
Formalization of SLD-Resolution in the calculus of inductive constructionsMathieu JaumeJuin 1996No 96-

Formalization of SLD-Resolution in thecalculus of inductive constructionsMathieu JaumeAbstractThis report presents a full formalization of the operational se-mantics of de�nite programs (used in logic programming), given bySLD-Resolution. The variables renaming process used during a SLD-derivation is completely de�ned in an explicit manner. Furthermore,constructive proofs of two well known lemmas (lifting lemmaand switch-ing lemma) are built from this formalization in the calculus of inductiveconstructions.Formalisation de la SLD-Résolution dans lecalcul des constructions inductivesRésuméCe rapport présente une formalisation de la sémantique opéra-tionnelle des programmes dé�nis (utilisés en programmation logique),dé�nie par la SLD-Résolution. Les conditions de renommage des vari-ables mises en jeu lors d'une SLD-dérivation sont complètement explic-itées. En�n, les preuves de deux lemmes classiques (lemme de général-isation et lemme de commutation) sont construites à partir de cetteformalisation dans le calcul des constructions inductives.

IntroductionIn [11], �rst order terms and substitutions have been formalized in the cal-culus of inductive constructions and a proof of the uni�cation theorem havebeen built from [18]. This report follows on from this work, and is con-cerned with programming languages semantics. Its aim is to formalize SLD-Resolution and to build the proofs of two classical lemmas in logic pro-gramming (lifting and switching lemmas) which are proved in many books.Depending on the reader's level of understanding, some implicit backgroundknowledge is expected in these books. The two proofs we present here havebeen encoded in the 5.10 version of the proof assistant coq [7] (INRIA) whichallows the interactive construction of formal (or veri�ed) proofs and whichis based on the calculus of inductives constructions. This logical framework,through a typed �-calculus notation, is used to encode natural deductionproofs using the Curry-Howard isomorphism ([4], [9], [6], [12], [13]) whichestablishes a strong relationship between proofs and typed �-terms. Notethat inductive de�nitions are also allowed in this proof assistant [16]. In thisway, in our proofs, all objects and properties are explicitely de�ned as well asall hypothesis we need for these proofs. Each step of a proof also explicitelyresults from de�nitions or applications of induction principles, lemmas, the-orems or axioms (of course, in this report, we omit some �minor� details).This makes a di�erence from the initials proofs which can be found in manybooks on logic programming. As we will see, the main di�culty of this workconcerns the de�nition of the variables renaming process used in a SLD-derivation. Foundations of logic programming can be found in [2], [3], [5],[8], [19], [10], [12], [13], [14], [15], [17] ; most notations used here come from[12] and [2].1 Terms and substitutionsIn this section, we give the main de�nitions and the uni�cation theorem,formalized in [11]. Next, we prove some �technical� lemmas used in thefollowing.Given a signature � (i.e. a set with an arity function ar : � ! N) anda countably in�nite set X of variable symbols, terms are inductively de�nedas follows (to get an in�nite number of variable and function symbols, weindex them over the natural numbers):De�nition 1.1 (Terms) The set of terms, T�[X], built over � [X , isinductively de�ned by:1. If x is a variable symbol in X , then tv(x) is a term.2. If f is an n-ary function symbol in �, and l a list of n terms, thentf(f; l) is a term. 1

This de�nition also introduces the dependent type Ln[X] of lists of terms oflength n. These two sets are speci�ed in the system coq using the de�nitionof mutually recursive inductive types, as follows:Mutual inductive Term : Set :=tv : var -> Term |tf : (f:fun)(list_term (arity Lar f)) -> Termwith list_term : nat -> Set :=nil : (list_term 0) |cons: (n:nat)Term -> (list_term n) -> (list_term (S n)).The induction principle generated by this de�nition is:Induction on T�[X] (resp. Ln[X])Let P be a property on T�[X] and P0 a property on �n2NLn[X]. If thefollowing conditions hold:1. 8v 2 X P (tv(v))2. 8f 2 � 8l 2 Lar(f)[X] (P0(ar(f); l)) P (tf(f; l)))3. P0(0; nil)4. 8n 2 N 8t 2 T�[X]P (t)) 8l 2 Ln[X]P0(n; l)) P0(n + 1; cons(n; t; l))then: 8t 2 T�[X] P (t) (resp: 8n 2 N 8l 2 Ln[X] P0(n; l))Therefore, when we prove a property on terms, we prove a similar propertyon lists of terms.De�nition 1.2 (Substitutions) ST [X] is the set of functions from X toT�[X].Definition subst := var -> Term.Each substitution s in ST [X] is associated with two mutually recursive func-tions, Subst t(s) and Subst l(s), respectively from T�[X] to T�[X] and fromLn[X] to Ln[X], de�ned as follows:1. 8x 2 X Subst t(s; tv(x)) = s(x)2. 8f 2 � 8l 2 Lar(f)[X] Subst t(s; tf(f; l)) = tf(f; Subst l(s; l))1. Subst l(s; nil) = nil2. 8t 2 T�[X] 8l 2 Ln[X]Subst l(s; cons(n; t; l)) = cons(n; Subst t(s; t); Subst l(s; l))2

