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Abstract

We show that a non physical velocity may appear in the numerical
computation of the flow of an incompressible fluid subjected to external
forces. A distorted mesh as well as the use of a numerical method which
does not rigorously ensure the incompressibility condition turn out to
be responsible for this phenomenon. We illustrate it with numerical
examples and we propose a projection method which improves the
results.

Résumé

Nous montrons qu’'un champ de vitesse sans signification physique
peut apparaitre dans la simulation numérique d’un fluide incompres-
sible soumis & des forces extérieures. Un maillage déformé ainsi que
I'utilisation d’une méthode n’assurant pas rigoureusement la condition
d’incompressibilité s’avérent étre a l'origine de ce phénoméne. Nous
I'illustrons au travers d’ exemples numériques et nous proposons une
méthode de projection qui améliore les résultats.

We are interested here in the steady state of one incompressible homoge-
neous fluid in presence of a body force. This force may result from a coupling
(e.g. magnetohydrodynamic equations or Boussinesq equations) or may be
a given external force. For the sake of simplicity we shall only consider here
this latter case.

When this force is the gradient of a potential, namely f = V&, and
when the velocity obeys to the no-slip condition on the boundary of a fixed
domain, we expect to obtain a fluid everywhere at rest. But, as will be seen,
numerical simulations which do not ensure rigorously divu = 0 may lead to
a non-zero velocity.
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We give a few examples of this phenomenon in Section 1 and we propose
a first explanation in Section 2. The deformation of the mesh plays a role in
the observed inaccuracies, but it is not their unique cause.

With a general force (f = curl g+ V®), we have noticed that the “gradi-
ent part” may also produce a velocity field which pollutes the physical flow.
We give an example of such a fact in Subsection 1.4. For the practical ap-
plications, it is worth noticing that this phenomenon may a fortior: induce
important numerical errors in coupled problems.

Section 3 is devoted to a projection method which eliminates the spurious
speeds when f = V& (this method could easily be extended to the case of a
force f = VO + curl g when ® is a priori known). In Section 4, we extend
this method in order to reduce the inaccuracy for any f whose decomposition
is not a priori known.

Let us note that a method close to ours has already been suggested by O.
Besson et al. in [1] for a penalty formulation for the pressure. Nevertheless,
our presentation allows us to establish a link between the spurious speeds
and the deformation of the grid (¢f. Appendix A). More precisely, we explain
why spurious speeds do not appear on a right mesh with some peculiar forces,
and we also show that they do appear with some forces even on a right mesh.
Moreover, we give an error estimate (¢f. Appendix B) which proves that our
method improves the results on any meshes.

The numerical simulations are performed with the FEM code FIDAP?
Version 7.52 and with a home-made code. We use the pairs Q1/P0 and
Q2/P1 of finite elements spaces to approximate the velocity and the pres-
sure. It is well-known that the pair Q1/P0 does not rigorously satisfy the
Ladyzenskaia-Babuska-Brezzi condition and yields a spurious pressure (see
V. Girault and P.-A. Raviart [2] or M.D. Gunzburger [3] for instance). Nev-
ertheless, the problem presented here is independent of this fact and occurs
also with the elements Q2/P1 which satisfy the LBB condition.

1 Some numerical experiments

1.1 A free surface problem

Our initial motivation was to improve a 2D free surface algorithm. Two
incompressible fluids separated by an interface are subjected to a force f =
Vg, with ®o(z,y) = gyz — 10z. Their densities are 2300 kg/m?> and 2150
kg/m?3, their viscosity 1.1 m?/s and 2.5 m?/s. We solve the Navier-Stokes
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equations in a box with homogeneous Dirichlet boundary conditions on three
sides and u.n = 0 on the fourth side. The steady state interface is a curve
¢(z,y) = C where C' is a constant determined by the conservation of the
volume. The theoretical velocity is zero. Numerically, the position of the
interface is good but we notice the apparition of a vortex (0.2 m/s) in each

fluid (figure 1).

