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Abstract

In this paper, we introduce the notion of volume-discrepancy (and of isotropic volume-
discrepancy) of a sequences of points and we establish some of their basic properties. This
notion is illustrated by an application to a reliability problem.
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Introduction

An important problem in reliability analysis is the computation of the failure probability :

p:P(f(Ul,---,Us)SA),

where f is a known function and A a given level. Often the function f can be assumed to be
increasing (or at least monotonous) in each of its coordinates, i.e. for each 1 <7 <, if u; < uz
then

Flut, ooty yus) < flug, ..o uby oo ug).

Clearly this monotonicity assumption implies that the function f is increasing for the partial
order of R?, that is to say, if x and y are two points of R® such that, for all¢, 1 <i <s,x; <y;
(we will denote this fact by x <y), then f(x) < f(y).

This monotonicity assumption can be used to improve the standard Monte-Carlo algorithm.
The basic idea is to keep track of the values of f at the points x that have already been drawn,
and to use this information to avoid the computation of f(y), if y is chosen such that y < x for a
x with f(x) < \. If the points are chosen uniformly in [0, 1]¢, this happens with probability equal
to the volume of the set of points which are less than one point already drawn (we will call this
volume the lower volume delimited by these points). One can easily prove that the lower volume
converges to P (f(u1,...,us) < A). This probability, in reliability problems, is close to 1, say of
order 0.95. So we can hope to compute f only for 5% of the points, at least asymptotically. This
saving may be large, especially if f is difficult to compute. In order to evaluate the expected gain
we will introduce the notion of volume discrepancy and of isotropic volume discrepancy. Using
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this notion, we can estimate the speed of convergence of the lower volume to the probability and
the savings of the algorithm.

These notions will enable us to understand why savings are not as large as expected especially
when the dimension is large. This fact is linked with the speed of convergence of the volume-
discrepancy to 0.

Our work is organized as follows. In section 1, we recall some notations and definitions,
then we establish results on the volume-discrepancy of dense sequences, and we give an estimate
of the isotropic volume-discrepancy using volume-discrepancy. In section 2, we recall results
concerning volume-discrepancy for sequences with low-discrepancy and we give an estimate on
volume differences of random sequences. Numerical results using random and Faure sequences
are presented in section 3. They show that these two families of sequence have almost the same
efficiency for the previously described algorithm and that it is clearly better than a standard
Monte Carlo algorithm when the dimension is not too large.

1 Definition and first properties of the volume discrepancy

1.1 Notations and definitions

Here we recall some notations and basic results. Let x = (z1,...,%5) be a point of the s-
dimensional closed unit cube I* = [0, 1]° and let :

B(X) :{(yla"'7ys) EISZ[O,l)S|yZ<$7,f01'1§2§8}

Figure 1: The lower volume of a set of points

If S is a point set (a point set is a finite sequence of points as in the terminology of [6]) of
I°, we will extend the definition of B by setting

Bs = |J B(x).

xeS
Now, we define the lower volume of a set D.

Definition 1.1 Let D is a Jordan-measurable subset of I°. The lower volume Vp(S) is :

Vo(8) = [ Lneup(x)dx.



If o = (xp)n>1 15 an I°-valued sequence, oy will denote the point set {x, |1 <n < N}. We will
call volume difference of o associated with D :

EVy(0,D) = (AMD) = Vp(on)),
where A denotes Lebesgue measure.

Remark 1.2 If D is monotonous (that is to say if x is in D then every y < x is also in D) then
this quantity is positive and represents the speed of convergence of the volume delimited by the
points of the sequence which are in D to the volume of the set D.

Definition 1.3 The Volume-Discrepancy of the first N terms of o, DVy (o) is :

DVn(o) = sup EVy(o,D),
DEP;

where Ps is the family of all subintervals of I°.
The star volume-discrepancy of the first N terms of o DV is :

DVy (o) = sup EVy(o,D)
DeP;

where P¥ is the family of all subintervals of I° of kind [];_1[0, bg[,0 < by < 1.

