High temperature regime for a multidimensional
Sherrington - Kirkpatrick model of spin glass*
(running title: multidimensional SK model)

Alain TOUBOL'

Abstract

Comets and Neveu have initiated in [5] a method to prove convergence of the
partition function of disordred systems to a log-normal random variable in the high
temperature regime by means of stochastic calculus. We generalize their approach
to a multidimensional Sherrington-Kirkpatrick model with an application to the
Heisenberg model of uniform spins on a sphere of R?, see [9]. The main tool that
we use is a truncation of the partition function outside a small neighbourhood of
the typical energy path.

Introduction

The Sherrington and Kirkpatrick model was introduced in [13] in 1975 as
a simplified mean-field model of spin glass. It has been intensively stud-
ied by physicists ever since, as one can see from the broad survey [10] of
physical results by Mézard, Parisi and Virasoro. However, rigorous mathe-
matical results about it are rather scarce. In 1987, Aizemann, Lebowitz and
Ruelle proved in [1] the convergence in law of the partition function of the
model towards a log-normal random variable, but only for Ising spins, zero
magnetic field and high temperature. In 1987, Frohlich and Zegarlinski gave
in [7| complementary results for n-dimensional spins on the sphere, obtain-
ing bounds on the annealed free energy in arbitrary magnetic field but high
temperature. Among the mathematically rigorous results, let us mention
the papers by Ben Arous and Guionnet 3] who describe the thermodynamic
limit of the Gibbs measure for arbitrary one dimensional spins by means of a
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stochastic dynamical system, and the recent paper of Talagrand [15] where
one can find very accurate results about the zero and even non-zero magnetic
field case and the techniques of which could be probably extended to more
general situations. However, Talagrand is not interested in the convergence
in distribution of the partition function of the model.

In 1995, Comets and Neveu gave in [5| an entirely different proof of the
result of Aizenman, Lebowitz and Ruelle, by using stochastic calculus and
martingales. Studying real continuous spins is motivated in particular by [3]
and studying vector spins is important for physicists as explained by Gabay
and Toulouse in [8] and [9] , because “real” spins always are multidimensional.
Thus our goal in this work is to prove some results of convergence in law
for the partition function of arbitrary multidimensional symmetric spins, in
the high temperature regime with zero magnetic field. We will apply our
results to the Heisenberg model of uniformly distributed spins on the sphere
of R?, see [9]. It seems that the original method of Aizenmann, Lebowitz
and Ruelle wouldn’t work in such general a situation. This shows the power
of the martingale method. However, the counterpart of the method is the
difficulty to reach what may be expected as the critical temperature.

Let us be now describe more precisely the problem that we are trying
to work out. We consider N independent and identically distributed R%-
valued random variables o(i), we denote by p their common distribution.
Let (J;,j)o<i<;j a family of independent N (0, 1) random variable. We suppose
that the energy of a configuration o = (0(4))1<i<n can be written as follow:

(1) = L i i(o(i)|o(g
H(0) = \/NISZ%:SNJW( (D)o (7))

In order to simplify the expressions, we add to this energy the following small
term:

N
1 ,
1Y (0) = = >~ Sl )l
1=1

Denote by P, the measure ®2 ,p(do(i)), and by E, the expectation w.r.t.
P,. The partition function of the system at the inverse temperature ( is
then given by:

Zn(B) = By exp SHY (0) + HY (0)] (1)

Following [5], we replace 8.J; ; by B;;(3%), where (B j)o<i<j is a family of



independent standard Brownian motions, and we set

N
g, o\ g 2
Hy(o;1) \/_ > B (@) ( 2:: e @

1<i<j<N

The partition function that we are working with is Zn (t) = E, exp Hy (03 t),
which is related to Zy(8) by the formula Zy(8) = Zy(8?) in distribution.
In the case of Ising spins, the behaviour of Zy(¢) is studied by Comets and
Neveu by means of the martingale (E, exp(Hy(0;t)—Nt/4))i<1. In the situ-
ation of more general spins, the behaviour of (E, exp(Hy (0;t)—(Hn(0))¢/2)
and of (E, exp Hy(o;t)) are extremely different because (Hy(o)); depends
on o.

Hence we have had to introduce another sequence of martingales. Fix
t > 0. Denote by .7-'5(N) the natural filtration of the Brownian motions up to
s, for s <'t. The right martingale to work with here is the most natural one,
that is (E(Zx ()| F™)) <.