In order to understand the problem raised above, we simplify the experi-
ment : in the three following tests, we just consider one fluid in a closed box
Q with various given forces and we solve the linear Stokes equations :

—-nAu+Vp = pf on 2 (1)
diva = 0 on (2)
u = 0 on 9 (3)

We set 7=0.01 m?/s and p=1 kg/m? in the sequel.

1.2 One fluid subjected to a constant force f

We assume f is constant and equal to (100,100) on Q. In Figure 2, we
use Q1/P0 elements and we see that no velocity appears on a right grid
(maximum about 0.le-11 m/s) whereas the velocity reaches 0.83 m/s on
bent elements. In Figure 3, very similar results are obtained with Q2/P1
elements.

This suggests that the deformation of the grid plays a role in the inaccu-
racy on the velocity, and may explain the difficulty mentioned in Section 1.1
in the case of a free surface (where elements are bent since the mesh follows
the interface in our computation).

1.3 One fluid subjected to a force f = Vo

In this test, we use Q1/P0 element and the force f is equal to V&, with
O (z,y) = 2° + 2y + 2%y + y*. The right hand side of Figure 4 shows
that spurious speeds appear on a bent mesh (maximum : 0.19e-1 m/s) but
one may see on the left hand side that they also appear on a grid whose
elements are squares (maximum : 0.76e-3m/s). Therefore, the deformation
of the mesh makes clearly worse the accuracy on the velocity, but imprecise
results may also appear on rectangular elements.
Similar results were obtained with Q2/P1 elements.



1.4 One fluid subjected to a force f = V& + curl g¢

The two previous tests deal with a fluid at rest. We now build an experiment
where the force is the sum of a gradient part and a solenoidal part, thereby
creating a non-zero velocity :

f=V&+curl g. (4)

In order to enforce the incompressibility and the no-slip condition on the
boundary, we set ¢ = gg with gg built as follows :

A = kayH - 2)(W - y))%, (5)
u = curl A4, (6)
go = curl u, (7)

where H and W are respectively the height and the width of the 2D box and
k is a constant. For the numerical computations, H = W =1, k£ = 0.1 and
(I)($7y) = q)O(wvy) = gyZ — 10z.

Note that the velocity u can be analytically computed with (6) and p = ¢
(up to an additive constant).

Figure 5 shows the velocity field on a mesh with rectangular elements
(left hand side) and a comparison between the theoretical first component
of the velocity and the numerical one on the straight line y = 0.4 of € :
the result is very precise (it is difficult to distinguish the two curves). The
same test computed on a distorted mesh is presented in Figure 6 with Q1/P0
elements and in Figure 7 with Q2/P1 elements : the flow is perturbated in
the both cases.

Remark 1.1 It is worth noticing that, when ® = 0 (i.e. the force is diver-
gence free), the numerical velocity is very close to the theoretical one both
on rectangular and bent elements. Thus the deformation of the grid seems
to affect the velocity essentially in presence of a non divergence free force.

1.5 Other experiments

Let us briefly mention other experiments which lead to analogous conclu-
sions.

The flow u defined by (6) is the solution of the Navier-Stokes equations
for the force f = V®y + curl ¢gg + u.Vu. If we compute the numerical
solution in this nonlinear setting, we observe that spurious velocities appear
again on a bent mesh.



Likewise, they appear in many other experiments that we do not detail
here and that involve other boundary conditions, a three dimensional box, a
transient flow.

Let us also notice that the inaccuracy seems to increase with the Reynolds
number and to decrease with the typical size of the mesh.

2 An attempt of explanation

Let us recall first of all why the fluid is at rest in presence of f = V®.