Remark 1.4 Clearly :
DVy (o) = sup (M(B(x)) = V) (on))
x€els

where I° = [0,1]° and for x = (z1,...,75) € I*, MB(x)) = [}, =i

Remark 1.5 When s = 1, the volume-discrepancy of a set of points (x1,...,%,) can be com-
puted as follows. Let (y1,...,¥yn) be the increasing ordering of (xy,...,x,). If we set yop =0
and yp4+1 = 1 then :
DVy = max yit1 —Yi
1=0,...,n
The following proposition can be proved using a slight variation of the proof of proposition 2.4
in [6].

Proposition 1.6 For all s > 1, DV} (o) < DVn(0) < 2°DV}(0).

1.2 Volume discrepancy as a density test

In this section, we will prove that the volume discrepancy can lead to a density criterium for a
sequence of points.

Theorem 1.7 Let 0 = (x,),>1 be a sequence of points of I°, then limy_,oo DV (0) =0, if and
only if o is a dense sequence in I1°.



Remark 1.8 Note that, if D}, is the usual star-discrepancy, we have :

lim Dj =0

N1—r>noo N(U)

if and only if ¢ is uniformly distributed in I* (see [6]). So the notion of the volume-discrepancy
is weaker than that of the discrepancy. Sequences having small discrepancies, (which are efficient
sequences for the quasi Monte Carlo methods, see [6] and [3]) might be expected to have small
volume-discrepancy.

Proof: of theorem 1.7. Let o be a sequence which is not dense. Clearly there exists a subinterval
of I such that no point of the sequence falls in this subinterval. One can easily deduce from this
fact that :

lim DVy(o) > 0.

N—oo

Now, it remains to prove that the density of o implies that the volume discrepancy goes to 0.
Le us first prove that for a given point x, if 0 = (x5)p>1 is a dense sequence in I°, we have :

lim EVy(o,B(x)) =0.

N—00

Clearly limy_,o0 EVi (0, B(x)) exists because EVy (o, B(x)) decreases with N. Assume that
there exists a point z = (21,...,2s) € I° such that :

lim EVy(o,B(z)) =a > 0.

N—o00

We can suppose that each z; > 0 for 1 <14 <'s, because if z; = 0 then EVy (0, B(z)) = 0 for all
N > 1. Now, let us denote by g the following function :

S

g9(z) = H 2 — H(Zi — ).
i=1

1=1

This function is clearly continuous and increasing, g(0) = 0, moreover if m = min;<;<s 2; then
g(m) =T1;_; z; > 0. Thus there exist a number y, y € (0,m) such that :

g(y) =b<a.

Now we will see that there is no point of the sequence o in the interval [];_,[z; — v, 2;) of measure
y® > 0. To prove this, let us suppose that there exists such a point. Thus

S]
IN

EVy(0,B(2)) = 1;[1z - /B dt

B(z)No n

IN

Hzi—/ dt = g(y) =b < a,
i=1 B(z—y)

where z — y is the point (z; —v,...,2s —y). This leads to a contradiction. [ |

Now, we will use a generalized version of Dini lemma.



Lemma 1.9 (Dini lemma) If (f,(x))n,>1 is a decreasing sequence of upper semi-continuous
functions on I® such that, for all x € I* :

lim fn(x) =0,

n—o0
then limy, o Supyc7s fn(x) = 0.

In order to use the previous lemma in our context we need to prove that x = Vp(x)(E) is lower
semi-continuous.

Lemma 1.10 If E = {x1,...,X,} is a finite set of points in I°, then the function x — f(x) =
VBx) (E) is lower semi-continuous on I°.

Proof : Clearly f(x) is increasing for the partial order on I°. For each point x; =
(k1,5 2h,s) € E,1 <k <n, we consider the s hyperplanes defined by
{y = (y17 s 7ys) | Yi = xk,i}'

At most ns hyperplanes cut I* in, at most, (n + 1)* subintervals of form:

s
H(ui,vi] ifo<u; <v; <1
i=1

(if u; = 0, we take [u;, v;] rather than (u;,v;]). Now, if P = []_,(u;,v;] is such an interval, and
ifx= (xi)lgigs eP:

fx) = f(ur, .. -5 us)). (1)

To prove that f is lower semi-continuous we will verify that for all x = (2;)1<i<s € I®, there
exists a neighborhood Vi C I° of x such that for all y € V4 :

fx) < f(y) (2)

Clearly, it suffices to prove (2) for x € 0P = P\[[;—;(ui,v;). Moreover, we will suppose that
u; >0 for all 1 <14 <'s, because if x = (2;)1<i<s and z;, = 0, for one iy then f(x) = 0.
Now, let x = (a;)1<i<s € OP. Obviously there exists € > 0 such that :

Vi(e) ={y=(y1,---,ys) | @i —e <y; <a;} CP.
Fory € Vi (e), f(x) = f(y), let us set
Va(e) ={y = (1, ys) | lyi —as] < e} N I".

