
Variation of product function and numerical solution of somepartial di�erential equations by low-discrepancy sequencesYi-Jun XIAOAugust 1996AbstractAn inequality on the variation of the product of two functions of bounded variationand some applications in numerical solution of certain class of parabolic partial di�erentialequations by low-discrepancy sequences are given.Key words: Variation, low-discrepancy sequences.A.M.S. Classi�cation: 11K05, 11K30, 65C05, 65C201 IntroductionIn this paper, we are interested in two problems related by quasi-Monte Carlo method (cf.[3] and [2]): the variation of the product of two functions of bounded variation and the numericalsolution of a certain class of parabolic partial di�erential equations by low-discrepancy sequences.In numerical integration by quasi-Monte Carlo method, the key formula for error bounds isthe Koksma-Hlawka inequality.Theorem 1.1 Koksma-Hlawka inequality[2]If a function f has bounded variation V (f) on [0; 1]s in the sense of Hardy and Krause and� = (xn)n�1 is a [0; 1]s-valued sequence in [0; 1]s, then for any N > 0,j 1N NXn=1 f(xn)� Z[0;1]s f(t)dtj � V (f)D�(�;N);where D�(�;N) is the star-discrepancy of the �rst N terms of �.Therefore, in order to accelerate the speed of the approximation, a sequence with low discrepancy(so called low-discrepancy sequence) must be used. We refer the reader to [3] and [2] for thespecial low-discrepancy sequences.The concept of bounded variation in the sense of Hardy and Krause is complex to dealwith when s > 2. However, in [1] and [4], a more convenient notion to work with (at leasttheoretically) is proposed for which the Koksma-Hlawka inequality still holds. To recall it, weuse the following notations: for x = (x1; : : : ; xs) and y = (y1; : : : ; ys) in Rs with xi � yi fori = 1; : : : ; s , we denote x � y and [[x;y]] = Qsi=1[xi; yi].1



De�nition 1.2 A function f : [0; 1]s ! R is said to have bounded variation (in the measuresense) if there exists a bounded signed measure � on B([0; 1]s) with support in [0; 1]s n f0g, suchthat f(x) = f(1) + �f[[0;1� x]]g for all x in [0; 1]s;where 1 = (1; : : : ; 1) and 0 = (0; : : : ; 0). This measure is unique and its mass jj�jj is called thevariation of f and denoted by V (f).Recall the connection with the class of functions of bounded variation in the sense of Hardy andKrause is given by the following proposition [4]:Proposition 1.3 (a) If f has bounded variation (in the measure sense), it also has in the senseof Hardy and Krause. (b) If f has bounded variation in the sense of Hardy and Krause then:f+(x) = limy!x;y2[[x;1]]nfxg f(y) exists for every x 2 [[0;1]] n f1g (f+(1) = f(1)) and satis�es1. f+ = f dx-a.s.2. f+ has bounded variation (in the measure sense) and V (f+) � VH&K(f).In this paper, the variation of the product of two functions of bounded variation (in the measuresense) is studied, and an inequality for its estimation is given in x2.Another problem in which we are interested is the numerical solution of partial di�erentialequations using some low-discrepancy sequences.In the work of Hua and Wang [3], the method of good lattice points were used to give anapproximate solution of Cauchy's initial value problem for a class of parabolic partial di�erentialequation. Let E�s (K), � > 2, K > 0 denote the set of all functions de�ned on Rsf(x) = Xm2Zs c(m)e2�im�x x= (x1; : : : ; xs)with Fourier coe�cients satis�ng the decay conditionsjc(m)j � K(r(m))��;where m = (m1; : : : ;ms), m � x =Psi=1mixi andr(m) = �si=1maxf1; jmijg:Then a numerical solution is provided for the following equation:( @@tu(t;x) = �u(t;x); x = (x1; � � � ; xs);u(0;x) = f(x) with f 2 E�s (K) (1)where � =Psi=1 @2@x2i is Laplacian. Since then, their method has been extended to a more generalclass of partial di�erential equations in [5], [6] and [7].In x3, the result of Hua and Wang is generalized to any low-discrepancy sequences using aninequality that will be proved in the next section.2