For m > 0, we denote as usual by H” () as the Sobolev space
H™(Q) = {u € L*(Q); D"u € L*(Q), ¥y, |y < m}

where v = (71,72, 73) is a multi-index and |y| = y1 + 72 + 73. For m > 1,
H[" () is the subspace of H™ () consisting of functions vanishing on 99.
We denote by L3(€2) the space

13(@) = {qg € L2<9>;/qux:0}

We shall suppose in the sequel that f € L?(Q)%. The Stokes problem
(1)-(3) may be formulated in a variational form : to find u € H{(Q)? and
p € LE(Q) such that

77/ Vu.Vvdxdy—/pdivvdxdy = /f.vdxdy
Q Q) Q

(8)
/ gdivudzdy = 0
Q
for all v € H}(Q)? and ¢ € L3(9).
In particular, taking v = u, we have :

77/ |Vu|2davdy:/f.udac:/V@.udav:—/(I>divudacdy:07 (9)
Q Q Q Q

which shows that u = 0 almost everywhere in €2, i.e. the fluid is at rest.
Let us notice that the crucial point of this proof is that divu = 0 or,
more precisely, that V& is orthogonal (in L%(Q2)) to u as soon as divu = 0
in Q and w.n = 0 on 9. As we recall hereafter, this property does not hold
for the discrete problem.
Following the presentation of V. Girault and P.-A. Raviart [2], we in-
troduce for each h > 0, W), and @} two finite-dimensional spaces such that



Wy, C HY(Q)? and @, C L*(2). The latter is assumed to contain the con-
stant functions. We set :

X, =W, N H&(Q)Q = {Vh € Wh;Vh|aQ = 0},

Mp=QrNLiQ) = {QhEQh;/Q%dw:O}-

The variational problem (8) is then approximated by : find u, € X}, and
pn € Mj, such that

77/Vuh.Vvhdxdy—/phdivvhdxdy = /f.vhdwdy
Q Q

(10)
gpdivup dady = 0
Q
for all v, € Xp and g, € Mj. In the case of f = V&, we obtain as in the
continuous case :

1
/|Vuh|2dx:—5/@divuhdw (11)
Q Q

but now the right hand side of (11) is not necessarily zero since ¢ does
not belong to M}, in general. Thus, the approximated velocity is not zero,
which may explain the inaccuracies observed in the numerical computations
of Subsections 1.1, 1.2 and 1.3. Moreover, equation (11) shows that the
approximated velocity increases when the viscosity 1 decreases which has
been noticed in the experiments.

Let us note that the above considerations do not explain the influence of
the grid. Distorted elements are known to produce inaccuracies (see [4]) but
we are unfortunately not able to derive here a precise error estimate linking
the spurious speeds together with the deformation of the mesh.

Nevertheless, we propose now a way to avoid spurious velocities when
f = V& which will enable us to understand why some results are much
better on rectangular elements (at least with some potentials).

3 A method to avoid spurious speeds when f = V&

In the following developments, we shall suppose, without loss of generality,
that qu)dac = 0. The potentials 3 and ®; of the previous section can
easily be changed to satisfy this property.

In order to obtain a zero velocity field when f = V&, we suggest the
following projection method :



First step : We compute II,®, the orthogonal projection in L%(2) of ®
onto Mj. In other words, we search II,® € Mj such that :

/Hh(bqhdx:/q)qhdx (12)
Q Q

for all g5, € My,

Second step :  We replace (10) by this alternative formulation of the Stokes
problem : find uy € X and p € M}, such that

77/ Vuh.Vvhdxdy—/phdivvhdxdy = —/ 1, ®div vy, dedy
Q Q

/gqhdiv updedy = 0

Q
(13)
for all vy, € X}, and g € Mj,.
Thus we have
1
/ |Vuy|? de = ——/ I, ®divuy, de =0 (14)
Q nJa

since I1,® € Mj,. Therefore u; = 0.

We have tested this method (with a home-made code) in the experiments
of Subsections 1.2 and 1.3 : the spurious velocities disappear both on a
rectangular and a distorted mesh (see Table 1 for Q1/P0 elements and Table
2 for Q2/P1 elements).