If y € Vi(e)\Vx (€), we define y' = (v],...,9%) with y} = a; if y; > a; and y; = y; otherwise.
This point y’ is such that :

e ¥y €Vi(e),s0 fy) = f(x),
ey <y, s0 f(y) < fly).
Hence, we have f(x) < f(y). ||



1.3 Isotropic Volume-Discrepancy

We will now introduce the notion of isotropic volume-discrepancy of sequences which looks like
the usual isotropic discrepancy (cf. [4] et [5]).

Definition 1.11 The Isotropic Volume-Discrepancy of the first N points of a sequence o =
(Xp)n>1 is defined by :

DJy(0) = sup EVx(0,C),
CeCs

where Cg is the family of all convex sets included in I°.

Theorem 1.12 For all sequence o = (X,),>1 of elements of I*, we have

1
s

DVy(o) < DJn(0) < (4sVs +1)(DVi(0))5.

For the proof, we will use the following two lemmas.

Lemma 1.13 Let C be a conver open set and E be a finite subset of C. For e > 0, there ezists
a closed convex polytope K containing E and included in C satisfying

AC\K) < e.

Proof : First, note that for € > 0 there exists a compact set K; such that K1 C C, E C K;
and
)\(C\Kl) < €.

Since C is open, for all x € K there exists ex > 0 such that Vx C C, with Vi = [[{_;(z; —
€x, i + €x). The family of open sets {Vi | x € K;} is an open covering of the compact set K,
so there exists a finite subset of points x; € K1,1 < j < m such that ug;lvxj O K.

For 1 < j < m, let E; be the set of vertices of V;, and then define K = conv(UL,Vx;),
where conv denotes convex hull. We have :

K = conv(UjL, Ej).

Hence K is a closed convex polytope included in C, containing K; D E and such that A(C\K) <
€. [ |

Lemma 1.14 [If F; is the family of all closed convex polytopes of I° then

DJy(o) = sup EVy(o, P).
PeFs

Proof : For all C € C,, we have

Aint(C)) = M(C) and Vipg(oy(on) < Velon),



where int(C') denotes the interior of C'. Hence

EVe(on)

AC) = Vel(on)
< At(C)) = Vigg(ey(on) = EVigg ey (o).

So :

DJy(o) = sup EVy(0o,C)
CeLls

where L, denotes the family of the open convex sets in I°.
Using the previous lemma, we can see that for all O € L, and for all € > 0, there exists a
P, € F, included in O such that
AO) < A(P) +¢€

and
Card{x, € ONoy} = Card{x, € P-Non}.

Thus we have :

EVO(O'N) = )\(O) — Vo(O'N)
< A(PE) — VPE (UN) + €
= EVp(on)+e

Hence DJy(0) = supper, EVn (o, P). ||

Proof: of Theorem 1.12. We use the same method as in [4] (p. 94-97) to estimate the classical
isotropic discrepancy.

By the above lemma, it suffices to estimate EVy(o,P) for a P € Fs. To simplify this
estimation we will construct a subset of P, say P, easier to handle than P. Since P, C P :

EVp(on) = A(P)—V(on)
< AP = Vp(on) + A(P) = AM(P1)
= EVp(on)+ AP) = A(P1). (3)

The set P; is constructed as follows. For a positive integer r, for a lattice point (hq, ha, ..., hs)
with 0 < h; < r and for all 1 < i < s we denote by Jf(l:)hg...hg the interval {(z1,...,zs) € R* | % <
o< it ] << s}. The set L") of all these intervals is a partition of I*. Let P, by the union

r
of all the intervals of £(") included in P. If we fix s — 1 integers hy, ..., hs 1 satisfying the above
(r)

restriction, then the integers h,0 < h < r, with Jh:...hs,lh C P are consecutive because P is a

convex set. Hence the union of these intervals Jf(ﬁ)...hs,lh is again an interval. It follows that Py

can be written as the union of at most 7°~! pairwise disjoint intervals. Hence :
EVp, (on) <7 1DVy(0). (4)

