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AbstractWe give a probabilistic interpretation of the solution of a di�usion-convection equation.To do so, we de�ne a martingale problem in which the drift coe�cient is nonlinear andunbounded for small times whereas the di�usion coe�cient is constant. We check that thetime marginals of any solution are given by the solution of the di�usion-convection equation.Then we prove existence and uniqueness for the martingale problem and obtain the solutionas the propagation of chaos limit of a sequence of moderately interacting particle systems.Keywords: nonlinear martingale problem, propagation of chaos, particle systems, moderateinteraction, di�usion-convection equationAccording to Escobedo, Vasquez and Zuazua [2], for q � 2, the partial di�erential equation@u@t + jujq�1 @u@x = 12 @2u@x2 (0.1)posed in the domain (t; x) 2 (0;+1)�R with initial condition �0 (for any C1 bounded function�, limt!0 RR �(t; x)u(t; x)dx = �(0)) admits a unique positive solution vq in C((0;+1); L1(R))\C1((0;+1)�R). In this paper we are interested in giving a probabilistic interpretation of thissolution.Since the solution satis�es 8t > 0; RR vq(t; x)dx = 1, it is sensible to construct a probabilitymeasure P on C([0;+1);R) with time marginals (Pt)t�0 such that P0 = �0 and for any t > 0,vq(t; :) is a density of Pt with respect to Lebesgue measure. To do so, we associate a nonlinearmartingale problem with the partial di�erential equation. We say that P 2 P(C([0;+1);R))with time marginals (Pt)t�0 absolutely continuous with respect to Lebesgue measure for t > 0solves the nonlinear martingale problem if P0 = �0 and for any � 2 C2b (R)�(Xt)� �(X0)� Z t0  12 d2�dx2 (Xs) + 1q (p(s;Xs))q�1 d�dx (Xs)! ds is a P -martingalewhere for any t > 0, p(t; :) is a density of Pt. In [4], Méléard and Roelly generalize resultsgiven by Oelschläger in [6] and prove existence and uniqueness for similar nonlinear martingale�ENPC-CERMICS, La Courtine, 93167 Noisy le Grand Cedex1



problems in which �0 and 1q (p(s;Xs))q�1 are replaced by m 2 P(R) and F (Xs; p(s;Xs)) whereF : R � R ! R is bounded and satis�es the following Lipschitz assumption8x; x0 2 R; 8y; y0 2 R; jF (x; y) � F (x0; y0)j+ jyF (x; y)� y0F (x0; y0)j � KF (jx� x0j+ jy � y0j)They obtain existence by a limit theorem. Indeed they prove propagation of chaos to a solutionof the martingale problem for the following sequence of moderately interacting particle systemsXi;nt = Xi0 +Bit + Z t0 F (Xi;ns ; V n � �ns (Xi;ns ))ds; t � 0; 1 � i � n (0.2)where Bi; i 2 N� are independent R-valued Brownian motions, Xi0; i 2 N� are initial valuesi.i.d. with law m independent of the Brownian motions, �n = 1nPnj=1 �Xj;n denotes the empiricalmeasure and V n(x) = n�V 1(n�x) for � 2 (0; 1) and V 1 a probability density which satis�es someregularity assumptions.The function x ! xq�1=q does not satisfy the assumptions made by Méléard and Roelly on Fand it is not possible to adapt directly their results. Combining estimates given by Roynetteand Vallois [9] (theorem [EVZ] (2) p484 and theorem I.1 p484) and by Escobedo and Zuazua [3](proposition 1 (ii) (2.3) p127), we get8q � 2; 9kq; 8t > 0; kvq(t; :)kL1 � kq(t ^ 1) 1q (0.3)This enables us to construct a function Fq on (0;+1)�R such that t! kFq(t; :)kL1 is integrable,8t > 0;8x 2 R; Fq(t; vq(t; x)) = 1q (vq(t; x))q�1and for any � > 0, the functions x! Fq(s; x) (resp x! Hq(s; x) = xFq(s; x)) are bounded andLipschitz (resp Lipschitz) uniformly for s 2 [�;+1). Let (Mq) denote the martingale problemin which 1q (p(s;Xs))q�1 is replaced by Fq(s; p(s;Xs)). If P solves (Mq) it is easy to see that the�ow t! Pt is a weak solution of the partial di�erential equation@Pt@t = 12 @2Pt@x2 � @@x (Fq(t; p(t; :))Pt) (0.4)In the �rst part of this paper we prove that t! vq(t; x)dx is the unique solution of this equationin a well chosen space. In the second part, we show that (Mq) admits a unique solution P q.Moreover, for any t > 0, vq(t; :) is a density of P qt . Hence P q is a probabilistic representationof vq. Uniqueness is an easy consequence of the �rst part. Unlike in Méléard and Roelly [4],existence is proved directly. In the last part, adapting arguments of Oelschläger [6] and Méléardand Roelly [4], we prove the propagation of chaos to P q for the particle systemsXi;nt = Bit + Z t0 Fq(s; V n � �ns (Xi;ns ))ds; t � 0; 1 � i � nThis propagation of chaos result provides a constructive way of approximating vq. To our knowl-edge, it is the �rst result for an unbounded drift coe�cient in the case of moderate interaction.Since we do not control Fq(t; x) and Hq(t; x) when t! 0, many proofs are based on time-shiftsmeant for getting away from 0.Notations and hypothesesLet 
 = C([0;+1);R) endowed with the topology of uniform convergence on compact sets and2



with the corresponding Borel �-�eld, 
T = C([0; T ];R) endowed with the topology of uniformconvergence andX be the canonical process. For a Borel space E, P(E) is the space of probabilitymeasures on E endowed with the topology of weak convergence.If P 2 P(
), (Pt)t�0 is the set of time marginals of P .~P(
) = fP 2 P(
); 8t > 0; Pt is absolutely continuous with respect to Lebesgue measureg~C0([0;+1);P(R)) = f� 2 C([0;+1);P(R)); �(0) = �08t > 0; �(t) is absolutely continuous with respect to Lebesgue measuregIf P 2 ~P(
) (resp � 2 ~C0([0;+1);P(R))), there is a measurable function p(s; x) (resp m(s; x))on (0;+1)� R such that for any s > 0, p(s; :) (resp m(s; :)) is a density of Ps (resp �(s)) withrespect to Lebesgue measure. See for example Meyer [5] pages 193-194. Such a function is calleda measurable version of the densities.For t > 0, Gt denotes the heat kernel on R : Gt(x) = 1p2�t exp(�x22t ).The following estimate will be very useful :k@Gt@x kL1 � 1pt (0.5)Let F denote the Fourier transform.For r > 0, Hr(R) is the sobolev space ff 2 L2(R); RR(1 + j�j2r)jF(f)(�)j2d� < +1g.Let V 1 be a bounded and Lipschitz probability density on R such that RR jxjV 1(x)dx < +1 andV 1 =W 1 �W 1 with W 1 a probability density belonging to Hr(R) for some r > 0. Remark thatnecessarily V 1 2 Hr(R). For example, the function G1 satis�es these assumptions.We now de�ne precisely the functions Hq and Fq. For the constant kq given by (0.3), let hq bethe odd function such thathq(x) = 8>>>><>>>>: xqq if 0 � x � kq(q � 1)kq�2q � (x�kq)22 � (x�kq)36 �+ kq�1q (x� kq) + kqqq if kq < x < kq + 1( (q�1)kq�2q2 + kq�1q )(x� kq � 1) + (q�1)kq�2q3 + kq�1q + kqqq if x � kq + 1In the following lemma, we group a few obvious properties of hq.Lemma 0.1 The function hq is strictly increasing. For any q > 2, hq is C2 with bounded �rstand second derivatives. The function h2 is C1 with a bounded derivative and h02 is continuouslydi�erentiable with a bounded derivative on (�1; 0) [ (0;+1). Last, for any q � 2, hq satis�eshq(0) = h0q(0) = 0.We de�ne Hq and Fq on (0;+1)� R byHq(t; x) = 1t ^ 1hq((t ^ 1) 1q x) Fq(t; x) = ( 0 if x = 0Hq(t;x)x otherwise3



