Convergence of moderately interacting particle systems to a
diffusion-convection equation

B.Jourdain*

September 13, 1996

Abstract

We give a probabilistic interpretation of the solution of a diffusion-convection equation.
To do so, we define a martingale problem in which the drift coefficient is nonlinear and
unbounded for small times whereas the diffusion coefficient is constant. We check that the
time marginals of any solution are given by the solution of the diffusion-convection equation.
Then we prove existence and uniqueness for the martingale problem and obtain the solution
as the propagation of chaos limit of a sequence of moderately interacting particle systems.
Keywords: nonlinear martingale problem, propagation of chaos, particle systems, moderate
interaction, diffusion-convection equation

According to Escobedo, Vasquez and Zuazua [2|, for ¢ > 2, the partial differential equation

Ou u —10u _10%
or  20x?
posed in the domain (¢,z) € (0, +00) X R with initial condition dy (for any C°° bounded function
¢, limy_o [ ¢(t, z)u(t, z)dz = ¢(0)) admits a unique positive solution v, in C((0, +o00), L*(R))N
C>*((0,+00) x R). In this paper we are interested in giving a probabilistic interpretation of this
solution.

Since the solution satisfies V& > 0, [z vy(t,x)dz = 1, it is sensible to construct a probability
measure P on C([0,+00),R) with time marginals (P;);>0 such that Py = dy and for any ¢ > 0,
vgy(t,.) is a density of P; with respect to Lebesgue measure. To do so, we associate a nonlinear
martingale problem with the partial differential equation. We say that P € P(C([0,4+00), R))
with time marginals (P;);>o absolutely continuous with respect to Lebesgue measure for ¢ > 0
solves the nonlinear martingale problem if Py = 0y and for any ¢ € CZ(R)

(0.1)

t 2
P(Xy) — d(Xo) — /0 (é%(){s) + é(p(s,Xs))q_I%(XsO ds is a P-martingale

where for any ¢ > 0, p(t,.) is a density of P,.. In [4], Méléard and Roelly generalize results
given by Oelschldger in |6] and prove existence and uniqueness for similar nonlinear martingale
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problems in which ¢y and %(p(s,Xs))q*1 are replaced by m € P(R) and F (X, p(s, X;)) where
F :R xR — R is bounded and satisfies the following Lipschitz assumption

vxwxl € Ra vy7y, € R? |F(.’E,y) - F(xlayl)| + |yF(.’E,y) - ylF(xlay,” < KF(|‘,E - xl| + |y - y,|)

They obtain existence by a limit theorem. Indeed they prove propagation of chaos to a solution
of the martingale problem for the following sequence of moderately interacting particle systems

. . . t . B
X" = Xi 4+ Bi +/ F(XD™, V™ g (X)) ds, £ >0, 1<i<n (0.2)
0

where B?, i € N* are independent R-valued Brownian motions, X}, i € N* are initial values
i.i.d. with law m independent of the Brownian motions, u" = % Z;-Lzl dxjn denotes the empirical
measure and V"(z) = n’V!(nfz) for B € (0,1) and V! a probability density which satisfies some
regularity assumptions.

The function z — 297! /q does not satisfy the assumptions made by Méléard and Roelly on F
and it is not possible to adapt directly their results. Combining estimates given by Roynette
and Vallois [9] (theorem |[EVZ] (2) p484 and theorem I.1 p484) and by Escobedo and Zuazua |3]
(proposition 1 (ii) (2.3) p127), we get

kq

Vg > 2, Jkq, V2 >0, [Jug(t, )|z <
(tA1)

(0.3)

Q=

This enables us to construct a function F, on (0, 4+00) xR such that ¢ — || Fy(t, )|z~ is integrable,
1
Vt >0,z € R, Fy(t,v(t,x)) = —(vy(t,x))7™"
q

and for any € > 0, the functions  — Fy(s,z) (resp  — Hy(s,z) = xF,(s,z)) are bounded and
Lipschitz (resp Lipschitz) uniformly for s € [e,+00). Let (M,) denote the martingale problem
in which %(p(S,XS))q_l is replaced by Fy(s,p(s, Xs)). If P solves (M,) it is easy to see that the
flow t — P, is a weak solution of the partial differential equation

oP, 10°P, 0

W = 5 02 - %(Fq(t,p(t, ))Pt) (0'4)

In the first part of this paper we prove that ¢t — v,(¢, z)dz is the unique solution of this equation
in a well chosen space. In the second part, we show that (M,) admits a unique solution P9.
Moreover, for any t > 0, v4(¢,.) is a density of P. Hence P? is a probabilistic representation
of v,. Uniqueness is an easy consequence of the first part. Unlike in Méléard and Roelly [4],
existence is proved directly. In the last part, adapting arguments of Oelschlager |6] and Méléard
and Roelly [4], we prove the propagation of chaos to P? for the particle systems

. . t .
X;" =B} +/ Fy(s, V" % pg(Xg"))ds, t >0, 1 <i<n
0

This propagation of chaos result provides a constructive way of approximating v,. To our knowl-
edge, it is the first result for an unbounded drift coefficient in the case of moderate interaction.

Since we do not control Fy(t,z) and Hy(t,x) when ¢ — 0, many proofs are based on time-shifts
meant for getting away from 0.

Notations and hypotheses
Let 2 = C(]0, +o0),R) endowed with the topology of uniform convergence on compact sets and




with the corresponding Borel o-field, Q7 = C([0,T],R) endowed with the topology of uniform
convergence and X be the canonical process. For a Borel space E, P(FE) is the space of probability
measures on F endowed with the topology of weak convergence.

If P e P(Q2), (P)i>o0 is the set of time marginals of P.

P(Q) = {P € P(Q); Vt >0, P, is absolutely continuous with respect to Lebesgue measure}

Co([0, +00), P(R)) = { € C(0,+00), P(R)); u(0) = do

Vit > 0, u(t) is absolutely continuous with respect to Lebesgue measure}

If P € P(Q) (resp p € Cy([0, +00), P(R))), there is a measurable function p(s, ) (resp m(s,z))

n (0,+00) x R such that for any s > 0, p(s,.) (resp m(s,.)) is a density of Py (resp u(s)) with
respect to Lebesgue measure. See for example Meyer [5] pages 193-194. Such a function is called
a measurable version of the densities.

2

For ¢t > 0, G; denotes the heat kernel on R : Gy(x) = \/;— exp(—5;)-

The following estimate will be very useful :

BGt

| (0.5)

I < _V_

Let F denote the Fourier transform.
For r > 0, H"(R) is the sobolev space {f € L*(R); [x(1 + [A*")|F(f)(N)]?dX < +oc}.

Let V! be a bounded and Lipschitz probability density on R such that [, ||V (z)dz < +oo and
V=W W! with W a probability density belonging to H"(R) for some > 0. Remark that
necessarily V' € H"(R). For example, the function G satisfies these assumptions.

We now define precisely the functions H, and Fj. For the constant k4 given by (0.3), let hy be
the odd function such that

Loif 0<z<k

hy(z) = (q—1)kq2(<’”‘§q)2 _ (e=hy)’ >+kq Yo —k) +5 if kg <o <k +1

2
(( )kq + k4 1)(w—k—1)+%+k371+% it o>k +1

In the following lemma, we group a few obvious properties of hy.

Lemma 0.1 The function hy is strictly increasing. For any q > 2, hq is C? with bounded first
and second derivatives. The function hy is C with a bounded derivative and Rl is continuously
differentiable with a bounded derivative on (—o0,0) U (0,400). Last, for any q > 2, hy satisfies
hq(0) = hy(0) = 0.