In the following, these two functions will just be written s. Let us nowsummarize some of the classical properties on substitutions.The domain and the range of a substitution s are de�ned by:� 8x 2 X (s(x) 6= tv(x)) x 2 Domain(s))� 8x 2 X 8y 2 X ((y 2 Domain(s) ^ x 2 s(y))) x 2 Range(s))The substitution s is relevant to the term t if all variables which occur eitherin the domain of s or in the terms from the range of s also occur in t. Thisde�nition is extended to lists of terms.The substitution s is idempotent when:8x 2 X s(s(x)) = s(x)We introduce a preorder on substitutions as follows:s1 � s2 if 9s 8x 2 X s(s1(x)) = s2(x)This preorder induces an equivalence relation on substitutions: s1 and s2 arecalled variants if s1 � s2 and s2 � s1.We now establish the following lemmas:Lemma 1.1 Let s be a substitution.1. If no variable occurring in the terms from the range of s, also occursin the domain of s, then s is an idempotent substitution.2. If s is an idempotent substitution, then no variable occurring in thedomain of s also occurs in the terms from the range of s.Proof: (1) : Let x be a variable symbol, it su�ces to prove:8v 2 X (v 2 s(x)) v 62 Domain(s))Let v be a variable symbol which occurs in s(x), two cases are possible. Ifx 2 Domain(s), then, by de�nition, v 2 Range(s) and, by hypothesis, vdoesn't occur in the domain of s. If x 62 Domain(s), then we have s(s(x)) =s(x) = tv(x). This settles the claim.(2) : Let x be a variable symbol which occurs in the terms from the range ofs. By de�nition, there exists a variable symbol v, occurring in the domainof s, such that x 2 s(v). If x occurs in the domain of s, then we gets(s(x)) 6= s(x), which is contradictory to the hypothesis. �3

Lemma 1.2 Let s and r be two idempotent substitutions and l a list ofterms. If r is relevant to s(l), then � = �x:r(s(x)) is an idempotent substi-tution.Proof: By lemma 1.1.1, it su�ces to prove:8x 2 X (x 2 Range(�)) �(x) = tv(x))Let x be a variable symbol which occurs in the terms from the range of�. By de�nition, there exists a variable symbol y 2 Domain(�) such thatx 2 �(y). Let us prove that x doesn't occur in the domains of r and s.If x 2 Domain(r), then, seeing that r is an idempotent substitution and bylemma 1.1.2, we have x 62 Range(r). Two cases are possible. If x 2 s(y), thenx cannot occur in the domain of r (because x 2 r(s(y)) and x 62 Range(r))which is contradictory. If x 62 s(y), then x doesn't occur in r(s(y)) (becausex 62 Range(r)) which is also contradictory. So, we get x 62 Domain(r).Suppose now that x occurs in the domain of s. By lemma 1.1.2, we havex 62 Range(s). First, let us prove that x 62 Range(r). For this, supposex 2 Range(r). Seeing that r is relevant to s(l), x occurs in s(l). Hence,from x 2 Domain(s), it follows that x 2 Range(r) which is contradictory.Therefore, from x 2 r(s(y)), we get x 2 s(y). Now, we can establish x 2Range(s) (because x occurs in the domain of s) which is contradictory. Thisconcludes the proof. �We present now the main result, formalized in [11]. First, we introducethe notion of uni�cation. Let t1 and t2 be two terms. If for a substitutions, we have s(t1) = s(t2), then s is called a uni�er of t1 and t2 and t1 and t2are said to be uni�able. s is called minimal if for each uni�er s0 of t1 and t2,we have s � s0. A uni�er s of t1 and t2 is called a most general uni�er (ormgu in short) if it is minimal, idempotent and relevant to t1 and t2. Thesede�nitions are extended to lists of terms.Theorem 1.1 (Uni�cation) Given two terms (resp. two lists of terms)A and B, either A and B cannot be uni�ed or they can and there exists amost general uni�er of A and B.We terminate this section with two �technical� lemmas used in the following.Lemma 1.3 If the two substitutions � and � are variants, then there existsa substitution r which satis�es for each term t:1. �(t) = r(�(t)).2. for each variable x occurring in �(t), there exists a variable v such thatr(x) = tv(v) (r can be viewed as a variable renaming).4

Proof: Let t be a term. By hypothesis:� � �) 9�1 �1� = �So, we get �1�(t) = �(t). In the same way:� � �) 9�2 �2� = �So, we get �2�(t) = �(t). Hence, r exists: r = �2. Moreover, we have�1(�2(�(t))) = �(t). Now, let us prove that:8x (x 2 �(t)) 9v �2(x) = tv(v))If x occurs in the domain of �2, then �1(�2(�(x))) = �(x) and �2(x) 6= tv(x).So, there exists a variable v occurring in the domain of �1, such that �2(x) =tv(v). If x doesn't occur in the domain of �2, then v exists, this is x. �Lemma 1.4 Let � and �1 be two substitutions, �2 an idempotent substitutionsuch that � = �1�2 and t a term. If �t = t and �2t 6= t, then there exists avariable x occurring in t such that x 2 Range(�).Proof: From �2t 6= t, it follows that there exists a variable x, whichoccurs in t, such that �2x 6= x. By hypothesis (�t = t), we have �x = x, sowe get �x = �1�2x = x. Seeing that �2x 6= x, there exists a variable v, whichoccurs in the domain of �1, such that �1v = x and �2x = v. By hypothesis,�2 is an idempotent substitution, and we get �2x = �2�2x. Therefore, wehave �1�2�2x = x = ��2x. Now, from �2x 6= x, it follows that �2x occurs inthe domain of �. This settles the claim. �2 Syntactic objects in logic programmingWe present in this section the objects, built from terms, used in logic pro-gramming. Assuming for a moment from the reader knowledge of the se-mantics for �rst order logic, we give an idea of the next formal de�nitions.A formula of the form:8~x (A1 _ : : :_An _ :B1 _ : : :_ :Bm)which can be written:8~x (B1 ^ : : :^ Bm) A1 _ : : :_An)where all Ai and Bi are atoms, is a general clause. Henceforth, we'll use thefollowing clausal form: A1; : : : ; An B1; : : : ; Bm5

