
Volume-Discrepancy of Sequencesand Numerical TestsBernard Lapeyre Yi-Jun Xiao �September 1996AbstractIn this paper, we introduce the notion of volume-discrepancy (and of isotropic volume-discrepancy) of a sequences of points and we establish some of their basic properties. Thisnotion is illustrated by an application to a reliability problem.Key words: Lower volume of points, Discrepancy, Volume-Discrepancy.A.M.S. Classi�cation: 11K05, 11K30, 65C05, 65C20IntroductionAn important problem in reliability analysis is the computation of the failure probability :p = P (f(u1; : : : ; us) � �) ;where f is a known function and � a given level. Often the function f can be assumed to beincreasing (or at least monotonous) in each of its coordinates, i.e. for each 1 � i � s, if ui � u0ithen f(u1; : : : ; ui; : : : ; us) � f(u1; : : : ; u0i; : : : ; us):Clearly this monotonicity assumption implies that the function f is increasing for the partialorder of Rs, that is to say, if x and y are two points of Rs such that, for all i, 1 � i � s, xi � yi(we will denote this fact by x � y), then f(x) � f(y).This monotonicity assumption can be used to improve the standard Monte-Carlo algorithm.The basic idea is to keep track of the values of f at the points x that have already been drawn,and to use this information to avoid the computation of f(y), if y is chosen such that y � x for ax with f(x) � �. If the points are chosen uniformly in [0; 1]d, this happens with probability equalto the volume of the set of points which are less than one point already drawn (we will call thisvolume the lower volume delimited by these points). One can easily prove that the lower volumeconverges to P (f(u1; : : : ; us) � �). This probability, in reliability problems, is close to 1, say oforder 0:95. So we can hope to compute f only for 5% of the points, at least asymptotically. Thissaving may be large, especially if f is di�cult to compute. In order to evaluate the expected gainwe will introduce the notion of volume discrepancy and of isotropic volume discrepancy. Using�CERMICS-ENPC, La Courtine, F-93167 Noisy le Grand Cedex, France Fax: (1)49 14 35 861



this notion, we can estimate the speed of convergence of the lower volume to the probability andthe savings of the algorithm.These notions will enable us to understand why savings are not as large as expected especiallywhen the dimension is large. This fact is linked with the speed of convergence of the volume-discrepancy to 0.Our work is organized as follows. In section 1, we recall some notations and de�nitions,then we establish results on the volume-discrepancy of dense sequences, and we give an estimateof the isotropic volume-discrepancy using volume-discrepancy. In section 2, we recall resultsconcerning volume-discrepancy for sequences with low-discrepancy and we give an estimate onvolume di�erences of random sequences. Numerical results using random and Faure sequencesare presented in section 3. They show that these two families of sequence have almost the samee�ciency for the previously described algorithm and that it is clearly better than a standardMonte Carlo algorithm when the dimension is not too large.1 De�nition and �rst properties of the volume discrepancy1.1 Notations and de�nitionsHere we recall some notations and basic results. Let x = (x1; : : : ; xs) be a point of the s-dimensional closed unit cube �Is = [0; 1]s and let :B(x) = f(y1; : : : ; ys) 2 Is = [0; 1)sj yi < xi for 1 � i � sg:

Figure 1: The lower volume of a set of pointsIf S is a point set (a point set is a �nite sequence of points as in the terminology of [6]) of�Is, we will extend the de�nition of B by settingBS = [x2SB(x):Now, we de�ne the lower volume of a set D.De�nition 1.1 Let D is a Jordan-measurable subset of Is. The lower volume VD(S) is :VD(S) = ZD 1BS\D(x)dx:2



