
Spurious velocities in the steady �ow of an incompressible�uid subjected to external forces 1J.-F. Gerbeau, C. Le BrisENPC-CERMICS, La Courtine 93167 Noisy-Le-Grand Cedex, FranceM. BercovierThe Hebrew University of Jerusalem, IsraelAbstractWe show that a non physical velocity may appear in the numericalcomputation of the �ow of an incompressible �uid subjected to externalforces. A distorted mesh as well as the use of a numerical method whichdoes not rigorously ensure the incompressibility condition turn out tobe responsible for this phenomenon. We illustrate it with numericalexamples and we propose a projection method which improves theresults. RésuméNous montrons qu'un champ de vitesse sans signi�cation physiquepeut apparaître dans la simulation numérique d'un �uide incompres-sible soumis à des forces extérieures. Un maillage déformé ainsi quel'utilisation d'une méthode n'assurant pas rigoureusement la conditiond'incompressibilité s'avèrent être à l'origine de ce phénomène. Nousl'illustrons au travers d' exemples numériques et nous proposons uneméthode de projection qui améliore les résultats.We are interested here in the steady state of one incompressible homoge-neous �uid in presence of a body force. This force may result from a coupling(e.g. magnetohydrodynamic equations or Boussinesq equations) or may bea given external force. For the sake of simplicity we shall only consider herethis latter case.When this force is the gradient of a potential, namely f = r�, andwhen the velocity obeys to the no-slip condition on the boundary of a �xeddomain, we expect to obtain a �uid everywhere at rest. But, as will be seen,numerical simulations which do not ensure rigorously divu = 0 may lead toa non-zero velocity.1Work partially supported by PECHINEY, Direction des Recherches et Développe-ments, France. 1



We give a few examples of this phenomenon in Section 1 and we proposea �rst explanation in Section 2. The deformation of the mesh plays a role inthe observed inaccuracies, but it is not their unique cause.With a general force (f = curl g+r�), we have noticed that the �gradi-ent part� may also produce a velocity �eld which pollutes the physical �ow.We give an example of such a fact in Subsection 1.4. For the practical ap-plications, it is worth noticing that this phenomenon may a fortiori induceimportant numerical errors in coupled problems.Section 3 is devoted to a projection method which eliminates the spuriousspeeds when f = r� (this method could easily be extended to the case of aforce f = r�+ curl g when � is a priori known). In Section 4, we extendthis method in order to reduce the inaccuracy for any f whose decompositionis not a priori known.Let us note that a method close to ours has already been suggested by O.Besson et al. in [1] for a penalty formulation for the pressure. Nevertheless,our presentation allows us to establish a link between the spurious speedsand the deformation of the grid (cf. Appendix A). More precisely, we explainwhy spurious speeds do not appear on a right mesh with some peculiar forces,and we also show that they do appear with some forces even on a right mesh.Moreover, we give an error estimate (cf. Appendix B) which proves that ourmethod improves the results on any meshes.The numerical simulations are performed with the FEM code FIDAP2Version 7.52 and with a home-made code. We use the pairs Q1/P0 andQ2/P1 of �nite elements spaces to approximate the velocity and the pres-sure. It is well-known that the pair Q1/P0 does not rigorously satisfy theLadyzenskaia-Babuska-Brezzi condition and yields a spurious pressure (seeV. Girault and P.-A. Raviart [2] or M.D. Gunzburger [3] for instance). Nev-ertheless, the problem presented here is independent of this fact and occursalso with the elements Q2/P1 which satisfy the LBB condition.1 Some numerical experiments1.1 A free surface problemOur initial motivation was to improve a 2D free surface algorithm. Twoincompressible �uids separated by an interface are subjected to a force f =r�0, with �0(x; y) = 52y2 � 10x. Their densities are 2300 kg/m3 and 2150kg/m3, their viscosity 1.1 m2/s and 2.5 m2/s. We solve the Navier-Stokes2FIDAP is a trademark of Fluid Dynamics International, Inc.2