Let B0 and B1 be bounds for h0q and h00q . We state some properties of Fq and Hq. Let t > 0.if jxj � kq(t ^ 1) 1q ; Hq(t; x) = xjxjq�1q and Fq(t; x) = jxjq�1q (0.6)8x 6= 0; jFq(t; x)j = ������hq((t ^ 1) 1q x)(t ^ 1)x ������ � B0(t ^ 1) 1q jxj(t ^ 1)jxj = B0(t ^ 1) q�1q (0.7)jHq(t; x)j � B0jxj(t ^ 1) q�1q (0.8)8x 6= 0; ����@Fq@x (t; x)���� = ������h0q((t ^ 1) 1q x)(t ^ 1) q�1q x � hq((t ^ 1) 1q x)(t ^ 1)x2 ������ � 3B12(t ^ 1) q�2q (0.9)����@Hq@x (t; x)���� = ������h0q((t ^ 1) 1q x)(t ^ 1) q�1q ������ � B0(t ^ 1) q�1q (0.10)
1 An existence and uniqueness result for the partial di�erentialequation (0.4)1.1 The resultDe�nition 1.1 The map � 2 ~C0([0;+1);P(R)) is a weak solution of (Eq) if for any 0 < t0 < tand any function � 2 C1;2b ([t0; t]� R),ZR �(t; x)m(t; x)dx = ZR �(t0; x)m(t0; x)dx+ Z(t0;t]�R @�@s (s; x) + 12 @2�@x2 (s; x) + Fq(s;m(s; x))@�@x (s; x)!m(s; x)dsdx(1.1)where m is a mesurable version of the densities for �.Clearly, this de�nition does not depend on the choice of the measurable version of the densities.(Eq) is linked to an evolution equation. Indeed we prove that if � is a solution, then m satis�es8t0 > 0; 8t � t0; m(t; x) = Gt�t0 �m(t0; :)(x) � Z tt0 @Gt�s@x �Hq(s;m(s; :))(x)ds a.e. (1.2)Let f be a C2 function with compact support in R. We set �(s; x) = Gt�s � f(x). The function� belongs to C1;2b ([t0; t]� R) and satis�es8s 2 [t0; t];8x 2 R; @�@s (s; x) + 12 @2�@x2 = 0Applying (1.1), we getZR f(x)m(t; x)dx = ZR(Gt�t0 � f)(x)m(t0; x)dx+ Z(t0;t]�RHq(s;m(s; x))�@Gt�s@x � f� (x)dsdx4



Inequalities (0.5) and (0.8) implyZ(t0;t]�R�R ����Hq(s;m(s; x))@Gt�s@x (x� y)f(y)���� dydxds � kfkL1 B0(t0 ^ 1) q�1q Z tt0 dspt� s < +1Therefore, by Fubini's theorem, we obtainZR f(x)m(t; x)dx = ZR f(x)�Gt�t0 �m(t0; :)(x) � Z tt0 @Gt�s@x �Hq(s;m(s; :))(x)ds� dxHence (1.2) holds. The map t! Gt�t0 �m(t0; :) is clearly continuous in L1(R) for t � t0. Using(1.2), (0.5) and (0.8), it is quite easy to deduce that s ! m(t0 + s; :) 2 C([0;+1); L1(R)). Ast0 is arbitrary, s! m(s) 2 C((0;+1); L1(R)).We de�ne V q 2 ~C0([0;+1);P(R)) by Vq(0) = �0 and 8t > 0; V q(t) = vq(t; x)dx. The functionvq(t; x) is a measurable version of the densities for Vq.Theorem 1.2 For any q � 2, the map Vq is the unique weak solution of (Eq).To prove uniqueness, we need comparison results for the evolution equation (1.2) that we groupin the following proposition. The next subsection is devoted to the proof of this propositionwhich requires some technical estimates. As the convergence limt!0 �(t) = �0 is weak, it is notpossible to get rid of these estimates.Proposition 1.3 Let t0 > 0 and u0 2 L1(R). Then the equation (Dqt0;u0)u(t) = Gt � u0 � Z t0 @Gt�s@x �Hq(t0 + s; u(s))ds (1.3)admits a unique solution u in C([0;+1); L1(R)). This solution belongs to C1((0;+1); L2(R))\C((0;+1);H2(R)). If v denotes the solution of (Dqt0;v0)8t � 0; ku(t)� v(t)kL1 � ku0 � v0kL1 (1.4)Moreover if RR u0(x)dx = RR v0(x)dx and 8x 2 R; R x�1 u0(y)dy � R x�1 v0(y)dy then8t � 0; 8x 2 R; Z x�1 u(t; y)dy � Z x�1 v(t; y)dy (1.5)Proof of Theorem 1.2 : We �rst check that Vq is a solution of (Eq). By (0.1) and (0.6),8s > 0;8x 2 R; @vq@s (s; x) + @@x(Fq(s; vq(s; x))vq(s; x)) = 12 @2vq@x2 (s; x)Let 0 < t0 < t and � be a C1;2 function with compact support in [t0; t] � R. As @vq@s , @2vq@x2and @@x(Fq(s; vq(s; x))vq(s; x)) are bounded on the support of �, using Fubini's theorem and theintegration by parts formula, we obtainZR �(t; x)vq(t; x)dx = ZR �(t0; x)vq(t0; x)dx+ Z(t0;t]�R @�@s (s; x) + 12 @2�@x2 (s; x) + Fq(s; vq(s; x))@�@x (s; x)! vq(s; x)dsdx(1.6)5



If � 2 C1;2b ([t0; t]�R), by truncation, we approximate � by C1;2 functions with compact supportin [t0; t]�R. As, by (0.7), 8s 2 [t0; t]; kFq(s; vq(s; :))vq(s; :)kL1 � B0=(t0^1) q�1q , (1.6) still holdsfor �. Hence Vq is a solution of (Eq).The proof for uniqueness was inspired by [2] (proof of Theorem 3). Let � be a solution of (Eq)and m a measurable version of the densities for �. Equation (1.2) with t0 = 1n implies that themap t! m( 1n + t; :) is the solution of (Dq1n ;m( 1n ;:)). Similarly, since Vq is a weak solution of (Eq),the map t! vq( 1n+ t; :) is the solution of (Dq1n ;vq( 1n ;:)). We are going to compare vq and m thanksto (1.4) and (1.5).Let r > 0.If R r�rm( 1n ; x)dx � R r�r vq( 1n ; x)dx, we de�ne vn;0(x) = 1fx2[�r;r]gvq( 1n ; x) and for s such thatR s�sm( 1n ; x)dx = R r�r vq( 1n ; x)dx we set mn;0(x) = 1fx2[�s;s]gm( 1n ; x) . Otherwise, we make thesymmetrical construction. In this way,8x 2 R; Z x�1 vn;0(y � 2r)dy � Z x�1mn;0(y)dy � Z x�1 vn;0(y + 2r)dyIf vn and mn denote the solutions of (Dq1n ;vn;0) and (Dq1n ;mn;0), using (1.5), we deduce8t � 0;8x 2 R; Z x�1 vn(t; y � 2r)dy � Z x�1mn(t; y)dy � Z x�1 vn(t; y + 2r)dy (1.7)As � and V q belong to ~Co([0;+1);P(R)), limn!+1 Vq( 1n) = limn!+1 �( 1n) = �0.Hence kvn;0 � vq( 1n)kL1 = kmn;0 �m( 1n)kL1 !n!+1 0.With equation (1.4), this implies8t � 0; limn!+1 kvn(t)� vq(t+ 1n)kL1 = limn!+1 kmn(t)�m(t+ 1n)kL1 = 0Since kmn(t)�m(t)kL1 � kmn(t)�m(t+ 1n)kL1 + km(t+ 1n)�m(t)kL1 , with the continuity ofs! m(s) on (0;+1), we conclude8t > 0; m(t) = limn!+1mn(t) in L1(R)And the same holds for vq and vn. Taking the limit n! +1 in (1.7), we get8t > 0;8x 2 R; Z x�1 vq(t; y � 2r)dy � Z x�1m(t; y)dy � Z x�1 vq(t; y + 2r)dyAs r is arbitrary, 8t > 0; kvq(t)�m(t)kL1 = 0. Hence � = V q.
1.2 Proof of Proposition 1.3Existence and uniqueness for (Dqt0;u0) (equation (1.3)) can be proved easily by a �xed-pointmethod. But to show (1.4) and (1.5), it is necessary to obtain regularity properties of the �xed-points, which requires some technical estimates.6