If � = (xn)n�1 is an Is-valued sequence, �N will denote the point set fxn j 1 � n � Ng. We willcall volume di�erence of �N associated with D :EVN (�;D) = (�(D) � VD(�N ));where � denotes Lebesgue measure.Remark 1.2 If D is monotonous (that is to say if x is in D then every y � x is also in D) thenthis quantity is positive and represents the speed of convergence of the volume delimited by thepoints of the sequence which are in D to the volume of the set D.De�nition 1.3 The Volume-Discrepancy of the �rst N terms of �, DVN (�) is :DVN (�) = supD2PsEVN (�;D);where Ps is the family of all subintervals of Is.The star volume-discrepancy of the �rst N terms of � DV �N is :DV �N (�) = supD2P�s EVN (�;D)where P�s is the family of all subintervals of Is of kind Qsk=1[0; bk[; 0 � bk � 1.Remark 1.4 Clearly : DV �N (�) = supx2�Is(�(B(x))� VB(x)(�N ))where �Is = [0; 1]s and for x = (x1; : : : ; xs) 2 �Is; �(B(x)) = Qsi=1 xi.Remark 1.5 When s = 1, the volume-discrepancy of a set of points (x1; : : : ;xn) can be com-puted as follows. Let (y1; : : : ;yn) be the increasing ordering of (x1; : : : ;xn). If we set y0 = 0and yn+1 = 1 then : DV �N = maxi=0;:::;nyi+1 � yi:The following proposition can be proved using a slight variation of the proof of proposition 2.4in [6].Proposition 1.6 For all s � 1, DV �N (�) � DVN (�) � 2sDV �N (�):1.2 Volume discrepancy as a density testIn this section, we will prove that the volume discrepancy can lead to a density criterium for asequence of points.Theorem 1.7 Let � = (xn)n�1 be a sequence of points of Is, then limN!1DV �N (�) = 0, if andonly if � is a dense sequence in Is.
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Remark 1.8 Note that, if D�N is the usual star-discrepancy, we have :limN!1D�N (�) = 0if and only if � is uniformly distributed in Is (see [6]). So the notion of the volume-discrepancyis weaker than that of the discrepancy. Sequences having small discrepancies, (which are e�cientsequences for the quasi Monte Carlo methods, see [6] and [3]) might be expected to have smallvolume-discrepancy.Proof : of theorem 1.7. Let � be a sequence which is not dense. Clearly there exists a subintervalof Is such that no point of the sequence falls in this subinterval. One can easily deduce from thisfact that : limN!1DV �N (�) > 0:Now, it remains to prove that the density of � implies that the volume discrepancy goes to 0.Le us �rst prove that for a given point x, if � = (xn)n�1 is a dense sequence in Is, we have :limN!1EVN (�;B(x)) = 0:Clearly limN!1EVN (�;B(x)) exists because EVN (�;B(x)) decreases with N . Assume thatthere exists a point z = (z1; : : : ; zs) 2 �Is such that :limN!1EVN (�;B(z)) = a > 0:We can suppose that each zi > 0 for 1 � i � s, because if zi = 0 then EVN (�;B(z)) = 0 for allN � 1. Now, let us denote by g the following function :g(x) = sYi=1 zi � sYi=1(zi � x):This function is clearly continuous and increasing, g(0) = 0, moreover if m = min1�i�s zi theng(m) = Qsi=1 zi > 0. Thus there exist a number y, y 2 (0;m) such that :g(y) = b < a:Now we will see that there is no point of the sequence � in the interval Qsi=1[zi�y; zi) of measureys > 0. To prove this, let us suppose that there exists such a point. Thusa � EVN (�;B(z)) = sYi=1 zi � ZBB(z)\�N dt� sYi=1 zi � ZB(z�y) dt = g(y) = b < a;where z� y is the point (z1 � y; : : : ; zs � y). This leads to a contradiction.Now, we will use a generalized version of Dini lemma.4