2 An inequality on the variation of the product of two functionswith bounded variationIn this section, we give an inequality on the variation of the product of two functions of boundedvariation. Firstly, we need a lemma.Lemma 2.1 Let �1 and �2 be two signed measure on B([0; 1]s), then there exists a signedmeasure on B([0; 1]s), noted by �1 ? �2, such that�1 ? �2f[[0;x]]g = �1f[[0;x]]g�2f[[0;x]]g if x 2 [0; 1]sand jj�1 ? �2jj � jj�1jjjj�2jj:Proof First, consider the case of �1 and �2 be positive measure. De�ne a positive measure�1 ? �2 on B([0; 1]s) by �1 ? �2 = (�1 
 �2) � T�1;where T is the function from [0; 1]s � [0; 1]s to [0; 1]s de�ned byT (y; z) = (maxfy1; z1g; : : : ;maxfys; zsg):Then we have for all x 2 [0; 1]s�1 ? �2f[[0;x]]g = �1 
 �2f(y; z) jy � x and z � xg= �1 
 �2f[[0;x]] � [[0;x]]g= �1f[[0;x]]g�2f[[0;x]]gand jj�1 ? �2jj = �1 ? �2f[[0;1]]g = �1f[[0;1]]g�2f[[0;1]]g = jj�1jjjj�2jj:Now let �1 and �2 be signed measure with�1 = �+1 � ��1 and �2 = �+2 � ��2 :their Jordan-Hahn decompositions. De�ne a signed measure �1 ? �2 on B([0; 1]s) by�1 ? �2 = �+1 ? �+2 + ��1 ? ��2 � �+1 ? ��2 � ��1 ? �+2 :Then, for any x 2 [0; 1]s, we have�1 ? �2f[[0;x]]g = (�+1 � ��1 )f[[0;x]]g(�+2 � ��2 )f[[0;x]]g= �1f[[0;x]]g�2f[[0;x]]gand jj�1 ? �2jj � jj�+1 ? �+2 jj+ jj��1 ? ��2 jj+ jj�+1 ? ��2 jj+ jj��1 ? �+2 jj= jj�+1 jjjj�+2 jj+ jj��1 jjjj��2 jj+ jj�+1 jjjj��2 jj+ jj��1 jjjj�+2 jj= jj�1jjjj�2jj;the lemma follows. �3



Theorem 2.2 If two functions f and g on [0; 1]s have respectively bounded variation (in themeasure sense) V (f) and V (g). Then fg also has bounded variation on [0; 1]s andV (fg) � V (f)V (g) + jg(1)jV (f) + jf(1)jV (g):Proof Let � and � be two bounded signed measures on B([0; 1]s) with support in [0; 1]s n f0g,such that for all x in [0; 1]sf(x) = f(1) + �f[[0;1 � x]]g and g(x) = g(1) + �f[[0;1 � x]]g:Then, using Lemma 2.1, we havef(x)g(x) = �f[[0;1 � x]]g�f[[0;1 � x]]g+ (g(1)� + f(1)�)f[[0;1 � x]]g+ f(1)g(1)= (� ? � + g(1)�+ f(1)�)f[[0;1 � x]]g+ f(1)g(1)= ��f[[0;1 � x]]g+ f(1)g(1)where �� is a signed measure on B([0; 1]s) with support in [0; 1]s n f0g de�ned by�� = � ? � + g(1)� + f(1)�In addition, V (fg) = jj��jj� jj� ? �jj+ jg(1)jjj�jj + jf(1)jjj�jj� jj�jjjj�jj + jg(1)jjj�jj + jf(1)jjj�jj= V (f)V (g) + jg(1)jV (f) + jf(1)jV (g): �To apply the above inequality in the following section, we will use the following essentialexample of function with bounded variation (cf. [4]). Let us introduce some additional notations: let I � f1; : : : ; dg, we sets :miI = dxi if i 2 I; miI = �1 if i 62 I and dxI =N1�i�dmiI ;xiI = xi if i 2 I; xiI = 1 if i 62 I and xI = (xiI)1�i�d, xI = (xi)i2IExample : Let f be a function from [0; 1]s to R. If, for every I � f1; : : : ; dg, @f@xI (in thedistribution sense) lies in L1, then f has bounded variation with�f (dx) = XI�f1;:::;dg(�1)card(I)�1 @f@xI (xI)dxIand V (f) = XI�f1;:::;dg Z[0;1]s j @f@xI (xI)jdxI :4