We define H, and F, on (0,+00) X R by

Oifz=0

1 1
Hy(t,z) = t/\—lhq((t A1)ix) Fy(t,z) = { Hy(tD) otherwise

3



Let By and B; be bounds for h; and h;’. We state some properties of F, and H,. Let ¢ > 0.

ozl jzle”

if |$|S(t/\1)%’ Hy(t,z) = . and Fy(t,z) = . (0.6)
\ ) |halEADE) | Bt al)ilal By
V 7507 |Fq(t7 )| (t/\1)$ (t/\1)|$| (t/\l)% (07>
1H, (2] < —2 (08)
(tA1)«
OF, R((EAD)TT)  ho((EA1)Ta) 3B,
Vz # 0, )| = |2 A < — 0.9
0 5 ¢ )‘ tAD)'T z (EAT)2? 2t A1) T 09
%(t,x)‘: h;((t/\lq)ix) <_DBo (0.10)
Oz tA1)T tA1)T

1 An existence and uniqueness result for the partial differential
equation (0.4)

1.1 The result

Definition 1.1 The map p € Cy([0, +00), P(R)) is a weak solution of (E,) if for any 0 <ty <t
and any function ¢ € 01’2([t0,t] x R),

/(ﬁtac twdw-/d)to, m(to, z)dx

0¢ 0*¢ 0¢
+ /(to,} (83( ,T) + 58—(3’36) + Fq(s,m(s,x))ax (s, x)> m(s’x)dsgﬁ)

where m 1s a mesurable version of the densities for .

Clearly, this definition does not depend on the choice of the measurable version of the densities.
(E,) is linked to an evolution equation. Indeed we prove that if x is a solution, then m satisfies

t
9G:—s * Hy(s,m(s,.))(z)ds a.e.

Yty > 0, Yt > to, m(t,z) = Gi—ty * m(to,.)(z) — 5
o OF (1.2)

Let f be a C? function with compact support in R. We set ¢(s,z) = Gy_s * f(x). The function
¢ belongs to C,}’z([tg,t] x R) and satisfies
16%¢

357 ¥ 32 =0

¢

Vs € [to,t],Vz € R, P

Applying (1.1), we get

[ s@mit,e)iz = [ (G s @mto,z)de + oG

Hy(s,m(s,x)) ( Oac_ * f) (x)dsdz

(to,t] xR



Inequalities (0.5) and (0.8) imply

0G—s ‘ By /t ds
H,(s,m(s,x T — dydzds < oo — < +o0
e s oD =52 0 = 0 s < Wi [
Therefore, by Fubini’s theorem, we obtain
taths

/ f(z)m(t, z)dz = / f(z (Gt—to * m(to,.)(x) —

Hence (1.2) holds. The map t — Gy_yy * m(tp, .) is clearly continuous in L*(R) for ¢ > ty. Using
(1.2), (0.5) and (0.8), it is quite easy to deduce that s — m(tg + s,.) € C([0,+00), L}*(R)). As
to is arbitrary, s — m(s) € C((0,+o0), L' (R)).

[t s s m(s, ) @) ) o

We define V7 € Cy([0, +00), P(R)) by V,(0) = dy and ¥t > 0,V9(t) = v,(t,z)dz. The function
vy(t, z) is a measurable version of the densities for V.

Theorem 1.2 For any q > 2, the map Vy is the unique weak solution of (Ey).

To prove uniqueness, we need comparison results for the evolution equation (1.2) that we group
in the following proposition. The next subsection is devoted to the proof of this proposition
which requires some technical estimates. As the convergence limy_,o pu(t) = do is weak, it is not
possible to get rid of these estimates.

Proposition 1.3 Let to > 0 and ug € L'(R). Then the equation (D, )
t 8ths
o O

admits a unique solution u in C([0, +00), L'(R)). Thz's solution belongs to C*((0, +00), L2(R)) N
C((0,+00), H?(R)). If v denotes the solution of (D} to,00)

u(t) = Gy * ug —

* Hy(to + s,u(s))ds (1.3)

vt 20, fu(t) — o)l < lluo —vollr: (1.4)
Moreover if [y uo(z)de = [y vo(z)dz and Vo € R, [ uo(y)dy < [T vo(y)dy then

T

Vt >0, Vz € R, / u(t,y)dy < / v(t,y)dy (1.5)

o0

Proof of Theorem 1.2 : We first check that Vj is a solution of (£;). By (0.1) and (0.6),

2
Vo> 0.0 € B 20 (s,0) + (B (s mylo )y, 2) = 1 0% s,
Ovg  0%vg

Let 0 < tg < t and ¢ be a CY? function with compact support in [ty,#] x R. As 3L B
and %(Fq(s,vq(s,x))vq(s,x)) are bounded on the support of ¢, using Fubini’s theorem and the

integration by parts formula, we obtain

/gb(t,x)vq(t,x)dx:/qﬁ(to,x)vq(to,x)dx
R R

9 10 P
- (to,t] (8_(?(8’36) + 537(5(5’73) + FQ(Su'Uq(S;.T))a—i(S,.’E)) vq(s,gg)ds(cllfﬁ)



If ¢ € Cbl’Z([to, t] x R), by truncation, we approximate ¢ by C? functions with compact support

in [to,t] x R. As, by (0.7), Vs € [to, t], ||Fy(s,vq4(s,.))vq(s, )|l < BO/(tO/\l) , (1.6) still holds
for ¢. Hence Vj is a solution of (E).

The proof for uniqueness was inspired by [2| (proof of Theorem 3). Let p be a solution of (E;)
and m a measurable version of the densities for p. Equation (1.2) with ¢y = % implies that the
map t — m(L +1¢,.) is the solution of (Dq1 (L )). Similarly, since V; is a weak solution of (E),

the map ¢ — vy(L +t¢,.) is the solution of (Dq

va(L )) We are going to compare v, and m thanks
n Ve .
0 (1.4) and (1.5).

Let » > 0.

If (7. m(L,z)de > [T vg(L, 2)dz, we define v"0(z) = l{xe[_m]}vq(%,x) and for s such that
[2om(E 2)ds = [T vg(2, x)dx we set m™Y(z) = l{xe[_sys}}m(%,x) . Otherwise, we make the
symmetrlcal construction. In this way,

xT x
Vr e R, / ™0 (y — 2r)dy < / m" (y)dy < / 0™ (y + 2r)dy

oo
If v and m™ denote the solutions of (D% o) and (D% - no), using (1.5), we deduce

T T

m"(t,y)dy < / " (t,y + 2r)dy (1.7)

—0o0

Vt>0VxER/ ty—2r)dy</
—00

As pand V7 belong to Cy([0, +00), P(R)), limy,_, 4 o0 Vo(d) =limp o0 (L) = dp.

Hence [|v™® = vy(;;) |2 = lm™® —m(;)]l 1 =00 0.