Lemma 1.9 (Dini lemma) If (fn(x))n�1 is a decreasing sequence of upper semi-continuousfunctions on �Is such that, for all x 2 �Is :limn!1 fn(x) = 0;then limn!1 supx2�Is fn(x) = 0.In order to use the previous lemma in our context we need to prove that x 7! VB(x)(E) is lowersemi-continuous.Lemma 1.10 If E = fx1; : : : ;xng is a �nite set of points in Is, then the function x 7! f(x) =VB(x)(E) is lower semi-continuous on �Is.Proof : Clearly f(x) is increasing for the partial order on �Is. For each point xk =(xk;1; : : : ; xk;s) 2 E; 1 � k � n, we consider the s hyperplanes de�ned byfy = (y1; : : : ; ys) j yi = xk;ig:At most ns hyperplanes cut �Is in, at most, (n+ 1)s subintervals of form:sYi=1(ui; vi] if 0 < ui < vi � 1(if ui = 0, we take [ui; vi] rather than (ui; vi]). Now, if P = Qsi=1(ui; vi] is such an interval, andif x = (xi)1�i�s 2 P : f(x) = f((u1; : : : ; us)): (1)To prove that f is lower semi-continuous we will verify that for all x = (xi)1�i�s 2 �Is, thereexists a neighborhood Vx � �Is of x such that for all y 2 Vx :f(x) � f(y) (2)Clearly, it su�ces to prove (2) for x 2 @P = PnQsi=1(ui; vi). Moreover, we will suppose thatui > 0 for all 1 � i � s, because if x = (xi)1�i�s and xi0 = 0, for one i0 then f(x) = 0.Now, let x = (ai)1�i�s 2 @P . Obviously there exists � > 0 such that :V �x (�) = fy = (y1; : : : ; ys) j ai � � < yi � aig � P:For y 2 V �x (�), f(x) = f(y), let us setVx(�) = fy = (y1; : : : ; ys) j jyi � aij < �g \ �Is:If y 2 Vx(�)nV �x (�), we de�ne y0 = (y01; : : : ; y0s) with y0i = ai if yi > ai and y0i = yi otherwise.This point y0 is such that :� y0 2 V �x (�), so f(y0) = f(x),� y0 � y, so f(y0) � f(y).Hence, we have f(x) � f(y). 5



1.3 Isotropic Volume-DiscrepancyWe will now introduce the notion of isotropic volume-discrepancy of sequences which looks likethe usual isotropic discrepancy (cf. [4] et [5]).De�nition 1.11 The Isotropic Volume-Discrepancy of the �rst N points of a sequence � =(xn)n�1 is de�ned by : DJN (�) = supC2CsEVN (�;C);where Cs is the family of all convex sets included in Is.Theorem 1.12 For all sequence � = (xn)n�1 of elements of Is, we haveDVN (�) � DJN (�) � (4sps+ 1)(DVN (�)) 1s :For the proof, we will use the following two lemmas.Lemma 1.13 Let C be a convex open set and E be a �nite subset of C. For � > 0, there existsa closed convex polytope K containing E and included in C satisfying�(CnK) < �:Proof : First, note that for � > 0 there exists a compact set K1 such that K1 � C, E � K1and �(CnK1) < �:Since C is open, for all x 2 K1 there exists �x > 0 such that V x � C, with Vx = Qsi=1(xi ��x; xi + �x). The family of open sets fVx j x 2 K1g is an open covering of the compact set K1,so there exists a �nite subset of points xj 2 K1; 1 � j � m such that [mj=1Vxj � K1.For 1 � j � m, let Ej be the set of vertices of Vxj , and then de�ne K = conv([mj=1Vxj ),where conv denotes convex hull. We have :K = conv([mj=1Ej):Hence K is a closed convex polytope included in C, containing K1 � E and such that �(CnK) <�.Lemma 1.14 If Fs is the family of all closed convex polytopes of Is thenDJN (�) = supP2FsEVN (�; P ):Proof : For all C 2 Cs, we have�(int(C)) = �(C) and Vint(C)(�N ) � VC(�N );6



where int(C) denotes the interior of C. HenceEVC(�N ) = �(C)� VC(�N )� �(int(C))� Vint(C)(�N ) = EVint(C)(�N ):So : DJN (�) = supC2LsEVN (�;C)where Ls denotes the family of the open convex sets in Is.Using the previous lemma, we can see that for all O 2 Ls and for all � > 0, there exists aP� 2 Fs included in O such that �(O) � �(P�) + �and Cardfxn 2 O \ �Ng = Cardfxn 2 P� \ �Ng:Thus we have : EVO(�N ) = �(O)� VO(�N )� �(P�)� VP�(�N ) + �= EVP�(�N ) + �:Hence DJN (�) = supP2Fs EVN (�; P ).Proof : of Theorem 1.12. We use the same method as in [4] (p. 94-97) to estimate the classicalisotropic discrepancy.By the above lemma, it su�ces to estimate EVN (�; P ) for a P 2 Fs. To simplify thisestimation we will construct a subset of P , say P1 easier to handle than P . Since P1 � P :EVP (�N ) = �(P )� VP (�N )� �(P1)� VP1(�N ) + �(P )� �(P1)= EVP1(�N ) + �(P )� �(P1): (3)The set P1 is constructed as follows. For a positive integer r, for a lattice point (h1; h2; :::; hs)with 0 � hi < r and for all 1 � i � s we denote by J (r)h1h2:::hs the interval f(x1; : : : ; xs) 2 Rs j hir �xi < hi+1r ; 1 � i � sg. The set L(r) of all these intervals is a partition of Is. Let P1 by the unionof all the intervals of L(r) included in P . If we �x s� 1 integers h1; : : : ; hs�1 satisfying the aboverestriction, then the integers h; 0 � h < r, with J (r)h1:::hs�1h � P are consecutive because P is aconvex set. Hence the union of these intervals J (r)h1:::hs�1h is again an interval. It follows that P1can be written as the union of at most rs�1 pairwise disjoint intervals. Hence :EVP1(�N ) � rs�1DVN (�): (4)By [4] p. 96-97, we have �(P )� �(P1) � 2spsr ;7