If a clause has only one conclusion (n = 1), then it is called a de�nite clause(0 � m): A B1; : : : ; Bmand when the set of premises of a de�nite clause is empty (m = 0), we callit a unit clause: A When the set of conclusions of a general clause is empty (n = 0), we call ita negative clause or a de�nite goal or a request: B1; : : : ; Bmwhich can be written:8~x (:B1 _ : : :_ :Bm) or :9~x (B1 ^ : : :^ Bm)A de�nite program is a �nite set of de�nite clauses. A Horn clause is eithera de�nite clause or a negative clause.We now consider a pair of disjoint signatures �f and �r. The signature� = �f [�r where �f is a countably set of function symbols and �r acountably set of relation (or predicate) symbols is called a predicate calculussignature.De�nition 2.1 (Atoms) The set At�[X], of atoms, is inductively de�nedas follows: if p is an n-ary predicate symbol in �r and l a list of n terms,then p(l) is an atom.Inductive atom : Set :=pl : (p:predic)(list_term (arity_p p)) -> atom.We can apply a substitution to an atom as follows:8s 2 ST [X] 8p 2 �r 8l 2 Lar(p)[X] s(p(l)) = p(s(l))Two atoms a1 = p1(l1) and a2 = p2(l2) are uni�able if p1 = p2 and if thereexists a most general uni�er of the lists l1 and l2.A request is a �nite sequence, possibly empty, of atoms.De�nition 2.2 (Request) R�[X] is inductively de�ned by:R�[X] ::= r; j cr(At�[X]; R�[X])Inductive request : Set :=true_req : request |cons_req : atom -> request -> request .6

The classical functions on lists are de�ned for requests:� length of a requestlg(r) = (0 if r = r;1 + lg(r0) if r = cr(a; r0)� concatenation of two requestsr1 ./r r2 = (r2 if r1 = r;cr(a; r0 ./r r2) if r1 = cr(a; r0)� (n+ 1)-th atom of a requestr=n;a = 8><>: a if r = r;(a0 if n = 0(r0)=n�1;a if n > 0 if r = cr(a0; r0)� replacing the (n+ 1)-th atom of a request by a requestr[n r1] = 8><>: r; if r = r;(r1 ./r r0 if n = 0cr(a0; r0[n� 1 r1]) if n > 0 if r = cr(a0; r0)We can apply a substitution to a request as follows:8s 2 ST [X] s(r) = (r; if r = r;cr(s(a); s(r0)) if r = cr(a; r0)De�nition 2.3 (Clauses) C�[X] ::= At�[X]�R�[X].Definition clause : Set := (atom*request) .We can apply a substitution to a clause as follows:8c =<a; r>2 C�[X] 8s 2 ST [X] s(c) =<s(a); s(r)>De�nition 2.4 (De�nite programs) P�[X] is inductively de�ned by:P�[X] ::= P; j cp(C�[X]; P�[X])Inductive program : Set :=nil_pgm : program |cons_pgm : clause -> program -> program .7

3 SLD-ResolutionDe�nite programs compute through a combination of two mechanisms: re-placement and uni�cation. This form of computing is a speci�c form oftheorem proving, called SLD-Resolution (for Selection Linear De�nite) andbased on resolution: an inference rule which is particularly well-suited toautomation on a computer. This way gives the operational semantics ofde�nite programs which describes what can be executed.3.1 Resolution and transitionsThe resolution principle (or cut rule) is an inference rule, which de�nes adeductive relation, written n;r;C! , on C�[X]�R�[X]�R�[X]. Let C be thede�nite clause: A|{z}C+ A1; : : : ; Ap| {z }C�and R the request L0; : : : ; Lq. We suppose here that the clause C isrenamed with a variable renaming r such that no variable occurring in r(C)also occurs R. The request R0 is obtained from R and r(C) (or R0 is aresolvent of r(C) and R), if the following conditions hold:1. Ln is an atom which occurs in R, written R=n (0 � n � q).2. � is a most general uni�er of Ln and r(A).3. R0 is the request �(L0; : : : ; Ln�1; r(A1); : : : ; r(Ap); Ln+1; : : : ; Lq),written �R[n r(C�)].This resolution step will be written R n;r;C! �R[n r(C�)]. In this way,the resolution principle can be viewed as a rule which moves from a state toanother.De�nition 3.1 (Resolution state) A resolution state is a pair �:R, where� is a substitution and R a request.Definition state : Set := (subst * request).We can now de�ne inductively the set � of transitions. For this, only oneconstructor is used, which links two states. A predicate on � is de�ned,which allows to consider transitions satisfying the �rule�:�R=n = �r(C+)�:R n;r;C! ��:�R[n r(C�)]So, in each resolution step, two choices are made: the choice of the selectedatom and the choice of the input clause whose head uni�es with the selectedatom. 8