We are now able to explain why spurious speeds do not appear on rect-
angular elements with the potentials ®3 and ®; of experiments 1.2 and 1.4,
at least for the Q1/P0 pair of finite elements spaces. For this purpose, let

us compare
/f.deaU: —/ Odivv; dz
Q Q

— / 11, ®div v; dx
Q

with

where v; denotes the velocity shape function (Q1) relative to the node j. Let
us consider the four elements 7%, k = 1, ..,4 around the node j (see Figure
9). When the elements are identical rectangles whose sides are parallel to
the coordinates axes, we establish in Appendix A that these two integrals
are equal, for each j, whenever the following property holds :



Z(_l)k/ (x —2)®(z,y)dady =0

kjl Ty (15)
— k _ & T T —
;( 1) /Tk(y yi)® (e, y) dedy =0

where (27, y5) are the coordinates of the center C}, of Tj.

In particular, (15) holds for any ®(z,y) = Uy (2) 4+ Y (y) + S(2, y), where
¥, and ¥, denote two arbitrary functions and 3 is an arbitrary bilinear
application.

Thus, on rectangular elements, for potentials of the above form, it is
equivalent to implement [, f.v;dz or — [, I, ®divv;dz with the Q1/P0
elements. Therefore, in this particular cases, the traditional system (8) leads
to the same calculus as the system (13) (which yields zero velocities, as
proved above). This explains the good results obtained on a rectangular
mesh for a simple force like in experiment 1.2. On the contrary, the potential
Oy (z,y) = 2° + aty® + 2%y + y* of the experiments 1.3 does not satisfy (15),
and we indeed check that it yields a wrong velocity even on rectangular
elements.

In the case of gravity, no spurious speeds appear on a right grid with
the Q2/P1 elements, since the potential of the force belongs to the pressure
space. Note that it is no longer true on a distorted mesh.

4 Extension to the general case

The method presented in the previous section leads to very good results
when f is the gradient of a known potential ®. It can be straightforwardly
extended to the case f = V& 4 curl g when ® and g are given.

The purpose of this last section is to extend this method to treat the
case of any force f whose decomposition in a gradient and a solenoidal part
is unknown.

First step : Let Y, be a finite dimensional space such that Y, C H'(Q)
(in practice, we can take Y3, = X}). We solve the following problem in order
to compute an approximated gradient part of f : find &, € Y, such that

/V@h.v¢hdx:/f.v¢hdx (16)
Q Q

for all ¥, € Y}.



Second step :  We compute 11, P, € M), such that :

/Hh(bhqh dx:/q)hqhdx (17)
Q Q

for all g5, € My,

Third step : Finally, we solve the Stokes problem as follows : find up € X,
and p € M}, such that

77/ Vuh.Vvhdxdy—/phdivvhdxdy = /(f—V(Ph).Vhdac
Q Q Q

—/Hh@hdivvhdxdy
Q
/qhdivuhdwdy = 0

Q

(18)
for all v, € X}, and g5 € Mjy,.

Remark 4.1 Note that Y, C H'(Q) (in practice ®;, is approximated in the
same space as the velocity), thus the calculus of V&, is consistent.

Remark 4.2 When divf € L?(Q), the problem solved in the first step is
the approximated variational formulation of

{Aq) = divf on €2

8—(1) fn on 0f).
on
Let us check what happened when f = V&. We recall that the method

of Section 3 yields a zero velocity field. Unfortunately, it is not the case here.
More precisely we have :

/ Vup|? de = l/(f— Vo). de (19)
Q nJa

Nevertheless, we prove in Appendix B that this estimate is better than (11)
and the numerical results show hereafter that this method actually improves
the accuracy in the experiments 1.2, 1.3 and 1.4.

Tables 3 and 4 show the results obtained when f = V& (but of course
¢ is not a prior: known) with Q1/P0 and Q2/P1 elements. Note that they
are less precise than with the method of section 3 (especially for experiment
1.3) but still better than with the classical method.