now, using (4) and (3) EVP (�N ) � rs�1DVN (�) + 2spsr ;and since the upper bound is independent of P , we have :DJ(�N ) � rs�1DVN (�) + 2spsr ;for all positive integers r. If we choose r = [(DVN (�))� 1s ] we obtain :DJ(�N ) � (4sps+ 1)(DVN (�)) 1s :
2 Some estimations of volume discrepanciesIn this section we give some properties of volume discrepancies. Most of then are already known,some are new. We begin with the case of deterministic sequences.2.1 Deterministic sequencesThe case s = 1 In this case (see [10]) the notion of discrepancy is closely related to the notionof dispersion and of maximal spacing. As quoted in remark 1.5, the volume-discrepancy of asequence of points � = fxn; n � 1g is given by :DV �N (�) = maxnx�(1);x�(2) � x�(1); : : : ;x�(N) � x�(N�1); 1� x�(N)o ;if � is a permutation of f1; 2; : : : ; Ng such that :x�(1) � x�(2) � � � � � x�(N):With the same notation the dispersion dN (x) is given by :dN (�) = max�x�(1); 12 �x�(2) � x�(1)� ; : : : ; 12 �x�(N) � x�(N�1)� ; 1� x�(N)� :So dN (�) � DV �N (�) � 2dN (�) and the asymptotic behavior of dN (�) and DV �N (�), as N goesto in�nity, are the same.Moreover it can be shown that : DV �N (�) � 1N + 1 ;and that lim supN!1 NDV �N (�) � 1log(2) :8



It is easy to construct a sequence of points with �minimal� volume discrepancy (that is to saywhich goes to zero at speed at least K=N , with K = 1=log(2)) . For instance, if :x1 = 1 and xn = � log(2n� 3)log 2 � ; for n � 2;one can prove that : lim supN!1 NDV �N (�) = 1log 2 :Note that this sequence is dense but not uniformly distributed in [0; 1].The volume discrepancy of a one dimensional Van Der Corput sequence can also be computedand is �small�. The following result is proved in [10].Theorem 2.1 Let �b be the Van Der Corput sequences in base b, thenlimN!1NDV �N (�b) = ( (b+2)24b if b even,(b+1)(b+3)4b if b odd.The case s > 1 In dimension greater than one, the problem is harder and only very few resultsare known. In [10], the following result concerning two dimensional sequences is proved :Theorem 2.2 If R is a (0;m; 2)-net in base b with m � 1 be an integer, thenDV �(R) � (3b� 2)mbm :This implies that, if � is a (0; 2)-sequence in base b, then for all N � 1,DV �N (sigma) � b(3b� 2) logbNN :Moreover, for all m � 1, there exists a (0;m; 2)-net Q in base b such thatDV �(Q) � (b� 1)(1=2 + 1=b)m+ 1bm :2.2 The case random sequencesHere, � = (xn)n�1 will be a sequence of independent random variables uniformly distributed onIs. Note that, if s = 1, the result of Deheuvels [1] on maximal spacings for multivariate orderstatistics implies that DV �N (�) = O � logNN � almost surely.When the dimension is greater than one, we conjecture that the asymptotic behavior of thevolume discrepancy of a random sequence is almost surely less than K log�(N)=N , where � > 0is some positive number. But, we can only prove the following result on volume di�erences.Theorem 2.3 For all x 2 Is, for all � > s, for almost all !, there exists a constant C(!) suchthat : EVN (�;B(x)) � C(!) log�(N)N9



