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Abstract

We prove a global-in-time existence result of a weak solution for
a magnetohydrodynamic (MHD) problem set in a bounded domain of
R3. The fluid is supposed to be incompressible but with an unhomoge-
neous density, viscosity and electrical conductivity. The displacement
currents are neglected in the time dependent Maxwell equations. The
model describes in particular the flow of two immiscible fluids in pres-
ence of a magnetic field.

Résumé

Nous prouvons un résultat d’existence globale en temps de solutions
faibles pour un probléme de magnétohydrodynamique (MHD) dans un
domaine borné de R3. Le fluide considéré est incompressible mais sa
densité, sa viscosité et sa conductivité électrique sont variables. Nous
négligeons les courants de déplacement dans les équations de Maxwell.
Le modéle proposé décrit en particulier le comportement de deux flui-
des non miscibles en présence d’un champ magnétique.

1 Introduction

In this article, we prove the existence of a weak solution for the transient
incompressible density-dependent Navier-Stokes equations coupled with the
Maxwell’s system where we neglect the so-called displacement currents (na-
mely the term 0;(¢F) in the Maxwell-Ampére equation —0; (¢ ) +curl % =7)
and also coupled with Ohm’s law in a rather complete form j = o(F+u x B)
taking into account the Hall effect. The mathematical model we shall deal
hereafter is therefore the following system, that we write here somewhat
formally but that will be made precise in the next section :

Op+div(pu) = 0, (1.1)
Oi(pu) + div (pu @ u) — div (29d(u))+ Vp = pf+curl B x B, (1.2)
dive = 0, (1.3)
1
0B+ curl (—curl B) = curl (u x B), (1.4)
o
divB = 0, (1.5)

LAMS subject classification : 35Q30, 35Q60, 76D05, 76W05.



together with some ad hoc boundary conditions and initial data (see below).
The unknowns are the density p, the velocity u, the magnetic field B, the
pressure p. We denote by d(u) = %(Vu + VuT) the shear rate tensor, f
a given exterior body force, o the electrical conductivity of the fluid and 75
its viscosity, both conductivity and viscosity being functions of the density
o = o(p), n = n(p). In the sequel, we shall refer to this system by “the
density-dependent MHD equations”.

The density-dependent MHD equations describe in particular the mo-
tion of several conducting incompressible immiscible fluids (without surface
tension) in presence of a magnetic field.

From a physical viewpoint, the assumption on the displacement cur-
rents is valid as soon as the materials are sufficiently conducting (see R.
Moreau [13] for example). This occurs in particular in molten metals. From
a mathematical viewpoint, this hypothesis makes the problem easier since it
transforms the hyperbolic Maxwell’s system into a parabolic equation.

Many works have already been devoted to the study of MHD systems for
one fluid with constant density. We now give a brief overview on those we
are aware of.

Existence and uniqueness results are established by G. Duvaut and J.-
L. Lions in [5] for the case of the time-dependent MHD equations (without
displacement current) posed on a simply-connected bounded domain in the
framework of Bingham fluids. These results are completed by M. Sermange
and R. Temam in [20] for classical Newtonian fluids. They show that the
classical properties of the Navier-Stokes equations can be extended to the
MHD system. More precisely, they prove in the bidimensional case the exis-
tence and the uniqueness of a global weak solution which is strong for regular
data. When the space dimension is three, they prove that a global weak so-
lution exists and that for more regular data, a strong solution exists and is
unique for small times. At last, they study the large time behaviour and the
Haussdorf dimension of a functional invariant set. Some of these results are
also presented by R. Temam in [23] and by J.-M. Ghidaglia in [9].

The stationary MHD equations are treated by M.D. Gunzburger, A.J.
Meir and J.S. Peterson in [10]. They prove the existence of a solution and
its uniqueness in particular cases. Nonhomogeneous boundary conditions
for v and B are used in this work and the authors propose two types of
boundary conditions for the electromagnetic field (see the next section for
more details). Lastly, a complete numerical analysis by the finite element
method is presented. They prove in particular that any finite element spaces



of H1(Q) is relevant to approximate the magnetic field as soon as a tradi-
tional pair of spaces (say Q2/discontinuous P1 for instance) satisfying the
Ladyzenskaia-Babuska-Brezzi inf-sup condition is used for the velocity and
the pressure.

The case of multiply-connected bounded sets is studied by J.-M. Domin-
gez de la Rasilla in [4] for the stationary equation and by K. Kerieff in the
time-dependent problem [11]. A numerical analysis by the finite element
method is also proposed in [4].

E. Sanchez-Palancia has treated in [18] and [19] an MHD problem in
an exterior domain both in the stationary and the time-dependent cases
(without displacement currents) .

J. Rappaz and R. Touzani have studied the MHD equations in a partic-
ular bidimensional non connected domain which occurs in industrial appli-
cations such as electromagnetic casting. They establish existence results in
[16] (summarized in [15]) and give a numerical analysis of the problem in

[17].

In all the above studies, the density of the fluid is supposed to be constant.
Here, we are interested in fluids with nonhomogeneous density (which covers
the case of several fluids with different constant densities) and we intend to
extend to the coupled case the results known so far on the density-dependent
Navier-Stokes equations. Let us now recall these results.

Global existence and regularity results have been established by A.V.
Kazhikov, S.N. Antontsev and A.V. Monakhev in [1] in the bidimensional
case. They suppose that the viscosity is constant in the whole domain and
that the initial density is bounded from below by a positive constant.

A. Nouri and F. Poupaud consider in [14] the transport equation for
both the density and the viscosity and they use the concept of renormalized
solutions of R.J. DiPerna and P.-L. Lions. This allows them to prove the
existence of a global weak solution for several fluids with various viscosities
and various densities bounded from below by a positive constant.

But to date, the most complete study of the density-dependent Navier-
Stokes equations is due to P.-L. Lions in [12] and our study is largely inspired
by his work. In this approach, the viscosity is a function of the density. The
initial density is assumed to be nonnegative, but not necessarily bounded
from below by a positive constant, which also allows one to consider free
surface problems. The main result proved in [12] in this setting is the global
existence of a weak solution. Moreover, as long as a strong solution exists,
then any weak solution is equal to it (see [12] and also B. Desjardins [3] for



a proof of existence of a strong solution under particular assumptions).

