Formalization of SLD-Resolution in the calculus of inductive «

MATHIEU JAUME

Juin 1996

N° 96-

Formalization of SLD-Resolution in the
calculus of inductive constructions

MATHIEU JAUME

Abstract

This report presents a full formalization of the operational se-
mantics of definite programs (used in logic programming), given by
SLD-Resolution. The variables renaming process used during a SLD-
derivation is completely defined in an explicit manner. Furthermore,
constructive proofs of two well known lemmas (lifting lemma and switch-
ing lemma) are built from this formalization in the calculus of inductive
constructions.

Formalisation de la SLD-Résolution dans le
calcul des constructions inductives

Résumé

Ce rapport présente une formalisation de la sémantique opéra-
tionnelle des programmes définis (utilisés en programmation logique),
définie par la SLD-Résolution. Les conditions de renommage des vari-
ables mises en jeu lors d’une SLD-dérivation sont complétement explic-
itées. Enfin, les preuves de deux lemmes classiques (lemme de général-
isation et lemme de commutation) sont construites & partir de cette
formalisation dans le calcul des constructions inductives.

Introduction

In [11], first order terms and substitutions have been formalized in the cal-
culus of inductive constructions and a proof of the unification theorem have
been built from [18]. This report follows on from this work, and is con-
cerned with programming languages semantics. Its aim is to formalize SLD-
Resolution and to build the proofs of two classical lemmas in logic pro-
gramming (lifting and switching lemmas) which are proved in many books.
Depending on the reader’s level of understanding, some implicit background
knowledge is expected in these books. The two proofs we present here have
been encoded in the 5.10 version of the proof assistant coq [7] (INRIA) which
allows the interactive construction of formal (or verified) proofs and which
is based on the calculus of inductives constructions. This logical framework,
through a typed A-calculus notation, is used to encode natural deduction
proofs using the Curry-Howard isomorphism ([4], [9], [6], [12], [13]) which
establishes a strong relationship between proofs and typed A-terms. Note
that inductive definitions are also allowed in this proof assistant [16]. In this
way, in our proofs, all objects and properties are explicitely defined as well as
all hypothesis we need for these proofs. Each step of a proof also explicitely
results from definitions or applications of induction principles, lemmas, the-
orems or axioms (of course, in this report, we omit some “minor” details).
This makes a difference from the initials proofs which can be found in many
books on logic programming. As we will see, the main difficulty of this work
concerns the definition of the variables renaming process used in a SLD-
derivation. Foundations of logic programming can be found in [2], [3], [5],
[8], [19], [10], [12], [13], [14], [15], [17] ; most notations used here come from
[12] and [2].

1 Terms and substitutions

In this section, we give the main definitions and the unification theorem,
formalized in [11]. Next, we prove some “technical” lemmas used in the
following.

Given a signature ¥ (u.e. a set with an arity function ar : ¥ — N) and
a countably infinite set X of variable symbols, terms are inductively defined
as follows (to get an infinite number of variable and function symbols, we
index them over the natural numbers):

Definition 1.1 (Terms) The set of terms, Tx[X], built over ¥ U X, is
inductively defined by:

1. If # is a variable symbol in X, then tv(z) is a term.

2. If f is an n-ary function symbol in ¥, and [a list of n terms, then
tf(f,1) is a term.

This definition also introduces the dependent type L,[X] of lists of terms of
length n. These two sets are specified in the system coQ using the definition
of mutually recursive inductive types, as follows:

Mutual inductive Term : Set :=

tv : var -> Term |

tf : (f:fun)(list_term (arity Lar £)) -> Term

with list_term : nat -> Set :=

nil : (list_term 0) |

cons: (n:nat)Term -> (list_term n) -> (list_term (S n)).

The induction principle generated by this definition is:

Induction on Tx[X] (resp. L,[X])
Let P be a property on Tx[X] and Fy a property on Il,enL,[X]. If the
following conditions hold:

1. Vv e X P(tv(v))
2.V €S Vi€ LugpX] (Polax(£), 1) = PUES D))
3. Py(0, nil)

4. Vn e N Vit e Ty[X]
P(t) =Vl e L,[X] Py(n,l) = Py(n+ 1,cons(n,t,1))

then:
Vt € Is[X] P(t) (resp.Vn € NVIe€ L,[X] Fy(n,l))

Therefore, when we prove a property on terms, we prove a similar property
on lists of terms.

Definition 1.2 (Substitutions) S7[X] is the set of functions from X to
Ts[X].

Definition subst := var -> Term.

Each substitution s in S7[X] is associated with two mutually recursive func-
tions, Subst_t(s) and Subst_l(s), respectively from Tx[X] to Tx[X] and from
L,[X] to L,[X], defined as follows:

1. V2 € X Subst_t(s, tv(z)) = s()
2. Vf € Vi€ LuplX] Subst_t(s, tf(f,1)) = tf(f, Subst (s, 1))
1. Subst (s, nil) = nil
2.Vt € Ts[X] Vi€ L,[X]

Subst_l(s, cons(n, t,1)) = cons(n, Subst_t(s, t), Subst_I(s, 1))

In the following, these two functions will just be written s. Let us now
summarize some of the classical properties on substitutions.

The domain and the range of a substitution s are defined by:
o Vz € X (s(z)#tv(z)= 2 € Domain(s))
e Ve XVyeX ((y€Domain(s) Az € s(y)) = a € Range(s))

The substitution s is relevant to the term ¢ if all variables which occur either
in the domain of s or in the terms from the range of s also occur in ¢. This
definition is extended to lists of terms.