To prove this result we need the following lemma.Lemma 2.4 For all N � 1 and for every x = (x1; : : : ; xs) 2 �Is, we haveE(EVN (�;B(x))) = O (logN)s�1N ! :Proof : If D is a set of Is, let us set :Bk(!) = ( B(xk(!)) \D if xk(!) 2 D; otherwise.Clearly, using independence :E(�(D)� VD(�N )) = E ZD 1([Nk=1Bk(!))c(x)dx = ZD NYk=1E1Bck(!)(x)dx:This leads to : E(EVN (�;D)) = ZD[1�P(! j x � x1(!) 2 D)]Ndx:Now, choose D = B(x) where x = (x1; : : : ; xs) 2 �Is with xi > 0 for all 1 � i � s. We haveE(EVN (�;D)) = ZB(x)[1�P(! j y � x1(!) 2 B(x))]Ndy= ZB(x)(1� sYi=1(xi � yi))Ndy1 � � � dys= ZB(x)(1� sYi=1 zi)Ndz1 � � � dzs where zi = xi � yi� ZIs(1� sYi=1 zi)Ndz1 � � � dzs;To conclude, it remains to prove thatZIs(1� sYi=1xi)Ndx1 � � � dxs � (logN)s�1N : (5)We prove it by induction on s. Clearly for s = 1, we haveZ 10 (1� x1)Ndx1 = 1N + 1 :Moreover if (5) is true for s� 1 :ZIs(1� sYi=1xi)Ndx1 � � � dxs = 1N + 1 Z 10 dx1 � � � Z 10 dxs�1 1� (1� x1 � � � xs�1)N+1x1 � � � xs�1 ;
10



and, by induction :ZIs(1� sYi=1xi)Ndx1 � � � dxs = 1N + 1 Z 10 dx1 � � � Z 10 dxs�1 NXk=0(1� x1 � � � xs�1)k� 1N + 1( NXk=1 (log k)s�2k + 1)� (logN)s�1N :This completes the proof of the lemma.Proof : Now we prove proposition 2.3 using Borel Cantelli lemma. Using Markov inequalityand the previous lemma, we have for � > 0P EVN (�;B(x)) � logs+�(N)N ! � 1log1+�(N) :Now let us set nk = 2k. ClearlyXk�1P EVnk(�;B(x)) � logs+�(nk)nk ! < +1:So, for almost all ! there exists k0(!) such that, if k � k0(!) :EVnk(�;B(x)) � logs+�(nk)nk :This implies, that for almost every ! there exists a constant C(!) such that, for all k � 1 :EVnk(�;B(x)) � C(!) logs+�(nk)nk :Now, for each N , let us denote by k(N) the unique integer such that nk(N) � N < nk(N)+1.Clearly :NEVN (�;B(x))logs+�(N) � nk(N)+1EVk(N)(�;B(x))logs+�(nk(N)) = 2nk(N)EVk(N)(�;B(x))logs+�(nk(N)) � 2C(!):This completes the proof.3 Description of the algorithm and examples3.1 The algorithmIn this section, we will describe more precisely the algorithm of the introduction, then givenumerical results illustrating it and see why the isotropic volume discrepancy gives a useful apriori estimate for the speed of the algorithm. 11