Our paper is organized as follows. We recall in Section 2 the density-
dependent MHD equations along with the definition of various functions
spaces. The initial and boundary conditions are also detailed as well as
convenient hypotheses on the data. Section 3 will be devoted to the proof of
the existence theorem, which basically follows the same pattern as the proof
for the uncoupled case in [12]. We shall explain there the main mathematical
difficulties raised by our problem. In a first step we establish existence,
uniqueness and regularity results for a linear problem. We use these results
in a second step in order to prove by a fixed point argument the existence of
a smooth solution for a regularized MHD problem. Finally, in a third step,
a fundamental compactness theorem proved in [12] allows us to pass to the
limit in the regularized problem, which concludes the proof.

Some interesting connected questions are not treated in this paper (we
refer the reader to a forthcoming work [8] where we shall address some of
them).

It must be first mentioned that various several other MHD models may
be considered. Let us just give three of them.

We could consider a fully static model consisting in a coupling between
the steady-state Navier-Stokes equations and the stationary Maxwell’s sys-
tem. This is a difficult problem since existence questions related to the
density-dependent stationary Navier-Stokes equations are still open even in
the absence of electromagnetism, and it is not clear why we may hope to
have more compactness in the coupled case.

Another possible model which raises serious mathematical difficulties is
the coupling between the time-dependent Navier-Stokes equations and the
complete Maxwell’s system (including displacement currents). Due to the
hyperbolic nature of the Maxwell equations this is a problem that remains
open today even in the case of one homogeneous fluid.

Finally, a model which is to some extent easier to deal with (at least in
the case of “small” initial data) but that exhibits other kinds of mathematical
difficulties than the ones we face in this article, consists in a coupling between
the time-dependent Navier-Stokes equations and the stationary Maxwell’s
system (see [8]).

Let us also notice that other density-dependent problems could be con-
sidered with the same approach : for example the Boussinesq equations pre-
sented for one homogeneous fluid by C. Bernardi, B. Métivet and B. Pernaud-
Thomas in [2].



2 The equations and their functional setting

2.1 The density-dependent MHD equations

Let Q be a simply-connected, fixed bounded domain in R? enclosed in a C*
boundary d€2. We shall denote by n the outward-pointing normal to 2.

The density-dependent MHD problem we shall consider is to find two
vector-valued functions, the velocity u and the magnetic field B, and two
scalar functions, the density p and the pressure p, defined on € x [0, T, such
that

dip+div(pu) =0 on Q, (2.1)

d(pu) +div (pu @ u) — div (2nd(u))+ Vp=p f+curl Bx B on Q, (2.2)
divu=0 onQ, (2.3)

0¢B + curl (écurlB) =curl (u x B) onQ, (2.4)

divB=0 onQ. (2.5)

We recall that d(u) = £(Vu+ Vul) is the shear rate tensor, f is a given ex-
terior body force, o the electrical conductivity of the fluid and 7 its viscosity.
We assume that they are both function of p :

o =0o(p) and n = 1(p).

This dependence of 1 and ¢ on p enables us to consider the density-dependent
equations as a model of a multi-phase flow consisting of several immiscible
fluids with various conductivities and viscosities.

For the convenience of the reader, let us briefly recall where these equa-
tions come from. First of all, we assume that the magnetic permeability p
is constant over the domain, and we set it to 1. The system (2.1)-(2.3) is
the density dependent Navier-Stokes equation. Let us recall the Maxwell-
Ampére equation where the displacement currents are neglected :

curl B = j, (2.6)
the Maxwell-Faraday equation :
0¢B + curl ' = 0, (2.7)
and the Ohm’s law :
J=o(F+ux B), (2.8)



where j is the current density and E the electric field. Using (2.6), we
see that the Lorentz force j X B acting on the fluid is curl B x B which
explains the second term of the right-hand-side of (2.2). Eliminating j and
E between (2.6), (2.7) and (2.8) we obtain the first equation of (2.4). As
soon as B satisfying (2.4) is obtained, we may recover E through (2.7) and
a gauge condition on div F.

We require p and B to satisfy the initial conditions

pli=o = po on €, (2.9)
B|t:0 = BO on €. (210)

If po vanishes on some part of €2 we cannot directly impose an initial condition
on u. That is why the initial condition is imposed on pu in [12]. Though
we shall suppose in this article that pg does not vanish, we use the same
approach, having in mind future developpements of the present work :

pitli=o = mg on £. (2.11)
On 092, we impose the homogeneous no-slip boundary condition :
u|ag = 0. (2.12)

For the sake of simplicity, we suppose that the boundary 99 is fixed and
perfectly conducting. Using Ohm’s law (2.8) and Maxwell-Ampére equation
(2.6), we deduce the boundary condition for B :

(B.n)]ag = 0, (2.13)

(curl B X n)|sq = 0. (2.14)

Let us notice that our arguments and results may be extended to treat the
quite general case

(B.n)]ag = q and (£ x n)|aq = k, (2.15)

with ¢ and k arbitrarily fixed, independent of time, or even depending in a
convenient way on the time.

Remark 2.1 M.D. Gunzburger and coworkers give in [10] a complete study
of the general case (¢ # 0 and k # 0) for the stationary MHD equations (with
p constant) and propose another set of electromagnetic boundary condition,
namely :

(B x n)|ag = ¢ and (E.n)|sq = k.



2.2 Function spaces

For m > 0, we denote as usual by H™(£2) the Sobolev space
H™(Q) = {u € L*(Q); D"u € L*(Q),¥7,|y] < m}

where v = (71,72,73) is a multi-index and |y| = 71 + 72 + 73. The norm
associated with H™ () that we will use is :

. 1/2
[ul[gme) = (Z DWU?’}(Q)) :

|v|=0

For m > 1, HJ* () is the subspace of H™ () consisting of functions vanish-
ing on 9. For any space X, we shall denote (X)* by X (e.g. (L?(2))® by
L2(Q), (H™(Q))? by H™(Q),...).

Let 7' > 0 and let X be a Banach space. LP(0,7;X),1 < p < oo is the
space of classes of L? functions from [0,7] into X. We recall that this is a
Banach space for the norm

T 1/p
(/ ||u(t)||§(dt) if 1 <p<oo, esssup |lu(t)||xif p=occ.
0 te0,T]

We denote by C°(€2) (resp. C°(€2)) the space of real functions infinitely
differentiable with a compact support in € (resp. Q). We introduce the
spaces

V= {ve () dive =0},
V = {ve Hy(Q),dive = 0},
W ={C € (C(Q))?,divC = 0,C.n|sq = 0},
W ={CecH(Q),divC = 0,C.n|sq = 0},
H = {v € L*Q),dive = 0,v.n]sq = 0}.