The main ideas come from the articles of Escobedo, Vasquez and Zuazua [2] and Escobedo andZuazua [3]. These authors often refer to �classical results� in their arguments which are thusquite sketchy. It seems that the ideas are classical in the theory of quasilinear equations but itwas not possible to �nd any precise proof. That is why we detail the particular case that we areinterested in.We begin with a lemma which prepares the application of Picard's �xed-point theorem. Letw 2 L1(R) and t1 > 0. On C([0; T ]; L1(R)) we de�ne the map �t1;w by�t1;w(v)(t) = Gt � w � Z t0 @Gt�s@x �Hq(t1 + s; v(s))dsLemma 1.4 Let t0 > 0. If T > 0 is small enough (depending on t0), then for any t1 � t0 andany w 2 L1(R)(i) The map �t1;w is a contraction on C([0; T ]; L1(R)).(ii) There is a constant C0 depending only on w such that if v 2 C([0; T ]; L1(R)) satis�es8t 2 (0; T ]; v(t) 2 L1(R) \ L2(R) and kv(t)kLp � C0pt for p = 2;+1 (1.8)then �t1;w(v) satis�es (1.8)(iii) For any � 2 (0; T ], there is a constant C1 depending only on � and w such that if v satis�es(1.8) and8t 2 (�; T ]; v(t) 2 H1(R) \W 1;1(R) and k@v(t)@x kLp � C1pt� � for p = 2;+1(1.9)then �t1;w(v) satis�es (1.9).(W 1;1(R) denotes the Sobolev space of L1 functions with �rst derivative in L1.)(iv) For any 0 < � < � � T , there is a constant C2 depending only on �, �, t0 and w such thatif v satis�es (1.8), (1.9) and8t 2 (�; T ]; v(t) 2 H2(R) and k@2v(t)@x2 kL2 � C2pt� � (1.10)then �t1;w(v) satis�es (1.10).
Proof : (i) Clearly t! Gt �w is continuous in L1(R). With supt2[0;T ] kv(t)kL1 < +1, it is not7



di�cult to obtain that �t1;w(v) 2 C([0; T ]; L1(R)).Let v; v0 2 C([0; T ]; L1(R)). Using (0.5) and (0.10), we have for any t 2 [0; T ],k�t1;w(v)(t)� �t1;w(v0)(t)kL1 � Z t0 k@Gt�s@x kL1kHq(t1 + s; v(s))�Hq(t1 + s; v0(s))kL1ds� 2pTB0(t0 ^ 1) q�1q sups2[0;T ] kv(s)� v0(s)kL1Hence if T � (t0^1) 2q�2q16B20 , then �t1;w is a contraction on C([0; T ]; L1(R)).(ii) Let v 2 C([0; T ]; L1(R)) which satis�es (1.8). Using (0.5) and (0.8) we get for p = 2;+1,k�t1;w(v)(t)kLp � kGtkLpkwkL1 + Z t0 k@Gt�s@x kL1kHq(t1 + s; v(s))kLpds� kGtkLpkwkL1 + Z t0 B0C0(t0 ^ 1) q�1q pspt� sdsHence k�t1;w(v)(t)kL2 � 1pt 0@kwkL1T 14(4�) 14 + B0C0�pT(t0 ^ 1) q�1q 1Ak�t1;w(v)(t)kL1 � 1pt 0@kwkL1p2� + B0C0�pT(t0 ^ 1) q�1q 1AWe set C0 = � 4�� 14 kwkL1 . If T � (t0^1) 2q�2q4�2B20 ^ 1, then (1.8) holds for �t1;w(v).(iii) Let T � (t0^1) 2q�2q4�2B20 ^ 1, � 2 (0; T ] and v 2 C([0; T ]; L1(R)) which satis�es (1.8) and (1.9).With the de�nition of �t1;w(v)(�) and Fubini's theorem, we obtain8t 2 [0; T � �]; �t1;w(v)(t + �) = Gt � �t1;w(v)(�) � Z t0 @Gt�s@x �Hq(t1 + �+ s; v(�+ s))dsLet s 2 (0; T � �]. As v(� + s) 2 H1(R) and the function x ! Hq(t1 + � + s; x) is C1 andsatis�es Hq(t1 + �+ s; 0) = 0, Hq(t1 + �+ s; v(� + s)) 2 H1(R) and@@xHq(t1 + �+ s; v(�+ s)) = h0q(((t1 + �+ s) ^ 1) 1q v(� + s))((t1 + �+ s) ^ 1) q�1q @v(�+ s)@x(see for example Corollary VIII.10 p.131 in [1]). We deduce that for t 2 (0; T � �],@�t1;w(v)(t+ �)@x = @Gt@x � �t1 ;w(v)(�)� Z t0 @Gt�s@x � �h0q(((t1 + �+ s) ^ 1) 1q v(� + s))((t1 + �+ s) ^ 1) q�1q @v(� + s)@x �ds (1.11)8



For p = 2 or p = +1, using (1.9) and (ii), we obtaink@�t1;w(v)(t+ �)@x kLp � k@Gt@x kL1k�t1;w(v)(�)kLp + Z t0 k@Gt�s@x kL1 B0(t0 ^ 1) q�1q k@v(� + s)@x kLpds� C0pt� + Z t0 B0C1(t0 ^ 1) q�1q pt� spsds� 1pt� C0p� + B0C1�pT(t0 ^ 1) q�1q �We set C1 = 2C0p� . Since we have supposed that T � (t0^1) 2q�2q4�2B20 , �t1;w(v) satis�es (1.9).(iv) Let T � (t0^1) 2q�2q4�2B20 ^ 1, 0 < � < � � T and v 2 C([0; T ]; L1(R)) which satis�es (1.8), (1.9)and (1.10). Let s 2 (0; T � �]. If q > 2, since h0q is C1 satis�es h0q(0) = 0 and v(� + s) 2 H1(R),h0q(((t1 + � + s) ^ 1) 1q v(� + s)) 2 H1(R) and@@xh0q(((t1 + � + s)^ 1) 1q v(� + s)) = ((t1 + � + s)^ 1) 1q h00q(((t1 + � + s)^ 1) 1q v(� + s))@v(� + s)@xIf q = 2 the conclusion still holds with the convention h002(0) = 0 since h02 is Lipschitz, C1 outsideof 0 and satis�es h02(0) = 0.On the other hand, @v(�+s)@x 2 H1(R). Hence, by the formula giving the derivative of a productin H1(R), h0q(((t1 + � + s) ^ 1) 1q v(� + s))@v(�+s)@x 2 H1(R) with derivative((t1+�+s)^1) 1q h00q (((t1+�+s)^1) 1q v(�+s))�@v(� + s)@x �2+h0q(((t1+�+s)^1) 1q v(�+s))@2v(� + s)@x2(See Corollary VIII.9 p.131 in [1]). Let g(s) denote the last expression. Di�erenciating (1.11)with � replacing �, we obtain@2�t1;w(v)(t + �)@x2 = @Gt@x � @�t1;w(v)(�)@x � Z t0 @Gt�s@x � g(s)((t1 + � + s) ^ 1) q�1q ds (1.12)With (1.9) and (1.10), we bound kg(s)kL2 .kg(s)kL2 � B1((t1 + � + s) ^ 1) 1q k@v(� + s)@x kL1k@v(� + s)@x kL2 +B0k@2v(� + s)@x2 kL2� B1C21 ((t1 + � + s) ^ 1) 1q� � � + B0C2psWith (1.12) we deduce,k@2�t1;w(v)(t+ �)@x2 kL2 � 1pt� C1p� � � + 2B1C21T(t0 ^ 1) q�2q (� � �) + B0C2�pT(t0 ^ 1) q�1q �We set C2 = 3� C1p� � � _ 2B1C21(t0 ^ 1) q�2q (� � �)�9