In the first part, we shall state our assumptions and our main results.
We then evaluate the scaling factor for Zy, which is closely related to the
thermodynamical limit of the free energy. We use this result to introduce two
different types of constraints. On the one hand we keep El]\il o(i)®o(i)/N
is a neighbourhood of its typical value (see [16]) and on the other hand we
try to keep a control on the whole energy path Hy(o; ) . Let us denote by
C(o, B) this set of constraints that depends on the disorder B and on the
configuration o = (o(1),... ,0(N). The sequence of martingales that we
study is for s < ¢:

Y (5) = E (o exp(Hy (054)) Le(o,) | FI)) /B (B exp(Hi (03 6)) oo, )

In order to prove the convergence of this sequence of auxiliary martingales
on [0, t] towards a log normal process, we need a strong control on its braket
which we get by means of Malliavin calculus. Then using the terminal value
of the martingale that is approximately Zy(t), we shall have proved the
convergence in law of Zy(t) toward a log-normal random variable. Note
that we have not been able to consider the process (Zn(t)):, but the random
variable Zy(t) for fixed ¢, which is differs from [5].

In the last section, we prove some convergence results for the quenched
law of the spins showing that the Gibbs measure depends in general on ¢,
which is not the case when dealing with Ising spins.

Acknowledgement: I would like to thank Professor Francis Comets for
having introduced me to this topic and for helping me in this work.



1 Preliminary part and statement of the results

1.1 Notations

Let us first introduce a few notations before stating our main assumptions. If
z,y € R we write (z|y) = 2?21 2;y; for their canonical Euclidean product,
and ||z|| for the associated norm. The vector space of real d x d matrices is
denoted by My, and the subspace of symmetric matrices by Sg. If 2,y € RY,
we set  ® y = (2;5)1<i,j<a € Mgq. Scalar product and norm on M, are
defined accordingly, identifying M, with RY

We assume that we are given a symmetric probability measure p on RY
that is not supported by a strict affine subspace of R?, and such that for
every a > 0:

[ expalol! pldo) < 0 (2)
Rd

If 41 is a probability measure on RY, we define its Cramer transform A,
by:
RE - R

A z  — sup{(Alz) —In [z exp(A|o) pu(do) : A € R?}

i

1.2 Assumptions and results

We are now ready to state our assumptions. Let A be the Cramer transform
of the law of o ® o under p(do) on Sy, A5 of the law of (0 ® 0,7 ®@ 7,0 @ T)
under p(do) @ p(dT) on Sg X Sg x M.

(H1) The variational problem
t *
sup{ZHacH2 — Al (z) : x € Sq}

admits a unique solution which we denote by v = v(t). Let fi; be the
measure on RY with density:

djiy t

o X exp §(v|a ® o)
Let T'(¢) stand for the covariance matrix of o ® o under ji;. Assume
that the matrix I — LI'(¢) is positive definite.

Let us comment on this assumption. First of all, it is clear that both
parts of it are fulfilled when ¢ is small enough. Now, thanks to (2) and
lemma 4 in [4], one can easily see that the supremum is reached. Thus
we assume here uniqueness and non-degeneracy.



(H2) Let vy,...,vq be the eigenvalues of v € §;. Assume that:

L. tvjv; <1, forevery i,7 =1...,d
4
2. For every s <t, z € Mg — A(v,v,2) + m achieves

its minimum uniquely at z = 0.
Again, the assumption is fulfilled when ¢ is small enough.

Assume that ¢ > 0 fulfills assumptions H1 and H2. We shall not repeat
this every time. Our main result is the following:

Theorem 1.1 Set y(t) = L{|v(t)||> — Aj(v(t)) and

d
#1) = —5 > (1 — it (1)

ij=1

Let € be a N'(0,¢(t)) random variable. Then e~ N7 /det(I — LT'())Zn ()

converges in law to the log-normal random variable exp(§ — ¢(t)/2).
Let G% be the Gibbs measure, that is the measure on (R?)Y given by:

_exp Hy(o31)

Gl (do(1),... ,do(N)) Zn(1)

®L, p(do(i)

Let Ly = % El]\il d4(;) be the empirical measure of the configuration. Then
we have:

Theorem 1.2 Under the Gibbs measure Gf\,, the empirical measure Ly con-
verges P—almost surely weakly in probability to fiy, in the sense that P— al-
most surely, we have for any continuous and bounded function g on R¢ and
for any 6 > 0:

Jim GNALN,g) — (fu, 9)| = 0} =0
—00

Our last result is about some sort of quenched "propagation of chaos’.Namely,
we have:

Theorem 1.3 Let k be an arbitrary integer. For any continuous and bounded
function g on (R4, the following convergence in probability holds:

P— lim GY[g(o1,... ,00)] = (3", 9)

N—0

At this point we should emphasize that in general, the Gibbs measure G,
explicitly depends on ¢ which is not the case for Ising spins (see [5]).