The substitution s is tdempotent when:
Ve e X s(s(z)) =s(z)
We introduce a preorder on substitutions as follows:
51 < sy if dsVe e X s(s1(x)) = s2(2)

This preorder induces an equivalence relation on substitutions: sy and s, are
called variants if s; < s9 and s3 < s4.

We now establish the following lemmas:
Lemma 1.1 Let s be a substitution.

1. If no variable occurring in the terms from the range of s, also occurs
wn the domain of s, then s 1s an i1dempotent substitution.

2. If s 1s an idempotent substitution, then no variable occurring in the
domain of s also occurs in the terms from the range of s.

PROOF: (1) : Let = be a variable symbol, it suffices to prove:
Voe X (ve€s(z) = v ¢ Domain(s))

Let v be a variable symbol which occurs in s(z), two cases are possible. If
z € Domain(s), then, by definition, v € Range(s) and, by hypothesis, v
doesn’t occur in the domain of s. If 2 ¢ Domain(s), then we have s(s(z)) =
s(z) = tv(a). This settles the claim.

(2) : Let @ be a variable symbol which occurs in the terms from the range of
s. By definition, there exists a variable symbol v, occurring in the domain
of s, such that 2 € s(v). If z occurs in the domain of s, then we get
s(s(x)) # s(x), which is contradictory to the hypothesis. o

Lemma 1.2 Let s and r be two idempotent substitutions and | a list of
terms. If r is relevant to s(l), then 8 = Az.r(s(x)) is an idempotent substi-
tution.

PrOOF: By lemma 1.1.1, it suffices to prove:
Ve € X (2 € Range(f) = 0(x) = tv(z))

Let = be a variable symbol which occurs in the terms from the range of
6. By definition, there exists a variable symbol y € Domain(#) such that
x € 0(y). Let us prove that z doesn’t occur in the domains of r and s.
If # € Domain(r), then, seeing that r is an idempotent substitution and by
lemma 1.1.2, we have 2 ¢ Range(r). Two cases are possible. If 2 € s(y), then
x cannot occur in the domain of r (because z € r(s(y)) and = ¢ Range(r))
which is contradictory. If ¢ s(y), then @ doesn’t occur in r(s(y)) (because
x ¢ Range(r)) which is also contradictory. So, we get @ ¢ Domain(r).
Suppose now that z occurs in the domain of s. By lemma 1.1.2, we have
x ¢ Range(s). First, let us prove that ¢ Range(r). For this, suppose
x € Range(r). Seeing that r is relevant to s(/), = occurs in s(/). Hence,
from 2 € Domain(s), it follows that 2 € Range(r) which is contradictory.
Therefore, from 2 € r(s(y)), we get € s(y). Now, we can establish z €
Range(s) (because z occurs in the domain of s) which is contradictory. This
concludes the proof. o

We present now the main result, formalized in [11]. First, we introduce
the notion of unification. Let t; and t5 be two terms. If for a substitution
s, we have s(t;) = s(t2), then s is called a unifier of t; and t; and ¢; and ¢,
are said to be unifiable. s is called minimal if for each unifier s’ of ¢; and ¢4,
we have s < §’. A unifier s of t; and ¢; is called a most general unifier (or
mgu in short) if it is minimal, idempotent and relevant to ¢; and t3. These
definitions are extended to lists of terms.

Theorem 1.1 (Unification) Given two terms (resp. two lists of terms)
A and B, either A and B cannot be unified or they can and there exists a
most general unifier of A and B.

We terminate this section with two “technical” lemmas used in the following.

Lemma 1.3 If the two substitutions o and 8 are variants, then there exists
a substitution r which satisfies for each term t:

2. for each variable x occurring in 0(t), there exists a variable v such that
r(z) = tv(v) (r can be viewed as a variable renaming).

PROOF: Let t be a term. By hypothesis:
c<0=3du wmo=2=0

So, we get pyo(t) = 6(t). In the same way:
0<o=3du; wb=o

So, we get ugf(t) = o(t). Hence, r exists: r = pg. Moreover, we have
p1(p2(0(t))) = 6(¢). Now, let us prove that:

Ve (z€f(t)=Tv pa(z)=tv(v))

If z occurs in the domain of pg, then py(pu2(8(2))) = 6(x) and pa(x) # tv(z).
So, there exists a variable v occurring in the domain of py, such that ps(z) =
tv(v). If 2 doesn’t occur in the domain of gy, then v exists, this is . o

Lemma 1.4 Let 0 and 0 be two substitutions, 0 an idempotent substitution
such that 8 = 6105 and t a term. If Ot =t and 03t # t, then there exists a
variable x occurring in t such that @ € Range(6).

PROOF: From 65t # t, it follows that there exists a variable z, which
occurs in ¢, such that #2z # . By hypothesis (6t = t), we have 8z = z, so
we get 0z = 010,20 = x. Seeing that 6,2 # x, there exists a variable v, which
occurs in the domain of #;, such that ;v = and 6,2 = v. By hypothesis,
fy is an idempotent substitution, and we get 6,2 = 6,0,2. Therefore, we
have 016,022 = @ = 66,x. Now, from Oz # x, it follows that 32 occurs in
the domain of 8. This settles the claim. o

2 Syntactic objects in logic programming

We present in this section the objects, built from terms, used in logic pro-
gramming. Assuming for a moment from the reader knowledge of the se-
mantics for first order logic, we give an idea of the next formal definitions.