The space V (resp. W) is the closure of V (resp. W) in H} (Q2) (resp. H(©)).
H is the closure of V (and W) in L*(Q). Let us remark that u.n makes sense
in H=Y2(9Q) as soon as u € L*(Q) satisfies diva = 0. For v € V and

C' € W we denote
1/2
ol = (/ |W|2dx) ,
Q

1/2
||C||W:(/ |CUI’IC|2d$) .
Q

7



One can establish that ||.||v (resp. ||.||w) defines a norm (resp. W) which
is equivalent to that induced by H'(Q) on V (resp. W) (cf. G. Duvaut and
J.-L. Lions [6]). The fact that € is simply-connected is essential for this
point.

We shall make frequent use of the following formulas of vector analysis :
for all vector fields ® and ¥ we have

/CUI’I(I).\Ild$I/(I).CUI’1\Ild$—I—/ n X ¢.Vdx, (2.16)
Q Q o0

whenever these integrals make sense. Moreover, for all velocity fields « and
densities p, we have

div (pu @ u) = udiv (pu) + p(u.V)u

in the sense of distributions on €2.

2.3 Regularity of the data

In the same fashion as in [12], the initial data for the hydrodynamic variables
are required to have the following properties :

po € L(Q), (2.17)
mo € L2(Q), (2.18)
|”;—2|2 c LY(9Q). (2.19)

However, while in [12] for the Navier-Stokes equations, the only assumption
on the initial density is pp > 0, which in particular covers the case when
there is some vacuum (py = 0) on some part of the domain Q at ¢t = 0, we
are obliged to assume here, because of the coupling with the magnetic field
(see Remark 3.4), that

po >0 a.e in . (2.20)
Moreover, we shall suppose in the sequel — unless otherwise mentioned — that
feL*0,T;L%Q)) (2.21)

and that 1 and o are continuous functions on [0, +00) such that
0<m <) <n for & €[0,00), (2.22)
0<oy<0() <oy for&e(0,00). (2.23)

Finally, we assume that
By e H. (2.24)



3 Existence of a weak solution

This section is devoted to the statement and proof of our main result. We
need first

Definition 3.1 For 7' > 0, we shall say that (p, u, B) is a weak solution on
Q x [0,77] of the problem (2.1)-(2.14) with the assumptions (2.17)-(2.24) if

p€L>®(Qx(0,T)NC0,T;LF()), Vp>1, (3.1)
u € L*0,T;V), (3.2)

plul* € L0, T3 L1(Q)), (3.3)

B e L*0,T;W)n L>=(0,T; HyNC([0,T], H,)? (3.4)

and (p,u, B) are such that (2.1) holds in the sense of distributions in Q x
(0,7) and

// o) —pu.0rp — pu @ w.No + 2nd(u).d(¢) dedt =
Qx(0,00

(3.5)
(pf + (curl B) x B) .¢ dwdt—l—/ mo.¢(z,0) dz,
Q

Qx(0,00)

// —Bo:;¢ + lCurlB.Curhbdavdt = // curl (u X B).¢ dadt
2% (0,00) g 2% (0,00)

—I—/QBO.qb(x,O) dz,

(3.6)
for all ¢ € C2°(Q x [0,00))".

Then we have

Theorem 1
Under the regularity assumptions on the data (2.17)-(2.24), there exists a
weak solution (p, u, B) of the density dependent MHD equations (2.1)-(2.5),
with initial conditions (2.9)- (2.11) and boundary conditions (2.12)-(2.14),
satisfying (3.1)-(3.4).

Furthermore,

meas{z € Q/a < p(x,t) < 3} (3.7)
is independent of t > 0 for all 0 < a < [ < 0. ’

B cC([0,T], Hy) means YC € H, t — fﬂ B(t).C dz is a continuous scalar function.



Remark 3.1 Let us note that initial conditions (2.9) and (2.10) make sense
in view of the assumption of continuity made on p and B in Definition 3.1.
But we did not assume any continuity on pu and therefore, the sense of the
initial condition (2.11) is not clear. Roughly speaking, pu converges to mg
up to a “gradient-like” distribution when ¢t — 0. We refer to [12] for a precise
explanation of this technical point.

Nevertheless, if we suppose that 0 < p; < po(2) a.e in Q (instead of
(2.20)) and if 72 is divergence free, then we can prove that u € C([0, 7], H.)
(like in R. Temam [21]), which gives sense to (2.11).

Remark 3.2 In the case of a multi-phase incompressible flow of K immis-
cible fluids we have p|;—¢ = p* on Qp, k =1, .., K, where p* is the density of
the k' phase and (Q4)s=1.x is a partition of Q. The property (3.7) means
nothing but the mass conservation of each phase.

Note that this property holds of course for the density dependent Navier-
Stokes equations without electromagnetism.

Remark 3.3 It is important to note that, like for the standard Navier-
Stokes equation and a fortiori for the density-dependent equation with given
forces treated in [12], we do not know if a weak solution is unique. We
do not know either if a strong solution always exists. However, it is an
extension of our work to show that the same regularity results holding under
restrictive assumptions in the case of the density dependent equations, that
we mentioned in the introduction, may be extended to our case.

Remark 3.4 It would be interesting to allow, like in [12], the initial density
to be zero somewhere in © (think for instance of a conducting fluid with a
free surface). Our proof could easily be extended to this case if we endowed
the vacuum with a conductivity o1 > 0. But this hypothesis would not be
very convincing from a physical viewpoint since, in the set {p = 0}, the
magnetic field B would not be a solution of the Maxwell equations in the
vacuum. This is why we are obliged to suppose here that the initial density
does not vanish.

Before we turn to the proof of Theorem 1, let us briefly describe our strat-
egy of proof and say a few words on how we circumvent the mathematical
difficulties raised by the problem (2.1)-(2.5).

System (2.1)-(2.5) couples two equations of parabolic type with the trans-
port equation (2.1). It is intuitively clear (and it is indeed the case) that the

10



parabolic equation (2.4) is the easiest one to treat. This is why it is some-
what natural that the same results as in the standard density-dependent case
also hold true here.