By [4] p. 96-97, we have

AP) - AP < 22,




now, using (4) and (3)

2
EVp(on) < " 1DVy (o) + 37}/5,

and since the upper bound is independent of P, we have :

2
DJ(oy) < r* 'DVy(o) + 57}/5,

for all positive integers r. If we choose r = [(DVN(U))_%] we obtain :

1
s

DJ(oy) < (4sVs + 1)(DVy(0))5.

2 Some estimations of volume discrepancies

In this section we give some properties of volume discrepancies. Most of then are already known,
some are new. We begin with the case of deterministic sequences.

2.1 Deterministic sequences

The case s =1 In this case (see [10]) the notion of discrepancy is closely related to the notion
of dispersion and of maximal spacing. As quoted in remark 1.5, the volume-discrepancy of a
sequence of points o = {x,,n > 1} is given by :

DVy (o) = max {XT(1),XT(2) = Xp(1)s- - Xp(N) — Xr(vo1), L — XT(N)} ,

if 7 is a permutation of {1,2,..., N} such that :

With the same notation the dispersion dy(z) is given by :

1 1
dy(0o) = max {XT@), 3 (XT(2) - XT(1)) g (XT(N) - XT(N_1)> 1— XT(N)} :

So dy(0) < DVy(o) < 2dy(o) and the asymptotic behavior of dy (o) and DVy (o), as N goes
to infinity, are the same.
Moreover it can be shown that :

l)‘f* >
and that

limsup NDV5 > .
msup NDVy () = 155




It is easy to construct a sequence of points with “minimal” volume discrepancy (that is to say
which goes to zero at speed at least K/N, with K = 1/log(2)) . For instance, if :

log(2n — 3
xlzlandxn:{w}, for n > 2,
log 2
one can prove that :
1
limsup NDVy (o) = .
N%OOP ~ (o) log 2

Note that this sequence is dense but not uniformly distributed in [0, 1].
The volume discrepancy of a one dimensional Van Der Corput sequence can also be computed
and is “small”. The following result is proved in [10].

Theorem 2.1 Let ¢y be the Van Der Corput sequences in base b, then

lim NDVy3(¢p) = (bZZ)Q if b even,
Novoo N @E)OE8) gy g

The case s > 1 In dimension greater than one, the problem is harder and only very few results
are known. In [10], the following result concerning two dimensional sequences is proved :

Theorem 2.2 If R is a (0,m,2)-net in base b with m > 1 be an integer, then

(3b —2)m

DV*(R) < “——

This implies that, if o is a (0,2)-sequence in base b, then for all N > 1,

b(3b — 2)log, N
DVy (sigma) < ( ]\;Ogb .

Moreover, for all m > 1, there exists a (0,m,2)-net Q in base b such that

S (b 1)(1/2(; 1/bym +1

DVH(Q)

2.2 The case random sequences

Here, 0 = (x,,),>1 will be a sequence of independent random variables uniformly distributed on
Is.

Note that, if s = 1, the result of Deheuvels |1] on maximal spacings for multivariate order
statistics implies that DVy (o) = O (%) almost surely.

When the dimension is greater than one, we conjecture that the asymptotic behavior of the
volume discrepancy of a random sequence is almost surely less than K log®(N)/N, where a > 0
is some positive number. But, we can only prove the following result on volume differences.

Theorem 2.3 For all x € I*, for all a > s, for almost all w, there exists a constant C(w) such
that :
log® (V)

EVy(o,B(x)) < C(w) N



To prove this result we need the following lemma.

Lemma 2.4 For all N > 1 and for every x = (x1,...,75) € I*, we have

B(EVy (0, B(x))) = O (%) .