equations in a box with homogeneous Dirichlet boundary conditions on threesides and u:n = 0 on the fourth side. The steady state interface is a curve�(x; y) = C where C is a constant determined by the conservation of thevolume. The theoretical velocity is zero. Numerically, the position of theinterface is good but we notice the apparition of a vortex (0.2 m/s) in each�uid (�gure 1).In order to understand the problem raised above, we simplify the experi-ment : in the three following tests, we just consider one �uid in a closed box
 with various given forces and we solve the linear Stokes equations :��4u+rp = �f on 
 (1)divu = 0 on 
 (2)u = 0 on @
 (3)We set �=0.01 m2/s and �=1 kg/m3 in the sequel.1.2 One �uid subjected to a constant force fWe assume f is constant and equal to (100; 100) on 
. In Figure 2, weuse Q1/P0 elements and we see that no velocity appears on a right grid(maximum about 0.1e-11 m/s) whereas the velocity reaches 0.83 m/s onbent elements. In Figure 3, very similar results are obtained with Q2/P1elements.This suggests that the deformation of the grid plays a role in the inaccu-racy on the velocity, and may explain the di�culty mentioned in Section 1.1in the case of a free surface (where elements are bent since the mesh followsthe interface in our computation).1.3 One �uid subjected to a force f = r�In this test, we use Q1/P0 element and the force f is equal to r�1 with�1(x; y) = x5 + x4y3 + x2y + y4. The right hand side of Figure 4 showsthat spurious speeds appear on a bent mesh (maximum : 0.19e-1 m/s) butone may see on the left hand side that they also appear on a grid whoseelements are squares (maximum : 0.76e-3m/s). Therefore, the deformationof the mesh makes clearly worse the accuracy on the velocity, but impreciseresults may also appear on rectangular elements.Similar results were obtained with Q2/P1 elements.3



1.4 One �uid subjected to a force f = r� + curl gThe two previous tests deal with a �uid at rest. We now build an experimentwhere the force is the sum of a gradient part and a solenoidal part, therebycreating a non-zero velocity :f = r�+ curl g: (4)In order to enforce the incompressibility and the no-slip condition on theboundary, we set g = g0 with g0 built as follows :A = k[xy(H � x)(W � y)]2; (5)u = curl A; (6)g0 = curl u; (7)where H and W are respectively the height and the width of the 2D box andk is a constant. For the numerical computations, H = W = 1, k = 0:1 and�(x; y) = �0(x; y) = 52y2 � 10x.Note that the velocity u can be analytically computed with (6) and p = �(up to an additive constant).Figure 5 shows the velocity �eld on a mesh with rectangular elements(left hand side) and a comparison between the theoretical �rst componentof the velocity and the numerical one on the straight line y = 0:4 of 
 :the result is very precise (it is di�cult to distinguish the two curves). Thesame test computed on a distorted mesh is presented in Figure 6 with Q1/P0elements and in Figure 7 with Q2/P1 elements : the �ow is perturbated inthe both cases.Remark 1.1 It is worth noticing that, when � = 0 (i.e. the force is diver-gence free), the numerical velocity is very close to the theoretical one bothon rectangular and bent elements. Thus the deformation of the grid seemsto a�ect the velocity essentially in presence of a non divergence free force.1.5 Other experimentsLet us brie�y mention other experiments which lead to analogous conclu-sions.The �ow u de�ned by (6) is the solution of the Navier-Stokes equationsfor the force f = r�0 + curl g0 + u:ru. If we compute the numericalsolution in this nonlinear setting, we observe that spurious velocities appearagain on a bent mesh. 4