A formula of the form:
Vi(A1V...VA, V=B V...VaB,)
which can be written:
VZ(BiN...ANB,, = A1 V...VA,)

where all A; and B; are atoms, is a general clause. Henceforth, we’ll use the
following clausal form:

Ah...,AnFBl,...,Bm

If a clause has only one conclusion (n = 1), then it is called a definite clause
(0 < m):
A+ B17 ey Bm

and when the set of premises of a definite clause is empty (m = 0), we call
it a unit clause:

A~

When the set of conclusions of a general clause is empty (n = 0), we call it
a negative clause or a definite goal or a request:

— B17 ey B,
which can be written:
Vi (=ByV...VaB,) or —3F(BiA...AB,)

A definite program is a finite set of definite clauses. A Horn clause is either
a definite clause or a negative clause.

We now consider a pair of disjoint signatures 3 and 3. The signature
> = Yy UZX, where ¥ is a countably set of function symbols and ¥, a
countably set of relation (or predicate) symbols is called a predicate calculus
signature.

Definition 2.1 (Atoms) The set Atx[X], of atoms, is inductively defined
as follows: if p is an m-ary predicate symbol in X, and [a list of n terms,
then p({) is an atom.

Inductive atom : Set :=
pl : (p:predic)(list_term (arity_p p)) -> atom.

We can apply a substitution to an atom as follows:
Vs € Sr[X] Vpe X, Vi€ Lyp[X] s(p))=p(sl))

Two atoms a; = p1(l1) and ag = p3(lz) are unifiable if p; = py and if there
exists a most general unifier of the lists {; and [5.

A request is a finite sequence, possibly empty, of atoms.
Definition 2.2 (Request) Ryx[X]is inductively defined by:

Ry [X] = ry | ¢, (At [X], Rx][X])
Inductive request : Set :=

true_req : request |
cons_req : atom -> request -> request .

The classical functions on lists are defined for requests:

e length of a request

le(r) = 0 ifr=ry
B\ = T4+ 1g(r) ifr=c.(a,r)

e concatenation of two requests

o 1 — ro if r1 =ry
L= e er(a,r' <. rg) ifry = ¢ (a,r’)

e (n+ 1)-th atom of a request
a ifr=ry

- a’ ifn=0 .
" { (") 1o ifn >0 ifr = ¢ (1)

e replacing the (n 4 1)-th atom of a request by a request

rg ifr=ry
rin < ri = rq <, 1 ifn=0 .. ;o
{ c(d ' n—1+ry]) ifn>0 ifr=e(a,r)

We can apply a substitution to a request as follows:

_ rg ifr=ry

s(r) = { cr(s(a),s(r)) ifr=c(a,r)

Definition 2.3 (Clauses) Cx[X] = Atx[X] x Rg[X].

Vs € Sp[X]

Definition clause : Set := (atom*request) .
We can apply a substitution to a clause as follows:
Ve=<a,r>c Cx[X] Vs e Sp[X] s(c) =<s(a),s(r)>
Definition 2.4 (Definite programs) Psx[X]is inductively defined by:
Pe[X] = By | cp(Ce[X], Pe[X])
Inductive program : Set :=

nil_pgm : program |
cons_pgm : clause -> program -> program .

3 SLD-Resolution

Definite programs compute through a combination of two mechanisms: re-
placement and unification. This form of computing is a specific form of
theorem proving, called SLD-Resolution (for Selection Linear Definite) and
based on resolution: an inference rule which is particularly well-suited to
automation on a computer. This way gives the operational semantics of
definite programs which describes what can be executed.

3.1 Resolution and transitions

The resolution principle (or cut rule) is an inference rule, which defines a

deductive relation, written ngc, on Cx[X] x Ry[X] x Rx[X]. Let C be the
definite clause:

A — A, A,

N~ 1t

ct o
and R the request < Lg,...,L,. We suppose here that the clause C' is
renamed with a variable renaming r such that no variable occurring in r(C')
also occurs R. The request R’ is obtained from R and r(C) (or R’ is a

resolvent of r(C') and R), if the following conditions hold:
L. L, is an atom which occurs in R, written R/, (0 <n < ¢q).
2. 6 is a most general unifier of L,, and r(A).
3. R is the request <— §(Lo,...,Lp—1,7(A1),...,7(Ap), L1, .-, Lyg),
written 0R[n < r(C7)].

This resolution step will be written R e OR[n < r(C7)]. In this way,

the resolution principle can be viewed as a rule which moves from a state to
another.

Definition 3.1 (Resolution state) A resolution state is a pair p.R, where
p is a substitution and R a request.

Definition state : Set := (subst * request).

We can now define inductively the set I' of transitions. For this, only one
constructor is used, which links two states. A predicate on I' is defined,
which allows to consider transitions satisfying the “rule”

0R,, = 0r(CT)

"I 0p ORI — r(C)]

p.R

So, in each resolution step, two choices are made: the choice of the selected
atom and the choice of the input clause whose head unifies with the selected
atom.

The clause C' is renamed with the renaming substitution r, which is an
element of a set defined as follows:

Definition 3.2 (Renaming substitutions) Sx[X] is the set of functions
from X to X.