Proof : If D is a set of I°, let us set :

mia={ {0 L

Clearly, using independence :

E(\(D) — Vp(on)) E/1UN B, dx—/ HE1BC

This leads to :
E(EVy/(0,D)) = / 1-Pw]|x<xi(w) e D)Vdx.
D
Now, choose D = B(x) where x = (z1,...,75) € I with z; > 0 for all 1 <i < s. We have
E(EVy(0,D)) = /B( )[1 —P(w |y <xi(w) € B(x)Vdy
S
= /B( )(1 — [ (@i — ye)Ndys - - - dys

1=1

S
= /B( (I—Hzi)Ndzl---dzs where z; = z; — y;
X .

S
/ (1— Hzi)Ndzl---dzs,
Ie i=1
To conclude, it remains to prove that

2 log N)5~1
1— xiNdx---dx5<(7
Jult = Mo < 25

IN

We prove it by induction on s. Clearly for s = 1, we have

1
1—z)Vdo) = —.
/0 ( wl) d$1 N+1

Moreover if (5) is true for s — 1 :

s 1 1 1 1—(1—$1---$,1)N+1
1—J]z)Vdz - - dx :—/ dac/ dxs— s ,
‘/IS( g Z) 1 s N +1 0 1 0 s—1

"'El ...x571

10



and, by induction :

s 1 1 1 N
1= Tl z)Ndey - -dzy, = —/ dz / drg_ 1 -z xy 1)k
/zs( 1;[1 )" N+1Jo "o 1,2)( ' )

1 N (log k)*2
< 1
S LY

(log N)*=1
APy

<

This completes the proof of the lemma. [ |

Proof : Now we prove proposition 2.3 using Borel Cantelli lemma. Using Markov inequality
and the previous lemma, we have for e > 0

p (EVN(U, B(x)) > logm(N)) !

< .
N ~ log!™¢(N)
Now let us set ny = 2¥. Clearly

1 s+e€
) o,
ng

> P (Evnk (0, B(x)) =

k>1
So, for almost all w there exists ky(w) such that, if & > ko(w) :

s+e(

log®™¢(ng)

EV,, (0,B(x)) <

ng
This implies, that for almost every w there exists a constant C'(w) such that, for all £ > 1 :

s+e(

log®™“(ng)

EV,,(0,B(x)) < C(w)

ng

Now, for each N, let us denote by k(NN) the unique integer such that nyny < N < ngn)y41-
Clearly :

NEVy(0,Bx)) _ mn e EVianieseo) _ o0 EVen (@ B69) 0
log*t¢(N) — log™*(ny () log™*(ng () N

This completes the proof. [ |

3 Description of the algorithm and examples

3.1 The algorithm

In this section, we will describe more precisely the algorithm of the introduction, then give
numerical results illustrating it and see why the isotropic volume discrepancy gives a useful a
priori estimate for the speed of the algorithm.

11



We are interested in the computation of a failure probability in a reliability problem. A
reliability problem can be described within the following scheme. Let f be a function from I°
to R and let x = (z',...,2°) be a random vector following a uniform law on I°. Of course,
practical problems are not strictly of this type (for instance, the law of the random vector x can
be arbitrary), but standard result of simulation prove that they can be reduced to this form.
One of the main problems of reliability analysis is to compute, given a confidence level A, the
probability :

p=P(f(x) <A).

The probability is typically near to 1 (say 0.9, 0.95, 0.99).
In the standard Monte Carlo procedure we simulate a sequence of independent, uniformly
distributed on %, vectors (x1,xX2,...,Xp,...) and we approximate p by py with :

1
v =5 (L) <23+ + 1 Gen) < )

Note that, to compute py we need to compute f at N different points. Often the complexity of
the computation of f is so large that the previous algorithm is almost unuseful : it is vital to
reduce the number of computations of f. We will now see how one can achieve this task if we
assume that the function f is increasing, or at least monotonous, for the partial order of RY. In
what follows, for sake of simplicity, we will suppose that f is increasing.

Under this assumption, suppose that we have already drawn N points Sy = {x1,...,Xn}.
Clearly, the set D = {x € I*, f(x) < A} contains, in the terminology of paragraph 1

Bsynp ={x€I°,3 <N, f(x;) < X and x < x;}.

The assumption on f shows that the set D is monotonous. So EVy(x, D) goes to zero (that is to
say the volume of Bg,np goes to the volume of D). So, if the next point xy4; fall in Bg,np we
need not compute f on this point. This seems to lead to very large savings because it happens
with probability Vol (Bgynp) = Vol (D), and this number is near to 1.