Figure 8 and shows the results obtained with the force f = curl go+V®q
of experiment 1.4 on a distorted mesh (with go and ®g not a prior: known by
the code). Note that the computed velocity is very close to the theoretical
one whereas the classical method gives a very bad flow on the same mesh
(Figure 6 and 7). As previous, elements Q2/P1 and elements Q1/P0 give
similar results (though Q2/P1 is of course slightly better).

Tables 5 and 6 show the dependence of [|up||2(q)> with & in the case
f = V&, on rectangular elements. In the case of Q1/P0 elements (resp.
Q2/P1), the numerical experiment shows that, when the classical method
is used, |[uxl|r2()> decreases proportionally to h% (resp. h?') whereas it
decreases proportionally to h* (resp. h®) with the projection method.

With an arbitrary potential ®, we show rigorously in Appendix B that,
with the Q1/P0 elements, |[us||z2(q)> decreases at least proportionally to
h with the classical method and proportionally to h? with the projection
method.

5 Conclusion

It has been shown that spurious speeds can appear in the flow of a incom-
pressible fluid subjected to external forces if the numerical velocity is not
rigorously divergence free. We have proposed a method which completely
cancels the spurious field for a force whose gradient part is a prior: known,
and which improves the results when the gradient part is unknown. A math-
ematical study of the method has been presented. This method has been
tested with the Q1/P0 and Q2/P1 pairs of finite elements, but it can easily
be extended to other pairs of elements.

We have also shown that no spurious field appears with a peculiar set of
forces on a mesh composed of Q1/P0 rectangular elements. This explains the
good results obtained on regular meshes with some simple forces like gravity.
Nevertheless, it has been shown that spurious speeds may still appear on
a regular mesh. Moreover, as soon as the mesh is composed of distorted
elements, very inaccurate results may occur even with gravity. In all these
cases, the method that we have proposed improves significantly the results.
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Appendix A

In this appendix, we use the Q1/P0 pair of finite element spaces to approx-
imate the velocity and the pressure.

A.1. Notations

We shall denote by T,.s the reference unit square [0, 1] x [0, 1], by F} the
bilinear mapping that maps 7)., onto any quadrilateral T},. F} is defined by

(&) = (2,y) = (A5 + ATE+ Afn+ A, By + BYE+ Bin+ Bién) (20)
Denoting by (a¥, b¥) the coordinates of the vertices of 7}, (cf. Figure 10), we

19 1
have

E_ k E_ k k E_ k k E_ k k k k
{Ao—ap Al =ay —af, Aj=aj—aj, Aj=a3—a5—aj+aj
E_ 1k E_ 1k k E_ 1k k E_ 1k k k k
By =by, By =0b; by, B3 =20j—0f, B3=0b3—0b5—0b;y+07.

The determinant of the Jacobian matrix of the transformation is
JH(& m) = AYBY — ALBY + (AT BS — ASBY)E + (A5BS — AL BY)n.

If |Ty| denotes the area of Ty, let us remark that J*(&,n) = |Ty| as soon
as T}, is parallelogram. The shape functions A; of the reference element are

defined by

MEn) = 1-90-n)
A2(€777) = 5(1_77)
A3(€777) = 577

A& = (1-8n

The shape functions zbf of T}, are defined by :

A= ¢Fo FE
One easily checks that :
dyk A
5 Xdy = (B2 + 335) — (B1 + Bsn) d&dn, (21)
T, 0% Tres 5 n
ok / [ o\ o\ ]
L dxdy = (A2 + A A+ A d&dn (22
b oy - 2 + As8) o€ + (A1 + Asn) an €dn(22)
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A.2. Influence of the grid

We wonder if the classical method could coincide with the method of pro-
jection presented in Section 3. In other words, we are looking for conditions
which imply

/(I)diVV]‘ d$dyI/th)diVV]‘ dzdy, (23)
Q Q

with v; = (v;,0) or (0,v;) for all the node j of the grid.