The idea to prove the existence of a solution is to introduce a regularized
problem (namely (3.50)-(3.59) in Section 3.2 below) for which the solution,
denote by u®, is regular enough to allow one to define (2.1) as a classical
transport equation.

At the same time, the magnetic field evolves according to the parabolic
equation (2.4), linear with respect to B, which provides at any time a force
term in the right-hand side of (2.2).

Showing the existence of a solution to this regularized problem is the
purpose of our first two steps. We linearize the problem in Subsection 3.1 and
then use a fixed point argument in Subsection 3.2. Proving the theorem then
amounts to passing to the limit in the regularized problem (when ¢ — 0).
In this third step, we make use of a powerful compactness result due to
P.-L. Lions (Theorem 2 below).

In comparison with the case studied in [12], the new difficulty is that
we have to check that the force term curl B x B does not introduce any
perturbation on the estimates on the velocity u and the density p. Moreover,
we have to recover some compactness on B through the parabolic equation

(2.4-a) in order to pass to the limit in the nonlinear terms curl B x B (and
curl (u x B)).

3.1 First step : a linear coupled problem

In this section, we prove a preliminary result which will be useful in section

3.2. The problem presented below is a linearized MHD system with pre-

scribed density and will be solved by classical arguments. Let us notice that

there are several possibilities to linearize the initial system (see Remark 3.5).
For p, w and h arbitrarily fixed such that

p € C([0,T],C*(€)),Vk > 0, such that 0 < py < p(a,t) < p3,  (3.8)
dp € L*0,T;C*9Q)),VEk > 0, (3.9)

w € L*(0,T;L>=(Q)), with divw = 0 and d;p + div (pw) =0,  (3.10)
h € L*(0,T;L>(Q2) N Wh(Q)) with divh = 0, (3.11)

the problem is to find two vector-valued functions w and B and a scalar
function p defined on Q x [0, 77, such that

11



pou~+ p(w.V)u —div (2nd(u)) +Vp = pf+curl Bxh, (3.12)
dive = 0, (3.13)
0¢B + curl (écurl B) = curl(u x h), (3.14)
divB = 0, (3.15)
with
w =0 on 09, (3.16)
B.n=0and curl B x n =0 on 09, (3.17)
and
w]t=0 = uo, (3.18)
Bli—o = Bo. (3.19)

In this subsection, we require the viscosity and the conductivity to have
the following regularity properties :

1 € C7([0,00)) such that 0 < ny < 7(g) < 7, (3.20)
o € C*([0,00)) such that 0 < oy < o(§) < 03, (3.21)
and, for the moment, we only suppose that :
f € L0, T;H (), (3.22)
ug, Bo € H. (3.23)

Although we shall use a strong solution of this problem in the sequel, it
will be useful for the proof of the following proposition to define a notion of
weak solution : we shall say that (u, B) is a weak solution of (3.12)-(3.19) if
this pair is a solution of the problem (P) defined by

To find w € L*(0,T;V) and B € L*(0,T; W) satisfying the initial condi-
tions (3.18) and (3.19) and such that

/ p(@tu—l—(w.V)u).vdx—l—/ 2nd(u).d(v) de =< pf,v > —I—/ curl B X h.vdz
Q Q Q
(3.24)
/ 0:B.C dz + / lCurlB.CurlC'dav = / curl (u X h).C'dx (3.25)
Q Q0 Q

Jor allv eV and for all C € W.

Let us notice that we have made use of the regularity (3.10) of w to define
this problem.

12



Proposition 1
1. Under the assumptions (3.8)-(3.11) and (3.20)-(3.23), there exists a
unique pair (u, B) € L*(0,T;V) x L*(0,T; W) weak solution of the
problem (3.12)-(3.19) and a distribution p € D(2 x (0,T)), unique up
to an additive constant, satisfying (3.12). Moreover, u and B belong

toC(0,T; H) .
2. If we suppose f € L*(0,T;L%Q)), up € V and By € W, we have
moreover :
ue L*(0,T;H(Q)NC(0,T;V), (3.26)
B e L*(0,T; 2 (Q)nC(0, T; W), (3.27)
O € L*(0,T; H), (3.28)
OB € L*0,T; H), (3.29)
p€ L*0,T; HY(Q)).e (3.30)
Proof.
1) We solve (P) by the Faedo-Galerkin method : since V' (resp. W) are
separable there exists a sequence of linearly independent elements vy, va, ..., Uy, ...

(resp. C1,Cq, ..., Cy, ...) which is total in V' (resp. in W). For all n we define
an approximated solution (u,, B,,) as follows :

Uy, = Zai(t)vi, (3.31)
B, = zn:ﬁz(t)cﬂ (3.32)

where «; and f3;, i=1,...,n, are scalar functions defined on [0, T'] solutions of

n

> ( /Q pv;.v; dac) ol + ( /Q (p(w.V)viv; + 2nd(v;).d(v;)) dac) o

=1

—(/ curl C; x h.v; dw) Bi=<pf(t),v; > Vj=1,..,n
Q

> ( / C.C dw) Bl + ( / lcurlCi.curle dw) i
N Q Q0

=1

—(/ curl (v; x h).C; dw) a;=0,¥V5=1,....n.
Q

(3.33)

13



with fori=1,...,n

a;(0) = aj
3.34
Ui 2 (3:34)
(eio)i=1..n (resp. (Bi0)i=1..n) are the coordinates of the orthogonal projection
in H of ug (resp. Bp) on the space spanned by v, ..., v, (resp. C1,...,Ch).
The matrix (fQ pU;V; dw)” L, (resp. (fQC C dx)”,:lm
gular since the family (y/pvi)i=1., wWith p > 0 (resp. (Ci)i=1.n) is free.
Thus, the Cauchy-Lipschitz theorem implies that the linear differential sys-
tem (3.33) with coefficients in L?(0,T) together with the initial conditions
(3.34) defines uniquely the functions «; and f3; on the whole interval [0, 77.

Then, we obtain with (3.31) and (3.32)

) is nonsin-

u, € C(0,T;V), B, € C(0, T;W).

Moreover, with the regularity of w, h, p, f, 7 and ¢ coming from (3.8)-(3.11)
and (3.20)-(3.23), we have :

ul, € L*(0,T;V), B, € L*(0,T; W).