Nevertheless, as we will see on an example, the convergence of EVy(x, D) to 0 is very slow,
especially when the dimension s becomes large.

3.2 The example

In this example we compute
p=Pgl+ - +gi <N,

where (g1, ..., gn) are s independent standard Gaussian random variables (E(g;) = 0,E(g?) = 1).
Of course, the computation of p can be done directly using a x?-table.
In order to put this problem on the previous form, let F' be the distribution function of a

2
standard random variable x — P(g; < x), let F~! be the inverse of F and g(u) = F~! (“T‘H) .

An easy computation shows that, if U is a uniformly distributed random variable on [0, 1], the
distribution of g(U) is the same as the distribution of g7. Hence

p=P(g(U1) +---+9(Us) <N,

if (Uy,...,Us) are s independent random variables uniformly distributed on [0, 1]. Of course, the
function

f(ula'--auS) :g(ul) +"'+g(us)a

12



is increasing for the partial order of I°.

In the example A has been chosen in order to have p = 0.95. We simulate IV points using the
classical Monte Carlo method and we denote by N, the number of time the algorithm actually
compute the function f. We are particularly interested in the fraction % which qualify the
efficiency of the method. Asymptotically, % goes to 1 — p as N goes to infinity, so in good
situation we can expect that this fraction would be near to 1/20. We will see in numerical

example that saving for realistic value of N (10000 to 1000000) are far lower than this value.

3.3 Numerical results

First we have tested the behavior of the algorithm with standard random sequences.

20 T T T T

speedup

0 20000 40000 60000 80000 100000
Random sequence, Number of drawings

Figure 2: Random sequences

One can note on figure 2 that as the dimension s increase the gain of the algorithm decrease
to zero. With N = 10000, our procedure is very useful if s < 6 but the improvement is very
small if s > 10.

We have also replace random sequences by a low discrepancy sequence : the Faure sequence.
In this case the algorithm exhibit the same kind of behavior (see figure 3).

13



We first thought that, at least in low dimension, the asymptotic behavior of %

20

{feNeoNoN
[Tl

sl

PRRREI
B w

NI =

\
feNeNoNoNoN-N

b

10

speedup

40000 60000
Faure sequence, Number of drawings

Figure 3: Faure sequences

would be

better for low discrepancy sequences. This is not true, at least in the case of Faure sequences as

shown on figure 4.

speedup

speedup

s
2
g
2
10 1
8 1
6 1
4 . . N .
o 20000 40000 60000 80000 100000 o 20000 40000 60000 80000 100000
Dimension 2, Number of drawings Dimension 5, Number of drawings
19 T 112 T
random —
s
2
g
2
1 . . 098 .
o 20000 40000 60000 80000 100000 o 20000 40000 60000 80000 100000
Dimension 10, Number of drawings Dimension 15, Number of drawings

Figure 4: Random and Faure sequence, s = 2,5,10 and 15
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3.4 Volume discrepancy and the efficiency of the algorithm : remarks et
conjectures

Numerical experiments lead us to notice two important facts
e the improvement of the algorithm is affected by the dimension s of the problem.
e low discrepancy sequences do not seem to improve the efficiency of the algorithm.

One way to “explain” these points is to note that, when f is a convex function the set D
is also convex, so EVx(x, D) is less than the isotropic volume discrepancy DJy(x). Moreover,
using theorem 1.12 we know that :

1
s

DJy(x) < KDVy(x)s.

Now suppose that , for a random sequence, the asymptotic behavior of DVy(x) is log®(N)/N
(this fact can be conjectured but has not yet been proved). This leads to a possible upper bound
for the asymptotical behavior of DJy(x) of type log(N)ﬂ/Ni. We think that this upper bound
gives the right behavior of DJy (x) as N goes to infinity. Moreover, for “most” of the set D (but
of course not all) this speed of convergence also seems to be the right one.

Moreover we conjecture that the asymptotical behavior of DVy(x) for low discrepancy se-
quences follows the same speed for random sequences that is to say log(N)®/N. The fact that
low discrepancy sequences can not help improving the algorithm seems to be linked with this
conjecture.

15
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