Definition rename := var -> var .

The classical definitions of properties on substitutions are extended to Sx[X].
We now introduce a predicate Sx on this set.

Definition 3.3 (Sx) A renaming substitution r in Sx[X] satisfies the pred-
icate Sy if:

1. Yo € Domain(r) Yy € Domain(r) (z#y= r(z)#r(y))

2. No variable occurring in the domain of r also occurs in the range of r
(r is idempotent).

We now define, more precisely, the notion of valid transitions.

Definition 3.4 (Valid transitions) The transition:

n,r,C

p.R = 0p.OR[n r(C7)]

is called a valid transition, if 8R[n < r(C'7)] is a resolvent of r(C') and R
and if the renaming r used, satisfies the following conditions (called stan-
dardization apart):

H1 r satisfies the predicate Sx.

H2 r renames all the variables which occur in the clause C' and only these
variables.

H3 No variable occurring in the range of r also occurs in the domain of p.
H4 r(C') does not have a variable in common with R.

Furthermore, p and R must satisfy:
H5 pR=R

In order to be able to build derivations from valid transitions, we prove that
the final state of a valid transition satisfies the condition H5. For this, we
first prove the following lemma.

Lemma 3.1 If p.R s 0p.0R[n « r(C7)] is a valid transition, then

pOR[n r(C7)] =0R[n «+ r(C7)].

ProoOF: It suffices to prove:
Vee X (z€bR[n«+ r(C7)] =z ¢ Domain(p))

Let 2 be a variable symbol which occurs in §R[n < r(C7)], two cases are
possible. Either z € R[n < r(C7)], or x € Range(#). In these two cases,
seeing that # is a most general unifier of R/, and r(C*), we know that 6 is
relevant to these two atoms. Hence, either 2 € R, or € r(C). In the first
case, by condition Hb, we can conclude. In the second case, by conditions
H2 and H3, we can also conclude. o

We are now in position to prove the following lemma.

Lemma 3.2 If p.R (i 0p.0R[n « r(C7)] is a valid transition, then

0pOR[n « r(C7)] =0R[n «+ r(C7)].
Proor: By lemma 3.1, we have:
0p8R[n « r(C7)] = 00R[n + r(C7)]
By definition, 8 is an idempotent substitution, and we get:
0pfR[n < r(C7)] = 0R[n < r(C7)]

which concludes the proof. o

3.1.1 SLD-Resolution and derivations

A finste valid SLD-Deriwation is a finite sequence of valid transitions of the

form:
n9,rq,Co ng_1:7k=1,0k_1

po-Ro =7 L. = pr- Ik
also written pg.Rg = pi-Ri. Therefore, a SLD-derivation is defined by:

e a finite sequence Ry, Ry, ..., Ry of requests.

e a finite sequence roCy, r1CY, ..., rr_1Cr_1 of variants of clauses from
a definite program P.

e a finite sequence pg, p1, ..., pg of substitutions.
such that for all ¢« > 1:
e RR;is a resolvent of R;_{ and r;_1C;_1.
e 1;C; does not have a variable in common with Ry, roCo, ..., ri—1Ci_1.

First, we introduce the syntactical definition of derivations.

10

Definition 3.5 (Derivations) The set D; is iductively defined, from I, as
follows:

Dy = dy(I) | d'(Dy, T)

Inductive deriv:Set :=
deriv_init : trans -> deriv |
deriv_cons : deriv -> trans -> deriv.

Next, we define a valid composable pair of transitions.

Definition 3.6 The two transitions:
el LN e} and e? i efc

2

form a valid composable pair of transitions if they are valid and if e} =e;.

As we remarked earlier, the derivation

n9,rq,Co g _1:7k=1,0k_1

is valid if each r;C; is a clause such that r;C; does not have any variables
which already occur in the input clauses used in the derivation up to R;_;.
So we introduce a function on D; which computes the sequence of variables
which occur in the input clauses used in a derivation.

Definition 3.7 () The function @ on Dy is recursively defined by:

1. if d = di(tp), then 9(d) = var(r(c)) where r and ¢ are respectively the
renaming and the clause used in ¢g.

2. if d = d'.(do,t0), then 9(d) = 9(dy) >, var(r(c)) where r and c are
respectively the renaming and the clause used in tg (p<, is a concate-
nation function on lists of variables).

We now define valid derivations.

Definition 3.8 (Valid derivations) Valid derivations are defined by a re-
cursive predicate on D; as follows:

1. The derivation d = d.(t) is valid if ¢ is a valid transition.

2. The derivation:
ei:p.RQekgef
N—_— ————
do

d=dl (do to)

is valid if the following conditions hold:

e dj is a valid derivation.

11

e the pair of transitions formed by the last transition of dy and g
is a valid composable pair of transitions.

e the renaming r used in ¢y satisfies:
Vee X ((z€d(dy) VzeR)= 2 ¢Range(r))

We now establish the three following lemmas on variables which occur in a
valid derivation. Henceforth, s;4 stands for the substitution Az.tv(z).

Lemma 3.3 [fd: s;4.R > 0.R is a valid derivation, then o is an idempo-
tent substitution.