If T � (t0^1) 2q�2q9�2B20 ^ 1, then �t1;w(v) satis�es (1.10). Moreover, (i), (ii) and (iii) hold.The next lemma gives existence of a unique �xed-point for �t1;w and states regularity propertiesof this �xed-point.Lemma 1.5 Let t0 > 0, t1 � t0 and w 2 L1(R). Then, for T given by Lemma 1.4, �t1;w admitsa unique �xed-point in C([0; T ]; L1(R)).This �xed-point belongs to C((0; T );H2(R)) \ C1((0; T ); L2(R)) and satis�es8t 2 (0; T ); @u(t)@t = 12 @2u(t)@x2 � @@xHq(t1 + t; u(t)) in L2(R) (1.13)
We obtain the regularity in t thanks to results on semigroups of linear operators given by Pazy[7] (Theorem 3.1 p.110 and Corollary 3.3 p.113) that we group in the following theorem.Theorem 1.6 Let (A;D(A)) be the in�nitesimal generator of an analytic semigroup T (t) (see[7] p.60) on a Banach space X, x 2 X and f 2 L1([0; T ];X). We setv(t) = T (t)x+ Z t0 T (t� s)f(s)ds(i) If f 2 Lp([0; T ];X) for p > 1, then v is Hölder continuous with exponent p�1p on [�; T ] forany � 2 (0; T ].(ii) If f is locally Hölder continuous on (0; T ], then� v 2 C1((0; T );X)� 8t 2 (0; T ); v(t) 2 D(A) and t! Av(t) is continuous on (0; T )� 8t 2 (0; T ); dv(t)dt = Av(t) + f(t)
Proof of Lemma 1.5 : By Lemma 1.4 (i) and Picard's �xed-point theorem, �t1;w admits aunique �xed-point u in C([0; T ]; L1(R)).We de�ne a sequence of �xed-point iterations by settingv0 = 0 and 8n 2 N; vn+1 = �t1;w(vn)Since v0 satis�es (1.8), (1.9) and (1.10) for any 0 < � < � � T , by Lemma 1.4 (ii) (iii)and (iv), for any n 2 N, vn satis�es (1.8), (1.9) and (1.10) for any 0 < � < � � T . As
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8t 2 [0; T ]; vn(t) ! u(t) in the distribution sense, we obtain that u(t) satis�es (1.8), (1.9) and(1.10) for any 0 < � < � � T . Hence8t 2 (0; T ]; u(t) 2W 1;1(R) \H2(R)8 2 (0; T ]; supt2[;T ] ku(t)kLp < +1 and supt2[;T ] k@u(t)@x kLp < +1 for p = 2;+1 (1.14)8 2 (0; T ]; supt2[;T ] k@2u(t)@x2 kL2 < +1 (1.15)Let us deduce the regularity properties in t and (1.13). Let � 2 (0; T ]. By the proof of Lemma1.4, we know that8t 2 [0; T � �2 ]; u(t+ �2) = Gt � u( �2) + Z t0 Gt�s � �� @@xHq(t1 + �2 + s; u( �2 + s))� ds@u(t+ �2)@x = Gt � @u( �2 )@x + Z t0 Gt�s �  � @2@x2Hq(t1 + �2 + s; u( �2 + s))! ds(1.16)with for any s 2 (0; T ]@@xHq(t1 + s; u(s)) = h0q(((t1 + s) ^ 1) 1q u(s))((t1 + s) ^ 1) q�1q @u(s)@x@2@x2Hq(t1 + s; u(s)) = h00q (((t1 + s) ^ 1) 1q u(s))((t1 + s) ^ 1) q�2q �@u(s)@x �2 + h0q(((t1 + s) ^ 1) 1q u(s))((t1 + s) ^ 1) q�1q @2u(s)@x2Applying (1.14) and (1.15) with  = �2 , we deduce that k @@xHq(t1 + �2 + s; u( �2 + s))kL2 andk @2@x2Hq(t1 + �2 + s; u( �2 + s))kL2 are bounded on [0; T � �2 ].Hence the maps s! @@xHq(t1 + �2 + s; u( �2 + s)) and t! @2@x2Hq(t1 + �2 + s; u( �2 + s)) belong toL2([0; T � �2 ]; L2(R)).The heat semigroup is analytic in L2(R) with in�nitesimal generator ( @2@x2 ;H2(R)) (see [7] p.208-212). Hence applying Theorem 1.6 (i) to (1.16), we conclude that the maps t ! u(t) andt! @u(t)@x are Hölder continuous with exponent 12 on [�; T ].We deduce that the map t! @@xHq(t1 + t; u(t)) is Hölder continuous with exponent 12 on [�; T ].Indeed for t; t0 2 [�; T ],k @@xHq(t1 + t0; u(t0))� @@xHq(t1 + t; u(t))kL2� 1((t1 + t) ^ 1) q�1q kh0q(((t1 + t) ^ 1) 1q u(t))kL1k@u(t0)@x � @u(t)@x kL2+ ������ 1((t1 + t) ^ 1) q�1q � 1((t1 + t0) ^ 1) q�1q ������ kh0q(((t1 + t) ^ 1) 1q u(t))kL1k@u(t0)@x kL2+ 1((t1 + t0) ^ 1) q�1q kh0q(((t1 + t0) ^ 1) 1q u(t0))� h0q(((t1 + t) ^ 1) 1q u(t))kL2k@u(t0)@x kL1� B0(t0 ^ 1) q�1q k@u(t0)@x � @u(t)@x kL2 +B0C(t0)jt0 � tjk@u(t0)@x kL2+B1k@u(t0)@x kL1 0@C(t0)jt0 � tjku(t)kL2 + 1(t0 ^ 1) q�2q ku(t0)� u(t)kL21A11



Applying Theorem 1.6 (ii) to (1.16) with � replacing �2 , we conclude that t! u(t) 2 C1((�; T ); L2(R)),t! @2u(t)@x2 2 C((�; T ); L2(R)) and8t 2 (�; T ); @u(t)@t = 12 @2u(t)@x2 � @@xHq(t1 + t; u(t)) in L2(R)Since � is arbitrary, we have obtained the desired result.We are now ready to prove Proposition 1.3. The proof is divided in three steps. In the �rst, weprove existence and uniqueness for (Dqt0;u0) (see (1.3)). The second is dedicated to the contractionproperty (1.4) and the third to the comparison property (1.5). The comparison property isobtained as a consequence of maximum principle results given by Protter and Weinberger in [8](Lemma 2 p.166 and Theorem 2 p.168) and that we group in the following theorem.Theorem 1.7 Let E be a connected open set of the (t; x)-plane and Et1 = f(t; x) 2 E; t � t1g.Let u satisfy 8(t; x) 2 E; a(t; x)@2u@x2 (t; x) + b(t; x)@u@x (t; x)� @u@t (t; x) � 0with a and b bounded and a � C for a constant C > 0.(i) if 8(t; x) 2 E; u(t; x) � M and u(t0; x0) = M for (t0; x0) 2 E, then u = M on any seg-ment which contains (t0; x0) and is contained in the intersection of the line (t = t0) with E.(ii) if 8(t; x) 2 Et1 ; u(t; x) � M and u(t1; x1) = M for (t1; x1) 2 Et1 , then u = M on anysegment which contains (t1; x1) and is contained in the intersection of Et1 with the line(x = x1)
Proof of Proposition 1.3 :Existence and uniqueness for (Dqt0;u0)Let u0 2 L1(R), t0 > 0 and u0 denote the unique �xed-point of �t0;u0 in C([0; T ]; L1(R)) given byLemma 1.5. If un is constructed, let un+1 be the unique �xed-point of �t0+(n+1)T;un(T ). We setu(t) = un(t�nT ) if t 2 [nT; (n+1)T ]. Then u belongs to C([0;+1); L1(R)), solves (Dqt0;u0) andsatis�es the regularity properties presented in Lemma 1.5 outside of the points nT; n 2 N. Sincethe restriction of the map t! u((n + 12 )T + t) to [0; T ] is a �xed-point of �t0+(n+ 12 )T;u((n+ 12 )T ),by Lemma 1.5, u also satis�es the regularity properties at the points nT; n 2 N� . Henceu 2 C([0;+1); L1(R)) \C1((0;+1); L2(R)) \ C((0;+1);H2(R))8t > 0; @u(t)@t = 12 @2u(t)@x2 � @@xHq(t0 + t; u(t)) in L2(R) (1.17)Uniqueness for (Dqt0;u0) is an easy consequence of uniqueness for the �xed-points.The contraction property (1.4)Let t0 > 0, u0; v0 2 L1(R) and u; v denote the solutions of (Dqt0 ;u0) and (Dqt0 ;v0). We set12



