (2.10), indicating their numbering in the source text.The reader interested in a more detailed approach to the Coq ProofAssistant should refer to [HKPM95]. 2

We now turn to the topics that make the subject of the implementation.1.2 Bisimulation proof techniquesA common notion for the formulation of equivalence between processes isthe ability for two equivalent processes to simulate eachother actions, calledbisimulation. In [San94], Sangiorgi presents a nice generalisation of the tech-niques that are traditionally used to achieve bisimulation proofs. In most ofthe cases, one has to explicitely exhibit an in�nite relation containing thetwo processes to be proven equivalent, and then prove that it is a bisimilarity.The aim of Sangiorgi's work is to reduce drastically the size of the invokedrelations, in order to consider �nite sets.To understand intuitively how to achieve this, let us have a look at thede�nition of a bisimulation: we say that P and Q are bisimilar, writtenP � Q, if whenever P performs an action � to become P 0, there exists a Q0such that Q can perform � to become Q0, and P 0 � Q0. The idea of Sangiorgiis that if we look at this statement from a formal (nearly syntactic) point ofview, we can see that the � symbol occurs twice, once in the thesis, and oncein the conclusion. Intuitively, the non-�niteness comes from this circularity,that has thus to be broken if we want to work with �nite sets. This is whatis done in [San94], by considering progressions from relations to relations, aswell as functions taking a relation as an argument and returning a relation.Some properties of such functions with respect to progressions can providebisimulation proof techniques, con�ning the �non-�niteness� of the actualbisimulation relation in these functions, that progressively build an in�niteset (the bisimilarity) starting from a �nite one.This is of course only a vague sketch of the ideas presented in the originalpaper, as the exact formulation of the theory will be presented, along withits implementation in Coq, in the next section.1.3 The �-calculus, syntax and semanticsSyntax We consider in this paper a �nite, polyadic, mini �-calculus. Wetake as a reference for the �mini� �-calculus the calculus that is used byMilner in [Mil92]. This is a calculus with no sum (+) construction, whichis not really a problem since this operator can be encoded into the mini �-calculus. There are other calculi inspired by the original full �-calculus that,with a simpler syntax, still have its expressivity, thus candidating for being a�minimal� representation of concurrency: we can cite Boudol's asynchronousmini �-calculus[Bou92], and, more recently, the join calculus [FG].3

In our setting, we get rid of the replication operator (commonly written!) as well, mostly for the sake of simplicity. However, the results presentedhere would probably have been preserved if we had considered a �non-�nite��-calculus, since we don't really �execute� the processes in the proofs, thuspreventing the in�nite behaviour of a replicated term to have impact on thesuccess of our proofs.Our calculus is polyadic, in the sense that a communication on a givenchannel involves a list of names rather than only one. Polyadic �-calculus isdescribed in [Mil91], which is a strong inspiration for this work, but we donot implement the three process �species� de�ned in Milner's paper (normalprocesses, processes, and agents), for two reasons essentially: from the tech-nical point of view the de�nition in Coq of three mutually recursive typeswould have been very tedious to handle, and from the theoretical point ofview this distinction relies heavily on the task of making a clean axiomatisa-tion of the calculus (what is called in the paper Strong Ground Equivalence),thus taking the sum as an essential operator to build normal forms for pro-cesses; since we renounce to this operator here, the distinction is not reallyrelevant anymore.Processes of our calculus can thus be described as:P � 0 j (�x)P j P jQ j x:(�~y)P j �x:[~y]PFor a process P , we de�ne the sets of its bound names bn(P) by sayingthat constructors � and � act as binders, free names fn(P) and namesn(P) = bn(P) [fn(P).Semantics There are many ways to formulate the semantics for the �-calculus in the litterature, giving di�erent �avours to it, such as late, early[MPW92], barbed [MS], and open [San93]. In [San94], to apply the theory ofprogressions to the �-calculus, Sangiorgi works with an early bisimulation;we have chosen to stick to this choice in order to keep the Coq proofs as closeas possible to the original ones. The di�erence here comes from the fact thatwe work in a polyadic setting, so the actions contain more informations thanin the monadic case.Actions Actions have the form:Act � x(~y) j (�~z)�x[~y] � j ��side condition : ~z � ~y4

INP x: (�~y)P x(~z)��! P f~y := ~zgOUT �x: [~y]P �x[~y]��! POPEN P (�~z)�x:[~y]�����! P 0(�t)P (� t::~z)�x:[~y]������! P 0 t 2 ~y; t 6= xCLOSE X a(~l)��! P Y (�~k)�a[~l]����! QX j Y ��! (�~k)(P jQ) ~k \ fn(X) = ;RES P ��! P 0(�x)P ��! (�x)P 0 x 62 n(�)PAR P ��! P 0P jQ ��! P 0jQ bn(�) \ fn(Q) = ;Table 1: Transition rulesThis de�nition reads: �an action is either an input, or a bound output, orthe silent action � �. Note that an output action can be unbound if the listof transmitted new names (here ~z) is empty. The meaning of the (�~z)�x[~y]action is an output along channel x of the list ~y of names, among whichthose that occur in ~z are freshly created (in technical terms, we say that thenames in ~z are involved in name extrusions).We de�ne free and bound names (respectively fn(�) and bn(�)), as wellas the set of names n(�) of an action �.Transitions The transition relation on processes we use is de�ned by therules of table 1; they correspond to the classical formulation of early transi-tion semantics [MPW92]. The notation P f~y := ~zg is used to represent thesubstitution of ~z for ~y in process P ; note also that the symmetrical versionsfor PAR and CLOSE rules are omitted.We can now proceed to examine the actual implementation of the notionsexposed so far, and the results that have been proved with them.5

2 Theory of progressionsThe �rst section of [San94], entitled �Progressions and respectful functions�,introduces the basic notions in order to reason about bisimilarity in a generalsetting.2.1 Progressions and bisimilaritySangiorgi considers transition systems of the form (Pr; Act;�!), where Pris a domain (the set of processes), Act a set of actions and �! a transitionrelation included in Pr � Act � Pr (we note for example P ��! Q). Thistranslates in Coq as:Variable Pr : Set.Variable Act : Set.Variable trans : Pr -> Act -> Pr -> Prop.In the following, we are reasoning about relations, de�ned as follows:Definition relation : Type := Pr -> Pr -> Prop.We then proceed to de�ne the �rst notions, namely progressions, bisimula-tions and bisimilarity:* De�nition 2.1 (progression (2.1)) Given two relations R and S, wesay that R progresses to S, written R�! S, if PRQ implies:1. whenever P ��! P 0, there is Q0 s.t. Q ��! Q0 and P 0 S Q0;2. the converse, i.e., whenever Q ��! Q0, there is P 0 s.t. P ��! P 0 andP 0 S Q0.* De�nition 2.2 (bisimulation, bisimilarity (2.2, 2.3)) R is a bisim-ulation relation if R progresses to itself, i.e. R�! R holds; two processesP and Q are bisimilar, written P � Q if PRQ holds for some bisimulationrelation R.These de�nitions translate in Coq as:Definition progress : relation -> relation -> Prop :=[R,S:relation](p,q:Pr)(R p q) ->(((p':Pr)(mu:Act) (trans p mu p') ->(Ex [q':Pr] ((trans q mu q') /\ (S p' q'))))6

/\((q':Pr)(mu:Act) (trans q mu q') ->(Ex [p':Pr] ((trans p mu p') /\ (S p' q'))))).Definition bisimulation : relation -> Prop :=[R:relation] (progress R R).Inductive bisimilar : Pr -> Pr -> Prop :=bisim_pr : (p,q:Pr)(R:relation)(bisimulation R) -> (R p q)-> (bisimilar p q).The latter object, namely the bisimilar relation, is de�ned inductively; thisis the natural way to implement the �there exists� phrase in its mathemat-ical de�nition: to build an object of type (bisimlar p q), we must applyconstructor bisim_pr to a speci�c relation R.2.2 FunctionsTo build the machinery we need for proving bisimilarities between processes,we consider what Sangiorgi calls �rst-order functions, i.e. functions on rela-tions, brie�y called functions. We �rst de�ne two properties on functions:* De�nition 2.3 (soundness (2.4)) A function F is sound if, for any R,R�! F (R) implies R��.* De�nition 2.4 (respectfulness (2.5)) A function F is respectful if when-ever R� S and R�! S holds, then F (R) � F (S) and F (R) �! F (S)also holds.and in Coq:Definition r_incl : relation -> relation -> Prop :=[R,S:relation](p,q:Pr) (R p q) -> (S p q).Definition sound : (relation -> relation) -> Prop :=[F:relation->relation](R:relation) (progress R (F R)) ->(r_incl R bisimilar).Definition respectful : (relation -> relation) -> Prop :=[F:relation->relation](R,S:relation)(r_incl R S) -> (progress R S) ->((r_incl (F R) (F S)) /\ (progress (F R) (F S))).7

r_incl represents of course the inclusion relation for elements of type relation.We can now state our �rst result, namely that respectfulness implies sound-ness; this gives a �rst proof technique for proving bisimilarities. To achievethis, we need two lemmas (from the original text by Sangiorgi):* Lemma 2.5 (2.8) Let R = Si2I Ri and suppose for all i 2 I there isj 2 I s.t. Ri �! Rj holds. Then R is a bisimulation relation.* Lemma 2.6 (2.9)1. If, for some i 2 I, S �! Ri, then also S �! (Si2I Ri);2. If, for all i 2 I; Ri �!S, then also (Si2I Ri) �!S.To implement these lemmas in Coq, we have to de�ne the union of relationsindexed by a countable set I ; we have chosen to consider the most generalcase where we have a sequence of relations (that we call suite here), andwe build the in�nite union of the members of this sequence. The �nitecase would have required a more complicated machinery in Coq, if we hadrenounced to build an in�nite sequence from a �nite number of relations(taking for example for i � N Ri = RN for a given N).Variable suite : nat -> relation.Definition union : (nat->relation) -> relation :=[seq:nat->relation][P,Q:Pr](Ex [n:nat] ((seq n) P Q)).We can remark as above that a classical way to implement an in�nite set inCoq is to make an inductive de�nition. We use here the Ex construction, tostay close to a mathematical text, but this hides actually the inductive typeex, so we recover in fact an inductive object.We keep in the Coq implementation the lemma numbering from the orig-inal paper, in order to distinguish lemmas of this origin from technical lem-mas introduced especially for the proof. The proof of the lemmas are quitetrivial and involve only basic manipulations on hypotheses and existentialquanti�ers. Their statements in Coq are:Lemma lemma_2_8 : ((i:nat) (Ex [j:nat] (progress (suite i) (suite j))))-> (bisimulation (union suite)).Lemma lemma_2_9_1 : (S:relation)(i:nat) (progress S (suite i))-> (progress S (union suite)).Lemma lemma_2_9_2 : (S:relation) ((i:nat) (progress (suite i) S))-> (progress (union suite) S). 8