ProOOF: We proceed by induction on the derivation d.
For d = di(t):
Sid.R ng@’ U.R/

By definition, ¢ is an idempotent substitution.
For d = d'.(dy, to):
C
Sid.R i} 00.R0 ng 000.R/

By induction hypothesis, 65 is an idempotent substitution. By definition,
is a most general unifier of Ry, and r(CT), hence 6 is relevant to the list of
terms [obtained by concatenation of lists of terms coming from these two
atoms. By lemma 3.2, §gRy = Ro and by condition H3 on ¢g, or(Ct) =
r(CT). Therefore, 6 is also relevant to the list s(/). Consequently, by lemma
1.2, 86, is an idempotent substitution. o

Lemma 3.4 Ifd:pu.R =S 6u.R is a valid derivation, then if x is a variable
symbol occurring in R', then & occurs either in R, or in 9(d).

ProOOF: By induction on d
For d = d'(t):
pw.R s 011.0R[n < r(C7)]

If 2 € OR[n + r(C7)], two cases are possible. In the first case, z € R, either
x € R which allows to conclude, or z occurs in the terms from the range of
¢. In this case, because, by definition, 8 is relevant to R, and r(CT), either
x € Ry, or x € r(CT), which settles the claim. If & € 6r(C~), then either
z € r(C'~) which concludes the proof, or 2 € Range(#) and a similar proof
can be obtained.

For d.(dg,to):
pRo 5 pu.R "5 0pp.bR[n — r(C7)]

Let 2 be a variable occurring in OR[n < r(C7)], two cases are possible:
either # € R, or & € Or(C~). In the first case, two subcases are possible. If
x € R, then the induction hypothesis allows to conclude. If # € Range(9),

12

then, because 6 is relevant to i/, and r(CT), either @ € R/, and then z € R
which allows to conclude by induction hypothesis, or € r(C*) which also
concludes the proof. If z € 0r(C™), then, either 2 € r(C™) which concludes
the proof, or 2 € Range(#) and a similar proof can be obtained. o

Lemma 3.5 Ifd: s;q.R = 0.R' is a valid derivation and if x is a variable

symbol occurring either in the domawn of o, or in the terms from the range
of o, then either x € R, or x € ¥(d).

PRrOOF: By induction on d, in the same manner of the above lemma. ¢

4 Lifting lemma
Lemma 4.1 (Lifting) If s;s.nR = p.Ry is a valid derivation, where:
e 1) 15 a substitution relevant to R

e no variable occurring in the range of a renaming used in this derwation
also occurs in R

then there exists a substitution o such that o < pn and such that:
s;g.R = 0.Ry
15 a valid derwation where for a request Ry we have:
pnlRy =Ry and oR;= R,

Lemma lifting : (d:deriv)(r:request)(eta:subst)
(Deriv_ok d)
->
(Fst (state_init_d d))=([x:var](tv x))
->
(Snd (state_init_d d))=(subst_req eta r)
->
(over_under_r eta r)
->
((t:trans) (IS_IN.D t d)->
((x:var) (IS_IN_LV x (var_req r)) -> ~(rrange (sr_trans t) x)))
->
(Ex [dO:deriv]
(((t1,t2:trans)(IS_IN_D t1 d)->(IS_IN_D t2 d0)->

(p_trans t1)=(p_trans t2)) /\
(Deriv_ok d0) /\
(1ist_var_c_d d0)=(list_var_c_d d) /\
(Fst (state_init_d d0))=([x:var] (tv x)) /\
(Snd (state_init_d d40))=r /\

(Ex [rf:request]

13

((Snd (state_end_d d0))=(subst_req (Fst (state_end_d d0)) rf) /\
(Snd (state_end_d d))=
(subst_req (Fst (state_end_d d)) (subst_req eta rf)))) /\
(less_subst_t (Fst (state_end_d d0))

([x:var] (Subst_t (Fst (state_end_d d)) (eta x)))))).

Proor: We proceed by induction on the derivation coming from s;4.nR.
Initial step:

Sig-nR i p.pn R[n « r(C7)]
Ry
By definition, we have pn R, = pr(CT) and, by hypothesis, we have nr(C') =
r(C). Hence, we get pnR,, = pnr(CT). Therefore, R/, and r(C*) are
unifiable and there exists a most general unifier o of these two atoms. So,
we get 0 < pnand we can easily prove the validity of the following derivation:

sig-R " oo R[n « r(C7)]
———
Ry

Inductive step:
siq.nRo = p.Ry i Op.0R1[n «+ r(C7)]
do

By induction hypothesis, there exists a substitution p, such that p < pn and
such that:
Sid-RO i> ,O.RQ

is a valid derivation and where, for a request R’, we have:
unR' =Ry and pR = R,

Since p < pn, there exists a substitution € such that ep = pn. By lemma 3.3,
p is an idempotent substitution. Let us first prove that punyr(C) = r(C') and
pr(C) =r(C).