In view of this regularity we have :
2dt

B,.B,dx==— [ |B,|*d
/Qat $2dt/||$

We multiply the first (resp. second) equations of (3.33) by «; (resp. §;) and
we add them for 7 = 1 to ». This yields :

1d
th p|un|2dx—|—/ 277|d(un)|2dac =< pf,u, > —I—/ curl B, x h.u, dx
Q

/|B |2dx—|—/ —l|curl B, |2dx—/curl(un><h).Bndx.
2dt Q

(we have used

/p@tun.undx: p|un|2dx—/8tp|un|2dx
Q Q Q

and

(3.35)

—/8tp|un|2dw—|—/pw.Vun.undx:—/(@p—l—div (pw))|un|2dx:0.)
Q Q Q

With (3.35) and (2.16), we obtain the “energy equation” :

d 1
—— p|un|2—|—|Bn|2d9€—|—/ 20|d(un) |* + =|curl B,|? dz =< pf, u, >
Q Q o
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Remark 3.5 Note that the way we have linearized the terms curl B x B and
curl (u x B) is especially chosen among all the different manners in which
the system may be linearized, in order to easily obtain the above a prior:
estimates.

Let us notice that
/ 2n|d (un)|* da > ﬂ/ |V, + Vul|?dz = 771/ |Vu,|? de
Q 2 Jg Q

since div u,, = 0. So we have :

d

|Vun|2dx—|—3/ |curl B, |? dx
dt Jo Q o2 Ja

< — e —1(0)-
= el (Q)||f||H ()

Using 0 < p1 < p, we deduce by Gronwall’s lemma that :
u,, is bounded in L?(0,7; V)N L>*(0,T; H),

B,, is bounded in L*(0,T; W) N L>(0,T; H).

So, there exists u € L?(0,T; V)NL> (0, T; H) such that u,, converges to u (up
to the extraction of subsequences) for the weak-star topology of L*(0,7"; H)
and for the weak topology of L%(0,T;V). In the same way, there exists
B € L*(0,T; W)NL>(0,T; H) such that B,, converges to B for the weak-star
topology of L*°(0,T; H) and for the weak topology of L%(0,T;W). Clearly,
the pair (u, B) is a solution of (P).

Let us assume now that (uy, By) and (ug, By) are two solutions of (P)
and let (@, B) = (uy — ug, By — By). We easily check from (3.24) and (3.25)
that J

& [ e +18) <o
Thus (@, B) = (0,0), and the uniqueness of the solution of (P) is proved.

It is classical to show that for the solution (u, B) of problem (P), there
exists a distribution p such that (3.12) is satisfied for (u, B, p) in the distri-
bution sense in © x [0,77] (see e.g. R. Temam [21], [22]).

Moreover, d;u and d;B belong to L?(0,7; H™1) (at least). Therefore,
since u and B belong to L?(0,7; H'), we deduce that u and B belong to
C(0,7; H) (see R. Temam [21]).
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2) The additional assumptions of regularity for f, ug and By enable us
to obtain another estimate for the approximate solution (u,, B,) built by
the Faedo-Galerkin method.

We multiply each first equation of (3.33) by o/ and we add them for i = 1
ton :

/ p| O, | da + / pw. Vi, Oy, dz —I—/ 2nd(uy,).0ud(uy,) de =
Q Q Q
/ (pf + curl B,, x h).0u,, dz.
Q

Thus :

d
Pl/ |0pus,|? do +%/U|d(un)|2d9€§/|3t77||d(un)|2d90‘|‘
Q Q Q

/ Pl [V || + el Byl [1]]dhun | + pl f1|00,] de.
Q

Hence, using the Cauchy-Schwarz inequality, we find

1 2 d 2
— Oiup|* d — dluy)|”dx <
2 o+ [ i) e <

. (3.36)
< oel(t)/ 77|d(un)|2dx —I—ﬁl(t)/ ;|CUI’1 Bn|2dx + 71(t)
Q Q
with 2
0‘1():_||8t77||L°° +—77|| I ()
30
pilt) = 2||h||L°°

3
() = '”2||f||L2

As well, we multiply the second equations of (3.33) by 3! and we add
them from ¢ =1ton :

1
/ |0: B, |* dx —I—/ —curl B,,.0curl B, dx = / curl (u, X h).0¢B,, dz.
Q Qo Q
Thus
1d

2

< / |0y (;) l[curl B, |2 4 10 By | |1 Vtun| + |0: B ||V ||, d.
Q

|Cur1B 1> dx <

16



Using again the Cauchy-Schwarz inequality and ||u[|re(q) < col[Vul|r2(q),
we find :

d 1
/ |0:B,,|? dx + %/ —leurl B,|? dx <
Q Q9

. (3.37)
< ag(t) 77|d(un)|2dx + B2(t) / —|curl Bn|2 dx
Q Q0

with )
4 4c

ar(t) = —||h 200 ‘|‘_0 Vh ] )

2(t) 771” 1z () m INEIFEIS

Ba(t) = 202|0; (l) |-

g

Then, we add (3.36) and (3.37), which yields in particular :
A1) < (DA + (D),
with .
At) = / 77|d(un)|2dx—|—/ —leurl B, |* dz
Q Qo
and
Yo(t) = ar(t) + aq(t) + Bi(t) + Sa(1).

The hypotheses (3.8)-(3.11) and (3.20)-(3.23) imply that v € L'(0,7).
Moreover v; € LY(0,7T) since f € L?(0,T;L*()). Therefore, using that
up € V and By € W, Gronwall’s lemma implies that supcp 77 A(t) is
bounded, hence :

uy, is bounded in L*(0,T;V),

B,, is bounded in L™ (0,1 W).
We deduce by integrating (3.36) and (3.37) that :

Dy, is bounded in L*(0,T; H),

9B, is bounded in L*(0,7; H).
By a passage to the limit, these last two properties show that :

O € L*0,T; H), (3.38)

OB e L*0,T; H). (3.39)
Let us now prove (3.26) and (3.27). We have

—div (2nd(u)) + Vp = pf — pOsu — pw.Vu+ curl B X h,

17



which we write
—ANu+Vp=2¢

with

. p

p _ —

n
and
1 Vi
b= ; pf+2Vnd(u) — pdu — pw.Vu+ curl B x h — pﬁ .