To stick to the text of the paper, we prove as well a little corollary:* Corollary 2.7 (2.10) If for all i 2 I there is j 2 J s.t. Ri �! Sj holds,then also (Si2I Ri) �! (Sj2J Sj).This lemma requires the declaration of another sequence of relations to rep-resent (Sj)j2J .Variable suite2: nat -> relation.Lemma corollary_2_10 :((i:nat) (Ex [j:nat] (progress (suite i) (suite2 j))))-> (progress (union suite) (union suite2)).We now have our �rst theorem:* Theorem 2.8 (soundness of respectful functions (2.11)) If F is re-spectful, then F is sound.Theorem theorem_2_11 :(F:relation -> relation) (respectful F) -> (sound F).Proof To prove this theorem, we consider a relation R such that R �!F(R) holds, and we show that R ��; for this purpose, we de�ne a relationsequence Rn the following way:R0 = RRn+1 = F(Rn) [RnThis is implemented by the F_suite function in Coq.Definition Union : relation -> relation -> relation :=[R,S:relation][P,Q:Pr](R P Q) \/ (S P Q).Fixpoint F_suite [F:relation->relation;R:relation;n:nat] : relation :=<relation>Case n ofR[n':nat](Union (F (F_suite F R n')) (F_suite F R n'))end.We use a fact to achieve the proof of our theorem:* Fact 2.9 For all n � 0, it holds that1. Rn � Rn+1 9

2. Rn �! Rn+1and in Coq:Fact fact_1 : (F:relation -> relation)(R:relation)(n:nat) (r_incl (F_suite F R n) (F_suite F R (S n))).Fact fact_2 : (F:relation->relation)(respectful F) ->(R:relation) (progress R (F R)) ->(n:nat) (progress (F_suite F R n) (F_suite F R (S n))).The original proofs of these results easily translate in Coq; we then provethe theorem by showing that SnRn (denoted by the term (union (F_suiteF R))) is a bisimulation relation.This theorem gives us a general technique for proving bisimulation rela-tions: if we want to prove bisimilarity between two processes p and q, it issu�cent to consider a �small� relation R containing (p; q), and a respectfulfunction F . By showing that R progresses to F (R), we get the bisimilaritybetween processes p and q, as expressed by the tech lemma below.Lemma tech : (p,q:Pr) (R:relation) (R p q) ->(F:relation -> relation)(respectful F) -> (progress R (F R)) ->(bisimilar p q).An example of the application of such a machinery will be given for the�-calculus.2.3 ConstructorsThe next step is to exhibit some respectful functions, and even to build someof them. To achieve this, Sangiorgi introduces the notion of constructors,i.e. applications that take functions as argument and return a function (a�function� being here a function from relations to relations), or in other termswhat could be considered second-order functions.De�nition 2.10 (Respectfulness of a constructor) A constructor is re-spectful if whenever its �rst-order function arguments are respectful, then alsothe �rst-order function result is respectful.This translates straightforwardly in Coq for binary constructors:10

Definition constructor : Type :=(relation -> relation) -> (relation -> relation)-> (relation -> relation).Definition respectful_constr : constructor -> Prop :=[c:constructor](f,g:relation -> relation) (respectful f)-> (respectful g) -> (respectful (c f g)).We then de�ne a few objects that can be viewed as a �toolkit� in order tobuild respectful functions; functions I and U are de�ned as:I(R) = RU(R) = �* Lemma 2.11 (identity and constant-to-� functions (2.13)) The iden-tity function I and the constant-to-� function U are respectful.This is still easy to implement in Coq:Definition Ident : relation -> relation := [r:relation]r.Definition U : relation -> relation := [_:relation]bisimilar.Lemma lemma_2_13_1 : (respectful Ident).Lemma lemma_2_13_2 : (respectful U).To combine these functions, we de�ne three constructors, namely composition(�), union ([) and chaining (_).(G � F)(R) = G(F(R))([i2IFi)(R) = [i2I(Fi(R))(G_R)(R) = G(R)F(R)We de�ne G(R)F(R) = f(P; P 0); for some P 00; (P; P 00) 2 G(R) and (P 00; P 0) 2F(R)g.* Lemma 2.12 (composition, (2.14)) Composition is a respectful con-structor.* Lemma 2.13 (union, (2.15)) Union is a respectful constructor.11

* Lemma 2.14 (chaining, (2.16)) Chaining is a respectful constructor.We give two de�nitions in Coq for the union constructor, union (to de�nethe union of two functions) and union_inf (to de�ne the union of a sequenceof functions). We prove respectfulness only in the �nite case, since when inthe following an in�nite union of functions is considered, we prefer to buildit �by hand� in Coq, instead of using the union_inf constructor, in orderto simplify proofs. The union_inf constructor is actually never used in ourimplementation.Definition composition : constructor :=[F,G:relation->relation][R:relation](F (G R)).Definition union : constructor :=[F,G:relation->relation][R:relation][P,Q:Pr]((F R) P Q) \/ ((G R) P Q).Definition union_inf: (nat -> (relation -> relation)) -> relation -> relation :=[Fi:nat -> (relation -> relation)][R:relation][P,Q:Pr](Ex [i:nat] ((Fi i R) P Q)).Definition chaining : constructor :=[F,G:relation->relation][R:relation][P,Q:Pr](Ex [P':Pr] ((F R) P P') /\ ((G R) P' Q)).Lemma lemma_2_14 : (respectful_constr composition).Lemma lemma_2_15 : (respectful_constr union).Lemma lemma_2_16 : (respectful_constr chaining).The proofs of the lemmas follow the original text with no particular di�-culty; we basically just �unfold� the de�nitions of the constructors and of therespectfulness property, and the results become straightforward.We can now build some more complicated respectful functions:Dn = I_ : : :_ I; n times (n > 0)B = U_I_UT = [n>0Dn12

B is the classical bisimulation up-to�, as in Milner's book [Mil89]1, whileT (R) is the transitive closure of a relation R. As stressed above, we directlyde�ne T in Coq instead of using the union_inf constructor.Fixpoint Dn [n:nat] : relation -> relation :=<relation -> relation>Case n ofIdent[n':nat](chaining Ident (Dn n'))end.Definition B : relation -> relation :=(chaining U (chaining Ident U)).Definition T : relation -> relation :=[R:relation][P,Q:Pr] (Ex [n:nat] ((Dn n R) P Q)).The fact that T represents the transitive closure of a relation is not obviouson the above de�nition; this notion would �classically� be implemented inCoq with an inductive de�nition, as:Inductive T' [R:relation] : relation :=T'_R : (P,Q:Pr) (R P Q) -> (T' R P Q)| T'_t : (P,Q,S:Pr) (T' R P Q) -> (T' R Q S) -> (T' R P S).Constructor T'_R �says� that two processes that are in R are in (T' R), andconstructor T'_t implements the transitivity: it �says� that if two processesP and S are in (T' R), and if S and Q are in (T' R) as well, then P and Qare in (T' R). De�nitions for T and T' are of course equivalent:Lemma T_T' : (R:relation) (P,Q:Pr) (T R P Q) -> (T' R P Q).Lemma T'_T : (R:relation) (P,Q:Pr) (T' R P Q) -> (T R P Q).In our proofs, the T' function will be easier to use, since the Coq systemsupplies a wide range of tactics to handle inductively de�ned types.Since functions Dn; B and T are de�ned by the application of respectfulconstructors to respectful functions, they are respectful. This is not di�cultto check in Coq, except for the trasitive closure of a relation, which is notde�ned by a constructor (we thus need to check its respectfullnes �by hand�):1Note that this does not imply that the argument of the B constructor is a bisimulationitself. 13

Lemma Dn_resp : (n:nat)(respectful (Dn n)).Lemma B_resp : (respectful B).Lemma T'_resp : (respectful T').2.4 Closure of a relation under contextsWe now turn to the implementation of the subsection number 2:1 of San-giorgi's paper, entitled �Closure of a relation under contexts�. To de�ne acontext, we must de�ne more precisely the shape of elements of the set ofprocesses Pr; in [San94], Sangiorgi considers a term algebra over a one-sortedsignature �:De�nition 2.15 (term algebra over a one-sorted signature) Let � bea set of operators, each operator having an arity n � 0. The term algebraover signature �, written Pr�, is the least set of strings which satisfy:� if f is an operator in � with arity 0, then f is in Pr�� if f is an operator in � with arity n > 0, and t1; : : : ; tn are already inPr�, then f(t1; : : : ; tn) is in Pr�.To implement this de�nition in Coq, we use two mutually inductive types,the type Pr for the actual processes (with constructors const for the �rstrule stated above, and funct for the second one), and the type p_list fornon-empty lists of processes (in order to build the argument for an operatorof arity n > 0).Variable E : Set.Variable arity : E -> nat.Mutual Inductive Pr : Set :=const : (x:E) (arity x)=O -> Pr| funct : (x:E) (p_list (arity x)) -> Prwith p_list : nat -> Set :=one : Pr -> (p_list (S O))| cons : (n:nat) Pr -> (p_list n) -> (p_list (S n)).We can now de�ne �-contexts :De�nition 2.16 (�-context) We note by [:] a symbol not in �, called hole.�([:]) is the signature which has all operators in � as before, and in addition14