If z is a variable which occurs in the domain of un, then either x occurs in
the domain of u, or in the domain of 7. In the first case, then, by lemma 3.5,
either @ occurs in Ry, or in 9(dp), and consequently, by hypothesis, # cannot
occur in 7(C'). In the second case, by definition of the renaming process used
in a valid derivation, z cannot occur in r(C'), this settles punr(C) = r(C).
Since pnr(C) = r(C), we get epr(C) = r(C). Suppose pr(C) # r(C), by
lemma 1.4, there exists a variable which occurs in #(C') and in the terms
from the range of ep = un. By condition H2, z € r(C) and then z occurs
in the range of r. Two cases are now possible: either # € Range(y), or
x € Range(n). In the first case, by lemma 3.5, « occurs either in nRy, or
in ¥(dy) which is contradictory to the renaming process used. In the second

14

case, by hypothesis, & occurs in Ry which induces the same contradiction.
This settles pr(C) = r(C).
By definition, @ satisfies:

OR:,, = or(CT)

Hence:

OunRy, = or(CT)
Since pnr(C) = r(C'), we get:
OunR),, = Opnr(CT)

Therefore:

OepR), = fepr(CT)
Since pr(C') = r(C), we get:
f=pR), = 0= (CT)

and now:

fcRy,, = ber(CT)

Consequently, Ry, and r(CT) are unifiable and there exists a most general
unifier o of these two atoms such that ¢ < 8. We can now easily prove that
the following derivation:

si4.Ro = p.Ry il op.cRy[n + r(C7)]
is valid and we also get:
oRs[n + r(C7)] = apR'[n + r(C7)]

and

OR [n r(C7)] = 0unR'[n « r(C7)]

Furthermore, since ¢ < ¢, there exists a substitution v such that vo = ¢
and we get:
Oun = bep = vop

which settles ap < Qun. o

For the Ry = ry case, there is:

Corollary 4.1 Ifs;3.nR > p.rg 15 a valid dervation, then for a substitution
o < pn, the derwation s;q.nR — o.ry is also valid.

15

5 Switching lemma

At each resolution step of a derivation, an atom and a clause must be se-
lected. The following well known lemma ensures that the non-determinism
in the choice of atom does not matter: this is called “don’t care” non-
determinism (however, the choice of input clause is done by a “don’t know”
non-determinism).

Lemma 5.1 (Switching) If during a valid derivation, two atoms A and B
are successively selected, then they can also be selected in the reverse order
and the derived states are the same up to renaming of variables.

Lemma switching : (d:deriv)(t1:trans)(t2:trans)
(Deriv_ok (deriv_cons (deriv_cons d t1) t2)) ->
(1e (plus (n_trans t1)
(Length_r (body_c (c_trans t1)))) (n_trans t2))->
(Fst (state_init_d d))=([x:var](tv x)) ->
(Ex [t3:trans]
(Ex [t4:trans]
((Deriv_ok (deriv_cons (deriv_cons d t3) t4)) /\
(n_trans t3)=
(S (minus (n_trans t2) (Length_r (body_c (c_trans t1))))) /\
(n_trans t4)=(n_trans t1) /\
(Ex [r:subst]
((Snd (state_end_d (deriv_cons (deriv_cons d t1) t2)))=
(subst_req r (Snd (state_end_d
(deriv_cons (deriv_cons d t3) t4)))) /\
((x:var)
(IS_IN_LV x (var_req
(Snd (state_end_d (deriv_cons (deriv_cons d t3) t4)))))
-> (Ex [v:var] (r x)=(tv v)))))))).

PRrOOF: The proof presented here follows exactly the formal proof devel-
opped in the proof assistant coqQ. First, we proceed by induction on the two
transitions, next we prove some “cut-lemmas” which allow to conclude.

INDUCTION ON TRANSITIONS
The derivation can be written: d’(d'(d,t,),t2)

tl . tz .
* nlvrlvcl n27r2702
s:q-Ro — p.R — 0p.0R, — clp.c Ry
N—— ——

d

where §Ry = 0R[ny < r1(C])] and Ry = (0R1)[ne < r2(C5)].
Furthermore, we suppose the first selected atom is before the second in the
request R, so we have:

n+1g(C7) < ng

16

“CUT-LEMMAS”

In the switching lemma proof, we’re going to use many times the same asser-
tions. Instead of proving them every time, we first prove them using the Cut
tactic. In this way, we can use them at any time during the proof without
proving them again. Hypothesis of these cut-lemmas are the same as the
switching lemma’s hypothesis.

Cut-Lemma 5.1 proCy = ryCly

PROOF: Let us prove that if z is a variable which occurs in the domain
of p, then z doesn’t occur in r3C5. If z € Domain(p), then, by lemma 3.5,
either z occurs in Ry or, in ¥(d). In these two cases, by definition of the
renaming process used in a valid derivation, z cannot occur in roCy. This
settles the claim. o

Cut-Lemma 5.2 ¢80 is a unifier ofR/n2_lg(C_) and roC5 and there exists
1

+1
a most general unifier p of these two atoms such that y < o8 (i.e. there exists

a substitution € such that ey = 00).
PROOF: By definition (transition ¢3), we have:
obRy,, = ory(CF)
By condition H3 on ¢z, we have 8pry(C3) = ro(C3). Hence:
obRy,, = alpra(CF)
By cut-lemma 5.1, we get:
obRy,, = obr;)
From 0R; = 0R[ny < r(C7)] and ny +1g(C]) < ng, it follows that:
OR1), = 08 s g07)01

and now:

which allows to conclude. o
Cut-Lemma 5.3 uriCy = r (]

PROOF: Let us prove that if z is a variable which occurs in r{(Cy), then
z does not occur in the domain of u. By cut-lemma 5.2, p is relevant to:

R, gy and ma(CF)

Hence, z occurs in one of these two atoms. If z occursin R, then, by condition
H4 on t1, z cannot occur in r1(Cy) which is contradictory. Else, if z occurs
in 72(C5), then z occurs in the range of 3, and z cannot occur in r{(CY).
This settles the claim. o

17

Cut-Lemma 5.4 The substitution < 1s a unifier of:
ri(CF) and (pRng =1g(CT) +1 < r2(C3)]) /my

and there exists a most general unifier v of these two atoms such that v < e
(i.e. there exists a substitution & such that v = ¢€).