The clause C is renamed with the renaming substitution r, which is anelement of a set de�ned as follows:De�nition 3.2 (Renaming substitutions) SX [X] is the set of functionsfrom X to X .Definition rename := var -> var .The classical de�nitions of properties on substitutions are extended to SX [X].We now introduce a predicate SX on this set.De�nition 3.3 (SX) A renaming substitution r in SX [X] satis�es the pred-icate SX if:1. 8x 2 Domain(r) 8y 2 Domain(r) (x 6= y) r(x) 6= r(y))2. No variable occurring in the domain of r also occurs in the range of r(r is idempotent).We now de�ne, more precisely, the notion of valid transitions.De�nition 3.4 (Valid transitions) The transition:�:R n;r;C! ��:�R[n r(C�)]is called a valid transition, if �R[n r(C�)] is a resolvent of r(C) and Rand if the renaming r used, satis�es the following conditions (called stan-dardization apart):H1 r satis�es the predicate SX .H2 r renames all the variables which occur in the clause C and only thesevariables.H3 No variable occurring in the range of r also occurs in the domain of �.H4 r(C) does not have a variable in common with R.Furthermore, � and R must satisfy:H5 �R = RIn order to be able to build derivations from valid transitions, we prove thatthe �nal state of a valid transition satis�es the condition H5. For this, we�rst prove the following lemma.Lemma 3.1 If �:R n;r;C! ��:�R[n r(C�)] is a valid transition, then��R[n r(C�)] = �R[n r(C�)]. 9

Proof: It su�ces to prove:8x 2 X (x 2 �R[n r(C�)]) x 62 Domain(�))Let x be a variable symbol which occurs in �R[n r(C�)], two cases arepossible. Either x 2 R[n r(C�)], or x 2 Range(�). In these two cases,seeing that � is a most general uni�er of R=n and r(C+), we know that � isrelevant to these two atoms. Hence, either x 2 R, or x 2 r(C). In the �rstcase, by condition H5, we can conclude. In the second case, by conditionsH2 and H3, we can also conclude. �We are now in position to prove the following lemma.Lemma 3.2 If �:R n;r;C! ��:�R[n r(C�)] is a valid transition, then���R[n r(C�)] = �R[n r(C�)].Proof: By lemma 3.1, we have:���R[n r(C�)] = ��R[n r(C�)]By de�nition, � is an idempotent substitution, and we get:���R[n r(C�)] = �R[n r(C�)]which concludes the proof. �3.1.1 SLD-Resolution and derivationsA �nite valid SLD-Derivation is a �nite sequence of valid transitions of theform: �0:R0 n0;r0;C0! : : : nk�1;rk�1;Ck�1! �k:Rkalso written �0:R0 �! �k:Rk. Therefore, a SLD-derivation is de�ned by:� a �nite sequence R0; R1; : : : ; Rk of requests.� a �nite sequence r0C0; r1C1; : : : ; rk�1Ck�1 of variants of clauses froma de�nite program P .� a �nite sequence �0; �1; : : : ; �k of substitutions.such that for all i � 1:� Ri is a resolvent of Ri�1 and ri�1Ci�1.� riCi does not have a variable in common with R0; r0C0; : : : ; ri�1Ci�1.First, we introduce the syntactical de�nition of derivations.10

De�nition 3.5 (Derivations) The set Dl is iductively de�ned, from �, asfollows: Dl ::= dlt(�) j dlc(Dl;�)Inductive deriv:Set :=deriv_init : trans -> deriv |deriv_cons : deriv -> trans -> deriv.Next, we de�ne a valid composable pair of transitions.De�nition 3.6 The two transitions:e1i t1! e1f and e2i t2! e2fform a valid composable pair of transitions if they are valid and if e1f = e2i .As we remarked earlier, the derivation�0:R0 n0;r0;C0! : : : nk�1;rk�1;Ck�1! �k:Rkis valid if each riCi is a clause such that riCi does not have any variableswhich already occur in the input clauses used in the derivation up to Ri�1.So we introduce a function on Dl which computes the sequence of variableswhich occur in the input clauses used in a derivation.De�nition 3.7 (#) The function # on Dl is recursively de�ned by:1. if d = dlt(t0), then #(d) = var(r(c)) where r and c are respectively therenaming and the clause used in t0.2. if d = dlc(d0; t0), then #(d) = #(d0) ./v var(r(c)) where r and c arerespectively the renaming and the clause used in t0 (./v is a concate-nation function on lists of variables).We now de�ne valid derivations.De�nition 3.8 (Valid derivations) Valid derivations are de�ned by a re-cursive predicate on Dl as follows:1. The derivation d = dlt(t) is valid if t is a valid transition.2. The derivation: ei = �:R �! ek| {z }d0 t0! ef| {z }d=dlc(d0;t0)is valid if the following conditions hold:� d0 is a valid derivation. 11