symbol [:] with arity 0. A �-context is an element of Pr�([:]) (the term algebraover �([:]), also written Pr�([:])) with at most one occurrence of the hole [:]in it.In our Coq implementation, we de�ne as above two mutually inductive types.Mutual Inductive context : Set :=hole : context| Cconst : (x:E) (arity x)=O -> context| Cfunct : (x:E) (Cp_list (arity x)) -> contextwithCp_list : nat -> Set :=Cone : context -> (Cp_list (S O))| Ccons_y : (n:nat) context -> (p_list n) -> (Cp_list (S n))| Ccons_n : (n:nat) Pr -> (Cp_list n) -> (Cp_list (S n)).Type context is for contexts, and is de�ned by saying that a context iseither the hole, or a constant process, or the application of an operator ofarity n > 0 to a list of type Cp_list. The type Cp_list is for non-emptylists of contexts with at most one occurrence of the hole. This property isensured by the two constructors Ccons_y and Ccons_n: we can either build alist from a context and list of processes (the Ccons_y case: if the hole occurs,it can only be found in the �rst element of the list), or take a process andadd it to a list of type Cp_list (in this case, we have no extra hole since weadd a process: it is the Ccons_n constructor).We use C to range over �-contexts. If C is a �-context and P 2 Pr�, thenC[P] 2 Pr� is the process obtained from C by �lling the hole [:] with P . Wede�ne the corresponding Coq functions C2Pr and C2Pr_l by �destructuring�a context with the Case operator:Fixpoint C2Pr [C:context] : Pr -> Pr :=[P:Pr]<Pr>Case C ofP[x:E][H:(arity x)=O](const x H)[x:E][l:(Cp_list (arity x))](funct x (C2Pr_l (arity x) l P))endwithC2Pr_l [n:nat;l:(Cp_list n)] : Pr -> (p_list n) :=[P:Pr]<[n:nat](p_list n)>Case l of[C:context](one (C2Pr C P))[n:nat][C:context][l':(p_list n)](cons n (C2Pr C P) l')[k:nat][Q:Pr][l':(Cp_list k)](cons k Q (C2Pr_l k l' P))end. 15

The de�nition of the closure of a relation under contexts requires the de�ni-tion of a certain class of contexts, namely the faithful ones.* De�nition 2.17 (faithfulness of context sets and of contexts, (2.17))A set Cont of �-contexts is a faithful context-set if for all C 2 Cont andP 2 Pr� whenever C[P] ��! R, there exist C 0 2 Cont s.t. either� R = C 0[P] and, for all Q, it holds that C[Q] ��! C 0[Q], or� there are P 0 2 Pr� and � 2 Act s.t. P ��! P 0 and R = C 0[P 0] and,moreover, for all Q;Q0 2 Pr� s.t. Q ��! Q0, it holds that C[Q] ��!C0[Q0].A �-context C is faithful if C 2 Cont, for some faithful context-setCont.To make de�nitions more concise, we adopt a new notation: P �̂�! Q means�P = Q or P ��! Q�; we can this way merge the two previous properties:* Remark 2.18 (2.18) With the previous notations, Cont is faithful if thereare P 0 2 Pr� and �̂ s.t. P �̂�! P 0 and R = C0[P 0] and, moreover, for allQ;Q0 2 Pr� s.t. Q �̂�! Q0 it holds that C[Q] ��! C0[Q0].We directly implement the �̂�! notation in Coq, by de�ning a new transitionrelation hat:Variable Act : Set.Variable trans : Pr -> Act -> Pr -> Prop.Definition Act_eq : Set := (Act+{True}).Inductive hat : Pr -> Act_eq -> Pr -> Prop :=hat_tr : (P,Q:Pr)(a:Act) (trans P a Q)-> (hat P (inleft Act True a) Q)| hat_eq : (P:Pr) (hat P (inright Act True I) P).The type Act_eq is the sum of types Act (the type for actions) and {True}(a type with only one element, to denote the case where we have equality).Constructors for hat are hat_tr if we have actually a transition (hence thehypothesis (trans P a Q)) and hat_eq if we have equality between pro-cesses.We then de�ne predicates faithful_cont_set (over a set of contexts,denoted itself as a predicate over contexts) and faithful_cont (over con-texts): 16

Definition faithful_cont_set : (context -> Prop) -> Prop :=[Cont:context -> Prop](C:context)(Cont C) ->(P:Pr)(mu:Act)(R:Pr) (trans (C2Pr C P) mu R) ->(Ex [C':context]((Cont C') /\(Ex [P':Pr] ((Ex [lam:Act_eq] ((hat P lam P') /\ (R = (C2Pr C' P')) /\((Q,Q':Pr) (hat Q lam Q') -> (trans (C2Pr C Q) mu (C2Pr C' Q'))))))))).Inductive faithful_cont : context -> Prop :=f_cont : (C:context) (P:context -> Prop) (P C) ->(faithful_cont_set P) -> (faithful_cont C).The closure under contexts function C� can now be introduced:De�nition 2.19 (closure under contexts)C�(R) = [C faithfulf(C[P]; C[Q]) (P;Q) 2 Rgand in Coq:Inductive context_closure [R:(relation Pr)] : (relation Pr) :=cont_clos : (C:context) (faithful_cont C) ->(P,Q:Pr) (R P Q) ->(context_closure R (C2Pr C P) (C2Pr C Q)).After all this de�nition machinery, we can state our result:* Lemma 2.20 (closure under contexts, (2.23)) The function C� is re-spectful.To state this result in Coq, we have to use the de�nition of respectfulgiven above, instanciating the variable Pr with our inductively de�ned typePr. This is achieved using Coq's modularity: more precisely, we enclose thede�nitions of the previous subsections into a Coq Section; when we closethis section, a universal closure upon the declared variables is built. We thenuse the Require command to recover the de�nitions included in a separateCoq �le. In our case, the de�nition of the respectful property has beenabstracted over the set Pr of processes, the actions Act and the transitionrelation trans; we thus need to instanciate them in the statement of thetheorem, as follows: 17

Lemma lemma_2_23 : (respectful Pr Act trans context_closure).Here again, the original proof in [San94] can be ported to the Coq systemwithout modi�cations. The result comes actually from a straightforwardapplication of the faithfulness property for a context; in Coq, the proof stepsare sometimes a bit tedious, but what we do is basically unfold de�nitionsand apply the related properties. To shorten the proof, we use two auxiliarylemmas, that state an intermediate result of Sangiorgi's proof: aux_lemmais the implementation of the property if R �! S and R � S, for every(P;Q) 2 R, whenever P �̂�! P 0, the following diagram commutes:P R Q�̂ # �̂ #P 0 S Q0aux_lemma2 is the symmetrical version of this lemma, which is not men-tioned in Sangiorgi's proof, but that we need in our implementation 2.Lemma aux_lemma : (R,S:(relation Pr))(progress Pr Act trans R S) -> (r_incl Pr R S) ->(P,Q:Pr) (R P Q) ->(P':Pr) (lam:Act_eq) (hat P lam P') ->(Ex [Q':Pr] ((S P' Q') /\ (hat Q lam Q'))).Lemma aux_lemma2 : (R,S:(relation Pr))(progress Pr Act trans R S) -> (r_incl Pr R S) ->(P,Q:Pr) (R P Q) ->(Q':Pr) (lam:Act_eq) (hat Q lam Q') ->(Ex [P':Pr] ((S P' Q') /\ (hat P lam P'))).In [San94], a su�cient condition for faithfulness of a set of contexts is given,using the notion of transition rules in unary De Simone format. We have notimplemented this part of the paper, since it would have required complicatedde�nitions in order to represent transition rules and the unary De Simoneformat; the given results require as well technical proofs, and are not ofspecial interest for us, since we need to rede�ne completely the closure undercontexts function in our application for the �-calculus. Furthermore, we cansay that in a way they do not belong directly to the theory of progressions,so we can skip them without signi�cant loss of meaning.2Actually, Sangiorgi treats only one of the cases for progression (when the process onthe left makes a transition); in Coq, of course, both cases, even if symmetrical, have to betreated. 18

See the conclusion for further considerations about the contrast betweenthe implementation of general results about an abstract theory and the par-ticularisation to a speci�c case.3 The �-calculus and its semanticsWe describe here the implementation of the �-calculus terms and of the earlytransition relation.Processes are implemented in the Coq system through inductive de�ni-tions for types name, l_name (for name lists) and pi (for �-calculus terms).Following the implementation style of [Hue93], we adopt a de Bruijn rep-resentation for names. In this framework (see [dB72]), bound names arerepresented by the depth of their binding inside a term, and free names areconsidered to belong to a list (that can be viewed as an environment) comingwith the process (i.e. their binding depth goes �above� the term). The ad-vantage of de Bruijn indexes, traditionally, is that they supply �-conversionfor free, since two � convertible terms share the same representation. Fur-thermore, in the speci�c case of the �-calculus, they allow to discard manyside conditions in the de�nition of the semantics, as stressed in [Amb91],since terms are safer in this representation with respect to name clash prob-lems. Of course, this improvement does not come for free, and we will seein the following that such an implementation requires many technical def-initions in order to manipulate de Bruijn indexes; in addition to that, theproofs of Sangiorgi's results will show that in some way, �what is gained onbound names is lost on free names� (see next section).Many implementations of the �-calculus using de Bruijn notation exist.In [Amb91], Ambler de�nes a de Bruijn notation for processes and provesthe correspondence between a transition relation de�ned with this notationand a transition relation of the �-calculus; this is not our approach, sincewe directly implement �-terms with de Bruijn indexes, and in our case suchresults come as �meta� theorems that are implicitly admitted. The MobilityWorkBench [VM94] is another example of �-calculus implementation usingde Bruijn indexes; it is a tool for checking open bisimulations equivalences ona polyadic version of the �-calculus that is used to describe mobile concurrentsystems. We can cite as well Pict [Pie95], a programming language built ona mini asynchronous �-calculus where names are represented by De Bruijn'sindexes.Regarding formalisation of �-calculus into logical frameworks, an impor-tant amount of work has been done in HOL [Mel94, Ait94]; this implementa-19