PROOF: By definition (transition ¢;), we have:
0R,,, = 0ri(CT)
From nq +1g(CT) < ng, it follows that:
Rpny = (Rlng —1g(C7) + 1 4= r2(C5)])

and now:

0(R[ny —1g(CT) + 1 ¢ r2(C)]) ny = Or1(CT)

Hence:

o8(R[ny = 1g(CT) + 1 12(Cy)]) jny = 001 (CY)
By cut-lemma 5.2, we have eu = o8, so:

en(Rlny —1g(CT) + 1 ¢ r2(C3)]) jm, = enr1(CY)
By cut-lemma 5.3, we get:

en(R[ny —1g(CT) +1 ¢ ra(C3)]) j, = er1(CY)

thus concluding the proof. o

EXISTENCE AND VALIDITY

By cut-lemma 5.2, we can build the transition t3, seeing that p is a most
general unifier of R/nQ—lg(Cl_)-I—l and ro(Cy). In the same manner, by cut-
lemma 5.4, we can build the transition ¢4, seeing that v is a most general

unifier of (uR[ny —lg(C7) + 1+ ra(C5)]) /, and ri(CH):

t3 .
ny —lg(Cy) + 1,72, Cy _ _
p-R L pp-pkng —1g(C7) + 1 ra(Cy)]
t4 .
n17r1701

pp-pRny —1g(CT) + 1 r(Cy)] — vppvR'[ng < ri(C7)]

R/
Now, let us prove that t3 and ¢4 are valid transitions (we omit here the

immediate conditions H1 and H2).
Condition H3:

18

transition ts: Immediate by cut-lemma 5.1.

transition t4: By cut-lemma 5.3, we have uriC7 = r1C} and by condition H3
on ty, we have priC7 = r1C';. Hence, we get ppriCy = priCy = r1Ch.
Condition H4:

transition t3: Let x be a variable which occurs in R. By lemma 3.4, either «
occurs in Ry, or in ¥(d). In these two cases, by definition of a valid transition,
x cannot occur in roC.

transition t4: Let x be a variable occurring in pR[ny —1g(CT)41 + ro(C3)].
Two cases are possible: either z occurs in the terms from the range of p, or
in R[ny —1g(CT) 4+ 1 < r2(C5)]. In these two cases, by cut-lemma 5.2 and
by definition, either & occurs in R, or in roC5. In this first case, by lemma
3.4, either z occurs in Rg, or in ?(d). Therefore, in all of these cases,
cannot occur in r1C1.

Condition Hb:

transition t3: Immediate by lemma 3.2 (seeing that, by hypothesis, the last
transition of d is a valid transition).

transition ty: Immediate by lemma 3.2 (seeing that, by the above, t3 is a
valid transition).

LINK BETWEEN THE TWO DERIVED STATES
Let us prove there exists a renaming r such that:

r(ocRy) = vR'[ng + ri(CT)]
For this, we first prove the following cut-lemmas.
Cut-Lemma 5.5 vu < 6.

Proor: By cut-lemmas 5.2 and 5.4, we have ep = 06 and &v = . Hence,
we get Evp = o6, which settles the claim. o

Cut-Lemma 5.6 0 < vu (i.e. there exists a substitution ¢ such that (0 =
viL).
Proor: By cut-lemma 5.4, we have:

vpR[nz —18(CT) + 1 ¢ r2(C5)] = vri(CY)
Applying cut-lemma 5.3, we get:

vpR[ny —1g(CT) + 1 ¢ r2(Cy)]pn, = vpuri (CY)
From nq +1g(C7) < ng, it follows that:

Rpn, = (Rlng —1g(C7) + 1 = r2(C5)]) /m,

and now:
vl = I/,uf‘l(CiI_)

Therefore, v is a unifier of R/, and ri(C). By hypothesis, 8 is a most
general unifier of these two atoms (transition ¢;), which settles 8 <wvpu. o

19

Cut-Lemma 5.7 0rqCy = roCs

PROOF: Let us prove that if z is a variable which occurs in r9(Cy), then
z does not occur in the domain of §. By hypothesis, 6 is relevant to R/,, and
r1(C), hence, z occurs in one of these two atoms. If occurs in R/, then,
by lemma 3.4, z occurs either in Ry, or in ¥(d) and then x cannot occur in
the range of ry (i.e. cannot occur in ro(Cy)). If 2 occurs in r1(C}), then z
cannot occur in r9(Cy). This concludes the proof. o

Cut-Lemma 5.8 o < ((i.e. there exists a substitution § such that 6o = ().
PrROOF: Since t3 is a valid transition, we have:
PR giomyer = Hr2(CY)
Hence:
VR giomyer = vir2(CY)
Applying cut-lemma 5.6, we get:
COR,,, ty(cmypr = COr2(CY)

and by cut-lemma 5.7 we get:

CORy 1g(cm)41 = Cra(CY)

Therefore, ¢ is a unifier of 4R
1 < ng, it follows that:

Jna—lg(CT)+1 and rQ(C;'). From ny +1g(CT) +

0R 1= 0R[n1 — rlCl_]n2 = 0R1/n2

/2 —lg(CT)+

By hypothesis (transition ¢3), o is a most general unifier of these two atoms,
this leads to the conclusion that ¢ < (. o

Cut-Lemma 5.9 00 < vpu.

