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Abstract

An inequality on the variation of the product of two functions of bounded variation
and some applications in numerical solution of certain class of parabolic partial differential
equations by low-discrepancy sequences are given.
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1 Introduction

In this paper, we are interested in two problems related by quasi-Monte Carlo method (cf.
[3] and [2]): the variation of the product of two functions of bounded variation and the numerical
solution of a certain class of parabolic partial differential equations by low-discrepancy sequences.

In numerical integration by quasi-Monte Carlo method, the key formula for error bounds is
the Koksma-Hlawka inequality.

Theorem 1.1 Koksma-Hlawka inequality/2/
If a function f has bounded variation V (f) on [0,1]° in the sense of Hardy and Krause and
€ = (Xp)n>1 s a [0,1])°-valued sequence in [0,1]°, then for any N >0,

L™ fxn) (b)dt| < V(f)D*(£, N)
¥ Tl = [ F0d] VDU EN),

where D*(§, N) is the star-discrepancy of the first N terms of €.

Therefore, in order to accelerate the speed of the approximation, a sequence with low discrepancy
(so called low-discrepancy sequence) must be used. We refer the reader to [3] and [2] for the
special low-discrepancy sequences.

The concept of bounded variation in the sense of Hardy and Krause is complex to deal
with when s > 2. However, in [1] and [4], a more convenient notion to work with (at least
theoretically) is proposed for which the Koksma-Hlawka inequality still holds. To recall it, we
use the following notations: for x = (z1,...,z5) and y = (y1,...,ys) in R® with z; < y; for
i=1,...,s, we denote x <y and [x,y] = [, [=i, vi].



Definition 1.2 A function f : [0,1]° — R is said to have bounded variation (in the measure
sense) if there exists a bounded signed measure p on B([0,1]*) with support in [0,1]* \ {0}, such
that

F(x) = F(1) + p{[0,1 X} for all x in [0, 1],

where 1 = (1,...,1) and 0 = (0,...,0). This measure is unique and its mass ||p|| is called the
variation of f and denoted by V(f).

Recall the connection with the class of functions of bounded variation in the sense of Hardy and
Krause is given by the following proposition [4]:

Proposition 1.3 (a) If f has bounded variation (in the measure sense), it also has in the sense
of Hardy and Krause. (b) If f has bounded variation in the sense of Hardy and Krause then:

f+(x) =limy_x yerx )\ ixy f(¥) exists for every x € [0,1] \ {1} (f1(1) = f(1)) and satisfies
1. fiy = f dx-a.s.
2. f1+ has bounded variation (in the measure sense) and V (f1) < Vigr (f).

In this paper, the variation of the product of two functions of bounded variation (in the measure
sense) is studied, and an inequality for its estimation is given in §2.

Another problem in which we are interested is the numerical solution of partial differential
equations using some low-discrepancy sequences.

In the work of Hua and Wang [3], the method of good lattice points were used to give an
approximate solution of Cauchy’s initial value problem for a class of parabolic partial differential
equation. Let E}(K), A > 2, K > 0 denote the set of all functions defined on R*

f(x)= Z c(m)e?™mX  x— (z1,...,x,)

meZs

with Fourier coefficients satisfing the decay conditions
le(m)| < K(r(m)) ",
where m = (my,...,ms), m-x =Y ;_; m;z; and
r(m) = II}_; max{1, |m;|}.

Then a numerical solution is provided for the following equation:

%u(t,x) = Au(t,x); x= (21, ,Ts), (1)
u(0,x) = f(x) with f € EMNK)
where A =377, 66—; is Laplacian. Since then, their method has been extended to a more general

class of partial differential equations in [5], [6] and [7].
In §3, the result of Hua and Wang is generalized to any low-discrepancy sequences using an
inequality that will be proved in the next section.



2 An inequality on the variation of the product of two functions
with bounded variation

In this section, we give an inequality on the variation of the product of two functions of bounded

variation. Firstly, we need a lemma.

Lemma 2.1 Let p; and po be two signed measure on B([0,1]%), then there exists a signed
measure on B([0,1]%), noted by w1 * pa, such that

i1 12{10,x]} = {10, x} a2 {10, xT} if x € [0, 1]°

and

(11> ol < [l

Proof First, consider the case of u; and pe be positive measure. Define a positive measure
pi1 % piz on B([0,1]*) by

puy K iz = (p1 ® pa) o T,
where T is the function from [0,1]* x [0, 1]* to [0, 1]° defined by

T(y,z) = (max{yy, 21}, ..., max{ys, zs }).
Then we have for all x € [0,1]*
pxpef{[0,x]} = p1 ®p2{(y,2) |y <xandz < x}
M1 X ;1,2{[[0,)(]] X [[O,X]]}
= {0, x]}p2{[0, x]}

and

s 5 pol] = i % 12 {[0, 11} = o1 {10, 1} 22 {10, 11 = [l sa]]
Now let p; and po be signed measure with
pr=pf —py and  pg =py — py .
their Jordan-Hahn decompositions. Define a signed measure p; * p2 on B([0, 1]°) by
ik iy = i kg g kg =y ok g — gk
Then, for any x € [0,1]*, we have

prxp2{[0,x]} = (" — {0, x][}uz — pz){[0,x]}
= {[0, x]}p2{[0, x]}

and
py % pall < |Ipd * g ]+ ey > pa ||+ ed % pg ||+ [l * s ]
= et M 11+ e e |14+ et g [+ g s ]
= ||pallllp2ll,
the lemma follows. o



Theorem 2.2 If two functions f and g on [0,1]° have respectively bounded variation (in the
measure sense) V(f) and V(g). Then fg also has bounded variation on [0,1]* and

VI(fg) <V(HVI(g) + gV () + [F()IV(g).