tion is a de�nition of automatic methods to check bisimilarity between pro-cesses that are represented in a �deep� way in the HOL system (see [Mel94]for more details); for this application, the de Bruijn notation has not beenchosen, and � conversion has to be �manually� implemented.We shall see in the following that the de Bruijn notation strongly in�u-ences the implementation style of the constructions we are manipulating, andthat sometimes even the shape of some proofs is dictated by index managingconsiderations.3.1 SyntaxIn the de Bruijn notation, a variable is represented by a natural number; wethus de�ne types name and l_name the following way:Inductive name : Set := Ref : nat -> name.Inductive l_name : Set :=Nil : l_name| Cons : name -> l_name -> l_name.The �-calculus has two binding constructions, namely restriction and ab-straction. In the polyadic case, both notions deal with lists of names insteadof one name at a time. However, we have not treated � and � the sameway in our implementation; more precisely we keep a monadic meaning forthe restriction operator �, whereas the abstraction is truly polyadic. Thisdistinction comes from the fact that manipulating lists of names is rathertedious in Coq, and we thus prefer to stick as much as possible to a monadicapproach. We believe that while reception is strongly polyadic in our �-calculus, because a communication can involve many names at the sametime, the de�nition of a new list of names can be split into several �monadic�de�nitions with no signi�cant loss of meaning3.These choices motivate to the following de�nition of the inductive typepi for processes in Coq:Inductive pi : Set :=Skip : pi| Res : pi -> pi| Par : pi -> pi -> pi| Inp : name -> nat -> pi -> pi| Out : name -> l_name -> pi -> pi.3We will see in the following how we can still de�ne in a simple way a bound outputinvolving a list of names, thus achieving name extrusion with a polyadic �avour.20

The Res constructor takes no argument more than the subject process (andthus acts only as a �monadic� binder), while the Inp constructor requiresa name (where the communication occurs), an arity (of type nat) and acontinuation, to de�ne an abstraction: in other words, in (Inp x k P), knames are bound by the abstraction.Other constructors are self-explanatory. As an example, the process P �(�x) �y:[x](�z j y:(�(a; b))�a) can be represented in Coq by the de�nition:Definition P : pi :=(Res (Out (Ref (S O)) (Cons (Ref O) Nil)(Par(Out (Ref (S (S O))) Nil Skip)(Inp (Ref (S O)) (S (S O))(Out (Ref (S O)) Nil Skip))))).Note that the representation of free variables y and z is in no way �canonical�(here y is denoted by index 1 and z by 2, but we could have actually chosenany two di�erent integers greater than 0); we will discuss this point lateron. Another interesting fact is that we do not implement sorts in this work:on our example, the y channel is �rst used to emit a single name, then toreceive a list of two names; the de�nition of the process P would normallygenerate a sorting error for the y channel.We proceed now to the de�nition of semantics, by implementing the tran-sition relation given in the �rst section. The forecoming paragraphs involveconsiderations about the implementation of de Bruijn indexes that are prettytechnical; the reader interested in a not too detailed approach should directlyrefer to the subsection entitled �Implementing the semantics�, skipping thetechnical stu�.3.2 Managing de Bruijn indexes in a communicationBefore de�ning the transition relation in the Coq system, let us have a lookat the transformations on de Bruijn indexes that are involved in a commu-nication. Consider the two processes of Figure 1 that are put in parallel: onthe left, an abstraction of the form (Inp x n P) is about to receive a listof names l from the term (Res .. (Res (Out x l Q))) on the right; theconcretion (i.e. the emitting process) has k restrictions on top that corre-spond to name extrusions (i.e. communications of private names); we alsonote that the length of list l has to be equal to n, because we want to preservearity. In the receiving process P, the n �rst names are bound by abstraction;we consider two occurences of such names, represented by arrows 1 and 221

o

o
o

x

P

o

o
o

x

Q1

3

2

ν
ν

a

[l]λFigure 1: Before communication: x:(�~y)P j (�~z) �x:[~l]Q(we will see in the following how they di�er); arrow 3 represents a name freein (Inp x n P), that can be considered as being bound �above� the term(Par (Inp x n P) (Res .. (Res (Out x l Q)))). In the emitted list l,we consider two references, one pointing to a name that is free in the emit-ting process, the other one pointing to a name that is transmitted via nameextrusion.Figure 2 represents both terms after the communication occured; let ussee how the di�ferent entities are modi�ed.Both terms have now the k restrictions in common, because of name ex-trusion. References in the process Q have not changed, which is quite naturalwith respect to semantics: intuitively, a concretion emits an information andthen goes on its own way.For the abstraction, things are muchmore complicated, since many eventshave to be considered: �rst of all the n �unknown� names that were bound bya � now have a meaning (they are instanciated), and among them some (k ofthem to be precise) are new; furthermore, with all these changes, referencesto �free� names in the continuation process P have to be kept coherent. Thepossible cases for a name in P are illustrated by the behaviour of arrows 1,2 and 3 of �gure 1:� Arrow 1 corresponds to a variable, bound by abstraction, that is in-stanciated with a newly created name (name extrusion), and becomesarrow 10 on �gure 2. From the point of view of de Bruijn references,this variable is viewed at the same depth in the term coming from the22

ν
ν

Q

P

1’

2’3’
aFigure 2: After communication: (�~z)(Pf~y:=~lg j Q)abstraction as in the list that is emitted by the concretion: the instan-ciation thus su�ces to get the index right in this case, with no extramanipulation.� This also holds for the variable represented by arrow 2 on �gure 1, thatgets instanciated with a name free in (Res .. (Res (Out x l Q)))and becomes arrow 20: since its depth is the same after the commu-nication as it was in the list l, instanciation is the only operation toperform.� Arrow 3, that pointed to a reference above the Par construct, say i,now must point to reference i-n+k to indicate the same binder: it hasnot to pass over the n names that were bound by the Inp constructanymore (hence the -n), but over the k newly transmitted names (hencethe +k).Let us sum up these considerations, and state precisely the general algo-rithm for updating a name of the form (Ref i) that occurs in the process Pat depth d; we consider three cases:� If 0�i<d, the name is not freee in P, and remains unchanged.� If d�i<d+n (recall that n is the length of list l), the name was boundby abstraction, and has to be instanciated. This is done by lifting allreferences in list l by d (this way we �translate� them and get theirmeaning at depth d), and taking the (i-d)th coordinate of this list. Asseen above, this is enough to get references right in this case.23

� If d+n�i, i represents a name that was free in (Inp x n P); i becomesthus i+k-n.3.3 Coq functions on de Bruijn indexesWe now consider the Coq functions that are de�ned in order to implementthe de Bruijn index manipulations shown above. Each operation is usuallyimplemented in three steps, namely with a function that takes a name asargument, a function on name lists, and �nally the function on processes;although the function that really implements the machinery on indexes is theone for names (where de Bruijn notation actually appears), most of the timewe will only invoke the function on processes, which itself calls the other twofunctions.Lifting a term When working with de Bruijn indexes, we always look ata term considering that we are at a given binding depth n. This means thateach reference to an index smaller than n will correspond to a bound name,while each reference to an index greater than n will go �outside the boundsof the term�, and thus will represent a free name.The �rst basic operation on de Bruijn indexes that we need to perform isname lifting, i.e. adding an integer k to all free names of a term. Reasoningat a given depth n, we make a test on the integer i that represents a name:if n�i, then we have a free name, i is replaced by i+k, while if n>i, i, as abound name, remains unchanged. This simple algorithm translates in Coqas:Definition lift_na : name -> nat -> nat -> name :=[na:name][n,k:nat]<name>Case na of[i:nat](Ref <nat>Case (test n i) of[_:(le n i)](plus k i)[_:(gt n i)]iend)end.The test object is a lemma stating the disjunction we use, namely that forany two natural numbers n and m, we have n�m or n>m.We then propagate this de�nition to treat name lists and �nally processes,using the Fixpoint construction for recursively de�ned functions, associatedto the Case operator that destructs a term:24

Fixpoint lift_ln [l:l_name] : nat -> nat -> l_name :=[n,k:nat]<l_name>Case l ofl[na:name][l':l_name](Cons (lift_na na n k) (lift_ln l' n k))end.Fixpoint lift_pi [p:pi] : nat -> nat -> pi :=[n,k:nat]<pi>Case p ofSkip[q:pi](Res (lift_pi q (S n) k))[p1,p2:pi](Par (lift_pi p1 n k) (lift_pi p2 n k))[na:name][i:nat][q:pi](Inp (lift_na na n k) i (lift_pi q (plus n i) k))[na:name][l:l_name][q:pi](Out (lift_na na n k) (lift_ln l n k) (lift_pi q n k))end.As expected, in the de�nition of lift_pi, whenever we cross a binder, thedepth increases: it becomes (S n) if we cross a Res construct, it becomes(plus n i) if we cross an Inp construct with arity i.We will see in the following that this lift_pi function is often useful.Substitution We just give here the de�nition of functions project andsubst_na that implement substitution for names, the de�nition of the cor-responding functions for name lists and processes being a straightforward�propagation�, following the model for the lifting functions.In our setting, if we want to substitute a list of variables in a term witha given list of names l of length n, we must replace the ith bound nameof this term, for i<n, by the ith coordinate of l. We thus must have afunction project, that takes a list and a position in the list and returns thecorresponding element:Fixpoint project [l:l_name] : nat -> name :=[n:nat]<name>Case l of(Ref O)[na:name][l':l_name]<name>Case n of na[n':nat](project l' n') endend.To write the function subst_na, that implements substitution for a name,we must take binding depth in account, thus considering three cases for anindex k at depth depth: 25