� the pair of transitions formed by the last transition of d0 and t0is a valid composable pair of transitions.� the renaming r used in t0 satis�es:8x 2 X ((x 2 #(d0) _ x 2 R)) x 62 Range(r))We now establish the three following lemmas on variables which occur in avalid derivation. Henceforth, sid stands for the substitution �x:tv(x).Lemma 3.3 If d : sid:R �! �:R0 is a valid derivation, then � is an idempo-tent substitution.Proof: We proceed by induction on the derivation d.For d = dlt(t): sid:R n;r;C! �:R0By de�nition, � is an idempotent substitution.For d = dlc(d0; t0): sid:R �! �0:R0 n;r;C! ��0:R0By induction hypothesis, �0 is an idempotent substitution. By de�nition, �is a most general uni�er of R0=n and r(C+), hence � is relevant to the list ofterms l obtained by concatenation of lists of terms coming from these twoatoms. By lemma 3.2, �0R0 = R0 and by condition H3 on t0, �0r(C+) =r(C+). Therefore, � is also relevant to the list s(l). Consequently, by lemma1.2, ��0 is an idempotent substitution. �Lemma 3.4 If d : �:R �! ��:R0 is a valid derivation, then if x is a variablesymbol occurring in R0, then x occurs either in R, or in #(d).Proof: By induction on dFor d = dlt(t): �:R n;r;C! ��:�R[n r(C�)]If x 2 �R[n r(C�)], two cases are possible. In the �rst case, x 2 �R, eitherx 2 R which allows to conclude, or x occurs in the terms from the range of�. In this case, because, by de�nition, � is relevant to R=n and r(C+), eitherx 2 R=n, or x 2 r(C+), which settles the claim. If x 2 �r(C�), then eitherx 2 r(C�) which concludes the proof, or x 2 Range(�) and a similar proofcan be obtained.For dlc(d0; t0): �:R0 �! ��:R n;r;C! ���:�R[n r(C�)]Let x be a variable occurring in �R[n r(C�)], two cases are possible:either x 2 �R, or x 2 �r(C�). In the �rst case, two subcases are possible. Ifx 2 R, then the induction hypothesis allows to conclude. If x 2 Range(�),12

then, because � is relevant to R=n and r(C+), either x 2 R=n and then x 2 Rwhich allows to conclude by induction hypothesis, or x 2 r(C+) which alsoconcludes the proof. If x 2 �r(C�), then, either x 2 r(C�) which concludesthe proof, or x 2 Range(�) and a similar proof can be obtained. �Lemma 3.5 If d : sid:R �! �:R0 is a valid derivation and if x is a variablesymbol occurring either in the domain of �, or in the terms from the rangeof �, then either x 2 R, or x 2 #(d).Proof: By induction on d, in the same manner of the above lemma. �4 Lifting lemmaLemma 4.1 (Lifting) If sid:�R �! �:R1 is a valid derivation, where:� � is a substitution relevant to R� no variable occurring in the range of a renaming used in this derivationalso occurs in Rthen there exists a substitution � such that � � �� and such that:sid:R �! �:R2is a valid derivation where for a request Rf we have:��Rf = R1 and �Rf = R2Lemma lifting : (d:deriv)(r:request)(eta:subst)(Deriv_ok d)->(Fst (state_init_d d))=([x:var](tv x))->(Snd (state_init_d d))=(subst_req eta r)->(over_under_r eta r)->((t:trans)(IS_IN_D t d)->((x:var)(IS_IN_LV x (var_req r)) -> ~(rrange (sr_trans t) x)))->(Ex [d0:deriv](((t1,t2:trans)(IS_IN_D t1 d)->(IS_IN_D t2 d0)->(p_trans t1)=(p_trans t2)) /\(Deriv_ok d0) /\(list_var_c_d d0)=(list_var_c_d d) /\(Fst (state_init_d d0))=([x:var](tv x)) /\(Snd (state_init_d d0))=r /\(Ex [rf:request] 13

((Snd (state_end_d d0))=(subst_req (Fst (state_end_d d0)) rf) /\(Snd (state_end_d d))=(subst_req (Fst (state_end_d d)) (subst_req eta rf)))) /\(less_subst_t (Fst (state_end_d d0))([x:var](Subst_t (Fst (state_end_d d)) (eta x)))))).Proof: We proceed by induction on the derivation coming from sid:�R.Initial step: sid:�R n;r;C! �:��R[n r(C�)]| {z }RfBy de�nition, we have ��R=n = �r(C+) and, by hypothesis, we have �r(C) =r(C). Hence, we get ��R=n = ��r(C+). Therefore, R=n and r(C+) areuni�able and there exists a most general uni�er � of these two atoms. So,we get � � �� and we can easily prove the validity of the following derivation:sid:R n;r;C! �:� R[n r(C�)]| {z }RfInductive step: sid:�R0 �! �:R1| {z }d0 n;r;C! ��:�R1[n r(C�)]By induction hypothesis, there exists a substitution �, such that � � �� andsuch that: sid:R0 �! �:R2is a valid derivation and where, for a request R0, we have:��R0 = R1 and �R0 = R2Since � � ��, there exists a substitution " such that "� = ��. By lemma 3.3,� is an idempotent substitution. Let us �rst prove that ��r(C) = r(C) and�r(C) = r(C).If x is a variable which occurs in the domain of ��, then either x occurs inthe domain of �, or in the domain of �. In the �rst case, then, by lemma 3.5,either x occurs in R0, or in #(d0), and consequently, by hypothesis, x cannotoccur in r(C). In the second case, by de�nition of the renaming process usedin a valid derivation, x cannot occur in r(C), this settles ��r(C) = r(C).Since ��r(C) = r(C), we get "�r(C) = r(C). Suppose �r(C) 6= r(C), bylemma 1.4, there exists a variable x which occurs in r(C) and in the termsfrom the range of "� = ��. By condition H2, x 2 r(C) and then x occursin the range of r. Two cases are now possible: either x 2 Range(�), orx 2 Range(�). In the �rst case, by lemma 3.5, x occurs either in �R0, orin #(d0) which is contradictory to the renaming process used. In the second14