Likewise, they appear in many other experiments that we do not detailhere and that involve other boundary conditions, a three dimensional box, atransient �ow.Let us also notice that the inaccuracy seems to increase with the Reynoldsnumber and to decrease with the typical size of the mesh.2 An attempt of explanationLet us recall �rst of all why the �uid is at rest in presence of f = r�.For m � 0, we denote as usual by Hm(
) as the Sobolev spaceHm(
) = fu 2 L2(
);Du 2 L2(
); 8; jj � mgwhere  = (1; 2; 3) is a multi-index and jj = 1 + 2 + 3. For m � 1,Hm0 (
) is the subspace of Hm(
) consisting of functions vanishing on @
.We denote by L20(
) the spaceL20(
) = fq 2 L2(
); Z
 q dx = 0gWe shall suppose in the sequel that f 2 L2(
)2. The Stokes problem(1)-(3) may be formulated in a variational form : to �nd u 2 H10(
)2 andp 2 L20(
) such that8><>: � Z
ru:rvdxdy � Z
 pdivv dxdy = Z
 f :vdxdyZ
 qdivu dxdy = 0 (8)for all v 2 H10(
)2 and q 2 L20(
).In particular, taking v = u, we have :� Z
 jruj2 dxdy = Z
 f :u dx = Z
r�:u dx = � Z
 �divu dxdy = 0; (9)which shows that u = 0 almost everywhere in 
, i.e. the �uid is at rest.Let us notice that the crucial point of this proof is that divu = 0 or,more precisely, that r� is orthogonal (in L2(
)) to u as soon as divu = 0in 
 and u:n = 0 on @
. As we recall hereafter, this property does not holdfor the discrete problem.Following the presentation of V. Girault and P.-A. Raviart [2], we in-troduce for each h > 0, Wh and Qh two �nite-dimensional spaces such that5



Wh � H1(
)2 and Qh � L2(
). The latter is assumed to contain the con-stant functions. We set :Xh = Wh \H10(
)2 = fvh 2 Wh;vhj@
 = 0g;Mh = Qh \ L20(
) = �qh 2 Qh; Z
 qh dx = 0� :The variational problem (8) is then approximated by : �nd uh 2 Xh andph 2Mh such that8><>: � Z
ruh:rvh dxdy � Z
 phdivvh dxdy = Z
 f :vh dxdyZ
 qhdivuh dxdy = 0 (10)for all vh 2 Xh and qh 2 Mh. In the case of f = r�, we obtain as in thecontinuous case : Z
 jruhj2 dx = �1� Z
 �divuh dx (11)but now the right hand side of (11) is not necessarily zero since � doesnot belong to Mh in general. Thus, the approximated velocity is not zero,which may explain the inaccuracies observed in the numerical computationsof Subsections 1.1, 1.2 and 1.3. Moreover, equation (11) shows that theapproximated velocity increases when the viscosity � decreases which hasbeen noticed in the experiments.Let us note that the above considerations do not explain the in�uence ofthe grid. Distorted elements are known to produce inaccuracies (see [4]) butwe are unfortunately not able to derive here a precise error estimate linkingthe spurious speeds together with the deformation of the mesh.Nevertheless, we propose now a way to avoid spurious velocities whenf = r� which will enable us to understand why some results are muchbetter on rectangular elements (at least with some potentials).3 A method to avoid spurious speeds when f = r�In the following developments, we shall suppose, without loss of generality,that R
 � dx = 0. The potentials �0 and �1 of the previous section caneasily be changed to satisfy this property.In order to obtain a zero velocity �eld when f = r�, we suggest thefollowing projection method : 6



First step : We compute �h�, the orthogonal projection in L2(
) of �onto Mh. In other words, we search �h� 2Mh such that :Z
�h�qh dx = Z
 �qh dx (12)for all qh 2Mh.Second step : We replace (10) by this alternative formulation of the Stokesproblem : �nd uh 2 Xh and p 2Mh such that8><>: � Z
ruh:rvh dxdy � Z
 phdiv vh dxdy = �Z
�h�divvh dxdyZ
 qhdivuh dxdy = 0 (13)for all vh 2 Xh and q 2Mh.Thus we haveZ
 jruhj2 dx = �1� Z
�h�divuh dx = 0 (14)since �h� 2Mh. Therefore uh = 0.We have tested this method (with a home-made code) in the experimentsof Subsections 1.2 and 1.3 : the spurious velocities disappear both on arectangular and a distorted mesh (see Table 1 for Q1/P0 elements and Table2 for Q2/P1 elements).We are now able to explain why spurious speeds do not appear on rect-angular elements with the potentials �0 and �1 of experiments 1.2 and 1.4,at least for the Q1/P0 pair of �nite elements spaces. For this purpose, letus compare Z
 f :vj dx = � Z
 �divvj dxwith � Z
�h�divvj dxwhere vj denotes the velocity shape function (Q1) relative to the node j. Letus consider the four elements Tk, k = 1; ::; 4 around the node j (see Figure9). When the elements are identical rectangles whose sides are parallel tothe coordinates axes, we establish in Appendix A that these two integralsare equal, for each j, whenever the following property holds :7