1. if the corresponding name is bound, but is not among the n �rst namesthat are bound in the term, that means that the index does not pointto one of the names of the list: it is thus left unchanged (we are in thecase where depth>k)2. if the name is bound and has to be instanciated with a name of thelist, i.e. if depth�k<depth+n, we use the project function to get the(k-depth)th coordinate of list l3. if the name is free (i.e. i�depth+n), it is left unchangedThe Coq implementation uses the test2 lemma to distinguish these threecases:Definition subst_na : name -> l_name -> nat -> name :=[na:name][l:l_name][depth:nat]<name>Case na of[k:nat]<name>Case (test2 k depth (plus depth (l_length l))) of[C:{(gt depth k)}+{(le depth k) /\ (gt (plus depth (l_length l)) k)}]<name>Case C of[_:(gt depth k)]na[_:(le depth k)/\ (gt (plus depth (l_length l)) k)](project l (minus k depth))end[_:(le (plus depth (l_length l)) k)]naendend.We also de�ne a function low_subst, to implement the algorithm de-scribed in the previous section for the implementation of an input action.low_subst_na behaves as subst_na, except for free names: a free name (Refk) is replaced by (Ref (k-n)); we will see in the following how this functionis used to implement the algorithm stated above.Definition low_subst_na : name -> l_name -> nat -> nat -> name :=[na:name][l:l_name][depth,n:nat]<name>Case na of[k:nat]<name>Case (test2 k n (plus n (l_length l))) of[C:{(gt n k)}+{(le n k) /\ (gt (plus n (l_length l)) k)}]<name>Case C of[_:(gt n k)]na[_:(le n k) /\ (gt (plus n (l_length l)) k)](project l (minus n k))end[_:(le (plus n (l_length l)) k)](Ref (minus k n))endend. 26

3.4 Implementing the semanticsActionsInductive action : Set :=Ain : nat -> name -> l_name -> action| Aou : nat -> name -> l_name -> action| Tau : action.A term of the form (Aou k na l) represents the output action of the list lalong channel na, with k name extrusions (i.e. implicitly the application ofthe Res constructor k times).To implement an input action, we also need to know how many newnames are communicated to the receiving process; as we will see in the nextparagraph, this is due to the �early� choice for the transition relation, thatleads to de Bruijn index manipulation, in order to �create� new names in theabstraction (see below).We also implement some functions about actions, namely lower_action,that �lowers� all names occuring in an action with step one, bound_action,that returns the number of names bound in the action (i.e. for non-� actions,the �rst argument of the constructor), and occ_act, a function that checksif the name (Ref O) occurs in an action. We omit the de�nitions of theseobjects here, since they are straightforward and not very interesting.Transition relation Let us state the inductive de�nition of the typecommit, implementing the transition relation over processes, and then discusseach of its constructors (that can be interpred as rules).We have in Coq:Inductive commit : pi -> action -> pi -> Prop :=comm_in : (na:name)(n:nat)(p:pi)(k:nat)(l:l_name)(commit (Inp na k p) (Ain n na l)(low_subst_pi (lift_pi p n k) l O n))| comm_ou : (na:name)(l:l_name)(p:pi)(commit (Out na l p) (Aou O na l) p)| comm_op : (na:name)(k:nat)(l:l_name)(x,p:pi)(commit x (Aou k na l) p)-> ~(na = (Ref (S k))) -> (occ_n_ln l (S k))-> (commit (Res x) (Aou (S k) na l) p)| comm_c1 : (x,y:pi)(na:name)(k:nat)(l:l_name)(p,q:pi)(commit x (Ain k na l) p) -> (commit y (Aou k na l) q)27

-> (commit (Par x y) Tau (add_nus k (Par p q)))| comm_c2 : (x,y:pi)(na:name)(k:nat)(l:l_name)(p,q:pi)(commit x (Ain k na l) p) -> (commit y (Aou k na l) q)-> (commit (Par y x) Tau (add_nus k (Par q p)))| comm_pl : (x,p:pi)(a:action) (commit x a p) ->(y:pi) (commit (Par y x) a(Par (lift_pi y O (bound_action a)) p))| comm_pr : (x,p:pi)(a:action) (commit x a p) ->(y:pi) (commit (Par x y) a(Par p (lift_pi y O (bound_action a))))| comm_re : (x,p:pi) (a:action) (commit x a p) -> ~(occ_act a)-> (commit (Res x) (low_action a) (Res p)).� comm_in: this is an atomic transition rule, de�ning the committmentfor an abstraction process; it says that the process (Inp na k p) issusceptible to receive a list l at channel na, with n new names trans-mitted, and then become (low_subst_pi (lift_pi p n k) l O n).To understand how the latter process is built, the reader should referto the explanations in the previous section: we �rst lift all free namesin (Inp na k p) by n (or equivalently lift all free names in p at depthk by n, thus the (lift_pi p n k)), and then apply the low_subst_pifunction stated above.What is important to notice here is that the transmission of n newnames results in a lifting of the term p, to actually �make room� forthese new names. In other words, the de Bruijn setting gives an opera-tional meaning to the � constructor, that actually builds new names ina term. In fact, each time the lift function is invoked, it correspondsto a creation of new names, which is the most natural way of avoidingclashes that one can encounter in a non-de Bruijn approach; this givesa hint on how the side conditions of table 1 are dismissed with thisframework.� comm_ou and comm_op: these two rules de�ne the transitions that canbe performed by a concretion; the comm_ou rule de�nes unbound output(hence the O as a �rst argument to the action constructor), while thecomm_op de�nes how to �add� a restriction to an output to performname extrusion. There are premisses to this rule, to check that thename being restricted is among the transmitted names (in order totransmit a private name), and that the communication channel is notthe subject of this restriction, since communication cannot occur ona private channel. comm_ou and comm_op are direct translations ofrespectively rules OUT and OPEN of table 1.28

� comm_c1 and comm_c2: these rules de�ne communication between pro-cesses; they represent the two symmetrical versions of rule CLOSE fromtable 1. If a communication occurs with k name extrusions, the result-ing process will be made of the two actors in parallel with k restrictionson top of them. This is achieved with the add_nus function, that addsa given number of restrictions on top of a term (thus partly recover-ing a polyadic �avour for restriction, as hinted in the paragraph about�-terms syntax).� comm_pl and comm_pr: these are the two symmetrical rules implement-ing PAR: here again, the side condition to avoid name clash translatesinto a lifting of one of the terms, in order to make room for the newnames that are transmitted (recall that the function bound_actionreturns the number of new names involved in an action).� comm_re: this is the translation of the RES rule; here the side conditionremains, since we still have to check that the restricted name (refer-enced by O, since a Res constructor binds the �rst free name in a term)is not involved in the action. Note that this rule has to be related withcomm_op, since in the latter case we can add a restriction and performan action even if the name (Ref O) occurs in the action, provided itis not the location of this action.Having implemented in the Coq system our �-calculus and its semantics,we can now use our previous results on progression theory to prove resultsabout �-terms.4 Closure under contexts in the �-calculus4.1 Applying the theory to the �-calculusWhile our implementation of Sangiorgi's paper has been kept very close tothe original text so far, our work will now begin to di�er from Sangiorgi's pre-sentation, basically for technical reasons depending on our implementationchoices.As stressed in [San94], the general theory about progression of relationshas to be a little updated in order be used for �-calculus processes. This ismainly due to the fact that our machinery has to be de�ned more precisely,in order to tackle questions related to name substitutions, a crucial problemin the �-calculus. Our treatment of this di�culty di�ers from Sangiorgi's29

one, because of the de Bruijn representation we adopt for names; however, itis important to notice that although technical problems are not treated thesame way in this implementation and in the original paper, they basicallyhave the same source.Let us �rst have a look at how Sangiorgi reformulates his theory in orderto take in account the problem of name instanciation, before discussing ourown presentation.The original de�nitions. First of all, the classical problem of �-conversion,that naturally arises in a calculus with binders for variables, is not preciselytreated in [San94]; it is just mentioned that �we shall identify processes whichonly di�er on the choice of the bound names�. This means that from the pointof view of relations between processes, if for two processes P and Q we havea relation R such that PRQ, we have P 0RQ0 for any P 0 and Q0 obtained bychanging bound names in respectively P and Q. We will see below how thisquestion, which is naturally tackled with our de Bruijn implementation fornames, in some way arises elsewhere, namely for free names.Moreover, since bound and free names share the same representationin Sangiorgi's setting, one has to avoid clashes between them whenever anaction involving instanciation of names is performed by a process. This forcesto rede�ne progression between relations with a side condition, to ensure the�freshness� of bound names of an action, as follows:* De�nition 4.1 (4.1) A progression R!S, between two relations R andS on �-calculus processes, holds if for all PRQ� whenever P ��! P 0 with bn(�) \ fn(Q) = ;, there is Q0 s.t. Q ��! Q0and P 0SQ0,and the symmetric clause, on the actions by Q.Our implementation. Within the framework of de Bruijn indexes fornames, two �-convertible terms share the same representation, and thuscannot be distinguished. Consequently, a relation on terms of type pi in Coqnaturally solves the �-conversion problem that arises in a classical setting.Furthermore, we do not need to add an extra side condition in the de�ni-tion of progression, since there is a real distinction between bound and freenames in the de Bruijn notation, which ensures automatically the �freshness�of names coming from an action. 30