Thus we have

diveu = 0 onf
v = 0 ondf

With the above assumptions on the data and (3.38) we have ¢ € L%(0,T; L*(Q)).
Therefore, by classical regularity results on the Stokes problem (see R.
Temam [21] for instance) we have :

u € L*(0,T; W (Q)), (3.40)
p € L*0,T; HY(Q)).

{Au—l—Vﬁ = ¢ onf

As well, we have :

1
curl (—curl B) = —0;B + curl (u X h)

g

which leads to
-AB = ¢ on{Q
Bn = 0 ondQ (3.41)
curl Bxn = 0 on 09

with .
Yv=0 (—V (—) x curl B— 9B+ h.Vu— u.Vh) .
o
The assumptions on the data and (3.39) give ¢ € L?(0,T;L*(Q)). Then, we

use a regularity result due to V. Georgescu [7] on boundary problems of the
type (3.41) which implies that :

B € L*0,T; W (Q)). (3.42)
Finally, (3.38) and (3.40) together imply that
uw € C(0,T;V),
while (3.39) and (3.42) imply likewise that
B € C(0,T;W).
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3.2 Second step : an approximated nonlinear problem

In this section, we solve a regularized MHD problem by using the Schauder
fixed point theorem and the results of step 1.

3.2.1 Regularization

Let u € L*(0,T;V), we define r.(u) as in [12]. Let us recall that r.(u) €
L*(0,7;C>(Q)%), divr.(u) = 0 and r.(u) vanishes near 9Q. Moreover we
have :

ii_% re(u) =u inLP(Q) (1<p<oo) (3.43)
and let us note that r.(u) € L*().

For B € L?(0,T;W), we build a regularization s.(B) as follows : we
extend B to R? by 0. We next define s.(B) = B * w, (w. is a regularizing
kernel). Let us notice that s.(B) € L?(0,T;C>(Q2)) and div s.(B) = 0 (since
B.n =0 on 0Q) but s.(B).n # 0 on 0X2. We have in particular :

ii_% se(B)y=B inLP(Q) (1<p<oo) (3.44)

We set fe = (f 1(4>2:)) * we where d = dist(=z, 99).

Without loss of generality, we may assume that 7(£) is constant for £ large
enough (since p remains in [0, [|po|[z~(q)]). We denote by n° € C*°([0, 0)) a
function bounded away from 0, and such that suppg .. |n°—n| < e. Moreover,
n° (&) is supposed to be constant for £ large enough. Then, we define 7. =
7(p) * we|q with 7j(p) = n°(p) in Q@ and = 1 in Q°.

We define o, from o like 5. from 5.

The initial data mg and pg are regularized like in [12]. Let us just recall
that

£ < pp < p2, (3.45)
lin% po=po in LP(Q) (1< p<o0), (3.46)
e—+
: : .My mo .
lim m§ = L*(Q), 1 0 - — L*(Q). 4
lim'mg =mo in (92, lim o > in L*(Q) (3.47)
Moreover, we have the following decomposition
my = pug + Vg (3.48)

where uf € C5°(Q) and divug = 0 in Q (see [12]).
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At last, By € H is regularized as follows : we extend By on R® by 0 and
we define Bf = (Bo (4>2:)) * we. Note that By vanishes near J2 and that
we have :

lim By = By inLP(Q) (1<p< o). (3.49)

e—0

3.2.2 Approximated problem

Our goal is to solve the following problem :
dip +div (r-(u)p) =0, (3.50)

O¢(pu) +div (pr(u) @u) —div (2n9.d(u))+Vp = pfe+curl B xs.(B), (3.51)

1

0B + curl (—curl B) = curl (u x s.(B)), (3.52)
Oc

divu =0, (3.53)

div B =0, (3.54)

all equations being on €2, with the boundary conditions

u =0 on 99, (3.55)
B.n=0and curl B x n =0 on 09, (3.56)
and the initial conditions
pli=o = po, (3.57)
uli=0 = ug, (3.58)
Bli=o = Bj. (3.59)

Proposition 2
The above regularized problem (3.50)-(3.59) has a solution (p, u, B) € C*(x
[0, +00))° o
Proof.

1) First, we prove by a fixed point argument that the regularized problem
has a solution in C(Q x [0,7]) x L2(0,T;V) x L*(0,T;W).

Let us consider the convex set C.. in C(Qx[0, T]) x L2(0, T; V) x L*(0, T; W)
defined by

[0,7]) x L*(0,T;V) x L*(0,T; W), such that
[0, 1, [[all 2 0,7:v) < Ros [IBllr20,mw) < Rot
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where R is a constant to be determined.
For (p, 7, B) € C. we define F(p,, B) = (p, u, B) as follows : first of all,
we solve

(3.60)

£

{@p—l—div(prs(ﬂ)) = 0 inQx(0,7),
plizo = p5 in

This is a classical transport equation since, by construction, r.(u) is regular,
divergence free and vanishes near d€2. Thus p is given by

p(@,t) = po(X(0;2,t)), V(x,t) € Qx [0, 77,

where X is the solution of the ordinary differential equation

{ Cil_)s( = r(u)(X(s;2,1),9)
X(t;z,t) = =

We deduce from (3.45) that ¢ < p < py in Q x [0,7]. Thus p €
C([0,T7;C*(Q)) for all k£ > 0 and is bounded in this space uniformly in (5, 7).
Furthermore, we deduce from (3.60) that d;p is bounded in L%(0,T;C*(2))
for all £ > 0 uniformly in (p, @). Therefore the set of p (such that (p,u, B) =
F(p,u, B) for (p,u, B) € C.) is compact in C(Q x [0,T7]).