8>>>><>>>>: 4Xk=1(�1)kZTk(x� xck)�(x; y) dxdy = 04Xk=1(�1)kZTk(y � yck)�(x; y) dxdy = 0 (15)where (xck; yck) are the coordinates of the center Ck of Tk.In particular, (15) holds for any �(x; y) = 	1(x)+	2(y)+�(x; y), where	1 and 	2 denote two arbitrary functions and � is an arbitrary bilinearapplication.Thus, on rectangular elements, for potentials of the above form, it isequivalent to implement R
 f :vj dx or � R
�h�divvj dx with the Q1/P0elements. Therefore, in this particular cases, the traditional system (8) leadsto the same calculus as the system (13) (which yields zero velocities, asproved above). This explains the good results obtained on a rectangularmesh for a simple force like in experiment 1.2. On the contrary, the potential�1(x; y) = x5+ x4y3+ x2y+ y4 of the experiments 1.3 does not satisfy (15),and we indeed check that it yields a wrong velocity even on rectangularelements.In the case of gravity, no spurious speeds appear on a right grid withthe Q2/P1 elements, since the potential of the force belongs to the pressurespace. Note that it is no longer true on a distorted mesh.4 Extension to the general caseThe method presented in the previous section leads to very good resultswhen f is the gradient of a known potential �. It can be straightforwardlyextended to the case f = r�+ curl g when � and g are given.The purpose of this last section is to extend this method to treat thecase of any force f whose decomposition in a gradient and a solenoidal partis unknown.First step : Let Yh be a �nite dimensional space such that Yh � H1(
)(in practice, we can take Yh = Xh). We solve the following problem in orderto compute an approximated gradient part of f : �nd �h 2 Yh such thatZ
r�h:r h dx = Z
 f :r h dx (16)for all  h 2 Yh. 8



Second step : We compute �h�h 2Mh such that :Z
�h�hqh dx = Z
 �hqh dx (17)for all qh 2Mh.Third step : Finally, we solve the Stokes problem as follows : �nd uh 2 Xhand p 2Mh such that8>>>>><>>>>>: � Z
ruh:rvh dxdy � Z
 phdiv vh dxdy = Z
(f � r�h):vh dx� Z
�h�hdivvh dxdyZ
 qhdivuh dxdy = 0 (18)for all vh 2 Xh and qh 2Mh.Remark 4.1 Note that Yh � H1(
) (in practice �h is approximated in thesame space as the velocity), thus the calculus of r�h is consistent.Remark 4.2 When div f 2 L2(
), the problem solved in the �rst step isthe approximated variational formulation of( 4� = div f on 
@�@n = f :n on @
:Let us check what happened when f = r�. We recall that the methodof Section 3 yields a zero velocity �eld. Unfortunately, it is not the case here.More precisely we have :Z
 jruhj2 dx = 1� Z
(f � r�h):uh dx (19)Nevertheless, we prove in Appendix B that this estimate is better than (11)and the numerical results show hereafter that this method actually improvesthe accuracy in the experiments 1.2, 1.3 and 1.4.Tables 3 and 4 show the results obtained when f = r� (but of course� is not a priori known) with Q1/P0 and Q2/P1 elements. Note that theyare less precise than with the method of section 3 (especially for experiment1.3) but still better than with the classical method.9