Proof Let i and v be two bounded signed measures on B([0, 1]*) with support in [0, 1]\ {0},
such that for all x in [0, 1]°

() = F(1) + {0, 1= X[} and g(x) = g(1) + v{[0,1 - x]}.
Then, using Lemma 2.1, we have
FX)g(x) = p{l0,1 =x]}A{[0,1 —x]} + (9(1)p + F(1)»){[0,1 = x]} + F(1)g(1)

= (pxv+gQ)p+ f(Q)p){[0,1 —x]} + F(1)g(1)
= pH{[0,1 —x]} + f(1)g(1)

where p* is a signed measure on B([0,1]*) with support in [0, 1]* \ {0} defined by
pt=pxv+gl)p+ f(Ly
In addition,
V(fg) = lln"ll
i x vl + lg (Ol + [ ][]

A+ 1g (Ol + [ ) ]l]
V(HV(g) +1gMIV(F) +1F )V (g)-

IA N

o

To apply the above inequality in the following section, we will use the following essential
example of function with bounded variation (cf. [4]). Let us introduce some additional notations
slet I C{1,...,d}, we sets :

myp =du; if i € I, mp =01 if i ¢ I and dx’ = @y<;<gmi,

gy =z ifi € Lot =1ifi ¢ T and x; = (2})1<i<a, X! = (%) i1

Example : Let f be a function from [0,1]* to R. If, for every I C {1,...,d}, % (in the
distribution sense) lies in L', then f has bounded variation with

plax) = S (—pyerdn=1 9 oy gy

I
Ic{1,....d} 0x

and

vin= X% /01 L er)lax!.

1c{1,....d



3 Numerical solution of certain class of parabolic partial differ-
ential equations by low-discrepancy sequences

In this section, we study the numerical solution of equation (1) using low-discrepancy sequences.
We have the following result.

Theorem 3.1 Let u(t,x) be the solution of (1) and let & = (x,)n>1 be a [0,1]°-valued sequence
in [0,1)%. For any N > 1, denote

N
UN(t,X) — Z (% Z f(xn)6727rim~xn)6747r2tm~m+27rim-x‘ (2)
r(m)<N ' n=1
Then
|u(t, x) —un(t,x)] < C(A, f,t,5)D*(, N) (3)

with C(A, f,t,s) > 0 a constant depending on X\, f, t and s.

Proof Denoting the Fourier coefficients of f(x) by ¢(m). As in [3], we have

u(t,x) — Z C(m)ef47r2tm-m+27rim~x
meZs

Note that because of A > 2 all calculations with this infinite series are justified, and by the
Example in §2 f is a bounded variation function with variation V(f).
Now we estime the error of the approximate solution. We have

lu(t,x) —un(t,x)| < X1+ 2o (4)
with
1 Y , 2
21 — Z |c(m) o ﬁ Z f(xn)e—27rzm-xn e—47r tm-m
r(m)<N n=1
and

By Lemma 7.7 of [3],

m< Y Ke(m)™ < <02 )
r(m)>N

with C5 a positive constant. For 3¢, applying Koksma-Hlawka inequality, we have

S1< Y VD€, N)e T IMmM L v (f)D*(E,N)
r(m)<N, m#0



where
Vimn = V(f(x) cos(2mrm - x)) + V(f(x) sin(27m - x))
with

V(cos(2rm - x)) = V(sin(2rm-x

- 1 8’“ cos(2rm - x)
_ dt; - dt;
2 X / S g

k=11<i1<i2<...

> > @n)fimyl-m

k=11<01<i2<...<ip
< (4m)°mal - - [ml

IN

Thanks to Thereom 2.3 and for all ¢ > 0

o0

m
Z 4n2tm?2 < 400,
m=1 €

we obtain
Vimn <22V (f) + f(1))V (cos(2mrm - x))
and therefore

21

IN

> VaD'(§,N)e ™™™ 4Ly (£)D(E,N)

r(m)<N, m#0

* —47%tm-m
< 2V +f)DUEN) D |mal- - fmgleTt TR )
r(m )<N m7£0
< AW+ FANDHEN(S o+ 3 - e T 1)
mi1=1 ms=1
N m
= 2QV(f)+ F)D*(EN)2 Y =)+ 1)]
m=1 €
< CD*(¢N) (6)
with C; a positive constant depending only f, ¢t and s. Together with (4) and (5), the result of
(3) follows easily. o
Remark : The above result can be extended to more general class of parabolic partial

differential equation as follows:

2
{ %“(t’ x) = (Xi=1 2j=1 Gij —am?ﬁa;j + =1 bia%,— + c)u(t,x)
(

u(0,x) = f(x) € EXNC), (7)

where x € R*, A = (a;;) is positive definite matrix, and b; with 1 < ¢ < s and ¢ are real
constants. But our method does not naturally extend to the equations as there studied in the
work of [5], [6] and [7].
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