w = u� v.Let  be a convex C2b function on R which satis�es  (0) =  0(0) = 0. As t ! w(t) is inC([0;+1); L1(R))\C1((0;+1); L2(R)), it is easy to obtain that the map t!  (w(t)) belongs toC1((0;+1); L1(R)) with derivative  0(w(t))@w(t)@t (where @w(t)@t denotes the derivative of t! w(t)considered as a L2(R)-valued map). Let t > 0 and � 2 (0; t]. We haveZR  (w(t))dx = ZR  (w(�))dx+ Z t� ZR  0(w(s))�12 @2w(s)@x2 � @@x(Hq(t0 + s; u(s))�Hq(t0 + s; v(s)))�dxdsIf s > 0, w(s) 2 H2(R). As  0 is C1 and satis�es  0(0) = 0,  0(w(s)) 2 H1(R). The integrationby parts formula in H1(R) and the convexity of  implyZR  0(w(s))@2w(s)@x2 dx = � ZR  00(w(s))�@w(s)@x �2dx � 0HenceZR  (w(t))dx � ZR  (w(�))dx � Z t� ZR  0(w(s)) @@x (Hq(t0 + s; u(s))�Hq(t0 + s; v(s)))dxds(1.18)To obtain the contraction property, we are going to approximate the function x ! jxj by theconvex C2b functions  n de�ned by 00n(x) = ( 0 if jxj � 1n3n2 (1� (nx)2) if jxj � 1n 0n(x) = R x0  00n(y)dy n(x) = R x0  0n(y)dyAs x! Hq(t0 + s; x) is strictly increasing,8x; y 2 R; limn!+1 0n(x� y) = limn!+1 0n(Hq(t0 + s; x)�Hq(t0 + s; y))By Lebesgue's theorem, this property implieslimn!+1 Z t� ZR  0n(w(s)) @@x (Hq(t0 + s; u(s))�Hq(t0 + s; v(s)))dxds =limn!+1 Z t� ZR  0n�Hq(t0 + s; u(s))�Hq(t0 + s; v(s))� @@x(Hq(t0 + s; u(s))�Hq(t0 + s; v(s)))dxdsBut if s > 0, as u(s); v(s) 2 H2(R), we can suppose that u(s) and v(s) are C1 functions andsatisfy limjxj!+1 ju(s; x)j = limjxj!+1 jv(s; x)j = 0. Therefore8n; ZR  0n�Hq(t0 + s; u(s))�Hq(t0 + s; v(s))� @@x(Hq(t0 + s; u(s))�Hq(t0 + s; v(s)))dx = 0Hence limn!+1 R t� RR  0n(w(s)) @@x (Hq(t0 + s; u(s))�Hq(t0 + s; v(s)))dxds = 0. Using (1.18) for n and taking the limit n! +1, we obtain kw(t)kL1 � kw(�)kL1 . Letting �! 0, we conclude8t > 0; ku(t)� v(t)kL1 � ku0 � v0kL1If v0 = 0, then 8t > 0; v(t) = 0 and the last inequality provides ku(t)kL1 � ku0kL1 .13



The comparison property (1.5)Let u0 2 L1(R) and u be the solution of (Dqt0;u0). We de�ne U(t; x) = R x�1 u(t; y)dy. Let usprove that 8(t; x) 2 (0;+1) � R; @U@t (t; x) = 12 @2U@x2 (t; x)�Hq�t0 + t; @U@x (t; x)� (1.19)As u 2 C((0;+1);H2(R)), for any t > 0, the function x! U(t; x) is C2 and satis�eslimjxj!+1 ����@U@x (t; x)���� = limjxj!+1 �����@2U@x2 (t; x)����� = 0Moreover, the functions t! @U@x (t; x) and t! @2U@x2 (t; x) are continuous on (0;+1) and boundedon compact sets of (0;+1) uniformly for x 2 R.Let x 2 R; t; t0 > 0 and n 2 N. By (1.17), we haveU(t0; x)� U(t0;�n)� U(t; x) + U(t;�n) =Z t0t �12�@2U@x2 (s; x)� @2U@x2 (s;�n)�� �Hq�t0 + s; @U@x (s; x)��Hq�t0 + s; @U@x (s;�n)���dsTaking the limit n! +1, we obtain by Lebesgue's theorem,U(t0; x)� U(t; x) = Z t0t �12 @2U@x2 (s; x)�Hq�t0 + s; @U@x (s; x)��ds (1.20)The continuity of s! 12 @2U@x2 (s; x)�Hq(t0+s; @U@x (s; x)) allows to conclude that U satis�es (1.19).If we let x! +1 in (1.20), we get the mass conservation : 8t; t0 > 0; RR u(t0; y)dy = RR u(t; y)dyand as u 2 C([0;+1); L1(R)), we deduce 8t > 0; RR u(t; y)dy = RR u0(y)dy.Let v0 2 L1(R) be such that RR u0(x)dx = RR v0(x)dx and 8x 2 R; R x�1 u0(y)dy � R x�1 v0(y)dy.Let v be the solution of (Dqt0;v0). We set V (t; x) = R x�1 v(t; y)dy and W = U � V . To prove thecomparison property, we are going to apply theorem 1.7 to W . By (1.19),8(t; x) 2 (0;+1) � R; @W@t (t; x) = 12 @2W@x2 (t; x)�Gq�t; @U@x (t; x); @V@x (t; x)�@W@x (t; x)where Gq(t; x; y) = Hq(t0+t;x)�Hq(t0+t;y)x�y 1fx6=yg. By (0.10), Gq is bounded by B0(t0^1) q�1q .As for any s � 0, the function x!W (s; x) is continuous and satis�es limjxj!+1W (s; x) = 0 (forx ! +1 it is a consequence of the mass conservation), M(s) = supfW (s; x); x 2 Rg is �nite.Since s ! u(s) � v(s) belongs to C([0;+1); L1(R)) the functions s ! W (s; x) are continuousuniformly in x 2 R. Hence s!M(s) is continuous.Let t > 0 and Mt = supfM(s); s � tg. We are going to prove that Mt = 0. There is s0 2 [0; t]such that Mt =M(s0).- if s0 = 0. By the choice of u0 and v0, M(0) = 0. Hence Mt = 0.- if s0 > 0. We meet two cases.. 8x 2 R; W (s0; x) < M(s0). As limjxj!+1W (s0; x) = 0, Mt =M(s0) = 0. 9x0 2 R; M(s0) = W (s0; x0). Then we apply Theorem 1.7 with u = W , M = Mt, a = 12 ,and b(s; x) = �Gq(s; @U@x (s; x); @V@x (s; x)). If s0 2 (0; t), then for E = (0; t) � R, Theorem 1.7(i) implies 8x 2 R; W (s0; x) = M(s0) = Mt. When we take the limit x ! +1, we concludeMt = 0. If s0 = t, then for Et = (0; t]� R, Theorem 1.7 (ii) implies that W ( t2 ; x0) =Mt and weconclude like previously. 14