Figure 8 and shows the results obtained with the force f = curl g0+r�0of experiment 1.4 on a distorted mesh (with g0 and �0 not a priori known bythe code). Note that the computed velocity is very close to the theoreticalone whereas the classical method gives a very bad �ow on the same mesh(Figure 6 and 7). As previous, elements Q2/P1 and elements Q1/P0 givesimilar results (though Q2/P1 is of course slightly better).Tables 5 and 6 show the dependence of jjuhjjL2(
)2 with h in the casef = r�1 on rectangular elements. In the case of Q1/P0 elements (resp.Q2/P1), the numerical experiment shows that, when the classical methodis used, jjuhjjL2(
)2 decreases proportionally to h2 (resp. h4) whereas itdecreases proportionally to h4 (resp. h6) with the projection method.With an arbitrary potential �, we show rigorously in Appendix B that,with the Q1/P0 elements, jjuhjjL2(
)2 decreases at least proportionally toh with the classical method and proportionally to h2 with the projectionmethod.5 ConclusionIt has been shown that spurious speeds can appear in the �ow of a incom-pressible �uid subjected to external forces if the numerical velocity is notrigorously divergence free. We have proposed a method which completelycancels the spurious �eld for a force whose gradient part is a priori known,and which improves the results when the gradient part is unknown. A math-ematical study of the method has been presented. This method has beentested with the Q1/P0 and Q2/P1 pairs of �nite elements, but it can easilybe extended to other pairs of elements.We have also shown that no spurious �eld appears with a peculiar set offorces on a mesh composed of Q1/P0 rectangular elements. This explains thegood results obtained on regular meshes with some simple forces like gravity.Nevertheless, it has been shown that spurious speeds may still appear ona regular mesh. Moreover, as soon as the mesh is composed of distortedelements, very inaccurate results may occur even with gravity. In all thesecases, the method that we have proposed improves signi�cantly the results.References[1] O. Besson, J. Bourgeois, P.A. Chevalier, J. Rappaz, and R. Touzani.Numerical modelling of electromagnetic casting processes. Jour. Comp.Phys., 92(2):482�507, 1991. 10



[2] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokesequations. Springer-Verlag, 1986.[3] M.D. Gunzburger. Finite element methods for viscous incompressible�ows : a guide to theory, practice, and algorithms. Academic Press,1989.[4] J.M. Leone and P.M. Gresho. Another attempt to overcome the bentelement blues. In 5th international conference on �nite element methodsin water ressources, Burlington, pages 667�683. Springer-Verlag, 1984.
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Appendix AIn this appendix, we use the Q1/P0 pair of �nite element spaces to approx-imate the velocity and the pressure.A.1. NotationsWe shall denote by Tref the reference unit square [0; 1]� [0; 1], by Fk thebilinear mapping that maps Tref onto any quadrilateral Tk. Fk is de�ned byFk(�; �) = (x; y) = (Ak0+Ak1�+Ak2�+Ak3��; Bk0 +Bk1 �+Bk2�+Bk3 ��) (20)Denoting by (aki ; bki ) the coordinates of the vertices of Tk (cf. Figure 10), wehave� Ak0 = ak1; Ak1 = ak2 � ak1; Ak2 = ak4 � ak1; Ak3 = ak3 � ak2 � ak4 + ak1Bk0 = bk1; Bk1 = bk2 � bk1; Bk2 = bk4 � bk1; Bk3 = bk3 � bk2 � bk4 + bk1:The determinant of the Jacobian matrix of the transformation isJk(�; �) = Ak1Bk2 � Ak2Bk1 + (Ak1Bk3 � Ak3Bk1 )� + (Ak3Bk2 �Ak2Bk3 )�:If jTkj denotes the area of Tk, let us remark that Jk(�; �) = jTkj as soonas Tk is parallelogram. The shape functions �i of the reference element arede�ned by 8>><>>: �1(�; �) = (1� �)(1� �)�2(�; �) = �(1� �)�3(�; �) = ���4(�; �) = (1� �)�The shape functions  ki of Tk are de�ned by :�i =  ki � F k :One easily checks that :ZTk @ ki@x dxdy = ZTref �(B2 + B3�)@�i@� � (B1 +B3�)@�i@� � d�d�; (21)ZTk @ ki@y dxdy = ZTref ��(A2 + A3�)@�i@� + (A1 +A3�)@�i@� � d�d�:(22)12