2 Asymptotical evaluation of EZy(¢) and the tra-
jectorial localization

In this section, we assume that ¢ > 0 fulfills assumption H1.

Let us recall that we are given a family (B; ;j)i<; of independent standard
Brownian motions. The symbol E denotes the expectation w.r.t the Brow-
nian motions, that is w.r.t. the disorder. We are interested in the partition
function, that is:

N

Zn(t) = Bqexp | 2 30 Bu®o(let) + = 3 Bl

1<i<j<N i=1

2.1 An equivalent of EZy ()

The first step of the method is an evaluation of EZy (¢) up to a factor (1 +
0(1)), which provides the scaling factor for Zy(¢t). We first compute the
following expression of EZy (t):

EZy () = Byexp— 4N Z lo(4) ® o(5))
,yl 1 ) 2
— Byexp v 2_:
We set N
o = ;U(i) ® 7(i)

We now give a logarithmic approximation of EZy (¢) that will enable us to
localize the problem. In order to do so, we use Varadhan’s theorem, in the
way stated in [6] theorem 2.1.10. Thanks to the convexity of x — ||z|?, we
have for any N > 1:

1 & t &
FOMULLD Zgj ) @ oli)|? = 4Zuo ()"

As the o(i) are independent, and thanks to (2), the assumption of theorem
2.1.10 in |6] is easily checked. Thus,

Nt

1 t *
A}gnoo N InEZy (t) = sup{1||ac||2 —Aj(z) :x € Sy} = (1)



Let us notice that even if the law of o0 ® o is supported by some strict
affine subspace of Sy, the matrix v is strictly positive. Indeed, Bolthausen
shows in [4], eq.(1.8), that v = ji;(0c ® o). Hence, for any a € R¢ \ {0},
a’va = fi;({ao)?) > 0 because of the hypothesis on the support of p. We
also deduce from the result v = ji;(0 ® o) and from Azencott [2]|, prop.1.9.7,
that , if we only pay attention to the vector space spanned by the convex
hull of the support of the law of o ® o under p on Sy, then v € Dom(A})°,
and thus that Aj is of class C*° at v. Hence we may restrict ourselves to the
case of a non-degenerate law for 0 ® o. Then, according to Bolthausen [4],

we have:
exp Nv(t)
det(I — LD(¢))

EZy (1) = (1+0(1)) (3)

2.2 A trajectorial approach

In order to stay as near the problem as possible and to formulate weak
assumptions on p, we reformulate the approximation result (3) using the
whole trajectory of Hy (o).

More precisely, let W be a fresh independent (that is independent of
everything introduced up to now) one-dimensional Brownian motion. The
following identity in law clearly holds on Cy([0,¢], R) under P ® P,:

Hy (o) gLHEH W.
N2

Hence we can write:

N oo W,
EZ (1) =E® Eyexp — | 27| %
We denote by I} the rate function for Schilder’s theorem on [0,#] in R?. We
may again use Varadhan’s theorem, and get:

1
V2

Maximizing in w with z being fixed, we get w(®(s) = %s, 0 <s<t and

1
A}im N InEZy (t) = sup{—=||z||w(t)—A} (z)—I}(w) : © € Sg,w € Co([0,t],R)}
— 00

replacing this value into the variational problem, we are lead to solve the
problem of H1. Hence we deduce the uniqueness of the solution, namely

x =v and w(s) = fo(s) = %s, 0 < s <t. Denote by f the function
2
fo=TEs 0<s< ()



Thanks to Varadhan’s theorem, the dominating part of EZy (t) is %7 ~ v
and % ~ fo, which may also be written %7 ~ v and % ~ f. Thus
f appears as the typical value of the energy. This means that if we set for
every €,0 > 0

Oy
2N (1) = Boexp Hn (0. )2y oLy, _ [y

then :

Zy(t) — Z3(t)
EZy (t)

=0 (5)

3 An interpolating martingale

From now on, the parameter ¢ is assumed to fulfill H1 and H2.