With equation (1. 4) this implies

1 1
V20, Lm0 - vyt + Sl = lim ()~ mit+ Sl =0
Since [|m"(t) —m(t)|[p1 < [|m"™(t) —m(t + )|l + [|m(t + 2) — m(t)|| 1, with the continuity of
s — m(s) on (0,400), we conclude

Vt >0, m(t) = lim m"(t) in L'(R)

n—-+0o

And the same holds for v4 and v". Taking the limit n — 400 in (1.7), we get

T T

m(t,y)dy < / vg(t,y + 2r)dy

— 00

Vt>0VmER/ ty—2r)dy</

o0

As r is arbitrary, V¢ > 0, ||vg(t) — m(t)||,2 = 0. Hence p = V4. ||

1.2 Proof of Proposition 1.3

Existence and uniqueness for (Df , ) (equation (1.3)) can be proved easily by a fixed-point
method. But to show (1.4) and (1.5), it is necessary to obtain regularity properties of the fixed-

points, which requires some technical estimates.



The main ideas come from the articles of Escobedo, Vasquez and Zuazua [2| and Escobedo and
Zuazua [3|. These authors often refer to “classical results” in their arguments which are thus
quite sketchy. It seems that the ideas are classical in the theory of quasilinear equations but it
was not possible to find any precise proof. That is why we detail the particular case that we are
interested in.

We begin with a lemma which prepares the application of Picard’s fixed-point theorem. Let
w € LY(R) and #; > 0. On C([0,T], L'(R)) we define the map ¢, » by

t
bt w(v)(t) =G w — / OG-y Hy(t1 + s,v(s))ds

Lemma 1.4 Let ty > 0. If T > 0 is small enough (depending on ty), then for any t, > ty and
any w € L*(R)

(i) The map ¢, w is a contraction on C([0,T], L'(R)).

(i) There is a constant Cy depending only on w such that if v € C([0,T], L*(R)) satisfies

Vt € (0,7, v(t) € L®(R) N LA(R) and ||v(t)||» < % for p =240 (1.8)

then ¢y, w(v) satisfies (1.8)

(iii) For any o € (0,T], there is a constant Cy depending only on o and w such that if v satisfies
(1.8) and

Vt € (o, T], v(t) € HY(R) N WLH2(R) and ||8g(t) e < G for p=2,+00
T Vi—« (1.9)

then ¢y, w(v) satisfies (1.9).
(WH2(R) denotes the Sobolev space of L functions with first derivative in L>.)

(iv) For any 0 < a < B < T, there is a constant Cy depending only on «, 3, ty and w such that
if v satisfies (1.8), (1.9) and

87)() 02
82 ||L2_\/m

Vt € (B8,T], v(t) € H*(R) and || (1.10)

then ¢y, w(v) satisfies (1.10).

Proof : (i) Clearly ¢t — Gy * w is continuous in L' (R). With supyeqo,7y [v(t)[| L1 < 400, it is not



difficult to obtain that ¢, . (v) € C([0,T], L(R)).
Let v,v" € C([0,T], L*(R)). Using (0.5) and (0.10), we have for any ¢ € [0, T],

I61(0)8) = ) Dl < [ 125

2\/_13
————2 sup Jlu(s) — ' (s)] e
(to A 1) SE[O:T}

1 Hy(tr + 5,0(s)) = Hy(ts + 5,0"()) |1 ds

2g—2
Hence if T < (oAL_7

1657 then ¢y, 4 is a contraction on C([0,T7], L*(R)).

(ii) Let v € C([0,T], L*(R)) which satisfies (1.8). Using (0.5) and (0.8) we get for p = 2, +o0,
8Gt s

Lt Hg(t1 + s,v(s))||Lrds
ByCy

1Pt ,w (@) () |r < (|Gell o fJw]] 1 +/ |

< G|l pe ||wl]| 1 +/ = s
0 (tg A1) @ /sv/E—s
Hence
1
wlp T | ByCony'T
bty w(v) ()] 2 S% [wll L 2k A
(4m)a (to A1)
1@ Ol < L [ 12l | BoComrvT
1,w oo -
‘[ V2r (a1
1 g
Weset G = (3) ol 17 < % A1, then (1.8) holds for ¢, 4 (v).
29—2

q

(iii) Let T < % Al, € (0,T) and v € C([0,T], L*(R)) which satisfies (1.8) and (1.9).

With the definition of ¢t w(v)(a) and Fubini’s theorem, we obtain

t 8ths
o Oz

Vt € [0,T — af, ¢, w(v)(t+ ) = G * Py w(v)(a) — « Hy(t) + a+ s,v(a + s))ds

Let s € (0,7 —a]. As v(a+s) € HY(R) and the function z — Hy(t; + « + s,7) is C! and
satisfies Hy(t1 + a + 8,0) = 0, Hy(t; + a + s,v(a + s)) € H(R) and

§Hq(t1+a+s,’l)(a—|—5)) _ hg(((h—i-a—i-s)/\l)qu(_cE%-s))av(gj;_s)
! (h+a+s)AL)a z

(see for example Corollary VIII.10 p.131 in [1]). We deduce that for ¢ € (0,7 — o],

Ot w oG
Pt (gﬂ)c(tw) = S du.w(©)(@)

- t OG_ . (h;(((tl +a+s)A 1)%v(a +5)) Ov(a + 8)>d8

0 Ox (i +ats)ADT Oz

(1.11)



For p =2 or p = 400, using (1.9) and (ii), we obtain

O, w(V)(t+ « oG t 0G4 B ov(a + s
e (01 I = RS L ek Y
47 0 47 (to A1) @ T

B
+/ 001 ds
to A 1 \/t - S\/_
1 (C[] + B()Clﬂ'\/_)
= Vi\Va (to AT
2g—2
We set C} = \/— Since we have supposed that 7' < (to/\1232q , ¢1, .w(v) satisfies (1.9).
2q—2
(iv) Let T < % Al,0<a<B<Tandve C([0,T], L} (R)) which satisfies (1.8), (1.9)

and (1.10). Let s € (O,T — f]. If ¢ > 2, since hl, is C! satisfies h/,(0) = 0 and v(6 + s) € H*(R),
B(((t+ B+ ) A)Tv(B +5)) € HL(R) and
13}

S ((t1+ B+ ) ADTO(B+5) = (b1 + B+ ) ADTR((11 4+ 6+ ) AD)T0(B+5))

ov(f + s)
0z

If ¢ = 2 the conclusion still holds with the convention hj(0) = 0 since h), is Lipschitz, C* outside
of 0 and satisfies h,(0) = 0.
On the other hand, 6”((?;5) H'(R). Hence, by the formula giving the derivative of a product

in HU(R), B (((t + B +5) A 1)0(B + 5)) 2204 ¢ HL(R) with derivative

(B +s)\?

1 2’1} s
oz )+h&(((t1+ﬁ+s)/\1)av(gﬂ))w

(BN (01691 o) =

(See Corollary VIIL.9 p.131 in [1]). Let g(s) denote the last expression. Differenciating (1.11)
with 3 replacing «, we obtain

Ponw®)(E+B) _ 0G 0¢nw®)(B) _ [*0Gs g(s) s
922 O Oz 0 0T (L+B+s)ADT (112)
With (1.9) and (1.10), we bound ||g(s)|| 2.
) )
oz < Bul(ts+ B+ a1i LDy, GPOLD gy O L),
BiCH((t,+ B+ s) A1) ByCh
< a Lve
With (1.12) we deduce,
H82¢tbw(v)(t+5)” 1 ( Cy N QBlCIQT Bocgmf>
L2 > — -~
o VEWB = (AT (B-a) (oAD'

We set

Cy ¥ 2B, C? >
VB=a (tyA)T (B a)



2g—2

T < @MLT A1, then ¢y, (v) satisfies (1.10). Moreover, (i), (ii) and (iii) hold. N
0

The next lemma gives existence of a unique fixed-point for ¢y, ,, and states regularity properties
of this fixed-point.