case, by hypothesis, x occurs in R0 which induces the same contradiction.This settles �r(C) = r(C).By de�nition, � satis�es: �R1=n = �r(C+)Hence: ���R0=n = �r(C+)Since ��r(C) = r(C), we get:���R0=n = ���r(C+)Therefore: �"�R0=n = �"�r(C+)Since �r(C) = r(C), we get:�"�R0=n = �"r(C+)and now: �"R2=n = �"r(C+)Consequently, R2=n and r(C+) are uni�able and there exists a most generaluni�er � of these two atoms such that � � �". We can now easily prove thatthe following derivation:sid:R0 �! �:R2 n;r;C! ��:�R2[n r(C�)]is valid and we also get:�R2[n r(C�)] = ��R0[n r(C�)]and �R1[n r(C�)] = ���R0[n r(C�)]Furthermore, since � � �", there exists a substitution � such that �� = �"and we get: ��� = �"� = ���which settles �� � ���. �For the R1 = r; case, there is:Corollary 4.1 If sid:�R �! �:r; is a valid derivation, then for a substitution� � ��, the derivation sid:�R �! �:r; is also valid.15

5 Switching lemmaAt each resolution step of a derivation, an atom and a clause must be se-lected. The following well known lemma ensures that the non-determinismin the choice of atom does not matter: this is called �don't care� non-determinism (however, the choice of input clause is done by a �don't know�non-determinism).Lemma 5.1 (Switching) If during a valid derivation, two atoms A and Bare successively selected, then they can also be selected in the reverse orderand the derived states are the same up to renaming of variables.Lemma switching : (d:deriv)(t1:trans)(t2:trans)(Deriv_ok (deriv_cons (deriv_cons d t1) t2)) ->(le (plus (n_trans t1)(Length_r (body_c (c_trans t1)))) (n_trans t2))->(Fst (state_init_d d))=([x:var](tv x)) ->(Ex [t3:trans](Ex [t4:trans]((Deriv_ok (deriv_cons (deriv_cons d t3) t4)) /\(n_trans t3)=(S (minus (n_trans t2) (Length_r (body_c (c_trans t1))))) /\(n_trans t4)=(n_trans t1) /\(Ex [r:subst]((Snd (state_end_d (deriv_cons (deriv_cons d t1) t2)))=(subst_req r (Snd (state_end_d(deriv_cons (deriv_cons d t3) t4)))) /\((x:var)(IS_IN_LV x (var_req(Snd (state_end_d (deriv_cons (deriv_cons d t3) t4)))))-> (Ex [v:var] (r x)=(tv v)))))))).Proof: The proof presented here follows exactly the formal proof devel-opped in the proof assistant coq. First, we proceed by induction on the twotransitions, next we prove some �cut-lemmas� which allow to conclude.induction on transitionsThe derivation can be written: dlc(dlc(d; t1); t2)sid:R0 �! �:R| {z }d t1 :n1; r1; C1�! ��:�R1 t2 :n2; r2; C2�! ���:�R2where �R1 = �R[n1 r1(C�1)] and R2 = (�R1)[n2 r2(C�2)].Furthermore, we suppose the �rst selected atom is before the second in therequest R, so we have: n1 + lg(C�1) � n216

�cut-lemmas�In the switching lemma proof, we're going to use many times the same asser-tions. Instead of proving them every time, we �rst prove them using the Cuttactic. In this way, we can use them at any time during the proof withoutproving them again. Hypothesis of these cut-lemmas are the same as theswitching lemma's hypothesis.Cut-Lemma 5.1 �r2C2 = r2C2Proof: Let us prove that if z is a variable which occurs in the domainof �, then z doesn't occur in r2C2. If z 2 Domain(�), then, by lemma 3.5,either z occurs in R0 or, in #(d). In these two cases, by de�nition of therenaming process used in a valid derivation, z cannot occur in r2C2. Thissettles the claim. �Cut-Lemma 5.2 �� is a uni�er of R=n2�lg(C�1)+1 and r2C+2 and there existsa most general uni�er � of these two atoms such that � � �� (i.e. there existsa substitution " such that "� = ��).Proof: By de�nition (transition t2), we have:��R1=n2 = �r2(C+2)By condition H3 on t2, we have ��r2(C2) = r2(C2). Hence:��R1=n2 = ���r2(C+2)By cut-lemma 5.1, we get: ��R1=n2 = ��r2(C+2)From �R1 = �R[n1 r(C�1)] and n1 + lg(C�1) � n2, it follows that:�R1=n2 = �R=n2�lg(C�1)+1and now: ��R=n2�lg(C�1)+1 = ��r2C+2which allows to conclude. �Cut-Lemma 5.3 �r1C1 = r1C1Proof: Let us prove that if z is a variable which occurs in r1(C1), thenz does not occur in the domain of �. By cut-lemma 5.2, � is relevant to:R=n2�lg(C�1)+1 and r2(C+2)Hence, z occurs in one of these two atoms. If z occurs in R, then, by conditionH4 on t1, z cannot occur in r1(C1) which is contradictory. Else, if z occursin r2(C+2), then z occurs in the range of r2, and z cannot occur in r1(C1).This settles the claim. �17