Unfortunately, as we get rid of those problems, a di�culty arises, thatcould be stated as: �with the de Bruijn notation, what is gained on boundnames is lost on free names�. Let us try to explain what a relation betweenprocesses should be in our setting, in order to understand how free namesare represented. As we saw in the implementation of the transition relation(type commit), when a process performs an input and receives a list l ofnames, k of them being new (name extrusion), �room� is made for these knames by lifting the de Bruijn indexes in the term4. In this process, a freename represented by index say i at depth 0 is represented after the liftingby index i + k; however, what we say is that indexes i and i + k actuallyrepresent the same name at di�erent moments of its �history�. Therefore,relations involved in progressions (i.e. intuitively, relations where names havean �history�) should be preserved by operations like lifting of names; in otherwords, for two given processes P and Q, we are interested in relationsR suchthat whenever PRQ, for all k, if P 0 and Q0 are obtained by lifting processesP and Q with step k, we have P 0RQ0 (remind that lifting involves only freenames, and bound names are left unchanged). An important remark is thatlifting is not the only operation on terms that should preserve a relation forus: for example, in the de�nition of the comm_in constructor above, what wedo, after performing a lift, is actually to lower free names in the receivingprocess, in parallel with the name instanciations. However, we will see belowthat for our proofs, a condition on relations involving only lifting of termsis enough. We leave for future work the precise study of admitted operatorsfor which a relation should be preserved in our setting5.We thus consider in Coq a speci�c class of relations over processes (i.e.objects of type pi -> pi -> Prop), namely those who satisfy the predicateliftable stated below, asserting that a �liftable� relation is preserved bylifting any two related processes:Definition liftable : (pi -> pi -> Prop) -> Prop :=[R:pi -> pi -> Prop]4As mentioned before, this is the �de Bruijn translation� of a side condition: insteadof checking that newly received names are not already known in the process, we createdynamically k names for the process as it receives them.5Actually, we think that the basic operations consisting in lifting free names in a termof a given integer k and from a given depth, and the converse, i.e. lowering, are enough torepresent any substitution on the free names of a term. Of course, the lower operator hasto be handled with care, since we cannot lower by k at depth d < k: this would transforma free name into a bound one, or even return a negative index for a name! : : : Because ofthe complications arising with this operator, and since the proofs can be carried withoutconsidering it in the de�nition of �good� relations, we have not implemented this kind ofresults. 31

(p,q:pi) (R p q)-> (k,depth:nat) (R (lift_pi p depth k) (lift_pi q depth k)).Since we do not consider any relation on objects of type pi, but only a classof such relations, the general theory that we have implemented cannot beused; nevertheless, what we do is just to rewrite all the de�nitions and proofsstated in the section about the theory of progressions, adding a variablegood of type ((Pr -> Pr -> Prop) -> Prop) (a predicate over relations), andadding to each quanti�cation over a relation the condition stating that thequanti�ed relation satis�es predicate good. This is in no way di�cult, andmore importantly does not a�ect at all our proofs; let us just state as anexample our new formulation of the soundness property:Variable good : (Pr -> Pr -> Prop) -> Prop.Definition sound : (relation -> relation) -> Prop :=[F:relation->relation](R:relation) (good R) ->(progress R (F R)) -> (r_incl R bisimilar).We use in the following this new version of the general theory, in orderto reason about liftable relations (instanciating the good variable with theliftable function).4.2 Contexts for �-calculus termsContexts Because we have to take in account the substitutions on namesthat are involved in the transition relation on �-calculus processes, the gen-eral results about the closure under contexts function have to be revisited.The gap between the actual complexity of the implementation in the gen-eral case and in the speci�c case of the �-calculus is quite impressive, as thefollowing will show. We �rst de�ne monadic contexts for processes of typepi:Inductive context : Set :=Hole : context| cRes : context -> context| cP_l : context -> pi -> context| cP_r : pi -> context -> context| cInp : name -> nat -> context -> context| cOut : name -> l_name -> context -> context.This de�nition is quite easy to understand: a context has globally the shapeof a �-term, and if we encounter a Par branch, we must decide in which32

branch the hole is located. We then de�ne the c2pi function, that given acontext C[:] and a process P , returns the process C[P], obtained by replacingthe hole in C by the process P :Fixpoint c2pi [c:context] : pi -> pi :=[p:pi]<pi>Case c ofp[d:context](Res (c2pi d p))[d:context][q:pi](Par (c2pi d p) q)[q:pi][d:context](Par q (c2pi d p))[na:name][n:nat][d:context](Inp na n (c2pi d p))[na:name][l:l_name][d:context](Out na l (c2pi d p))end.We also implement the usual machinery about de Bruijn indexes for termsof type context (lifting a context, checking occurences of free names in acontext, : : :).4.3 The closure under contexts functionBecause of substitutions coming from communications, in a process C[P],the context C can �modify� the process P ; thus, to say things intuitively,it is not sound to prove only P � Q if we have to prove C[P] � C[Q], forP � Q might not imply C[P] � C[Q]. Therefore, we introduce the guardnessproperty for a context, saying that a process C is guarded if the hole occursin C under a pre�x construction. The de�nition of the closure under contextsfunction C� is the following:* De�nition 4.2 (Closure under contexts function)C�(R) = [C non�guardedf(C[P]; C[Q]) : (P;Q) 2 Rg S[C guardedf(C[P]; C[Q]) : (P�;Q�) 2 R, for all substitutions �gWe easily implement in Coq the two predicates guarded and unguardedabout contexts:Fixpoint guarded [c:context] : Prop :=<Prop>Case c ofFalse[d:context](guarded d)[d:context][_:pi](guarded d)[_:pi][d:context](guarded d)[_:name][_:nat][_:context]True[_:name][_:l_name][_:context]True33

end.Fixpoint unguarded [c:context] : Prop :=<Prop>Case c ofTrue[d:context](unguarded d)[d:context][_:pi](unguarded d)[_:pi][d:context](unguarded d)[_:name][_:nat][_:context]False[_:name][_:l_name][_:context]Falseend.The closure function is de�ned in two steps: we �rst implement a functionclose_cons, taking a context c and a relation R over processes, and returningthe condition on R corresponding to the guardness of the context c, fromthe above de�nition of C� (dec_guarded is a lemma stating that a contextsatis�es either predicate guarded or predicate unguarded); we then de�neClose, the closure under contexts function, in an inductive way:Definition close_cons :context -> (pi -> pi -> Prop) -> pi -> pi -> Prop:=[c:context]<(pi -> pi -> Prop) -> pi -> pi -> Prop>Case (dec_guarded c) of[_:(guarded c)]([R:pi -> pi -> Prop][p,q:pi](l:l_name) (R (pi_subst p l) (pi_subst q l)))[_:(unguarded c)]([R:pi -> pi -> Prop][p,q:pi](R p q))end.Inductive Close [R:pi -> pi -> Prop] : pi -> pi -> Prop :=Clo_cons : (c:context)(p,q:pi)(close_cons c R p q) ->(Close R (c2pi c p) (c2pi c q)).4.4 Respectfulness theoremWe now come to our result:*Proposition 4.3 (5.2) Function C� is respectful.As seen before, since we are taking advantage of Coq's modularity, we haveto instanciate the de�nition of respectful with the sets of processes andactions (pi and action), the transition relation (commit), the predicate overrelations (liftable) and the actual argument of the respectful predicate,the closure function (Close). We thus write in Coq:34

Lemma Close_respectful : (respectful pi action commit liftable Close).Proof Our proof is close to the one in [San94] in its global form; the tech-nical parts require of course much more attention in our work and generallydo not follow the hints given by the original text, mainly for implementationreasons.We consider for this proof two liftable relations on �-terms R and S; wesuppose R � S and R �! S. The proof of C�(R) � C�(S) is straightfor-ward; we also have to check that C�(R) �! C�(S) holds. We thus consider(C[P]; C[Q]) 2 C�(R), an action � and a process R such that C[P] ��! R.We must exhibit C0; P 0 and Q0 such thatR = C 0[P 0]; C[Q] ��! C 0[Q0]; and (C 0[P 0]; C 0[Q0]) 2 C�(S)As in the original proof, we proceed by induction on the structure of thecontext C; we will focus here on the technical di�culties that appear in ourproof.4.4.1 C = HoleThis case is easy, since we have for any process P , C[P] = P , so the propertycomes from the hypothesis R �! S.4.4.2 C = (cRes C1)In this case, the hypothesis C[P] ��! R translates in Coq as (commit (c2pi(cRes C1) P) mu R), and, by unfolding the de�nition of function c2pi, as(commit (Res (c2pi C1 P)) mu R). We apply the Inversion tactic to thishypothesis, which generates two subgoals coresponding to the two possibleconstructors used to derive this hypothesis, namely comm_op and comm_re6 .The proofs are then quite easy and involve basic application of the de�nitionswe use.4.4.3 C = (cP_l C1 T) or C = (cP_r T C1)The proofs of those two cases are very similar to eachother; although theyhave to be given explicitely in the implementation, we will consider just the�rst case here, namely where a context is built by adding a process T to6To learn more about the Inversion tactic, the reader should refer to [CCF+96].35

the right of a context C1 with the parallel constructor. As in the previouscase, we apply the Inversion tactic to the hypothesis (commit (Par (c2piC1 P) T) mu R), stating the transition relation between the two processes.Let us examine the four subgoals generated by this tactic (again, the rôle ofthe Inversion tactic is, by looking at the structure of an inductive term, toderive for each possible constructor of its type the necessary conditions thatshould hold):1. The �rst subcase corresponds to the constructor comm_c1: a commu-nication occurs between the processes, (c2pi C1 P) is the receivingprocess and T is emitting. The induction hypothesis allows us to buildeasily the context C0 and processes P 0 and Q0 in order to prove ourresult.2. This subcase is symmetrical with respect to the latter: process (c2piC1 P) emits and T is the receiving process; here again, the proof is notdi�cult.3. The third subcase corresponds to the case where T performs an actionand (c2pi C1 P) does not; this is actually the tricky situation whereour hypothesis on relations R and S (the so-called �liftability�) has tobe used.If we look at the type of comm_pl (the one we are considering in thissubcase, actually), we see that if the action performed by T has boundnames, then the term (c2pi C1 P) must be lifted in order to �makeroom� for these names. To write things more formaly, we are in thecase where C1[P] C�(R) C1[Q], and T ��! T 0, hence (liftk(C1[P])jT) ��!(liftk(C1[P])jT 0) (k is the number of names bound in the action �)7. We replace liftk(C1[P]) by (liftk(C1))[lift0k(P)], where lift0k is thefunction that lifts all free names of k at depth n, if n is the depth ofthe hole in C1. This is implemented in Coq by the following lemma(ct_depth is the function returning the depth of the hole in a context):Lemma subst_c_p : (c:context)(p:pi)(l:l_name)(n:nat)(pi_subst_n (c2pi c p) l n) =(c2pi (ct_subst c l n)(pi_subst_n p (lift_ln l O (ct_depth c))(plus n (ct_depth c)))).7We �mix� here a mathematical notation and names referring to objects from our Coqimplementation, such as liftk. We believe that this presentation is easier to read thanthe actual Coq text, although less rigorous. We will use it whenever we need to describetechnical details without stating the original Coq syntax.36