Lemma 1.5 Let tg >0, t; >ty and w € L'(R). Then, for T given by Lemma 1.4, ¢1,  admits
a unique fized-point in C([0,T], L*(R)).
This fized-point belongs to C((0,T), H*(R)) N CL((0,T), L*(R)) and satisfies

Oult) _L0%u() _ 0 oyt in I2(R) (1.13)

e T, 5" =552 ~ os

We obtain the regularity in ¢ thanks to results on semigroups of linear operators given by Pazy
[7] (Theorem 3.1 p.110 and Corollary 3.3 p.113) that we group in the following theorem.

Theorem 1.6 Let (A, D(A)) be the infinitesimal generator of an analytic semigroup T(t) (see
[7] p.60) on a Banach space X, x € X and f € L*([0,T],X). We set

o(t) = T(t)z + /Ot T(t — s)f(s)ds

(i) If f € LP([0,T],X) for p > 1, then v is Holder continuous with exponent ijl on [e,T] for
any € € (0,T7].

(ii) If f s locally Hélder continuous on (0,T], then

o v €CH(0,T),X)
o Vt € (0,7), v(t) € D(A) and t — Av(t) is continuous on (0,T")
o Vt e (0,T), M1 = Au(t) + f(t)

Proof of Lemma 1.5 : By Lemma 1.4 (i) and Picard’s fixed-point theorem, ¢y, ,, admits a
unique fixed-point u in C([0, T], L (R)).
We define a sequence of fixed-point iterations by setting

1)0 =0 a,Ild Vn € N, Un+1 - (l)tl,w(vn)

Since v° satisfies (1.8), (1.9) and (1.10) for any 0 < a < 8 < T, by Lemma 1.4 (ii) (iii)
and (iv), for any n € N, o™ satisfies (1.8), (1.9) and (1.10) for any 0 < @ < 8 < T. As

10



Vt € [0,T], v"(t) — u(t) in the distribution sense, we obtain that u(¢) satisfies (1.8), (1.9) and
(1.10) for any 0 < w < B <T'. Hence

vt € (0,7, u(t) € Wh(R) N H%(R)

Ou(t
Vy € (0,T], sup |lu(t)|]|zr < +o0 and sup || u )HL;D < 4oo for p=2,400
tey,T] tefy,1] 0% (1.14)

()

Vy € (0,T], sup ||
te[y,T]

|12 < 400 (1.15)

Let us deduce the regularity properties in ¢ and (1.13). Let € € (0,7]. By the proof of Lemma
1.4, we know that

€ 0 € €
Vi€ [0, — ], ult + 5) = Gex u(§ +/Gts*(—8—xHq(t1+§+s,u(§+s))>ds

t+ 5 (5) 2
M:Gt*a 2 +/Gts* 82H(t1+ —|—su( +5s)) | ds
Oz Oz 2 2 (1.16)

with for any s € (0,7

9y (t, + s, u(s)) = Polller +2) A D) u(s)) du(s)

2 ’ (h+s)AD)T O

0 Rt +5) AD)Tus) (9u(s)\® . Ry(((t + ) AD)Tu(s)) 0u(s)
——Hy(t s,u(s)) = q = E =1

Ou? (s ) (L1 +s)AN1) @ < Oz > " (k1 +s)AN1) @ 0z?

Applying (1.14) and (1.15) with v = £, we deduce that ||8%Hq(t1 + 5 + s,u(5 + s))| 2 and
125 Hy(ty + § + s,u(5 + 5))|| > are bounded on [0, — &].

Hence the maps s — & Hy(t1 + & + s,u(5 + s)) and ¢ — 88—;Hq(t1 + § +s,u(5 + s)) belong to
L2([0,T — 5], L*(R)).

The heat semigroup is analytic in L2(R) with infinitesimal generator (-2 IZ ,H?(R)) (see [7] p.208-
212). Hence applying Theorem 1.6 (i) to (1.16), we conclude that the maps ¢ — wu(t) and
t— 8:;—:(;) are Holder continuous with exponent 3 on [e, T).

We deduce that the map ¢t — %Hq(tl +t,u(t)) is Hélder continuous with exponent  on [e, T7.
Indeed for ¢,t" € [e,T],

0 0
15 Haltr + ¢, ult) = 5 Hy(tr + 8, u(?))] .2
- 1 1 du(t')  Oult)

|1y (L 4+ 2) AL)7u(t))|| oo — )
A O1T5 — T

1
AT (+t)AD)T

ou(t") e
or "

e+ #) AT SulE)) — Bt + 1) A1) o)) 2 P

ou(t")
oz

LI+ 6) A D) Tue)) ool

du(t')  Oult
=1 280 20y i -
(to A 1) a T €T

ou(t")
oz

>

|| oo (C(t0)|t’ — t[[|u(t)ll2 + ;ﬁllu(t’) - u(t)llm)

(to/\l) q
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Applying Theorem 1.6 (ii) to (1.16) with e replacing §, we conclude that ¢ — u(t) € C*((¢,T), L*(R)),
t — 2D e o((e, T), L*(R)) and

ox*
ou(t) 10%u(t) 0 . 19
vt T == — —Hy(ty + t,u(t L~ (R
€ (67 )7 ot 2 Oz2 o q( 1+ 7“’( )) m ( )
Since € is arbitrary, we have obtained the desired result. |

We are now ready to prove Proposition 1.3. The proof is divided in three steps. In the first, we
prove existence and uniqueness for (Df, ) (see (1.3)). The second is dedicated to the contraction
property (1.4) and the third to the comparison property (1.5). The comparison property is
obtained as a consequence of maximum principle results given by Protter and Weinberger in [8]
(Lemma 2 p.166 and Theorem 2 p.168) and that we group in the following theorem.

Theorem 1.7 Let E be a connected open set of the (t,x)-plane and Ey, = {(t,z) € E, t <t;}.

Let u satisfy

0%u ou ou
- et - >
V(t,z) € E, a(t,ar:)ax2 (t,z) + b(t,ar:)aqj (t,z) 5 (t,z) >0

with a and b bounded and a > C for a constant C > 0.

(1) if V(t,z) € E, u(t,z) < M and u(ty,xzo) = M for (ty,zo9) € E, then u = M on any seg-
ment which contains (to, o) and is contained in the intersection of the line (t = ty) with E.