Proposition 1

If the elements of the mesh are identical rectangles whose sides are parallel to
the coordinates axes, and if ®(x,y) = Vi (z)+ V2 (y)+ 5(2, y), where ¥; and
W, denote two arbitrary functions and 3 is an arbitrary bilinear application
(or, more generally, if ® satisfies the property (15) of Section 3), then the
classical method coincides with the projection method presented in Section

3.

Proof.

Let us consider the four quadrilaterals Ty, k=1,..,4 surrounding the node
j. In order to simplify the notations we number them as on Figure 9. This
allows us to write

k
vilz, = ¥x
and for the sake of simplicity we denote zb’,j by 1k, forgetting the superscript

k in the sequel.
Since we use the P0 finite elements space for the pressure, 11 ® is constant

over each Ty. By definition [1,®|7, = &5 = L/ $ o Fi(&,m)J dédn.

T%| Jr,.,
Taking v; = (v;,0) we have :
dv Oty
/Hhcp8 dedy = Z@k/ dzdy
I,

S [iteniel

ref

/ —]dacdy = Z/ch%dd

Ok

O\
- z/ voFilen) (B + B9 B - (8 + B St

13

oA
~ (Bf + Bly) 8—77’“] dédn,

] dedn.



Let us now suppose that the quadrilaterals of the mesh are parallelograms.

Then A% =0, B = 0 for all k, and ®; = ® o Fi (&, n) dédn. Doing the
Tref
same calculus with v; = (0,v;), equation (23) is finally equivalent to :

1 1
(—1)’“/Tqu> o Fi(&,n) [—A’f(f -5+ A5(n - 5)] d§dn =0 o

0t [ eenen [l - )+ Bio- )| dean=o,

] =

k

w |l
—

k=1

Let us write these equalities on the parallelograms T} :

4
—1)k
ST [ ate) [2ataby o) - (Bhaf + ALBY) @ - 2] dody =0
k

2
k=1 |Tk|
! (_1)k k pk k k 4k k pk k

T2 /T P(z,y) [QBle (z — =) — (B{A; + AT By) (y — yc):| dzdy =0,
k=1 k

(25)
where (2%, y%) are the coordinates of the center C}, of T}.
At last, if the quadrilaterals are rectangles whose sides are parallel to the
coordinates axes, we have A5 = Bf = 0 for all k and (25) becomes :

4\
Z%/ (I)($7y)($—$lz)dxdy = 0
(26)

—/ O(z,y)(y—yb) dedy = 0
Ty,

When all the rectangles are identical, this relation is satisfied in particular
by ®(z,y) = ¥i(z) + ¥2(y) + F(z,y) where ¥; and W, are any functions
and [ an arbitrary bilinear form. Therefore, with forces f(z,y) = (fi(z) +
a1y, f2(y) + agz) formulations (10) and (13) are equivalent on meshes whose
elements are identical and rectangular.

14



Appendix B

Our aim is to show that the projection method of Section 4 is more precise
than the classical method in the case f = V.

We denote by u§ the velocity obtained with the classical method and uj,
the velocity obtained by the projection method. We recall that the expected
solution is u = 0 and

1
/|Vu2|2dac:——/ ddiv uj dz, (27)
Q nJa
whereas
1 1
/|Vui|2dx: —/(f—V@h).uidwz —/(q)h—q))divuidx. (28)
Q nJa nJa

B.1. Notations

For any h > 0, we denote by 7 a regular “triangulation” of Q of typical size
h. We suppose here that any element T' € T3 is a quadrilateral, but it is not
necessary.