We are interested in the computation of a failure probability in a reliability problem. Areliability problem can be described within the following scheme. Let f be a function from Isto R and let x = (x1; : : : ; xs) be a random vector following a uniform law on Is. Of course,practical problems are not strictly of this type (for instance, the law of the random vector x canbe arbitrary), but standard result of simulation prove that they can be reduced to this form.One of the main problems of reliability analysis is to compute, given a con�dence level �, theprobability : p = P (f(x) � �) :The probability is typically near to 1 (say 0:9, 0:95, 0:99).In the standard Monte Carlo procedure we simulate a sequence of independent, uniformlydistributed on Is, vectors (x1;x2; : : : ;xn; : : :) and we approximate p by pN with :pN = 1N �1ff(x1) � �g + � � �+ 1ff(xN ) � �g� :Note that, to compute pN we need to compute f at N di�erent points. Often the complexity ofthe computation of f is so large that the previous algorithm is almost unuseful : it is vital toreduce the number of computations of f . We will now see how one can achieve this task if weassume that the function f is increasing, or at least monotonous, for the partial order of RN . Inwhat follows, for sake of simplicity, we will suppose that f is increasing.Under this assumption, suppose that we have already drawn N points SN = fx1; : : : ;xNg.Clearly, the set D = fx 2 Is; f(x) � �g contains, in the terminology of paragraph 1BSN\D = fx 2 Is;9i � N; f(xi) � � and x � xig:The assumption on f shows that the set D is monotonous. So EVN (x;D) goes to zero (that is tosay the volume of BSN\D goes to the volume of D). So, if the next point xN+1 fall in BSN\D weneed not compute f on this point. This seems to lead to very large savings because it happenswith probability Vol (BSN\D) � Vol (D), and this number is near to 1.Nevertheless, as we will see on an example, the convergence of EVN (x;D) to 0 is very slow,especially when the dimension s becomes large.3.2 The exampleIn this example we compute p = P(g21 + � � �+ g2s � �);where (g1; : : : ; gn) are s independent standard Gaussian random variables (E(g1) = 0,E(g21) = 1).Of course, the computation of p can be done directly using a �2-table.In order to put this problem on the previous form, let F be the distribution function of astandard random variable x! P(g1 � x), let F�1 be the inverse of F and g(u) = F�1 �u+12 �2.An easy computation shows that, if U is a uniformly distributed random variable on [0; 1], thedistribution of g(U) is the same as the distribution of g21 . Hencep = P(g(U1) + � � �+ g(Us) � �);if (U1; : : : ; Us) are s independent random variables uniformly distributed on [0; 1]. Of course, thefunction f(u1; : : : ; us) = g(u1) + � � �+ g(us);12



is increasing for the partial order of Is.In the example � has been chosen in order to have p = 0:95. We simulate N points using theclassical Monte Carlo method and we denote by Nc the number of time the algorithm actuallycompute the function f . We are particularly interested in the fraction NcN which qualify thee�ciency of the method. Asymptotically, NcN goes to 1 � p as N goes to in�nity, so in goodsituation we can expect that this fraction would be near to 1=20. We will see in numericalexample that saving for realistic value of N (10000 to 1000000) are far lower than this value.3.3 Numerical resultsFirst we have tested the behavior of the algorithm with standard random sequences.
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Figure 2: Random sequencesOne can note on �gure 2 that as the dimension s increase the gain of the algorithm decreaseto zero. With N = 10000, our procedure is very useful if s � 6 but the improvement is verysmall if s > 10.We have also replace random sequences by a low discrepancy sequence : the Faure sequence.In this case the algorithm exhibit the same kind of behavior (see �gure 3).
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Figure 3: Faure sequencesWe �rst thought that, at least in low dimension, the asymptotic behavior of NcN would bebetter for low discrepancy sequences. This is not true, at least in the case of Faure sequences asshown on �gure 4.
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3.4 Volume discrepancy and the e�ciency of the algorithm : remarks etconjecturesNumerical experiments lead us to notice two important facts� the improvement of the algorithm is a�ected by the dimension s of the problem.� low discrepancy sequences do not seem to improve the e�ciency of the algorithm.One way to �explain� these points is to note that, when f is a convex function the set Dis also convex, so EVN (x;D) is less than the isotropic volume discrepancy DJN (x). Moreover,using theorem 1.12 we know that : DJN (x) � KDVN (x) 1s :Now suppose that , for a random sequence, the asymptotic behavior of DVN (x) is log�(N)=N(this fact can be conjectured but has not yet been proved). This leads to a possible upper boundfor the asymptotical behavior of DJN (x) of type log(N)�=N 1s . We think that this upper boundgives the right behavior of DJN (x) as N goes to in�nity. Moreover, for �most� of the set D (butof course not all) this speed of convergence also seems to be the right one.Moreover we conjecture that the asymptotical behavior of DVN (x) for low discrepancy se-quences follows the same speed for random sequences that is to say log(N)�=N . The fact thatlow discrepancy sequences can not help improving the algorithm seems to be linked with thisconjecture.
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