Proor: By cut-lemma 5.6, we have vpu = (6. Hence, by cut-lemma 5.8,
we get vy = 606 which settles the claim. o

By cut-lemmas 5.5 and 5.9, we can establish that the two substitutions
vu and o8 are variants. Let us now relate the two derived states. First, we
have:

UR2

= U(0R1)[n2 — T‘QCQ_]

= 0fRq[ng + 0r2C5]

= O'ORl[ng — T‘QCQ_]

= o(0R[ny « r1Cy])[ne < r2C5]

= 0f(R[ny « riC{])[ng < 0r2C5]
gb(R[ny < rCT])[n2 < r2C5] (by cut-lemma 5.7)

(by cut-lemma 5.7)

20

Moreover:

vR'[ng + rCy]

= v(pRny +1g(C7) +1 ¢ 1205)[m = Y]

=vuRng +1g(CT) + 1 + r2C5][0y pri1CY]

=vuR[ny +1g(CT) + 1 rC5)[ng — mCy] (by cut-lemma 5.3)
=vu(Rny + rCy])[ng < rCy]

Therefore, by lemma 1.3, there exists a renaming r, which satisfies the claim.
This concludes the lifting lemma’s proof. o

Conclusion

SLD-Resolution defines a relation satisfying several important properties.
The logical ones are soundness and completeness. Two others are particu-
lar to this form of computation: lifting and switching lemmas. In order to
formalize SLD-Resolution, we constantly used the formal development com-
ing from [18] and [11], notably the definition of terms and the unification
theorem on these terms. Theories library of the proof assistant coq have
been also used, thus showing the interest that a proofs library be provided.
The main difficulty of this development was to define explicitely the way
clauses have to be renamed in a SLD-Derivation, and to find the additional
conditions on this renaming we have to assume in the lifting lemma’s proof.
The switching lemma’s proof is rather tedious but is not difficult to obtain.

Like SLD-Resolution for clauses, 3-reduction defines a relation for A-
terms and it may be interesting to compare properties of these relations.
Whereas f-reduction is confluent, SLD-Resolution just satisfies the “switch-
ing” property which is weaker than confluence. Furthermore, the renaming
process used in a SLD-derivation can be viewed as an implicit a-conversion:
the renaming is made explicit and allows a full formalization of a SLD-
derivation along the lines of the the calculus of explicit substitutions [1] for
B-reduction.

These two proofs are made from objects which are syntactically defined.
Interpretations of these objects are now under consideration, in order to
prove the soundness and completeness of SLD-Resolution in the calculus of
inductive constructions.

References

[1] M. Abadi, L. Cardelli, P.L. Curien, and J.J. Levy. Explicit substitutions.
Journal of functional programming, 1(4):375-416, 1991.

[2] K.R. Apt. Logic programming. In Handbook of theoretical computer
science, pages 493-574. Ed. J. van Leeuwen, 1990.

21

3]

4]

[5]

[6]

7]

3]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

K.R. Apt and M.H. van Emden. Contributions to the theory of logic
programming. J. ACM., 29(3):841-862, july 1982.

H.P. Barendregt. Lambda calculi with types. In Handbook of Logic in
Computer Science, volume II. Oxford University Press, 1992.

A. Colmerauer, H. Kanoui, and M. Van Caneghem. Prolog, bases
théoriques et développements actuels. 757, 2(4), 1983.

T. Coquand. An introduction to type theory. In Logique et Informatique:
une wntroduction, pages 117-135. INRIA, b. courcelle edition, 1991.

C. Cornes, J. Courant, J.C. Fillidatre, G. Huet, P. Manouryand,
C. Paulin-Mohring, C. Munoz, C. Murthy, C. Parent, A. Saibi, and
B. Werner. The Coq Proof Assistant Reference Manual Version 5.10.
INRIA-CNRS-ENS, 1995.

K. Doets. From logic to logic programmang. Foundations of Computing
Series. MIT Press, 1994.

J.Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Number 7
in Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press, 1990.

C.J. Hogger. Essentials of Logic Programmang. Clarendon Press Oxford,
1990.

M. Jaume. Unification des termes du premier ordre dans le calcul
des constructions inductives. Research Report 96-58, CERMICS, April
1996.

R. Lalement. Computation as Logic. Prentice Hall International Series
in Computer Science, 1993.

R. Lassaigne and M. de Rougemont. Logique et fondements de
Uinformatique. Hermes, 1993.

J.W. Lloyd. Foundations of logic programming. Springer Verlag , second
edition, 1987.

J. Maluszynski and U. Nilsson. Logic programming and Prolog. second
edition, J.Wiley and sons, 1995.

C. Paulin-Mohring. Inductive definitions in the system coq, rules and
properties. Research Report 92-49, LIP, ENS-Lyon, December 1992.

J. Robinson. A machine oriented logic based on the resolution principle.
J. ACM, 12(1):23-41, jan. 1969.

22

[18] J. Rouyer. Développement de I’algorithme d’unification dans le calcul
des constructions avec types inductifs. Research Report 1795, INRIA,
Lorraine, Novembre 1992.

[19] M.H. van Emden and R.A. Kowalski. The semantics of predicate logic
as a programming language. J. ACM, 23(4):733-742, october 1976.

23