A.2. In�uence of the gridWe wonder if the classical method could coincide with the method of pro-jection presented in Section 3. In other words, we are looking for conditionswhich imply Z
 �divvj dxdy = Z
�h�divvj dxdy; (23)with vj = (vj ; 0) or (0; vj) for all the node j of the grid.Proposition 1If the elements of the mesh are identical rectangles whose sides are parallel tothe coordinates axes, and if �(x; y) = 	1(x)+	2(y)+�(x; y), where 	1 and	2 denote two arbitrary functions and � is an arbitrary bilinear application(or, more generally, if � satis�es the property (15) of Section 3), then theclassical method coincides with the projection method presented in Section3.Proof.Let us consider the four quadrilaterals Tk, k=1,..,4 surrounding the nodej. In order to simplify the notations we number them as on Figure 9. Thisallows us to write vj jTk =  kkand for the sake of simplicity we denote  kk by  k, forgetting the superscriptk in the sequel.Since we use the P0 �nite elements space for the pressure,�h� is constantover each Tk. By de�nition �h�jTk = �k = 1jTkj ZTref � � Fk(�; �)J d�d�.Taking vj = (vj ; 0) we have :Z
�h�@vj@x dxdy = 4Xk=1�k ZTk @ k@x dxdy= 4Xk=1�k ZTref �(Bk2 +Bk3�)@�k@� � (Bk1 +Bk3�)@�k@� � d�d�;andZ
 �@vj@x dxdy = 4Xk=1 ZTk �@ k@x dxdy= 4Xk=1 ZTref � � Fk(�; �) �(Bk2 + Bk3�)@�k@� � (Bk1 + Bk3�)@�k@� � d�d�:13



Let us now suppose that the quadrilaterals of the mesh are parallelograms.Then Ak3 = 0, Bk3 = 0 for all k, and �k = ZTref � � Fk(�; �) d�d�. Doing thesame calculus with vj = (0; vj), equation (23) is �nally equivalent to :8>>>><>>>>: 4Xk=1(�1)k ZTref� � Fk(�; �) ��Ak1(� � 12) + Ak2(� � 12)� d�d� = 04Xk=1(�1)k ZTref� � Fk(�; �) ��Bk1 (� � 12) + Bk2 (� � 12)� d�d� = 0: (24)Let us write these equalities on the parallelograms Tk :8>>>><>>>>: 4Xk=1 (�1)kjTkj2 ZTk �(x; y) h2Ak1Ak2(y � ykc )� (Bk1Ak2 + Ak1Bk2 )(x� xkc )i dxdy = 04Xk=1 (�1)kjTkj2 ZTk �(x; y) h2Bk1Bk2 (x� xkc )� (Bk1Ak2 +Ak1Bk2 )(y � ykc )i dxdy = 0;(25)where (xkc ; ykc ) are the coordinates of the center Ck of Tk.At last, if the quadrilaterals are rectangles whose sides are parallel to thecoordinates axes, we have Ak2 = Bk1 = 0 for all k and (25) becomes :8>>>><>>>>: 4Xk=1 (�1)kjTkj ZTk �(x; y)(x� xkc ) dxdy = 04Xk=1 (�1)kjTkj ZTk �(x; y)(y� ykc ) dxdy = 0 (26)When all the rectangles are identical, this relation is satis�ed in particularby �(x; y) = 	1(x) + 	2(y) + �(x; y) where 	1 and 	2 are any functionsand � an arbitrary bilinear form. Therefore, with forces f(x; y) = (f1(x) +�1y; f2(y)+�2x) formulations (10) and (13) are equivalent on meshes whoseelements are identical and rectangular.
14