As in Appendix A, T).; is the reference unit square [0, 1] X [0,1], F7 is
the bilinear mapping that maps 7'y onto any quadrilateral 7. We denote by
Q1 the space of all polynomials in the reference space of the form §(&,n) =
> cijfinj where the sum range over all integers ¢ and j such that 0 <, 5 < k.
We define Qu(T) = {g = o Fy'14 € Q1)

We introduce

X, = {Vh € CO(Q)Q;VMT € Qk(T)Q,VT € ﬁ} N H&(Q)z,
My, = {q € LZLQ);(]MT € QT2 NT € Ty N Li(Q),
Vi = {yeC®(Q;ylr € Qr(T),VT € Tr} N LF(Q).

The space X}, is devoted to the velocity, M} to the pressure and Y} to the
potential part of the force f.
We provide H™(€2) with the following seminorm

ol = > /|D%|2dx
|o|=m &

For f = V& with ® € H™T1(Q) N L3(Q), m > 0 we define ®;, € V), as
the finite element solution of the Neumann problem

-A®d = divf in Q

8—(1) = fn on df).
on

1/2
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such that [, ®; = 0 (the condition on JQ is formal when m = 0). More
precisely, we have :

/V@h.v¢hdx:/f.v¢hdx
Q Q

for all ¥, € Y}.
For [ > 0 and for z € L%(Q), we recall that IIyz € M), is defined as
follows :

Hy2lr € Qi(T)

/T(th—z)qu:() Vg € Qi(T)

B.2. Error estimates

Proposition 2

We suppose that the force is a gradient f = V® and we use the Q1/P0 pair
of finite elements space. Then, when the typical size of the mesh h tends
to zero, the seminorm |.|; of the velocity calculated by the classical method
tends to zero like h whereas the velocity calculated by the projection method
tends to zero like hZ.

Proof.
First, we recall the approximation result (see V. Girault and P.-A. Raviart
[2] for instance) :

Lemma 1 Let ® € H™TY(Q), for some m such that 0 < m < k. If we
define ®p, as described in B.1 we have :

|® — Oyl < CLA" Dy,

with a constant C'y > 0 independent of h and .

The following lemma is a straightforward application of a result of pro-
jection in L2(2) presented in [2] :

Lemma 2 Let z € H*(Q) N LE(Q) for some s such that 0 < s <1+ 1. The
projection 11, defined in B.1 satisfies :

[z = Hp2l|p2q) < C2h’|2]s,

with a constant Cy > 0 independent of h and z.
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We restrict ourselves to the case k = 1, [ = 0 corresponding to the pair

Q1/P0. We choose s = 1 and m = 1 in the previous lemmata. In view of
(27) we have :

1
lug|3 = ——/(@—Hmb)divu%dw
177 Q
—[|® — T ®[| 20 l|div uj 120

IN

IN

WQh|‘I’|1||diV w; |20

We deduce that o
luy [ < flq’llh (29)

Whereas from (28) the estimate of |u]|; is :

i = =2 (= @) = 11 (- )i uf o
< L@y — @) — 1@ — )]z gy div w120y
< 20| @y, — @y |div ul || 12(q)
< 17702h2|q’|2||diVuZ||L2(Q)
Thus :
il < S22 (30)

A comparison between (29) and (30) shows the improvement of the pro-
jection method in the case of f = V®. These estimates may be better in
some peculiar cases (see Table 5).
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Classical method

Projection method

Experiment 1.2 | Rectangular elements 0.1e-11 0.08e-11
(f = cste) Distorted elements 0.83 0.2e-11
Experiment 1.3 | Rectangular elements 0.76e-3 0.7e-12
(f=Voy) Distorted elements 0.17e-1 0.2e-12

Table 1: Maximum velocities (m/s) with the classical method and the pro-
jection method when f = V® with the Q1/P0 pair of finite elements.

Classical method

Projection method

Experiment 1.2 | Rectangular elements 0.2e-11 0.2e-11
(f = cste) Distorted elements 0.3 0.5e-8
Experiment 1.3 | Rectangular elements 0.4e-3 0.1e-11
(f = V) Distorted elements 0.14e-1 0.3e-10

Table 2: Same case as Table 1 with the Q2/P1 pair of finite elements.