Next, we set w = r.(%) and h = s.(B) and we invoke Proposition 1 to
define (u, B) as the unique solution of :

A(pu) +div (pr-(w) @ u) —div (2n.d(u)) + Vp = pfe +curl B x s.(B) (3.61)

1 —
0B + curl (—curl B) = curl (u x s.(B)) (3.62)
O-E
divu =0 (3.63)
div B = 0 (3.64)

with the boundary conditions (3.55)-(3.56) and the initial conditions (3.58)-
(3.59). We recall that u € L?(0,T; H? (2))NC(0,T;V) and B € L?(0,T; H*(Q))N
C(0,T; W) which justifies the manipulations hereafter.
Now, let us choose Ry in such a way that (p, u, B) is in C.. We multiply

(3.61) by u and we integrate :

1d 9 9 —

—— [ plul"de+ | 2n.|d(u)|"dx = | pfeudr+ | curl B X s.(B).udz

2dt Jq Q Q Q
As well we multiply (3.62) by B and we integrate :

1d 1 —
——/ |B|2dx—|—/ —Jeurl B]* dz = / curl (u x s.(B)).Bdz.
2 dt Q Q O¢ Q
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We add these equations using (2.16) to obtain the energy identity :

1d 1

—— p|u|2—|—|B|2dac—|—/ 2775|d(u)|2—|——|cur1B|2dx:/pfs.udac (3.65)
2dt Jg Q 0. Q

Then, the Cauchy-Schwarz inequality and [[ul[z2(q) < ¢(Q)[|Vul|z2(q) leads
to:

2p2c(Q)?

2
plul® +|B|* da -I-/ ﬂ|Vu|2 + —|eurl B da < 520
Q 2 g9 m

2
@ /s 1 fellZ2 (@)

Finally, using 0 < £ < p we obtain by Gronwall’s lemma :

sup [lu(®)|[r2) + sup [|[BO o) + lullz2o,75v) + 1Bl 2 0,m5w) < co
t€[0,T] t€[0,T]

where ¢g is a constant which is independent of Ry, @, B. Hence, with Ry = ¢,
we have F(p, @, B) € C..

In order to apply the Schauder theorem, we still have to prove that the
mapping F is compact on C. Replacing w by r.(%) and h by s.(B) in the
proof of Proposition 1, part 2 , we see that :

O:B and Oyu are bounded in L*(0,T;L*(2)), and

B and u are bounded in L*(0,7; 1 (Q)).

We deduce that the set of u (resp. B) built above is relatively compact in
L2(0,T; H' (R2)). Since V and W are closed subsets of H! (), the set of u
(resp. B) is relatively compact in L?(0,7;V) (resp. in L?(0,T;W)). Let
us recall that the set of p is compact in C(Q x [0,T]). Hence the mapping
Fis compact on C' and has a fixed point (p,u, B) which is a solution of

(3.50)-(3.59).

2) The solution (p,u, B) built above satisfies p € C([0,T];C*(Q)), u €
L2(0, T; H2 (2))NC(0,T; V), B € L*(0,T; H2 (2))NC(0, T; W), dyu and 9B €
L%(0,T; H).

The smoothness of r.(u), s-(B), u§ and Bf allows us to apply the same
regularity arguments as in part 2 of Proposition 1 which provides more reg-
ularity on (u, B) and therefore on p. By bootstrapping we conclude that p,
u and B are in C*(Q x [0, +00)).
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3.3 Third step : passage to the limit

The aim of this last section is to prove Theorem 1 by passing to the limit
in the above regularized problem (3.50)-(3.59). The fundamental tool is a
compactness result due to P.-L. Lions that we recall now for the reader’s
convenience, in the case N=3 and in a slightly particular form :

Theorem 2 (P.-L. Lions, [12])

We suppose that two sequences p,, and u,, are given satisfying p,, € C([0,T], LY(Q)),
0<p, < C' a.e on Q) x (O,T), Up € LQ(O,T;H%)(Q)), ||un||L2(07T;H1(Q)) <

and divu, = 0 (C' denotes various constants independent of n). We note

pon = pn(0) and we assume :

Orpp + div (ppu,) = 0 in D'(Q2 x (0,T))

pon — po in LY (Q) and u,, — u weakly in L*(0,T; H" (Q)).

Then :
1) p,, converges in C([0,T], LP(Q)) for all 1 < p < oo to the unique p
bounded on Q x (0,T) solution of

dip + div(pu) = 0in D'(Q x (0,7))
p(0) = po in Q
p € C([0,T], L))

2) We assume in addition that p,|u,|* is bounded in L*(0,T; L*(Q))
and that we have for some m > 1

| < 0e(pnn), @ > | < Cll9l|L2(0,75mm ()

for all ¢ € C3°(2 % (0,T))? such that dive = 0 on Q x (0, T). Then : \/pruy,
converges to \/pu in LP(0,T;L"(Q2)) for2 < p < 00, 1 <r < 3;5—24 and u,
converges to u in LY(0,T;L3%(Q)) for 1 < < 2 on the set {p > 0}. o

We denote by (p°, u®, B) the smooth approximated solution given by
Proposition 2. We have from (3.50) :
dip° + div (r-(u®)p®) = 0. (3.66)

Let 3, be a function of class C' (R, R). Multiplying (3.66) by 3, (p) and using
divr.(u®) = 0 we have

875@%(/06) + rs(us)'vﬁn(/os) =0.
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We integrate this equation on ©Q X [0,77] and we use again that r.(u®) is
divergence free and vanishes on the boundary to obtain

[ ot @ 0y o= [ B, (po(e)) do. (3.67)
Q Q

For 0 < o < < oo we choose (for n large enough) 0 < 5, < 1 such that

Bn(&) =0if & ¢ [, 5], Bu(§) = 1if € € [w+ 1/n, 8 — 1/n]. Letting n go to
+o00 in (3.67) we deduce that (3.7) holds with p°, i.e.

l/mmwwmm:/nwmmwm (3.65)
Q Q

where X[, 5)(§) = 1 on [, 8] and 0 elsewhere. In particular, with & = 0 and
B = [lpol| () this yields to the following L*-estimate on p :

0 < p° <|lpollr=(a)
Furthermore, we have the energy identity (3.65) :

1d

1
—— p6|u5|2—|—|B5|2d96—|—/2775|d(u6)|2—|——|cur1B5|2d96:/psfs.usdw
2dt Jq Q 0. Q

which implies (using as usual Gronwall’s lemma) :

[w*|[r20,1v) < € (3.69)
sup ||P6|U6|2||L1(Q) <c (3.70)
te0,T]
1 &
|| O_ECUI’IB ||L2(0,T;]L2(Q)) S C (371)
sup [|B[lr2q) < ¢ (3.72)
te0,T]

where ¢ denotes various constants independent of e.
In view of these estimates, and using Theorem 2, our goal is now to pass
to the limit in the following weak formulation of (3.51)-(3.59) :

// —put.0ip — p°r.(u°) @ u. Vo + 2n.d(u®).d(p) dedt =
Qx(0,00)

(p° fo + (curl B¥) x s.(B%)) .¢ dacdt—l—/ mg.¢(z,0) dz,
Q
(3.73)

Qx(0,00)
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1
// —B®0;p + —curl B®.curl ¢ dadt =
Qx(0,00) Oe

(3.74)
// curl (u® X s.(B%)).¢ dwdt—l—/ B§.é(x,0) dz
Qx(0,00) Q

Extracting subsequences if necessary and using (3.69) and (3.72), we may
define u as the weak limit of u® in L?(0,7;V) and B as the limit of B* for
the weak-star topology of L (0,7T;L*(Q2)).