Appendix BOur aim is to show that the projection method of Section 4 is more precisethan the classical method in the case f = r�.We denote by uch the velocity obtained with the classical method and uphthe velocity obtained by the projection method. We recall that the expectedsolution is u = 0 andZ
 jruchj2 dx = �1� Z
 �divuch dx; (27)whereasZ
 jruphj2 dx = 1� Z
(f �r�h):uph dx = 1� Z
(�h � �)divuph dx: (28)B.1. NotationsFor any h > 0, we denote by Th a regular �triangulation� of 
 of typical sizeh. We suppose here that any element T 2 Th is a quadrilateral, but it is notnecessary.As in Appendix A, Tref is the reference unit square [0; 1]� [0; 1], FT isthe bilinear mapping that maps Tref onto any quadrilateral T . We denote byQk the space of all polynomials in the reference space of the form q̂(�; �) =P cij�i�j where the sum range over all integers i and j such that 0 � i; j � k.We de�ne Qk(T ) = fq = q̂ � F�1T ; q̂ 2 Qkg.We introduceXh = fvh 2 C0(
)2;vhjT 2 Qk(T )2; 8T 2 Thg \H10(
)2;Mh = fqh 2 L2(
); qhjT 2 Ql(T )2; 8T 2 Thg \ L20(
);Yh = fy 2 C0(
); yjT 2 Qk(T ); 8T 2 Thg \ L20(
):The space Xh is devoted to the velocity, Mh to the pressure and Yh to thepotential part of the force f .We provide Hm(
) with the following seminormjvjm = 0@ Xj�j=mZ
 jD�vj2 dx1A1=2 :For f = r� with � 2 Hm+1(
) \ L20(
), m � 0 we de�ne �h 2 Yh asthe �nite element solution of the Neumann problem�4� = div f in 
@�@n = f :n on @
:15



such that R
 �h = 0 (the condition on @
 is formal when m = 0). Moreprecisely, we have : Z
r�h:r h dx = Z
 f :r h dxfor all  h 2 Yh.For l � 0 and for z 2 L20(
), we recall that �hz 2 Mh is de�ned asfollows : �hzjT 2 Ql(T )ZT (�hz � z)q dx = 0 8q 2 Ql(T )B.2. Error estimatesProposition 2We suppose that the force is a gradient f = r� and we use the Q1/P0 pairof �nite elements space. Then, when the typical size of the mesh h tendsto zero, the seminorm j:j1 of the velocity calculated by the classical methodtends to zero like h whereas the velocity calculated by the projection methodtends to zero like h2.Proof.First, we recall the approximation result (see V. Girault and P.-A. Raviart[2] for instance) :Lemma 1 Let � 2 Hm+1(
), for some m such that 0 � m � k. If wede�ne �h as described in B.1 we have :j�� �hj1 � C1hmj�jm+1;with a constant C1 > 0 independent of h and �.The following lemma is a straightforward application of a result of pro-jection in L2(
) presented in [2] :Lemma 2 Let z 2 Hs(
)\ L20(
) for some s such that 0 � s � l+ 1. Theprojection �h de�ned in B.1 satis�es :jjz ��hzjjL2(
) � C2hsjzjs;with a constant C2 > 0 independent of h and z.16