Cut-Lemma 5.4 The substitution " is a uni�er of:r1(C+1) and (�R[n2 � lg(C�1) + 1 r2(C�2)])=n1and there exists a most general uni�er � of these two atoms such that � � "(i.e. there exists a substitution � such that �� = ").Proof: By de�nition (transition t1), we have:�R=n1 = �r1(C+1)From n1 + lg(C�1) � n2, it follows that:R=n1 = (R[n2 � lg(C�1) + 1 r2(C�2)])=n1and now: �(R[n2 � lg(C�1) + 1 r2(C�2)])=n1 = �r1(C+1)Hence: ��(R[n2 � lg(C�1) + 1 r2(C�2)])=n1 = ��r1(C+1)By cut-lemma 5.2, we have "� = ��, so:"�(R[n2 � lg(C�1) + 1 r2(C�2)])=n1 = "�r1(C+1)By cut-lemma 5.3, we get:"�(R[n2 � lg(C�1) + 1 r2(C�2)])=n1 = "r1(C+1)thus concluding the proof. �existence and validityBy cut-lemma 5.2, we can build the transition t3, seeing that � is a mostgeneral uni�er of R=n2�lg(C�1)+1 and r2(C+2). In the same manner, by cut-lemma 5.4, we can build the transition t4, seeing that � is a most generaluni�er of (�R[n2 � lg(C�1) + 1 r2(C�2)])=n1 and r1(C+1):�:R t3 :n2 � lg(C�1) + 1; r2; C2�! ��:�R[n2 � lg(C�1) + 1 r2(C�2)]��: �R[n2 � lg(C�1) + 1 r2(C�2)]| {z }R0 t4 :n1; r1; C1�! ���:�R0[n1 r1(C�1)]Now, let us prove that t3 and t4 are valid transitions (we omit here theimmediate conditions H1 and H2).Condition H3: 18

transition t3: Immediate by cut-lemma 5.1.transition t4: By cut-lemma 5.3, we have �r1C1 = r1C1 and by condition H3on t1, we have �r1C1 = r1C1. Hence, we get ��r1C1 = �r1C1 = r1C1.Condition H4:transition t3: Let x be a variable which occurs in R. By lemma 3.4, either xoccurs in R0, or in #(d). In these two cases, by de�nition of a valid transition,x cannot occur in r2C2.transition t4: Let x be a variable occurring in �R[n2� lg(C�1)+1 r2(C�2)].Two cases are possible: either x occurs in the terms from the range of �, orin R[n2 � lg(C�1) + 1 r2(C�2)]. In these two cases, by cut-lemma 5.2 andby de�nition, either x occurs in R, or in r2C2. In this �rst case, by lemma3.4, either x occurs in R0, or in #(d). Therefore, in all of these cases, xcannot occur in r1C1.Condition H5:transition t3: Immediate by lemma 3.2 (seeing that, by hypothesis, the lasttransition of d is a valid transition).transition t4: Immediate by lemma 3.2 (seeing that, by the above, t3 is avalid transition).link between the two derived statesLet us prove there exists a renaming r such that:r(�R2) = �R0[n1 r1(C�1)]For this, we �rst prove the following cut-lemmas.Cut-Lemma 5.5 �� � ��.Proof: By cut-lemmas 5.2 and 5.4, we have "� = �� and �� = ". Hence,we get ��� = ��, which settles the claim. �Cut-Lemma 5.6 � � �� (i.e. there exists a substitution � such that �� =��).Proof: By cut-lemma 5.4, we have:��R[n2 � lg(C�1) + 1 r2(C�2)]=n1 = �r1(C+1)Applying cut-lemma 5.3, we get:��R[n2 � lg(C�1) + 1 r2(C�2)]=n1 = ��r1(C+1)From n1 + lg(C�1) � n2, it follows that:R=n1 = (R[n2 � lg(C�1) + 1 r2(C�2)])=n1and now: ��R=n1 = ��r1(C+1)Therefore, �� is a uni�er of R=n1 and r1(C+1). By hypothesis, � is a mostgeneral uni�er of these two atoms (transition t1), which settles � � ��. �19

Cut-Lemma 5.7 �r2C2 = r2C2Proof: Let us prove that if x is a variable which occurs in r2(C2), thenx does not occur in the domain of �. By hypothesis, � is relevant to R=n1 andr1(C+1), hence, x occurs in one of these two atoms. If x occurs in R=n1 then,by lemma 3.4, x occurs either in R0, or in #(d) and then x cannot occur inthe range of r2 (i.e. cannot occur in r2(C2)). If x occurs in r1(C+1), then xcannot occur in r2(C2). This concludes the proof. �Cut-Lemma 5.8 � � � (i.e. there exists a substitution � such that �� = �).Proof: Since t3 is a valid transition, we have:�R=n2�lg(C�1)+1 = �r2(C+2)Hence: ��R=n2�lg(C�1)+1 = ��r2(C+2)Applying cut-lemma 5.6, we get:��R=n2�lg(C�1)+1 = ��r2(C+2)and by cut-lemma 5.7 we get:��R=n2�lg(C�1)+1 = �r2(C+2)Therefore, � is a uni�er of �R=n2�lg(C�1)+1 and r2(C+2). From n1+ lg(C�1) +1 � n2, it follows that:�R=n2�lg(C�1)+1 = �R[n1 r1C�1]n2 = �R1=n2By hypothesis (transition t2), � is a most general uni�er of these two atoms,this leads to the conclusion that � � �. �Cut-Lemma 5.9 �� � ��.Proof: By cut-lemma 5.6, we have �� = ��. Hence, by cut-lemma 5.8,we get �� = ��� which settles the claim. �By cut-lemmas 5.5 and 5.9, we can establish that the two substitutions�� and �� are variants. Let us now relate the two derived states. First, wehave: �R2= �(�R1)[n2 r2C�2]= ��R1[n2 �r2C�2]= ��R1[n2 r2C�2] (by cut-lemma 5.7)= �(�R[n1 r1C�1])[n2 r2C�2]= ��(R[n1 r1C�1])[n2 �r2C�2]= ��(R[n1 r1C�1])[n2 r2C�2] (by cut-lemma 5.7)20