Let us remark that 0 < 0 < oy and (3.71) imply that B € H!(Q2) and
curl B® converges to curl B weakly in L?(0,7;L*(Q2)).

In view of (3.46) and (3.69), the first assertion of Theorem 2 implies that
p° converges (up to the extraction of subsequences) to some p € C([0, T']; LP(R2))
with 1 < p < 0o and

dip + div (pu) = 0.

Passing to the limit in (3.68), we deduce that for 0 < a < 3 < o0

[ esttote0) de = [ Aguntoole)
&L Q

which proves (3.7).
The convergence of p° as ¢ — 0 implies that

lin% ne=n(p) inC([0,T];LP(Q) forl<p<oo (3.75)
e—+
lin% o.=o(p) inC([0,T];LP(Q2)) forl<p<oo (3.76)
e—+
lim p*fe = pf in L3(Q x (0,T)) (3.77)
e—+

Next, we remark that r.(u®) converges to u weakly in L?(0,7;V) and
s:(B?) converges to B weakly in L%(0,7;W) (with (3.43) and (3.44)).

In order to check that we may apply the second part of Theorem 2, let
us prove that for some m > 1 we have

| < O(pu), 0> | < Cll9llr20,7.mm () (3.78)

for all ¢ € C§°(Q2 x (0,T))? such that divg =0 on Q x (0,7).

First, we have

< div (2n.d(u®)), ¢ >

|/OT/QQ775d(u5).V¢dac dt|

12n-d(u™)|| 120,752 1@l 20,7580 (2))
c||d| |L2(0,T;H1 «)

INIA
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and

< P fes @ >Z pall fell 2 o,m 211 p20,mi200)) < ell@llz20,712(0)

where ¢ are various constants independent of e.
Using [[0i¢;]|2a) < clljllparq) and (3.43) we have

T
| < div (p°re(u®) @ u®), ¢ > | = |/ / pre(ut) @ ut. Vo da dt|
0 Q
< allplre(u) Pl zos o, @) IV | 2 o, misp Dl p2go e 2 ()
< 2|9l 20,7012 ()
Finally, the inequality [|¢[|lL~(q) < Cl|9/lgp/24a(q) with a > 0 and (3.44)
lead to
T
| < curl BS x 5.(B%),¢ > | = |/ / curl B* x s.(B%).¢ dx dt|
0 Q
< erlleurl B[ 20, 7200 [ B[ L 0, 7120 |0 120,780 24 ()
< cal|ll 20, mme 1242 ()
with @ > 0. Therefore (3.78) is true for any m > 3/2. Part 2 of Theorem 2
and the convergence of p° then imply that p®u® converges to pu strongly in
LP(0, T;L7(Q))for2 < p<oo, 1 <r< 3;5—34 and u® converges to u strongly
in L9(0,T; L3%(Q)) for 1 < 8 < 2.
Let us prove now that Bf converges strongly to B in L?(0,T; H). First,
we check that 9, B® is bounded in L*/3(0,T; W). Indeed, for ¢ € L*(0,T; W)

we have

< B, ¢ >= / / (——Curl B 4+ u® x SE(BE)) .curl ¢ da dt <
T

< ||U_Cur1B6||L2(0,T;L2(Q))||¢||L2(O,T;W) ‘|‘/0 ||u6||L4(Q)||56(B6)||L4(Q)||¢||Wdt

€

In the last term we use (3.44) and the interpolation inequality || A/ |L4(Q) <
1Bl htgy 121 ot to obtain

T
1/4
/ ¥ g 1= (B gy l0llw dt < ellwfll 2 o gy 1] 220709
0

£ 1 4 £
1B o | B 220 s |l 0.0

26



Therefore 9;B° is bounded in L*/3(0, T; W’). Moreover, we know that B* is
bounded in L?(0,7;W). Thus, up to the extraction of a subsequence, B°
converges strongly to B in L%(0,T; H). We deduce in particular that s.(B%)
converges strongly to B in L?(0,T; H). Furthermore, in view of (3.72), note
that B is bounded in L*(0,7; H). Thus B € L*(0,7; H).

In particular §,B € LY(0,T;W'), thus B is almost everywhere equal to
a function continuous from [0, 7] into W’. Moreover, B € L*°(0,7; H) and
H C W' with a continuous injection, therefore, we know that B is weakly
continuous from [0,77] into H (see R. Temam [21] for instance).

The weak and strong convergences obtained for B® and u° enable us to
pass to the limit in the nonlinear terms

// pre(u’) @ ut. Vo dadt,

Qx(0,00)

// (curl B®) x s.(B%).¢ dzdt.
Qx(0,00)

The weak convergence of v in L?(0,T;V) and the strong convergence of B?
in L2(0,T; H) enable us to pass to the limit in

// curl (u® X s.(B%)).¢ dedt = // u® X s.(B%).curl ¢ dadt.
Qx(0,00) Qx(0,00)

Furthermore, we have in view of (3.47) and (3.49) :

lim/mo dex_/moquO
e—0

lim [ Bj.¢(z,0)de = / By.¢(x,0) dz.
Q

e—=0 Q
Therefore, passing to the limit in (3.73) and (3.74), we recover (3.5) and
(3.6), which concludes the proof.

Remark 3.6 We can check arguing as in [12| that any solution built as
above satisfies the energy inequalities :

dt

and

t
/p|u|2—|—|B|2dw + //77|Vu—|—VuT| |B|2dxds<
Q

/|m0| + |Bo |2dx—|—2// pfudxds.
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2
p|u|2—|- |B|* dx —I—/ nVu+ Vul|? + ;|B|2dac < 2/ pfude.
Q2 Q
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