(i) if V(t,z) € Ey, u(t,z) < M and u(ti,z1) = M for (t1,z1) € Ey,, then u = M on any
segment which contains (t1,x1) and is contained in the intersection of Ey, with the line
(x =)

Proof of Proposition 1.3 :

. . q
Existence and uniqueness for (Dj , )

Let up € LY(R), to > 0 and u® denote the unique fixed-point of ¢, 4, in C([0,T], L' (R)) given by

Lemma 1.5. If u™ is constructed, let u™*! be the unique fixed-point of Gto+(n+1)Tun (1) We set

u(t) = u"(t—nT)if t € [nT, (n+1)T]. Then u belongs to C([0,+00), L*(R)), solves (D{ , ) and

satisfies the regularity properties presented in Lemma 1.5 outside of the points nT,n € N. Since
C . 1 . .

the restriction of the map ¢ — u((n + 5)T" +t) to [0,T] is a fixed-point of d)to-l-(n—l—%)T,u((n-i-%)T)’

by Lemma 1.5, u also satisfies the regularity properties at the points nT,n € N*. Hence

u € C([0, +00), L' (R)) N C*((0, +00), L*(R)) N C((0, +00), H*(R))

(9’U,(t) _ 182u(t) o qu(tO —I—t,u(t)) in L2(R) (117)

t —
VE>0 T =30 s

Uniqueness for (D]

to.uo) 15 an easy consequence of uniqueness for the fixed-points.
b

The contraction property (1.4)
Let to > 0, ug,v9p € L'(R) and u,v denote the solutions of (Df , ) and (Df ,). We set

12



w=u-—uv.
Let 9 be a convex C7 function on R which satisfies (0) = ¢/(0) = 0. As ¢ — w(t) is in
C([0, +o0), LY (R))NC* ((0, +00), L?(R)), it is easy to obtain that the map ¢t — 1(w(t)) belongs to
C*((0,4+00), L*(R)) with derivative w’(w(t))aujTgt) (where &g—it) denotes the derivative of t — w(t)
considered as a L?(R)-valued map). Let t > 0 and € € (0,¢]. We have

[ e = [ ol

, 10%w(s) 0
[ w(w(s>)(5 s = o Halte+ s,u(s)) = Hy(to + 5,0(s))) ) dads

If s >0, w(s) € H*(R). As 1’ is C' and satisfies ¢/(0) = 0, ¢'(w(s)) € H'(R). The integration
by parts formula in H'(R) and the convexity of 1 imply

[ o = - [ wien( 2 ar <o

Hence

/¢ ))dz </¢ dac—/ /¢ Hy(to + s,u(s ))—Hq(t0+s,v(s)))dazilj918)

To obtain the contraction property, we are going to approximate the function z — |z| by the
convex C’g functions v, defined by

’Q

) = o ¥n(y)dy
(w) Jo ¥n(y)dy

As ¢ — Hy(to + s,z) is strictly increasing,

Vx,y € R7 ngrfooz'b;l(x - y) = lim ¢n( (tU + S,.’E) - Hq(tO + Say))

n—+00

By Lebesgue’s theorem, this property implies

lim / /¢n Hy(to + s,u(s)) — Hy(to + s,0(s)))dads =

n—-+0o

lim //%( (to + s, u(s)) — Hq(to+s,v(s))>%(ﬂq(to+s,u(s))—Hq(t0+s,v(s)))dxds

n—-+00

But if s > 0, as u(s),v(s) € H?(R), we can suppose that u(s) and v(s) are C'* functions and
satisfy limy, 4o [u(s, 7)| = lim, 1 [v(s,7)| = 0. Therefore

Vn, /Rz/;; (Hq(tg +s,u(s)) — Hy(to + 5,v(s))> %(Hq(tg s,u(s)) — Hy(to + 5,0(s)))dz = 0

Hence limy, o [ [z ¥ (w(s 8)) 2 (Hy(to + s,u(s)) — Hy(to + s,v(s)))dzds = 0. Using (1.18) for
¢y, and taking the limit n — 400, we obtain ||w(t)||;,1 < ||lw(€)||;1. Letting € — 0, we conclude

vt >0, [lu(t) = v()llLr < lluo —vol|Lr

If vg = 0, then V¢ > 0, v(t) = 0 and the last inequality provides ||u(t)|| ;1 < |Juol|:-
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The comparison property (1.5)
Let ug € L'(R) and u be the solution of (D , ). We define U(t,z) = [*  u(t,y)dy. Let us
prove that

ou 10°U ou
Y(t,2) € (0, 00) x By O (6,2) = 55 9Y (t,0) - Hq<t0+t,8—x(t,x)> (1.19)
As u € C((0, +00), H?(R)), for any ¢ > 0, the function x — U(t, ) is C? and satisfies
2
lim ‘—(t,x)‘ = lim 0 U(t z)| =0
|z|—+o00 | O |z| =400 Or?

Moreover, the functions t — 2 (t x) and t — 8x2 U(t,x) are continuous on (0, 400) and bounded
on compact sets of (0,+00) un1f0rmly for x € R.
Let z € R, t,¢' > 0 and n € N. By (1.17), we have

Ult,z)-U{,—n) - U(t,z) + U(t,—n) =

[/ 500 25 (oo ) o ) s

Taking the limit n — +o00, we obtain by Lebesgue’s theorem,

Ut 2) — Ut z) = /tt, (%%(s,x) A, (to s, Z—Z(s,x)>>ds (1.20)

The continuity of s — %%xg(s, z)— Hy(to+5,2 B U(s,z)) allows to conclude that U satisfies (1.19).

If we let  — +o00 in (1.20), we get the mass conservation : V¢, t' > 0, [pu(t',y)dy = [p u(t,y)dy
and as u € C([0, +00), L} (R)), we deduce Vt > 0, [ u(t,y)dy = [ uo(y)dy.

Let vy € L'(R) be such that [ uo(z)dz = [z vo(z)dz and Vo € R, [ ug(y)dy < [ vo(y)dy.
Let v be the solution of (D, ). We set V(¢,z) = [*_v(t,y)dy and W = U — V. To prove the

to,vo

comparison property, we are going to apply theorem 1.7 to W. By (1.19),

ow 10°W ou ov ow
V(t,$) € (07 +OO) X Ra W(tax) = EW(t’x‘) - Gl] (ta %(tax)a %(t7$)> %(tax)
where Gy(t,z,y) = Juloetbtl Willotby)y 0 By (0.10), Gy is bounded by W'
0 q

As for any s > 0, the function z — W (s, x) is continuous and satisfies lim ;| 4o W (s,z) = 0 (for
z — 400 it is a consequence of the mass conservation), M(s) = sup{W (s,z), € R} is finite.
Since s — u(s) — v(s) belongs to C([0,+00), L'(R)) the functions s — W (s, ) are continuous
uniformly in z € R. Hence s — M(s) is continuous.

Let ¢ > 0 and M; = sup{M(s), s < t}. We are going to prove that M; = 0. There is sy € [0, t]
such that My = M(sp).

- if 59 = 0. By the choice of ug and vy, M(0) = 0. Hence My = 0.

- if sg > 0. We meet two cases.

Vo e R, Wi(so,z) < M(so). As limy_, 400 W(s0,7) =0, My = M(sp) =0

o dzy € R, M(sp) = W(so,xg) Then we apply Theorem 1.7 with u = W, M = My, a = %,
and b(s,z) = —Gy(s, (% U(s,x), %‘;(s x)). If sg € (0,t), then for E = (0,t) x R, Theorem 1.7
(i) implies Vo € R, W (sg,z) = M(s9) = M;. When we take the limit z — 400, we conclude
My =0. If s = ¢, then for E; = (0,¢] x R, Theorem 1.7 (ii) implies that W (%, z0) = M; and we
conclude like previously. |
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2 The nonlinear martingale problem

Definition 2.1 We say that P € P(Q) solves the nonlinear martingale problem (M,) if Py = &
and for any ¢ € CE(R),

t d? d
d(Xy) — #(0) — /0 (%d—ﬁ(Xs) + Fq(s,p(s,Xs))d—i(Xs)> ds is a P-martingale o

where p(s,x) is measurable version of the densities for P.

This definition does not depend on the choice of the measurable version. Indeed, if p'(s, z) is
another such version then
d¢

t d t
vVt >0, / Fq(s,p(s,Xs))d—¢(Xs)ds = / Fq(s,p'(s,Xs))d—(Xs)ds, P almost surely
0 xZ 0 T

Theorem 2.2 For any q > 2, the nonlinear martingale problem (M,) admits a unique solution
and vy(s, ) is a measurable version of the densities for this solution.