3 Numerical solution of certain class of parabolic partial di�er-ential equations by low-discrepancy sequencesIn this section, we study the numerical solution of equation (1) using low-discrepancy sequences.We have the following result.Theorem 3.1 Let u(t;x) be the solution of (1) and let � = (xn)n�1 be a [0; 1]s-valued sequencein [0; 1]s. For any N � 1, denoteuN (t;x) = Xr(m)�N( 1N NXn=1 f(xn)e�2�im�xn)e�4�2tm�m+2�im�x: (2)Then ju(t;x) � uN (t;x)j � C(�; f; t; s)D�(�;N) (3)with C(�; f; t; s) > 0 a constant depending on �, f , t and s.Proof Denoting the Fourier coe�cients of f(x) by c(m). As in [3], we haveu(t;x) = Xm2Zs c(m)e�4�2tm�m+2�im�xNote that because of � > 2 all calculations with this in�nite series are justi�ed, and by theExample in x2 f is a bounded variation function with variation V (f).Now we estime the error of the approximate solution. We haveju(t;x) � uN (t;x)j � �1 +�2 (4)with �1 = Xr(m)<N jc(m)� 1N NXn=1 f(xn)e�2�im�xnje�4�2tm�mand �2 = Xr(m)�N jc(m)je�4�2tm�mBy Lemma 7.7 of [3], �2 � Xr(m)�NKr(m)�� � C2N��1 (5)with C2 a positive constant. For �1, applying Koksma-Hlawka inequality, we have�1 � Xr(m)<N;m 6=0VmD�(�;N)e�4�2tm�m + V (f)D�(�;N)5



where Vm = V (f(x) cos(2�m � x)) + V (f(x) sin(2�m � x))with V (cos(2�m � x)) = V (sin(2�m � x))= sXk=1 X1�i1<i2<:::<ik Z 10 : : : Z 10 j@k cos(2�m � x)@ti1 : : : @tik jdti1 � � � dtik� sXk=1 X1�i1<i2<:::<ik(2�)kjmi1 j � � � jmik j� (4�)sjm1j � � � jmsjThanks to Thereom 2.3 and for all t > 01Xm=1 me4�2tm2 < +1;we obtain Vm � 2(2V (f) + f(1))V (cos(2�m � x))and therefore�1 � Xr(m)<N;m 6=0VmD�(�;N)e�4�2tm�m + V (f)D�(�;N)� 2(2V (f) + f(1))D�(�;N)( Xr(m)<N; m 6=0 jm1j � � � jmsje�4�2tm�m + 1)� 2(2V (f) + f(1))D�(�;N)( NXm1=1 � � � NXms=1 jm1j � � � jmsje�4�2tm�m + 1)= 2(2V (f) + f(1))D�(�;N)[(2 NXm=1 me4�2tm2 )s + 1)]� C1D�(�;N) (6)with C1 a positive constant depending only f , t and s. Together with (4) and (5), the result of(3) follows easily. �Remark : The above result can be extended to more general class of parabolic partialdi�erential equation as follows:( @@tu(t;x) = (Psi=1Psj=1 aij @2@xi@xj +Psi=1 bi @@xi + c)u(t;x) ;u(0;x) = f(x) 2 E�s (C); (7)where x 2 Rs, A = (aij) is positive de�nite matrix, and bi with 1 � i � s and c are realconstants. But our method does not naturally extend to the equations as there studied in thework of [5], [6] and [7]. 6
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