2 The nonlinear martingale problemDe�nition 2.1 We say that P 2 ~P (
) solves the nonlinear martingale problem (Mq) if P0 = �0and for any � 2 C2b (R),�(Xt)� �(0)� Z t0  12 d2�dx2 (Xs) + Fq(s; p(s;Xs))d�dx (Xs)! ds is a P -martingale (2.1)where p(s; x) is measurable version of the densities for P .This de�nition does not depend on the choice of the measurable version. Indeed, if p0(s; x) isanother such version then8t � 0; Z t0 Fq(s; p(s;Xs))d�dx (Xs)ds = Z t0 Fq(s; p0(s;Xs))d�dx (Xs)ds; P almost surelyTheorem 2.2 For any q � 2, the nonlinear martingale problem (Mq) admits a unique solutionand vq(s; x) is a measurable version of the densities for this solution.Proof : In the proof for existence like in the proof for uniqueness, we are confronted to the lackof control of Fq(s; x) when s! 0. That is why we use time-shifts on the sample-paths.UniquenessLet P and P 0 be two solutions. We �rst prove that vq(t; x) is a measurable version of the densitiesfor P and P 0. The map t! Pt belongs to ~C0([0;+1);P(R)). By Paul Lévy's characterization,Xt � R t0 Fq(s; p(s;Xs))ds is a Brownian motion under P . Taking expectations in Itô's formula,we obtain that t! Pt is a weak solution of (Eq) (see equation (1.1)). Theorem 1.2 then impliesthat vq is a measurable version of the densities for P . The same is true for P 0.We introduce the shift y 2 
 ! Dn(y) = y( 1n + :) 2 
. Let P n = P � D�1n ; P 0n = P 0 � D�1n .Both P n and P 0n solve the martingale problem :8<: Q0 = vq( 1n ; x)dx and �(Xt)� �(X0)� R t0 �12 d2�dx2 (Xs) + Fq( 1n + s; vq( 1n + s;Xs))d�dx (Xs)� dsis a Q-martingale for any � 2 C2b (R) (2.2)Since x! Fq( 1n + s; vq( 1n + s; x)) is bounded uniformly in s (see (0.7)), by Girsanov's theorem,this martingale problem admits a unique solution and P n = P 0n.As for any y 2 
, limn!+1Dn(y) = y, P n and P 0n converge weakly to P and P 0. ThereforeP = P 0ExistenceThe natural idea would consist in constructing a solution to the martingale problem : Q0 = �08� 2 C2b (R); �(Xt)� �(0) � Z t0  12 d2�dx2 (Xs) + Fq(s; vq(s;Xs))d�dx (Xs)! ds is a Q-martingale15



and proving that this solution belongs to ~P(
) and admits vq as a measurable version for itsdensities. But the drift coe�cient Fq(s; vq(s; :)) is not bounded and to our knowledge, there isno classical existence result for such a martingale problem. That is why we introduce P n thesolution of the martingale problem (2.2). We �rst prove that vq( 1n + t; x) is a measurable versionof the densities for P n.By Girsanov's theorem, since the drift coe�cient Fq( 1n+s; vq( 1n+s;Xs)) is bounded, P n 2 ~P(
).Let pn(t; x) be a measurable version of the densities for P n, t > 0 and � 2 C1;2b ([0; t]�R). Takingexpectations in Itô's formula, we obtainZR �(t; x)pn(t; x)dx = ZR �(0; x)vq( 1n; x)dx+ Z(0;t]�R  @�@s (s; x) + 12 @2�@x2 (s; x) + Fq( 1n + s; vq( 1n + s; x))@�@x (s; x)! pn(s; x)dsdxLike in the proof of the evolution equation (1.2), we deduce8t > 0; pn(t; x) = Gt � vq( 1n; :)(x)� Z t0 @Gt�s@x � (pn(s; :)Fq( 1n + s; vq( 1n + s; :)))(x)ds a.e.For � = Vq and t0 = 1n , equation (1.2) provides8t > 0; vq( 1n + t; x) = Gt �vq( 1n; :)(x)�Z t0 @Gt�s@x � (vq( 1n +s; :)Fq( 1n +s; vq( 1n +s; :)))(x)ds a.e.Using (0.7) and (0.5), we obtainkpn(t; :)� vq( 1n + t; :)kL1(R) � B0n q�1q Z t0 kpn(s; :)� vq( 1n + s; :)kL1pt� s dsAfter an iteration, we getkpn(t; :) � vq( 1n + t; :)kL1 � B20n 2q�2q Z t0 1pt� s Z s0 kpn(r; :) � vq( 1n + r; :)kL1ps� r drds� �B20n 2q�2q Z t0 kpn(r; :) � vq( 1n + r; :)kL1drGronwall's lemma implies 8t > 0; kpn(t; :)� vq( 1n + t; :)kL1 = 0.Hence vq( 1n + s; x) is a measurable version of the densities for P n.Let Qn denote the image of P n by the shift y 2 
! y((:� 1n)_ 0) 2 
. We now prove that thesequence (Qn)n converges weakly to the solution of (Mq). Since Qn0 = Vq( 1n ) converges weaklyto �0 and the map s ! kFq(s; :)kL1 is integrable, for any T > 0, the images of the probabilitymeasures Qn by the canonical restriction from 
 to 
T are tight. Therefore the sequence (Qn)n istight. Let Q1 be the limit of a convergent subsequence that we still index by n for convenience.Let p 2 N� , � 2 C2b (R), g 2 Cb(Rp), 0 < s1 � : : : � sp � s � t and G : 
! R,G(y) =  �(y(t)) � �(y(s))� Z ts 12 d2�dx2 (y(r)) + Fq(r; vq(r; y(r)))d�dx (y(r))dr! g(y(s1); : : : ; y(sp))Since the functions x ! Fq(s; vq(s; x)) are continuous and bounded uniformly in s � s1, thefunction G is continuous and bounded. HenceEQ1 (G(X)) = limn!+1 EQn (G(X))16



Clearly, for any n � 1s1 , EQn (G(X)) = 0. Hence EQ1 (G(X)) = 0. By Lebesgue's theorem,as s ! kFq(s; :)kL1 is integrable, this equality still holds when we take the limits sp ! 0 ands! 0. Therefore�(Xt)� �(X0)� Z t0  12 d2�dx2 (Xr) + Fq(r; vq(r;Xr))d�dx (Xr)! dr is a P1-martingale (2.3)If t > 0, for any n � 1t , vq(t; :) is a density of Qnt = P nt� 1n with respect to Lebesgue measure.Hence Q1t is absolutely continuous with density vq(t; :). Since Qn0 = V q( 1n) converges weakly to�0, Q10 = �0. These two properties and (2.3) imply that Q1 solves (Mq). Hence we have provedexistence for this problem. Moreover, by uniqueness, the whole sequence (Qn)n converges weaklyto the solution of (Mq).
3 The propagation of chaos result3.1 The particle systemsWe recall the de�nition of the moderately interacting particle systemsXi;nt = Bit + Z t0 Fq(s; V n � �ns (Xi;ns ))ds; t � 0; 1 � i � nwhere Bi; i 2 N� are independant Brownian motions, �ns = 1nPnj=1 �Xj;ns and V n(x) = n�V 1(n�x).Proposition 3.1 For any n 2 N� , there is existence and pathwise uniqueness for the particlesystem (X1;n;X2;n; : : : ;Xn;n).Proof : In this proof, n is constant. For y = (y1; : : : ; yn) 2 Rn , we set jyj = maxni=1 jyij. SinceV 1 is Lipschitz, V n = n�V 1(n�:) is also Lipschitz. Let C denote its Lipschitz constant.We set Xt = (X1;nt ; : : : ;Xn;nt ), Bt = (B1t ; : : : ; Bnt ) andG(s; y) = 0B@ Fq(s; 1nPnj=1 V n(y1 � yj)):::Fq(s; 1nPnj=1 V n(yn � yj)) 1CAWe are interested in the stochastic di�erential equationXt = Bt + Z t0 G(s;Xs)ds (3.1)The map G does not satisfy the classical linear growth and local Lipschitz assumptions. There-fore, to prove our claim, we construct functions indexed by m 2 N� which satisfy these assump-tions and are equal to G on (0;+1) � [� m2C ; m2C ]n. We set Fmq (s; x) = Fq(s;�m _ x ^m) and17