Proof : In the proof for existence like in the proof for uniqueness, we are confronted to the lack
of control of Fy(s,z) when s — 0. That is why we use time-shifts on the sample-paths.

Uniqueness

Let P and P’ be two solutions. We first prove that v,(¢, z) is a measurable version of the densities
for P and P'. The map t — P; belongs to Cp([0, +-00), P(R)). By Paul Lévy’s characterization,
X — f[f F,(s,p(s,Xs))ds is a Brownian motion under P. Taking expectations in It6’s formula,
we obtain that ¢ — P; is a weak solution of (E,) (see equation (1.1)). Theorem 1.2 then implies
that v, is a measurable version of the densities for P. The same is true for P'.

We introduce the shift y € @ — Dy (y) = y(= +.) € Q. Let P" = Po D!, P = P o D;".
Both P™ and P'™ solve the martingale problem :

Qo = vg(},0)dw and $(Xy) — @(Xo) — Jy (353 (Xo) + Fo(} + 5,0q(} + 5, X)) £ (X,) ) ds
is a @-martingale for any ¢ € CZ(R) (2.2)

Since z = Fy(L + 5,v4(1 + 5,2)) is bounded uniformly in s (see (0.7)), by Girsanov’s theorem,
this martingale problem admits a unique solution and P" = P'".
As for any y € Q, lim,, 1 oo Dy (y) =y, P® and P'" converge weakly to P and P’. Therefore

pP="F
Existence
The natural idea would consist in constructing a solution to the martingale problem : Qo = dg
2 t(1d d¢ . .
Vo € Cy(R), ¢(X;) — ¢(0) —/ aw(Xs) + Fq(s,vq(s,Xs))%(Xs) ds is a Q-martingale
0
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and proving that this solution belongs to 75(9) and admits v, as a measurable version for its
densities. But the drift coefficient Fy(s,v,(s,.)) is not bounded and to our knowledge, there is
no classical existence result for such a martingale problem. That is why we introduce P™ the
solution of the martingale problem (2.2). We first prove that vy(1 +¢,z) is a measurable version
of the densities for P™.

By Girsanov’s theorem, since the drift coefficient Fy (L +s,v,(2 45, X)) is bounded, P" € P(9).
Let p™(t,z) be a measurable version of the densities for P™, ¢t > 0 and ¢ € Cbl’z([(), t] x R). Taking
expectations in Itd’s formula, we obtain

1
[ st ) = [ @0.2)0,(,0)do
R R
D¢ 0?¢ 1 1 D¢
il o F hid n
+/(0t]xR<8S( )+282( z) + ( + s, vq( + s, x))ax(s,x) p"(s,x)dsdx
Like in the proof of the evolution equation (1.2), we deduce

tagt—s « (pn(S,-)Fq(l + s, Uq(l + s, )))(x)ds a.e.
o Oz n

1
Vi >0, p"(t,z) = Gy * vq(ﬁ, )(x) —

For =V, and ¢y = %, equation (1.2) provides

1 | t oG, 1
vt > 0, vq( +t,z) = Gt*vq(ﬁ,.)(x)— ) Bacs* v

Using (0.7) and (0.5), we obtain

L (s ) = vg(E+ 5l
Ip"(t) = v4( + . llrey < Bon'T [ e

After an iteration, we get

q=2 [t 1 § Hpn(T,-) _Uq(l +Ta')||L1
m / / n drds
0 Vt—sJo S—T

g 20=2 [t 1
< BT [t ) = v+
0

1 2
Hpn(ta ) - ’Uq(ﬁ +1, ')“L1 < Bgn

Gronwall’s lemma implies Vt > 0, |[p"(t,.) — vg(L +¢,.)[|1r = 0.
Hence vq( + s,x) is a measurable version of the densmes for P".

Let Q" denote the image of P™ by the shift y € @ — y((. — ) V0) € Q. We now prove that the
sequence (Q"), converges weakly to the solution of (M). Since Qf = Vy(%) converges weakly
to dp and the map s — [|Fy(s,.)||r= is integrable, for any T' > 0, the images of the probability
measures Q" by the canonical restriction from € to Q7 are tight. Therefore the sequence (Q™),, is
tight. Let Q° be the limit of a convergent subsequence that we still index by n for convenience.
Let pe N*, p € CZ(R), g€ Cp(RP), 0< 51 <...<s,<s<tand G: Q= R,

d¢

t 2
1d ¢(y(7~)) + Fy(ry v (ryy(r) =

Gy) = (¢(y(t)) —(y(s)) — . Sdi? (y(T))dT> 9(y(s1),- -, y(sp))

Since the functions & — Fy(s,v4(s,x)) are continuous and bounded uniformly in s > s;, the
function G is continuous and bounded. Hence

E?"(G(X)) = lim E?"(G(X))

n—-+o0o
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Clearly, for any n > é, EQ" (G(X)) = 0. Hence E®”(G(X)) = 0. By Lebesgue’s theorem,
as s — || Fy(s,.)||r is integrable, this equality still holds when we take the limits s, — 0 and
s — 0. Therefore

1d2 dé

$(X,) — B(Xo) — /0 t (5@(&) - Fy(r, vg(r, XT))E(XT)> dr is a P®-martingale s
2.3

Ift > 0, for any n > %, vg(t,.) is a density of Q} = Pt”_l with respect to Lebesgue measure.

Hence Q$° is absolutely continuous with density vg(t,.). Since Qf = V(L) converges weakly to
0o, QE° = 0p. These two properties and (2.3) imply that Q> solves (M,). Hence we have proved
existence for this problem. Moreover, by uniqueness, the whole sequence (Q™),, converges weakly
to the solution of (My). ||

3 The propagation of chaos result

3.1 The particle systems

We recall the definition of the moderately interacting particle systems
. . t .
Xi" = Bl [ Fyfs, V7 (XEM)ds, 620, 1< i <n
0
where B,i € N* are independant Brownian motions, p? = 1 > j=10yjn and V*(z) = nPVi(nfr).

Proposition 3.1 For any n € N*, there is existence and pathwise uniqueness for the particle
system (X1m, X2m . X™),

Proof : In this proof, n is constant. For y = (y1,...,yn) € R?, we set |y| = max]" |y;|. Since
V1 is Lipschitz, V™ = nfV1(nf.) is also Lipschitz. Let C denote its Lipschitz constant.
We set X; = (X;",...,X/"™), B, = (B},...,B") and

Fy(s, 5 5= V™ (w1 — )
G(s,y)=1| .. )
F‘I(37 n 2?21 V™ (yn — y]))
We are interested in the stochastic differential equation

t
X, = B, +/ G(s, X,)ds (3.1)
0

The map G does not satisfy the classical linear growth and local Lipschitz assumptions. There-
fore, to prove our claim, we construct functions indexed by m € N* which satisfy these assump-
tions and are equal to G on (0,+00) X [—g37, 5]". We set F"(s,x) = Fy(s,—m V z Am) and

17



define G™ like G with F;" replacing Fy. We have G™(s,y) = G(s,y) if |y| < 5. Moreover the
functions y € R* — G™(s,y) are bounded and Lipschitz uniformly in s. Indeed by (0.6),

(t < <%>Q> = (m < ; fiﬁ) = (if || < m, F*(t,z) = Fy(t,z) = %)

With (0.7) et (0.9), we obtain that  — F"(s, z) is bounded by %_1\/ B%"ql ~V By and Lipschitz

(g—1)m?~? 3B1mi~? 3B;
7 V V =5

with constant uniformly in s. Since

n

n 1 & " C
=>V (Zi—zj)—gzv (yi —y)l SEZ(|zi_yi|+|Zj_yj|) <2Cly — 7|

j=1 7j=1 7=1

we deduce that y — G™(s,y) is bounded by mq =Y &)kTifl_l V By and Lipschitz with constant
q

o 2
20 ((q )qmq vV 33;}67;1‘12 v 3Bl> uniformly in s.