We restrict ourselves to the case k = 1, l = 0 corresponding to the pairQ1/P0. We choose s = 1 and m = 1 in the previous lemmata. In view of(27) we have : juchj21 = �1� Z
(�� �h�)divuch dx� 1� jj�� �h�jjL2(
)jjdivuchjjL2(
)� C2� hj�j1jjdivuchjjL2(
)We deduce that juchj1 � C2� j�j1h (29)Whereas from (28) the estimate of juphj1 is :juphj21 = �1� Z
[(�h � �)� �h(�h � �)]divuph dx� 1� jj(�h � �)� �h(�h � �)jjL2(
)jjdivuphjjL2(
)� C2� hj�h � �j1jjdivuphjjL2(
)� C1C2� h2j�j2jjdivuphjjL2(
)Thus : juphj1 � C1C2� j�j2h2 (30)A comparison between (29) and (30) shows the improvement of the pro-jection method in the case of f = r�. These estimates may be better insome peculiar cases (see Table 5).
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Classical method Projection methodExperiment 1.2 Rectangular elements 0.1e-11 0.08e-11(f = cste) Distorted elements 0.83 0.2e-11Experiment 1.3 Rectangular elements 0.76e-3 0.7e-12(f = r�1) Distorted elements 0.17e-1 0.2e-12Table 1: Maximum velocities (m/s) with the classical method and the pro-jection method when f = r� with the Q1/P0 pair of �nite elements.Classical method Projection methodExperiment 1.2 Rectangular elements 0.2e-11 0.2e-11(f = cste) Distorted elements 0.3 0.5e-8Experiment 1.3 Rectangular elements 0.4e-3 0.1e-11(f = r�1) Distorted elements 0.14e-1 0.3e-10Table 2: Same case as Table 1 with the Q2/P1 pair of �nite elements.Classical method Projection methodfor arbitrary fExperiment 1.2 Rectangular elements 0.1e-11 0.1e-11(f = cste) Distorted elements 0.83 0.2e-11Experiment 1.3 Rectangular elements 0.76e-3 0.19e-5(f = r�1) Distorted elements 0.17e-1 0.4e-3Table 3: Maximum velocities (m/s) with the classical method and the pro-jection method for arbitrary f with the Q1/P0 pair of �nite elements.
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Classical method Projection methodfor arbitrary fExperiment 1.2 Rectangular elements 0.9e-12 0.44e-11(f = cste) Distorted elements 0.3 0.14e-10Experiment 1.3 Rectangular elements 0.4e-3 0.7e-7(f = r�1) Distorted elements 0.14e-1 0.25e-4Table 4: Same case as Table 3 with the Q2/P1 pair of �nite elements.h Classical method Projection method0.067 6.49e-4 2.7e-60.05 3.66e-4 8.6e-70.033 1.63e-4 1.7e-70.028 1.19e-4 9.2e-8Table 5: Value of jjuhjjL2(
)2 when the step of mesh h decreases (case f =r�1) with Q1/P0 elements.h Classical method Projection method0.083 2.1e-4 1.9e-70.067 0.86e-4 5.1e-80.05 0.28e-4 0.9e-80.045 0.19e-4 0.5e-8Table 6: Same case as Table 5 with Q2/P1 elements.19



Figure 1: Spurious velocity (0.2 m/s) in two immiscible �uids submitted tof = r�0 with �0(x; y) = 52y2 � 10x. On the left hand side : the mesh, onthe right hand side : the velocity �eld. This test is performed with FIDAPV7.52 with the Q1/P0 pair of �nite elements.
20



Figure 2: One �uid in presence of a constant force with the Q1/P0 elements.The in�uence of the shape of the mesh is striking : on the left hand side,maximum speed is 0.1e-11m/s, whereas it is 0.83 m/s on the right hand side.
Figure 3: Same test as in Figure 2 with Q2/P1 elements. On the left handside, maximum speed is 0.2e-11m/s. On the right hand side : 0.3m/s .21



Figure 4: One �uid in presence of f = r�1. On the rectangular mesh,the speed reaches 0.76e-3m/s. On the bent mesh, 0.19e-1m/s. This case ispresented with the Q1/P0 pair of �nite elements. We obtain similar resultswith the Q2/P1 elements.
22



Figure 5: One �uid in presence of f = r�0+curl g0 on rectangular elements.Left hand side : the velocity �eld. Right hand side : comparison betweenthe theoretical �rst component of the velocity and the numerical one on thestraight line y = 0:4. Finite elements : Q1/P0.
Figure 6: Same situation as Figure 5, but on a distorted mesh.23



Figure 7: Same situation as Figure 6 (distorted mesh), but with Q2/P1 ele-ments. While the Q2/P1 approximation is better than the Q1/P0, signi�cantinaccuracies remain.
Figure 8: The projection method for the experiment 1.4 on the same dis-torted mesh as Figure 6. Note that the theoretical curve and the numericalone are now the same. A very precise result is also obtained by the projectionmethod with the Q2/P1 elements in the case corresponding to Figure 7.24
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