Moreover:�R0[n1 r1C�1]= �(�R[n2 + lg(C�1) + 1 r2C�2])[n1 r1C�1]= ��R[n2 + lg(C�1) + 1 r2C�2][n1 �r1C�1]= ��R[n2 + lg(C�1) + 1 r2C�2][n1 r1C�1] (by cut-lemma 5.3)= ��(R[n1 r1C�1])[n2 r2C�2]Therefore, by lemma 1.3, there exists a renaming r, which satis�es the claim.This concludes the lifting lemma's proof. �ConclusionSLD-Resolution de�nes a relation satisfying several important properties.The logical ones are soundness and completeness. Two others are particu-lar to this form of computation: lifting and switching lemmas. In order toformalize SLD-Resolution, we constantly used the formal development com-ing from [18] and [11], notably the de�nition of terms and the uni�cationtheorem on these terms. Theories library of the proof assistant coq havebeen also used, thus showing the interest that a proofs library be provided.The main di�culty of this development was to de�ne explicitely the wayclauses have to be renamed in a SLD-Derivation, and to �nd the additionalconditions on this renaming we have to assume in the lifting lemma's proof.The switching lemma's proof is rather tedious but is not di�cult to obtain.Like SLD-Resolution for clauses, �-reduction de�nes a relation for �-terms and it may be interesting to compare properties of these relations.Whereas �-reduction is con�uent, SLD-Resolution just satis�es the �switch-ing� property which is weaker than con�uence. Furthermore, the renamingprocess used in a SLD-derivation can be viewed as an implicit �-conversion:the renaming is made explicit and allows a full formalization of a SLD-derivation along the lines of the the calculus of explicit substitutions [1] for�-reduction.These two proofs are made from objects which are syntactically de�ned.Interpretations of these objects are now under consideration, in order toprove the soundness and completeness of SLD-Resolution in the calculus ofinductive constructions.References[1] M. Abadi, L. Cardelli, P.L. Curien, and J.J. Levy. Explicit substitutions.Journal of functional programming, 1(4):375�416, 1991.[2] K.R. Apt. Logic programming. In Handbook of theoretical computerscience, pages 493�574. Ed. J. van Leeuwen, 1990.21

[3] K.R. Apt and M.H. van Emden. Contributions to the theory of logicprogramming. J. ACM., 29(3):841�862, july 1982.[4] H.P. Barendregt. Lambda calculi with types. In Handbook of Logic inComputer Science, volume II. Oxford University Press, 1992.[5] A. Colmerauer, H. Kanoui, and M. Van Caneghem. Prolog, basesthéoriques et développements actuels. TSI, 2(4), 1983.[6] T. Coquand. An introduction to type theory. In Logique et Informatique:une introduction, pages 117�135. INRIA, b. courcelle edition, 1991.[7] C. Cornes, J. Courant, J.C. Filliâtre, G. Huet, P. Manouryand,C. Paulin-Mohring, C. Munoz, C. Murthy, C. Parent, A. Saibi, andB. Werner. The Coq Proof Assistant Reference Manual Version 5.10.INRIA-CNRS-ENS, 1995.[8] K. Doets. From logic to logic programming. Foundations of ComputingSeries. MIT Press, 1994.[9] J.Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Number 7in Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-versity Press, 1990.[10] C.J. Hogger. Essentials of Logic Programming. Clarendon Press Oxford,1990.[11] M. Jaume. Uni�cation des termes du premier ordre dans le calculdes constructions inductives. Research Report 96-58, CERMICS, April1996.[12] R. Lalement. Computation as Logic. Prentice Hall International Seriesin Computer Science, 1993.[13] R. Lassaigne and M. de Rougemont. Logique et fondements del'informatique. Hermès, 1993.[14] J.W. Lloyd. Foundations of logic programming. Springer Verlag , secondedition, 1987.[15] J. Maluszynski and U. Nilsson. Logic programming and Prolog. secondedition, J.Wiley and sons, 1995.[16] C. Paulin-Mohring. Inductive de�nitions in the system coq, rules andproperties. Research Report 92-49, LIP, ENS-Lyon, December 1992.[17] J. Robinson. A machine oriented logic based on the resolution principle.J. ACM, 12(1):23�41, jan. 1969.22

[18] J. Rouyer. Développement de l'algorithme d'uni�cation dans le calculdes constructions avec types inductifs. Research Report 1795, INRIA,Lorraine, Novembre 1992.[19] M.H. van Emden and R.A. Kowalski. The semantics of predicate logicas a programming language. J. ACM, 23(4):733�742, october 1976.

23