It is then quite natural to make the following proposition for C0; P 0and Q0: C0 = (liftk(C1)jT 0); P 0 = lift0k(P); Q0 = lift0k(Q)The proof of C[Q] ��! C0[Q0] is easy (we just de�ned C 0 and Q0 tothis purpose). We also have to prove C0[P 0] C�(S) C 0[Q0]: this actuallyreduces to prove lift0k(P) S lift0k(Q), and since the relation S is liftable,to prove PSQ; the latter result is easily derived from R � S andC[P] C�(R) C[Q].4. This subcase is much easier to treat than the previous one: this time,process (c2pi C1 P) is performing an action, while T does not. Weavoid here all the tedious work to prove the relation between processes,since T, which is the lifted process, is not really involved in the rela-tion (we have to deduce (C1[P 0]jliftk(T)) C�(S) (C1[Q0]jliftk(T)) fromC1[P 0] C�(R) C1[Q0], which is easy).4.4.4 C = (cInp na n C1)This is the more technical part of our proof, since a reception involves namessubstitutions, an issue where tedious problems often arise, as it is the casehere.We �rst remark that in this case, the context C is guarded, so the induc-tion hypothesis �says� (R (pi_subst_n P l O) (pi_subst_n Q l O)) forany list of names l: this will be a key result for us. If we look at construc-tor comm_in, we see that the committing process has a complicated shapeafter the reception, namely something like (low_subst_pi (lift_pi p0 nk) l O n), for a given process p0, if k is the number of bound names inthe input action. In the original proof, we just say that if the context isC = na:(�~y)C1, the term becomes C1[P] f~y := ~lg: this contrast between asimple statement and our intricate terms is a good example of how objectsinvolving technical de�nitions become quite complicated as soon as they areimplemented in the Coq system.It is important to notice that the really signi�cant modi�cation we applyto process p0 is the substitution. In our implementation, this substitutioncomes along with a lifting followed by a lowering of free names; these twooperations should actually preserve the relations over processes we are con-sidering, since they are just needed to manage free names, as already dis-cussed above. In our proof, though, we only consider �liftable� relations, and37

we do not allow to �lower� related terms; we will see in the following how wetackle this di�culty by using the strong hypothesis we have about R.Let us turn to the actual proof: the type of constructor comm_in indicatesthe shape of terms C0; P 0 and Q0 that we chose, in order to establish thetransition relation. These objects then appear in the proof of the C�(S)relation, as we have to prove:low subst(liftk(C[P]); l; n) C�(S) low subst(liftk(C[Q]); l; n)We use here an auxiliary lemma, in order to establish the closure undercontexts of a relation:Lemma 4.4 Let R be a relation over �-calculus processes. If for two pro-cesses P and Q we have 8� (P�)R(Q�), then for any context C,C[P] C�(R) C[Q].The proof of this lemma is trivial, and, in conjunction with R � S and thesubst_c_p lemma stated above, allows us to reduce our goal to:8� (low subst(lift0k(P); l; n))� R (low subst(lift0k(Q); l; n))�Let us quote the Coq text corresponding to this proposition, the quanti�edsubstitution � being here represented by a list of names l':(l':l_name)(R (pi_subst_n(low_subst_pi (lift_pi P (plus n (ct_depth C)) k)(lift_ln l O (ct_depth C)) (ct_depth C) n)l' O)(pi_subst_n(low_subst_pi (lift_pi Q (plus n (ct_depth C)) k)(lift_ln l O (ct_depth C)) (ct_depth C) n)l' O))We are now in front of the aforementioned di�culty: intuitively, the hypoth-esis (l:l_name) (R (pi_subst_n P l O) (pi_subst_n Q l O)) allows usto prove that the relation R between P and Q is preserved by substitution withname lists l and l'; the lifting of free names achieved by function lift_pi,as well as the lowering achieved by low_subst_pi, also preserve this relation,but �for another reason�, namely because our relations over processes shouldbe preserved by lifting and lowering of free names in related terms. Appar-ently, we are therefore not able to prove this result, since we just supposedthat R is liftable, and we do not have an hypothesis about the lowering ofterms. 38

We now use a trick which allows us to conclude the proof in a quitedirect way (even if a little brutal). The idea is to represent each of themanipulations on de Bruijn indexes that are performed on the processes bya substitution, and this way take advantage of the aforementioned hypothesison R.We de�ne a function build_lift, that given a depth depth, an integerk and a length max, returns a list representing the lifting of max+1 termsby k at depth depth. The lifting operator is actually an in�nite substitu-tion that relates an index i with index i+k; we represent in our setting thetruncation of such a substitution, de�ning it for all indexes lower than themaximum free index in a process (the latter notion being implemented byfunction max_free, that returns the maximum free index in a term of typepi at a given depth). For a process p, we call the build_lift function withmax:=(max_depth p depth), and we get in return a list of names that rep-resents the lifting operator for p ; this manipulation is summarized in thefollowing lemma:Lemma subst_lift : (p:pi)(n,k:nat)(lift_pi p n k) = (pi_subst_n p (build_lift (max_free p n) n k) n).Similarly, we represent the low_subst_pi operator by a list built with afunction named low_subst, and we have:Lemma low_subst_subst : (p:pi)(depth,k:nat)(l:l_name)(low_subst_pi p l depth k)= (pi_subst_n p(low_subst (max_free p depth) depth k l) depth).We can now use these lemmas to rewrite the conclusion of our goal, in order toget a term where three substitutions are applied to processes P and Q, namelythe one corresponding to the lift_pi function, followed by the one corre-sponding to low_subst_pi (with list l), and �nally the one corresponding tolist l'. What we do now is to represent the succession of three substitutionsby only one substitution, which will allow us to use the hypothesis about R.We therefore need to represent the composition of two substitutions de�nedby lists l1 and l2 at a given depth (function comp_subst), and we also haveto replace a substitution at depth depth by a substitution at depth O, in or-der to apply our composition lemma (function depth_subst). We just givehere the lemmas corresponding to these constructions:Lemma comp_subst_pi : (p:pi)(depth:nat)(l1,l2:l_name)(pi_subst_n (pi_subst_n p l1 depth) l2 depth) =39

(pi_subst_n p (comp_subst (max_nat (l_length l1) (l_length l2))l1 l2 depth) depth).Lemma depth_subst_pi : (p:pi)(depth:nat)(l:l_name)(pi_subst_n p l depth) = (pi_subst_n p (depth_subst l depth) O).After a big amount of technical reasoning on de Bruijn indexes and substi-tutions, we can replace all substitutions by only one (no need to say that thelist involved in this substitution has a really ugly aspect in Coq!), and con-clude the proof using the hypothesis about R. We stick to this quite informaldescription of the Coq proof we are writing, in order to avoid too technicaldetails.As hinted above, we somehow cheated in our proof, since we �misused�the hypothesis (R (pi_subst_n P l O) (pi_subst_n Q l O)) in order totackle the di�culty about the lowering of terms related by R. However, thishas allowed to considerably simplify our proofs (replacing the liftable predi-cate by a �lowerable� and liftable property would have been very tedious torepresent, especially since lowering free names in a term is not always safe).Moreover, this tedious work on substitutions is also useful for some proofsof the next section.4.4.5 C = (cOut na l C')This case is much easier to treat than the previous one, since by de�nitionof the transition relation, a concretion just emits a list and continues alongits continuation. We thus do not have to handle substitutions, and the proofis straightforward.5 Unique solution of equationsAn application of the latter proposition (respectfulness of the closure un-der contexts function), is the proof of uniqueness of equations for the �-calculus. This result, coming from Milner's book [Mil89], says that undercertain conditions on a given context C, all processes P such that C[P] � Pare bisimilar.The proof of this result in [San94] is actually given for CCS, a simplercalculus where communications do not carry values. Sangiorgi only mentionsthat it translates into �-calculus with no signi�cant modi�cation, exceptthat we have to consider a smaller relation, written �c, instead of �plain�bisimilarity; the de�nition of �c (which is actually the congruence inducedby �) is the following: 40

* De�nition 5.1 (congruence induced by �, (4.2)) We set P �c Q,pronounced �P and Q are congruent�, if P� � Q�, for all substitutions�.And in Coq:Definition bisim_c : pi -> pi -> Prop :=[p,q:pi](l:l_name)(bisimilar pi action commit liftable(pi_subst_n p l O) (pi_subst_n q l O)).In the following, we shall describe our adaptation of the original proof forCCS to the �-calculus. We will keep references to original results fromSangiorgi's paper, since the various steps of the proof are exactly the same,although they are more technical in our case (both because of an enrichmentof the calculus and of implementation issues).For simplicity reasons, we consider monadic contexts in our result; thismeans that we only have one hole in a term of type context. In [San94],Sangiorgi considers an arbitrary number of di�erent holes [:]1; : : : ; [:]n, eachof them possibly having many occurrences. The implementation of such ageneral result would have involved some tedious implementing work in Coq,and in particular it would have not allowed us to use the results from theprevious section about the closure under contexts function; therefore, wekeep a simpler presentation, with the belief that we still have the essenceof the theory. Our Coq proofs for this part of the implementation basicallyinvolve the same reasoning as for those of the previous section, so we justbrie�y sketch their shape in a �mathematical� style without entering thedetails.5.1 Auxiliary lemmasWe �rst prove a few lemmas from Sangiorgi's paper, that are useful for our�nal proof.Following [San94], we write C to denote the closure under contexts func-tion C� , and if R is a relation over processes, we write RC for C(R) and RTfor T (R).* Lemma 5.2 (3.2) If 8� (P�;Q�) 2 R, then (C[P]; C[Q])2 (RC)T .In the original paper, no substitution was mentioned; because of the speci�cde�nition we have for the closure under contexts function in the case ofthe �-calculus, we had to replace the hypothesis (P;Q) 2 R by a much41