de�ne Gm like G with Fmq replacing Fq. We have Gm(s; y) = G(s; y) if jyj � m2C . Moreover thefunctions y 2 Rn ! Gm(s; y) are bounded and Lipschitz uniformly in s. Indeed by (0.6),�t � �kqm�q�) 0@m � kq(t ^ 1) 1q 1A)  if jxj � m; Fmq (t; x) = Fq(t; x) = jxjq�1q !With (0.7) et (0.9), we obtain that x! Fmq (s; x) is bounded by mq�1q _ B0mq�1kq�1q _B0 and Lipschitzwith constant (q�1)mq�2q _ 3B1mq�22kq�2q _ 3B12 uniformly in s. Sincej 1n nXj=1V n(zi � zj)� 1n nXj=1V n(yi � yj)j � Cn nXj=1(jzi � yij+ jzj � yjj) � 2Cjy � zjwe deduce that y ! Gm(s; y) is bounded by mq�1q _ B0mq�1kq�1q _ B0 and Lipschitz with constant2C � (q�1)mq�2q _ 3B1mq�22kq�2q _ 3B12 � uniformly in s.Hence, there is existence and pathwise uniqueness for the stochastic di�erential equationXmt = Bt + Z t0 Gm(s;Xms )dsWe set Tm = infft : jXmt j � m2C g and for m � l, Tm;l = infft : max(jXmt j; jX lt j) � m2C g. Bypathwise uniqueness for the equation indexed by m, Xm and X l coincide on [0; Tm;l]. We deduceTm;l = Tm. Hence Xm and X l coincide on [0; Tm]. Therefore the sequence (Tm) is increasing.sups�t jXms j � sups�t jBsj+ sups�t j Z s0 Gm(r;Xmr )drjAs s! kFq(s; :)kL1 is integrable, we get E(sups�t jXms j) � A(t) where A(t) does not depend onm. Using Markov's inequality, we deduce P (fsups�t jXms j � m2C g) � 2CA(t)m . Hence8t 2 (0;+1); P (flimm Tm � tg) = 0 and a:s:; limm Tm = +1We set Xt = Xmt on [Tm�1; Tm] with T0 = 0. Then X solves equation (3.1).For uniqueness, if Y is a solution of (3.1) and Sm = infft : max(jXmt j; jYtj) � m2C g, Y and Xmcoincide on [0; Sm] and therefore on [0; Tm].
3.2 Propagation of chaosTheorem 3.2 For any q � 2, the sequence of the laws of the particle systems (X1;n; : : : ;Xn;n)is P q-chaotic where P q denotes the unique solution of the martingale problem (Mq).The particles are exchangeable. Therefore the propagation of chaos result is equivalent to theconvergence in distribution of the empirical measures �n = 1nPni=1 �Xi;n considered as P(
)-valued random variables to �P q (see for example [10] and the references cited in it). To prove18



this convergence, we adapt the approach of Méléard and Roelly in [4]. We begin with a tightnessresult. Then we check that the limit of any convergent subsequence is �P q . In both steps we needthe following fundamental technical result adapted from Oelschläger [6] (Proposition 3.2 p.290).Lemma 3.3 Let U1 be a probability density in Ha(R) for a > 0. We set Un(x) = nbU1(nbx)for some b 2 (0; 1). Then8c 2 [0; a ^ 1� b2 ]; 80 < � < T; 9C; 8s 2 [�; T ]; supn E� ZRd(1 + j�j2c)jF(Un � �ns )(�)j2d�� � C
RemarkOelschläger proves the claim of Lemma 3.3 for the moderately interacting particle systems (0.2)mentionned in the introduction and for the particular choice U1 =W 1, b = �. Since our particlesystems satisfyXi;n�2+t = Xi;n�2 + (Bi�2+t �Bi�2 ) + Z t0 Fq( �2 + s; V n � �n�2+s(Xi;n�2+s))ds; 1 � i � nand Fq( �2 + s; x) is bounded, it is quite easy to adapt the proof to our framework.3.2.1 The tightness resultLet �n denote the law of the P(
)-valued variable �n. Since we have to control V n � �n, it isnot enough to prove the tightness of the sequence (�n)n. That is why we introduce the spaceH = P(
)� L2loc((0;+1); L2(R))endowed with the topology of weak convergence on P(
) and the metricd(v; v0) = Xp�1 2�p0@ Z p1p kvs � v0sk2L2ds!12 ^ 11Aon L2loc((0;+1); L2(R)). The space L2loc((0;+1); L2(R)) is complete and separable for thismetric. Let m and v denote the canonical projections from H to P(
) and L2loc((0;+1); L2(R))and ~�n be the law of the H-valued random variable (�n; V n � �n).Proposition 3.4 The sequences (�n)n and (~�n)n are tight.Proof : The tightness of the sequence (�n)n is equivalent to the tightness of the laws of thevariables X1;n (see [10]). These variables are tight since for any T > 0 their images by thecanonical restriction from 
 to 
T are tight (s! kFq(s; :)kL1 is integrable).To prove the tightness of the sequence (~�n)n, it is enough to prove the tightness of the sequences19



(~�n � m�1)n and (~�n � v�1)n. We have just showed the tightness of the �rst sequence. Let usdeal with the second.From any subsequence of (~�n �m�1)n we extract a converging subsequence that we still index byn for simplicity. As P(
) is a polish space, we obtain by Skorokhod's lemma an almost surelyconvergent sequence (�n)n of P(
)-valued random variables de�ned on a probability space (~
; ~P )such that for any n, the law of �n is ~�n �m�1 = �n. We are going to prove that V n��n convergesin L1(~
; L2loc((0;+1); L2(R))), which ensures that the sequence (~�n�v�1)n is weakly convergent.E(d(V k � �k; V l � �l)) �Xp�1 2�p0@ E  Z p1p kV k � �ks � V l � �lsk2L2ds!!12 ^ 11AIf we prove that 8p � 1; limk;l!+1 E �R p1p kV k � �ks � V l � �lsk2L2ds� = 0, it is easy to concludeby Lebesgue's theorem that (V n � �n)n is a Cauchy sequence. Using the Fourier isomorphism,we getE� Z p1p kV k � �ks � V l � �lsk2L2ds� = E� Z p1p Zj�j�M jF(V k � �ks )(�) �F(V l � �ls)(�)j2d�ds�+ E� Z p1p Zj�j>M jF(V k � �ks )(�) �F(V l � �ls)(�)j2d�ds�(3.2)jF(V k � �ks )(�)�F(V l � �ls)(�)j2 � 2�jF(V k)(�)�F(V l)(�)j2 + j < �ks ; ei�: > � < �ls; ei�: > j22� �Therefore the �rst term of the right hand side of (3.2) is bounded by2p Zj�j�M jF(V k)(�) �F(V l)(�)j2d�+ 1�E� Z p1p Zj�j�M j < �ks ; ei�: > � < �ls; ei�: > j2d�ds�Since the probability measures V n(x)dx converge weakly to �0 and the sequence (�n)n is almostsurely weakly convergent, applying Lévy's theorem and Lebesgue's theorem, we obtain that forany M � 0 the �rst term of the right hand side of (3.2) goes to 0 when k; l! +1.The second term of the right hand side of (3.2) is bounded by4 supn E  Z p1p Zj�j>M jF(V n � �ns )(�)j2d�ds!Applying Lemma 3.3 with � = 1p , T = p, U1 = V 1, a = r, b = � and c = r ^ 1��2 we obtain8n; E  Z p1p Zj�j>M jF(V n � �ns )(�)j2d�ds! � E  Z p1p Zj�j>M 1 + j�j2c1 +M2c jF(V n � �ns )(�)j2d�ds!� Cp1 +M2cWe conclude limk;l!+1 E �R p1p kV k � �ks � V l � �lsk2L2ds� = 0.
20