Hence, there is existence and pathwise uniqueness for the stochastic differential equation
t
X7 = B, +/ G™ (s, X™)ds
0

We set T™ = inf{t : |X["| > 3%} and for m < I, T™! = inf{t : max(|X;"|,|X}|) > 9%}. By
pathwise uniqueness for the equation indexed by m, X™ and X' coincide on [0, Tm’l]. We deduce
T™! = T™. Hence X™ and X' coincide on [0,7™]. Therefore the sequence (T™) is increasing.

S
sup | X"| <sup|Bg|+sup| [ G™(r, X")dr|
s<t s<t s<t JO

As s = ||[Fy(s, )|~ is integrable, we get E(sup,<, |X{"|) < A(t) where A(t) does not depend on

20A(1)
— Hence

m. Using Markov’s inequality, we deduce P({sup,<;|Xg"| > g¢}) <
Vt € (0,400), P{limT,, <t}) =0 and a.s., imT,, = +o0
m m
We set Xy = X[ on [Ty,—1,T] with Ty = 0. Then X solves equation (3.1).

For uniqueness, if Y is a solution of (3.1) and S = inf{t : max(|X{"|,|Y3|) > 5%}, ¥ and X™
coincide on [0, 5™] and therefore on [0,7™]. |

3.2 Propagation of chaos

Theorem 3.2 For any q > 2, the sequence of the laws of the particle systems (X7, ..., X™")
is P9-chaotic where P? denotes the unique solution of the martingale problem (My).

The particles are exchangeable. Therefore the propagation of chaos result is equivalent to the
convergence in distribution of the empirical measures p" = i i1 0xin considered as P(2)-
valued random variables to dps (see for example [10] and the references cited in it). To prove
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this convergence, we adapt the approach of Méléard and Roelly in [4]. We begin with a tightness
result. Then we check that the limit of any convergent subsequence is dpq. In both steps we need
the following fundamental technical result adapted from Oelschliger [6] (Proposition 3.2 p.290).

Lemma 3.3 Let U' be a probability density in H*(R) for a > 0. We set U™(z) = n®U' (nbz)
for some b € (0,1). Then

1—
Vee [0,a N Tb], VO <e<T, 3C, Vs € [, T], sup]E( /d(l + [A2) | F (U™ * ,u?)(k)|2d>\> <C
n R

Remark

Oelschliager proves the claim of Lemma 3.3 for the moderately interacting particle systems (0.2)
mentionned in the introduction and for the particular choice U! = W, b = 3. Since our particle
systems satisfy

Xi,n 3

€ :X
§+t

o S

£
2

; ; bt e i .
’"+(B%+t—3%§)+/0 Fy(§ s, VPl (X2 ))ds, 1< <

and Fy(§ + s, ) is bounded, it is quite easy to adapt the proof to our framework.

3.2.1 The tightness result

Let m, denote the law of the P(£2)-valued variable p™. Since we have to control V™ x p”, it is
not enough to prove the tightness of the sequence (m,),. That is why we introduce the space

H = P(Q) x Lin((0, +00), L*(R))
endowed with the topology of weak convergence on P(2) and the metric

1
» 3
d(v,v") = Z 27P ((/1 |lvs — v;||%2ds> A 1)
»

p>1

on L? ((0,400),L*(R)). The space L7 ((0,+00),L*(R)) is complete and separable for this
metric. Let m and v denote the canonical projections from #H to P(2) and L2 ((0,+00), L(R))

loc
and 7, be the law of the H-valued random variable (u™, V"™ % u™).

Proposition 3.4 The sequences (my)n and (7y)n are tight.

Proof : The tightness of the sequence (m,), is equivalent to the tightness of the laws of the
variables X" (see [10]). These variables are tight since for any 7" > 0 their images by the
canonical restriction from 2 to Q7 are tight (s — ||F,(s,.)||L= is integrable).

To prove the tightness of the sequence (7, )y, it is enough to prove the tightness of the sequences
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(fp om 1), and (7, o v~ !),. We have just showed the tightness of the first sequence. Let us
deal with the second.

From any subsequence of (7, om '), we extract a converging subsequence that we still index by
n for simplicity. As P(Q2) is a polish space, we obtain by Skorokhod’s lemma an almost surely
convergent sequence (¢"),, of P(Q)-valued random variables defined on a probability space (2, P)
such that for any n, the law of 1™ is 7, om ™! = 7,,. We are going to prove that V™1™ converges
in L'(Q, L2, ((0, 400), L?(R))), which ensures that the sequence (7, ov ), is weakly convergent.

loc

1
D 2
E(d(VF«F, VEish)) <y o7P ((E(/l ||V’f*y§—vl*y§||§2ds>> /\1)
D

p>1

If we prove that Vp > 1, limy ;o E <ff |[VE sk -V l/i“%2ds> = 0, it is easy to conclude

p
by Lebesgue’s theorem that (V™ % v™), is a Cauchy sequence. Using the Fourier isomorphism,
we get

P iz
IE(/l IVF v = Vs villizds> = IE(/l //\|<M FVF f)(A) = F(V! yg)(A)FdAds)
p D =

]E( /; /A|>M | F(VF s« vE)Y(\) = F(V! « ug)(A)FdAds)(w)

| < vk et > — < vl eh > |2>

FE b0 = F WP < 2(JFTH ) - FVHNP + -

Therefore the first term of the right hand side of (3.2) is bounded by
1 p . )
2p/ IFVF)N) = FVYN)dA + —E(/ / | <vbeh > - <ih e > |2d>\ds>
A<M m 5 A<M

Since the probability measures V"™ (x)dx converge weakly to dp and the sequence (v™),, is almost
surely weakly convergent, applying Lévy’s theorem and Lebesgue’s theorem, we obtain that for
any M > 0 the first term of the right hand side of (3.2) goes to 0 when k,I — +oc.

The second term of the right hand side of (3.2) is bounded by

P
4supE // |F(V™ % u)(N)|*d)ds
n = JA>M

Applying Lemma 3.3 withe =X, T'=p, U' =V a=r,b=Fand c=r AL ’3 we obtain

vn, E /,,/ (V" % ™) (V) 2dMds | < E // LI 2y m) () 2drds
’ L Ja>m s % A>M 1+ M2 Hs

- 1+M2C

We conclude limy ;4o E (ff |VE sk — VI yé||%2d3> —0. |
p
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3.2.2 Identification of the limit

The sequence (my,)y is tight. Let 7o, be the limit of a converging subsequence (m,, ). As the
sequence (), is also tight, we can extract from (7, ), a subsequence which converges weakly
to oo and that we index by n for simplicity. We are going to prove that T a.s., m solves the
nonlinear martingale problem (M;). Since o 0 m ™! = 7y, we will conclude 7o = dpa.

We begin with a technical result which explicits the connection between m and v under 7.

Lemma 3.5 There is a Borel set N such that Too(N) = 0 and V(m,v) € N, for a.e. t >0, m,
has a density equal to v, with respect to Lebesgue measure.