Classical method

Projection method
for arbitrary f

Experiment 1.2 | Rectangular elements 0.1e-11 0.1e-11
(f = cste) Distorted elements 0.83 0.2e-11
Experiment 1.3 | Rectangular elements 0.76e-3 0.19e-5
(f = V) Distorted elements 0.17e-1 0.4e-3

Table 3: Maximum velocities (m/s) with the classical method and the pro-
jection method for arbitrary £ with the Q1/P0 pair of finite elements.
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Classical method

Projection method
for arbitrary f

Experiment 1.2 | Rectangular elements 0.9e-12 0.44e-11
(f = cste) Distorted elements 0.3 0.14e-10
Experiment 1.3 | Rectangular elements 0.4e-3 0.7e-7

(f=Voy) Distorted elements 0.14e-1 0.25e-4

Table 4: Same case as Table 3 with the Q2/P1 pair of finite elements.

h Classical method | Projection method
0.067 6.49e-4 2.7e-6
0.05 3.66e-4 8.6e-7
0.033 1.63e-4 1.7e-7
0.028 1.19e-4 9.2¢-8

Table 5: Value of [|up||z2(q)> when the step of mesh h decreases (case f =
V®,) with Q1/P0 elements.

h Classical method | Projection method
0.083 2.1e-4 1.9e-7
0.067 0.86e-4 5.1e-8
0.05 0.28e-4 0.9e-8
0.045 0.19e-4 0.5e-8

Table 6: Same case as Table 5 with Q2/P1 elements.

19




R e

D N N NN

—~ I Tt
H 1 — | |
— — Tt
I — —
. ] 1
—— e S |
—— [
[T—— I ———
—1 | —
— e
—— | — ]
—t—
| —
—1 | —
— |
—
— |
. — | 1
—
[ ——1 1
— i ]
. — |
- | |
— — ——
| —
] | I ——
H — —— 1
— |
— — ——
| - —
— | | R
—— ——1 | — T

Figure 1: Spurious velocity (0.2 m/s) in two immiscible fluids submitted to

the mesh, on

y* — 10z. On the left hand side :
: the velocity field. This test is performed with FIDAP

5
2
V7.52 with the Q1/P0 pair of finite elements.

V&, with &g(z,y) =

f=

the right hand side
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Figure 2: One fluid in presence of a constant force with the Q1/P0 elements.
The influence of the shape of the mesh is striking : on the left hand side,
maximum speed is 0.1e-11m /s, whereas it is 0.83 m/s on the right hand side.
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Figure 3: Same test as in Figure 2 with Q2/P1 elements. On the left hand
side, maximum speed is 0.2e-11m/s. On the right hand side

: 0.3m/s .
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Figure 4: One fluid in presence of f = V&;. On the rectangular mesh,
the speed reaches 0.76e-3m/s. On the bent mesh, 0.19e-1m /s. This case is
presented with the Q1/P0 pair of finite elements. We obtain similar results
with the Q2/P1 elements.
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Figure 5: One fluid in presence of f = V®y+curl gy on rectangularelements.

Left hand side :

the velocity field. Right hand side :

comparison between

the theoretical first component of the velocity and the numerical one on the
straight line y = 0.4. Finite elements : Q1/P0.
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Figure 6: Same situation as Figure 5, but on a distorted mesh.
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Figure 7: Same situation as Figure 6 (distorted mesh), but with Q2/P1 ele-
ments. While the Q2/P1 approximation is better than the Q1/P0, significant

inaccuracies remain.
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Figure 8: The projection method for the experiment 1.4 on the same dis-
torted mesh as Figure 6. Note that the theoretical curve and the numerical
one are now the same. A very precise result is also obtained by the projection
method with the Q2/P1 elements in the case corresponding to Figure 7.
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Figure 9: The four elements around the node j.
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