3.2.2 Identi�cation of the limitThe sequence (�n)n is tight. Let �1 be the limit of a converging subsequence (�nk)k. As thesequence (~�n)n is also tight, we can extract from (~�nk)k a subsequence which converges weaklyto ~�1 and that we index by n for simplicity. We are going to prove that ~�1 a.s., m solves thenonlinear martingale problem (Mq). Since ~�1 �m�1 = �1, we will conclude �1 = �P q .We begin with a technical result which explicits the connection between m and v under ~�1.Lemma 3.5 There is a Borel set N such that ~�1(N ) = 0 and 8(m; v) 2 N c, for a.e. t � 0, mthas a density equal to vt with respect to Lebesgue measure.Proof of Lemma 3.5 : Let p 2 N� , (gk)k2N be a sequence dense in L2([1p ; p]) and (fl)l2N asequence of C1 functions with compact support on R that will be precised later. We setGk;l(m; v) = Z p1p ZR gk(t)fl(x)vt(x)dxdt � Z p1p ZR gk(t)fl(x)mt(dx)dtAs Gk;l is continuous, E ~�1 (G2k;l) � lim infn!+1 E ~�n (G2k;l). Let �V n(x) = V n(�x).E ~�n (G2k;l) = E��Z p1p gk(t) ZR( �V n � fl(x)� fl(x))�nt (dx)dt�2�� pkgkk2L2 supx2R( �V n � fl(x)� fl(x))2j �V n � fl(x)� fl(x)j � ZR jfl(x+ yn� )� fl(x)jV 1(y)dy � 1n� kdfldxkL1 ZR jyjV 1(y)dyHence limn!+1 E ~�n (G2k;l) = 0 and E ~�1 (G2k;l) = 0. We set Np = Sk;l2N G�1k;l (R� ). We have~�1(Np) = 0 and since (gk)k is dense in L2([1p ; p]),8(m; v) 2 N cp ; for a.e. t 2 [1p; p];8l 2 N; ZR fl(x)mt(dx) = ZR fl(x)vt(x)dxLet � be a C1 function on R with values in [0; 1] such that for jxj � 1, �(x) = 1 and forjxj � 2, �(x) = 0. We set �j(x) = �(xj ) for j 2 N� and we impose that (fl) includes all thefunctions x ! �j(x)P (x) where j 2 N� and P is a polynomial with rational coe�cients. Thenthis sequence is dense in CK(R) (the space of continuous functions with compact support) forthe sum of the L2 norm and the sup norm. Hence if 8l 2 N; RR fl(x)mt(dx) = RR fl(x)vt(x)dx,8f 2 CK(R); ZR f(x)mt(dx) = ZR f(x)vt(x)dx (3.3)Approximating �vt1fvt�0g in L2(R) by positive functions belonging to CK(R), we obtain thatvt � 0. Thus vt(x)dx is a Radon measure. By (3.3), the Radon measures mt and vt(x)dx areequal and mt has a density equal to vt.To conclude, we set N = Sp2N� Np. 21



Let p 2 N� , � 2 C2b (R), g 2 Cb(Rp), 0 < s1 � : : : � sp � s � t. For N given by Lemma 3.5, wede�ne G : H ! R byG = 1N c < m; �(Xt)� �(Xs)� Z ts 12 d2�dx2 (Xr) + Fq(r; v(r;Xr))d�dx (Xr)dr! g(Xs1 ; : : : ;Xsp) >where v(r; x) is a measurable representative of v. We are going to prove that E ~�1 (G2) = 0.We introduce ( k)k a sequence of C1 probability densities with compact support on R whichconverges to �0 and we setGk =< m; �(Xt)� �(Xs)� Z ts 12 d2�dx2 (Xr) + Fq(r;  k � vr(Xr))d�dx (Xr)dr! g(Xs1 ; : : : ;Xsp) >The functions Gk are continuous and bounded on H. HenceE ~�1 (G2) � 2 lim infk!+1 E ~�1 ((G�Gk)2) + 2 lim infk!+1 limn!+1 E (G2k (�n; V n � �n)) (3.4)Let us show that both terms of the right hand side of (3.4) are equal to 0.By the boundedness of Gk (uniform in k), the Lipschitz properties of Fq (see (0.9)), Lemma 3.5and Cauchy-Schwarz inequality, we obtainE ~�1 ((G�Gk)2) � CE ~�1 (jG�Gkj)� CE ~�1 �1N c < m; Z ts j k � vr(Xr)� v(r;Xr)jdr >�� CE ~�1 �1N c Z ts ZR j k � vr(x)� v(r; x)jv(r; x)dxdr�� C �E ~�1 �Z ts kvrk2L2dr�� 12 �E ~�1 �Z ts kvr �  k � vrk2L2dr�� 12 (3.5)By the Fourier isomorphism, E ~�n �R ts kvrk2L2dr� = E �R ts kF(V n � �nr )k2L2dr�. Applying Lemma3.3 with U1 = V 1, c = 0 and using the continuity of (m; v) 2 H ! R ts kvrk2L2dr, we concludethat E ~�1 �R ts kvrk2L2(R)dr� < +1.As for any f 2 L2(R), limk!+1 k k � f � fkL2 = 0 and kvr �  k � vrkL2 � 2kvrkL2 , taking thelimit k ! +1 in (3.5), we obtain limk!+1 E ~�1 ((G�Gk)2) = 0 (3.6)To prove that the second term of the right hand side of (3.4) is equal to 0, we upper-boundG2k(�n; V n � �n) by2 < �n;��(Xt)� �(Xs)� Z ts 12 d2�dx2 (Xr) + Fq(r; V n � �nr (Xr))d�dx (Xr)dr�g(Xs1 ; : : : ;Xsp) >2+2 < �n; g(Xs1 ; : : : ;Xsp) Z ts (Fq(r;  k � V n � �nr (Xr))� Fq(r; V n � �nr (Xr)))d�dx (Xr)dr >2(3.7)
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Let �W n(x) = W n(�x) and Ak;n denote the expectation of the second term of (3.7). By acomputation similar to (3.5), we obtainAk;n � CE �Z ts < �nr ; jW n � (W n �  k � �nr �W n � �nr )j > dr�� CE �Z ts �W n � �nr (y)jW n �  k � �nr (y)�W n � �nr (y)jdydr�� C �E �Z ts k �W n � �nr k2L2dr�� 12 �E �Z ts kW n �  k � �nr �W n � �nr k2L2dr�� 12Applying Lemma 3.3 with U1 = �W 1 and c = 0, we deduceAk;n � C �E �Z ts kW n �  k � �nr �W n � �nr k2L2dr�� 12Using the Fourier isomorphism then Lemma 3.3 with U1 =W 1 and c = r ^ 1��2 , we obtainA2k;n � CE  Z ts Zj�j�M jp2�F( k)(�) � 1j2jF(W n � �nr )(�)j2d�dr!+ CE  Z ts Zj�j>M(jp2�F( k)(�)j+ 1)2jF(W n � �nr )(�)j2 1 + j�j2c1 +M2c d�dr!� C  M supj�j�M jp2�F( k)(�)� 1j2 + 11 +M2c!where the constant C depends neither on n nor on k. Since the probability measures  k(x)dxconverge weakly to �0, applying Lévy's theorem we conclude limk!+1 supnAk;n = 0.As, by Itô's formula, the �rst term of (3.7) is equal to ( 1nPni=1 g(Xi;ns1 ; : : : ;Xi;nsp ) R ts d�dx (Xi;nr )dBir)2,its expectation goes to 0 when n! +1. Hence lim infk!+1 limn!+1 E(G2k (�n; V n � �n)) = 0.With (3.4) and (3.6), this result implies E ~�1 (G2) = 0.Restricting �; g; s1; : : : ; sp; s; t to countable subsets then taking limits by Lebesgue theorem, weget that ~�1 a.s., 8p 2 N� ; 8� 2 C2b (R); 8g 2 Cb(Rp); 80 � s1 � : : : � sp � s � t,1N c < m; �(Xt)� �(Xs)� Z ts 12 d2�dx2 (Xr) + Fq(r; v(r;Xr))d�dx (Xr)dr! g(Xs1 ; : : : ;Xsp) >= 0As 8n 2 N� ; ~�n � m�10 = ��0 and the map (m; v) 2 H ! m0 is continuous, ~�1 � m�10 = ��0 .Hence there is a Borel set ~N with N � ~N and ~�1( ~N ) = 0 such that 8(m; v) 2 ~N c, 8� 2 C2b (R),�(Xt)� �(0) � R t0 12 d2�dx2 (Xr) + Fq(r; v(r;Xr))d�dx (Xr)dr is a m-martingale.Let (m; v) 2 ~N c. The process Xt � R t0 Fq(r; v(r;Xr))dr is a m-Brownian motion. By Girsanov'stheorem, we obtain that m 2 ~P(
). If p is a measurable version of the densities for m, since(m; v) 2 N c, by Lemma 3.5, m a.s., 8t > 0; R t0 Fq(r; v(r;Xr))dr = R t0 Fq(r; p(r;Xr))dr. Thereforem solves the nonlinear martingale problem (Mq), which puts an end to the proof.
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