stronger one. While in [San94] the proof of this lemma is done by inductionon the structure of context C, it is much easier in our setting, because ofthe hypothesis we have on R, together with the de�nition of the closureunder contexts function C. We use for the Coq proof our lemma 4.4 statedabove, and we could actually get rid of the transitive function T , since wedo not need it in our proof. We keep it anyway to stay close to Sangiorgi'soriginal text (it is useful for a proof by induction on C to apply the inductionhyptohesis in some cases). We need of course to de�ne the function (�C)Tin Coq:Definition R_C_T : (pi -> pi -> Prop) -> pi -> pi -> Prop :=[R:pi -> pi -> Prop](T' (Close R)).* Lemma 5.3 ((3.3), lemma 4.13 in [Mil89]) If C is guarded andC[P] ��! P 0, there exist a context C0 and a substitution �0 s.t. P 0 = C 0[P�0],and moreover, for any Q, C[Q] ��! C0[Q0�0].Here again, we had to adapt the statement of this lemma to the case of the�-calculus, since whenever � is an input action, the context can modify its�content� P : we thus add the substitution �0. The proof of this result comesfrom an induction on the structure of C; although it involves some tediousmanaging of de Bruijn indexes, it is not di�cult.We now turn to a couple of lemmas that are related to our de�nition ofbisimilarity, in the general setting where we have a set of processes Pr, aset of actions Act, and a transition relation trans; from the point of view ofthe implementation, this means that we work within the Coq �les where thevariables Pr, Act and trans have not been instanciated. These lemmas areneeded for our Coq proofs, but are not part of Sangiorgi's paper.Lemma 5.4 For any processes P and Q such that P � Q, wheneverP ��! P 0, there exists a process Q0 s.t. Q ��! Q0 and P 0 � Q0, and thesymmetrical property for an action performed by Q.This result, which is the classical de�nition of a bisimulation relation, is inour case a consequence of our de�nition for � (and hence has to be provedin Coq). We prove another small result as well:Lemma 5.5 (symmetry of �) If P � Q, then Q � P .These lemmas easily translate in Coq, and their proofs are straightforward.42

5.2 The uniqueness resultWe can now turn to our main result:*Proposition 5.6 (unique solution of equations, (3.5), proposition4.14(2) in [Mil89]) Suppose C is a guarded context, with P �c C[P] andQ �c C[Q]. Then P �c Q.Proof To prove P �c Q, we consider a substitution � and prove P� � Q�.This is done by using the proof technique given by lemma tech stated in thesecond section of this paper; let us remind here its formulation:Lemma tech : (p,q:Pr) (R:relation) (good R) -> (R p q) ->(F:relation -> relation)(respectful pi action commit liftable F) -> (progress R (F R)) ->(bisimilar pi action commit liftable p q).We therefore consider the relation:R = f(P�;Q�); � substitutiong;and prove that R �!� (RC)T � holds. The lemma tech will then allowus to conclude P� � Q�, since (P�;Q�) 2 R.To implement R, we de�ne the function subst_rel the following way:Inductive subst_rel [p,q:pi] : pi -> pi -> Prop :=sr_cons : (l:l_name)(subst_rel p q (pi_subst_n p l O) (pi_subst_n q l O)).We also de�ne the � (�C)T � function, and prove its respectfulness (henceits soundness):Definition R_C_T_B : (pi -> pi -> Prop) -> pi -> pi -> Prop :=[R:pi -> pi -> Prop] (B (T' (Close R))).Lemma resp_RCTB : (respectful pi action commit liftable R_C_T_B).We now turn to the proof of the progression. We have:8� P� � (C[P])� (1)8� Q� � (C[Q])�: (2)Suppose P ��! P 0; applying (1) to our substitution �, and using lemma 5.4,we get a process R s.t. (C[P])� ��! R and P 0 � R. We then rewrite (C[P])�43

into C�[P�], in order to use lemma 5.3. This gives us a new context C0 anda substitution �0 s.t. R = C0[P��0] and8T C�[T] ��! C 0[T�0]: (3)For the proof of this result, and in the forecoming steps of our proof as well,we frequently use the constructions about substitutions from the previoussection; since we just apply the corresponding lemmas without proving anynew result about these constructs, we will not enter the technical detailsof these proofs. This will of course help keeping the following as clear andconcise as possible; nevertheless, the reader should still have in mind thatthese mathematical results sometimes need complicated manipulation of deBruijn indexes in order to be implemented.We apply (3) with Q�; this gives C�[Q�] ��! C 0[Q��0], and since wehave (2), using 5.4 and the symmetry of �, we can exhibit a process Q0 s.t.the two following diagrams commute:P� � C�[P�]� # � #P 0 � C 0[P��0] C�[Q�] � Q�� # � #C0[Q��0] � Q0Using lemma 5.2, we show that (C 0[P��0]; C 0[Q��0]) 2 (RC)T , and thus(P 0; Q0) 2� (RC)T �. This �nally proves R �!� (RC)T �, henceP� � Q�.Conclusions and future workWe have implemented the general theory of progressions of relations on aset Pr of processes, and then applied it to the case of the �-calculus. Quitesigni�cantly, the proofs of the second part of this work turned out to beconsiderably more tedious and complicated to handle than those on non-speci�ed relations. We believe that this is not due to a coincidence: whilegeneral or abstract results translate quite straightforwardly into the Coqsystem, our experience is that technical applications often require furtherinvestigations. Moreover, it seems that in a way, �complexity grows fasterin Coq than on a paper proof�, or in other words, we need more and moretedious work in Coq as the mathematical notions become technical. Ofcourse, the main point is to �nd good implementation paradigms in orderto tackle as much as possible of the technical aspects, but we think that itis not entirely Coq's responsibility: it is often the case that mathematical44

texts do not enter very technical details. To exagerate our point of view, wecan say that one could probably de�ne a �technical depth� in mathematicalresults under which no exploration is made (or at least very rarely). Themain reason for this is clarity, because intuition gets easily lost in a long anddetailed proof; in a proof checker like Coq, we must get into all details, butstill trying to follow as much as possible the original form of the proof. The�mathematical� proof (as opposed to the �mechanised� proof in Coq) playsthe rôle of a guide for the user, who has to deal with all the technical partsneeded by a rigorous approach.We plan to implement one more result coming from Sangiorgi's paper,namely the proof of respectfulness for the closure under injective substitu-tions function; this work shall probably require some tedious manipulations,since injective substitutions do not really enjoy a natural representation inour implementation. Nevertheless, we believe that this tool can really be use-ful for proving bisimilarities, since it can be applied to very small relations,as showed by an example in [San94]. It is important to notice as well thatthis example is on two speci�c processes, while the application of the clo-sure under contexts function, namely the proof of uniqueness of solutions forequations, is a more general and abstract result. Our aim is indeed to supplyfunctions that can be used to prove bisimilarities between �real� processes,and not only to prove properties of our implementation of the �-calculus.Obviously, we cannot hope to achieve an e�cient and automatic machin-ery comparable to the HOL implementation of the �-calculus [Mel94, Ait94]in the near future; we still think that our Coq implementation can be usefulfor a reasonable class of bisimulation proofs, and we hope to use it in the�eld of concurrent language semantics.References[Ait94] Otmane Ait-Mohamed. Véri�cation de l'équivalence du �-calculdans HOL. Rapport de recherche 2412, INRIA-Lorraine, Novem-ber 1994. (In French).[Amb91] Simon J. Ambler. A de Bruijn notation for the �-calculus. Tech-nical Report 569, Dept. of Computer Science, Queen Mary andWest�eld College, London, May 1991.[Bou92] Gérard Boudol. Asynchrony and the �-calculus (note). Rapportsde Recherche 1702, INRIA So�a-Antipolis, May 1992.45

[CCF+96] C. Cornes, J. Courant, JC. Filliâtre, E. Gimenez, G. Huet,P. Manoury, C. Muñoz, C. Murthy, C. Parent, C. Paulin-Mohring, A. Saïbi, and B. Werner. The Coq Proof AssistantReference Manual. Projet Coq, INRIA Rocquencourt / CNRS -ENS Lyon, 1996.[dB72] N.G. de Bruijn. Lambda Calculus Notation with Nameless Dum-mies. In Indagationes Mathematicae, volume 34, pages 381�392.1972.[FG] C. Fournet and G. Gonthier. The re�exive CHAM and the join-calculus. In POPL 96.[HKPM95] G. Huet, G. Kahn, and C. Paulin-Mohring. The Coq Proof As-sistant, A Tutorial. Projet Coq, INRIA Rocquencourt / CNRS- ENS Lyon, Février 1995.[Hue93] G. Huet. Residual theory in �-calculus: A formal development.Technical Report 2009, INRIA, Rocquencourt - France, Août1993.[Mel94] Tom F. Melham. A mechanized theory of the �-calculus in HOL.Nordic Journal of Computing, 1(1):50�76, 1994.[Mil89] R. Milner. Communication and Concurrency. Prentice Hall,1989.[Mil91] Robin Milner. The polyadic �-calculus: a tutorial. Technicalreport, LFCS, Dept. of Computer Science, University of Edin-burgh, october 1991.[Mil92] Robin Milner. Functions as processes. Journal of MathematicalStructures in Computer Science, 2(2):119�141, 1992.[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculusof mobile processes, Parts I and II. 100:1�77, September 1992.[MS] Robin Milner and Davide Sangiorgi. Barbed bisimulation. pages685�695.[Pie95] B.C. Pierce. Programming in the Pi-Calculus (Tutorial Notes).Computer Laboratory, Cambridge - UK, November 1995.46

[San93] D. Sangiorgi. A Theory of Bisimulation for the �-calculus. Tech-nical report, LFCS, Department of Computer Science, Universityof Edinburgh, May 1993.[San94] D. Sangiorgi. On the bisimulation proof method. Technical re-port, LFCS, Department of Computer Science, University of Ed-inburgh, 1994.[VM94] B. Victor and F. Moller. The Mobility Workbench � a toolfor the �-calculus. In D. Dill, editor, Proceedings of CAV'94,volume 818 of Lecture Notes in Computer Science, pages 428�440. Springer-Verlag, 1994.

47