Proof of Lemma 3.5 : Let p € N*, (gx)ren be a sequence dense in L2([%,p]) and (f)ien a
sequence of C'! functions with compact support on R that will be precised later. We set

G i(m,v) = //gk ) fi(@)vy(z )dmdt—//gk ) fi(z)my(dz)dt

As Gy is continuous, Efe (G%,l) < liminf, | o E™ (G%,l). Let V*(z) = V"(—x).

(G = E( ([ owt) (75 te) - fz(w>>u?<d$)dt>2>

<P||9k||LzSHP( " x fiz) = filx))?

V" fte) = @) < [ 1o+ ) = @V @y < 18w [ Vi)

Hence limy, 00 E™ (G} ) = 0 and E™ (G} ;) = 0. We set N}, = Uy en G (R7). We have
Too(Np) = 0 and since (gi)x is dense in LQ([%,p]),

V(m,v) € N, for ae. t € [%,p],Vl €N, /Rfl(x)mt(dx) = /Rfl(x)vt(x)dx

Let ¢ be a C! function on R with values in [0,1] such that for |z| < 1, ¢(z) = 1 and for
| 2 2, p(x) = 0. We set ¢j(z) = ¢(5) for j € N* and we impose that (f;) includes all the
functions  — ¢;(x)P(z) where j € N* and P is a polynomial with rational coefficients. Then
this sequence is dense in Cx(R) (the space of continuous functions with compact support) for

the sum of the L? norm and the sup norm. Hence if VI € N, [ fi(z)mi(dz) = [ fi(z)v(2)dz,

Vf € Cx(R /f Vi (de) = /f e (3.3)

Approximating —v;1{y,<e} in L*(R) by positive functions belonging to Ck (R), we obtain that
vy > 0. Thus vi(x)dz is a Radon measure. By (3.3), the Radon measures m; and v;(z)dz are
equal and m; has a density equal to v,.

To conclude, we set N' = U,en- Np- i
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Let p € N*, ¢ € CZ(R), g € Cp(RP), 0 < 51 < ... < s, < s <t. For N given by Lemma 3.5, we
define G : H — R by

t1d%¢p

G =1 <m, (¢(Xt> —9(X.) = [ 35 (X0 + Fylryolr Xm%(xr)dr) §(Xppso Xo,) >

where v(r,z) is a measurable representative of v. We are going to prove that ET=(G?) = 0.
We introduce (), a sequence of C'*° probability densities with compact support on R which
converges to dp and we set

t1d%¢p

Gr =<m, <¢(Xt) — ¢(Xs) — s iw(Xr) + Fq(r, (P UT(XT))%(XT)CZT> 9( Xy, .. aXSp) >

The functions G are continuous and bounded on H. Hence

E™ (G?) < 2 lim inf B (G — Gy)?) + 2 liminf lim E(G2 (1™, V™ % u™)) (3.4)

— 400 —+400 n—+00

Let us show that both terms of the right hand side of (3.4) are equal to 0.

By the boundedness of G, (uniform in k), the Lipschitz properties of F, (see (0.9)), Lemma 3.5
and Cauchy-Schwarz inequality, we obtain

E™ ((G — Gi)?) < CE™ (|G — Gy)

N ¢
< CE™ <1/\[c < m,/ |k * vp (Xy) — v(r, X;)|dr >>
S

< CE™ <1Nc /st /R |Pg * vp(x) — v(r,x)|v(r,x)dxdr>

N t 3 . t 2
<0 (& ([ oliear) ) (B ([ or = e s rliear) )

By the Fourier isomorphism, E» (fst o [|2. dr) =E (fst [ F(V™ 5 )% dr). Applying Lemma
3.3 with U' = V!, ¢ = 0 and using the continuity of (m,v) € H — fst ||vr||32dr, we conclude
that BT ([ [|op]|2a gy dr) < +oc.
As for any f € L*(R), limg 400 |95 * f — fllz2 = 0 and [[or — ¢ * vr|| 2 < 2||v,[| 12, taking the
limit £ — 400 in (3.5), we obtain

(3.5)

lim E™ (G — G})?) =0 (3.6)

k——+o00

To prove that the second term of the right hand side of (3.4) is equal to 0, we upper-bound
GZ(u", V™ % ™) by

12 d

2 < . <¢(Xt) —x) - | %d_xf(X’“) L F, (V" M;%(Xr))ﬁ(xr)dr)g(xsl,...,Xsp) o2
' d

+2 < p", 9(Xs, - ,Xsp)/s (Fy(ryp + V™ * g (X)) — Fy(r, V™ * u?(Xr)))d—¢

X, )dr >>
x( Ydr >

(3.7)
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Let W"(z) = W"(—z) and Aj, denote the expectation of the second term of (3.7). By a
computation similar to (3.5), we obtain

t
A < CE( [ <l [W s (WP s s = WP )| > )

S

t _
< CE( [ W )W b« i (0) = W a2 )y
S

t 3 ¢ .
<o (e( [ euiiear)) (2( [ Iwn et - wos i) )

Applying Lemma 3.3 with U! = W' and ¢ = 0, we deduce

t
Apn <C (]E </ |[W™ s abge * e — W™ *[1,?”%2(17’))

Using the Fourier isomorphism then Lemma 3.3 with U! = W! and c =r Al ﬂ , We obtain
t
A}, <oE ( L[y VERF 0 0) — 1 F u’:)(wdxdr)

t 2c
+0E( L[ VERF IO+ 1F 0 « i)y )|2ij']\}'26dw)

2
<c (M s [VERF) ) =1 + Mzc>

where the constant C' depends neither on n nor on k. Since the probability measures ¢y (z)dx
converge weakly to dp, applying Lévy’s theorem we conclude limg_, 4 o sup, Ag,n, = 0.

As, by Ito’s formula, the first term of (3.7) is equal to (& Lg(XLn . ,Xg;”) fst g%(Xz ")dB)?,
its expectation goes to 0 when n — +o00. Hence lim infk%Jroo limy, s oo E(GZ (u", V™ % ™)) = 0.
With (3.4) and (3.6), this result implies E™ (G2) = 0.

Restricting ¢, g, s1,...,8p,8,t to countable subsets then taking limits by Lebesgue theorem, we
get that T a.s., Vp € N*, Vo € CZ(R), Vg € Cp(RP), VO <51 < ... <s, < s <t

t1d%¢

Lo <m, ((j)(Xt) — 000 = [ 5EE ) + Byt Xr))%(x,)m«) 9(Xey,.., Xg) >=0

AsVn € N*, 7, 0 m0 = (550 and the map (m,v) € H — myg is continuous, Ty © m0 = d5,-
Hence there is a Borel set N with ' C NV and 7o (N) = 0 such that ¥(m,v) € N, V¢ € CZ(R),
d(Xy) — ¢(0) — g%%(Xr) + Fy(r,v(r, Xr))ﬂ( X, )dr is a m-martingale.

Let (m,v) € N¢. The process X; — [} F,(r,v(r, X,))dr is a m-Brownian motion. By Girsanov’s
theorem, we obtain that m € P(Q). If p is a measurable version of the densities for m, since
(m,v) € N¢, by Lemma 3.5, m a.s., Vt > 0, [} Fy(r,v(r,X,))dr = [§ Fy(r,p(r, X,))dr. Therefore
m solves the nonlinear martingale problem (M,), which puts an end to the proof.
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