3.1 Definition of YV’

Following Comets and Neveu, we are to define a sequence of interpolating
martingales converging in distribution to a log-normal process. For any s > 0
and any function g € Co([0, s, R), we set ||g[ljo,] = sup{|g(u)| : 0 <u < s}.
Let €,0 > 0 be fixed real numbers. For s < t we denote by Bs(g,e) the

e—ball of center g in Cy([0, s]).Let (FS(N))SSt be the natural filtration of the
Brownian motions, that is

FN = o(B;j(u),1<i<j<Nu<s)

We introduce a few other notations:
N .02
en(o;s) = exp [HN(U§ s) — TS H%H ]

We intend to truncate ey (o;s) outside a neighbourhood of the typical value
of Hy (o), that is outside a ball of center f —see eq. (4)—. Therefore, we set:

en(0;s) = en(035)1p,(s.) (H]}r\ga)>

(6)

Clearly ey (o3;-) is an exponential (FS(N))Sgt—martingale, whereas €5 (07 -)
is a supermartingale. We are also going to truncate the probability measure



by using instead of P, a modified probability measure, namely P, ,:

7P, [ |5 ] Y|z —ol|<o

Obviously we have:

Zy(t) = EL®en(03t)

We now define for s < ¢ the interpolating martingale:

H
Y]f,"s(s) =K Ef;‘seN(U; t)15,(f,e) ( N(o ) ‘.7-" ] =K [Ef;‘séfv(a; t) ‘TS(N)]

We also set ]EYAE,"S = ]E[Y]\E,"s(s)]. It clearly follows from (5) that Y]f,’d =
140(1). The result that we are going to prove in this section is the following:

Proposition 3.1 Under H1, H2, for every sufficiently small €,6 and for
every s < t,

lim E[Y ' (s)?] =
N Vi jen(@ = s0i(t)o; (1)

=: exp ¢y(s)

Proof: Let W be a fresh independent one dimensional Brownian motion.
2

We set éy(o;8) = exp <|]|3;—|W ) Thanks to the Markov

property, we have P-almost surely:

H
m?e)sz%%ann&ma( vl >L7 ]

Nwwﬂmme(ﬂﬁw>

0.0]
N

)
=E e

(7)

quadE (éN(o;t — 5); ]\Hf‘z;%ﬁ/ HN](\‘;’; s) _ f(s+-) o < 6) ]
< EY [ei(o39)] =t An(e, 8 9) (8)

Similarly, on {Hy(0)/N € Bs(f,e/2)} C {Hn(0)/N € Bs(f,e)}, since f is

linear, we have:
<e
[0,t—s]

{‘ ||oa||

lo-oll 5 Hn(o3s8) oo
[O,t ] <8/2} {H N fle+)




Whence we deduce that:

<eg
[0,t—s]

Yy’ (s)

~ . . - Hpn(o;s)

> EY 65/20;31[5 é U;t—s;‘“aUHW M2 f(s+-

— Ho N ( ) N( ) N\/ﬁ N f( )

> BY |62k en(ost - | N2 - py)| < S

N NV2N 015 2

=: By(e/2,6;s)

The proof of proposition 3.1 will the a consequence of the following results:
F[Ay (£, 5 )] = exp du(s) (1 + (1) (9)
E[Aw (e,5:5) — Bn(e/2,6;9)] = o(1) (10)

3.2 Proof of (9)

Let, us rewrite EAy (e, 6; 5)? using two independent “replicas” of the system:

EAN (e,0;5)* = E® B, [ (03 )2y (75 5)] (11)

T

where PY% = P4’ @ PY°. We notice that (Hy(o;-)/N, Hy(7;-)/N)) is a
two-dimensional Brownian motion with variance K (%7, R7, % )/N where
K is defined by:

SgXSgx Mg — S
K oy = ;( [ )
T 2\ =Pyl
Hence, by introducing a fresh independent two dimensional Brownian motion
W, we get the following identity in law on Cy([0,%], R?) under P ® Pf;:i:
0.0 T.T 0Ty W
N'N'N' UN
The equivalent required in (11) is obviously related to the following varia-
tional problem (T means transpose):

sup {2 (ol + 1112) + (K (2,221, 1) ()

- A;(xayaz) - IS(QD) - 27(t) :
NS Sdaz € Mda‘p € CO([OaS]aRQ)a

lz —oll < &, lly = oll < e 1K (@,y,2)"*0 = (f, /)"0, < 5} (12)

(Hy(o5-)/N, Hy (75)/N)) £ K(

10



Lemma 3.2 Under H2, for every sufficiently small e, §, the variational prob-
lem (12) admits (v,v,0, fo, fo) as unique solution. Furthermore, the maxi-
mum is then non-degenerate in the sense of [4].

We prove this lemma later on, after remark 3.2. We now complete the
proof of (9) by means of Laplace method. Let us write the following Taylor
expansion in a neighbourhood of (v, v,0, fo, fo):

L 0l 0l) + (5 e 0,0, 2020, 1P 1() + (o, o))
2 S
= 2ol + i) + T L a4 ) 4 212

; v\T S __5 vlz)? vly)2
+||v||\/§(< ) )+< [)2(5)) 4||v||2(< |z)” + (v]y)”)

Let X be the covariance matrix of (0 ® 0, 7® 7,0 @ 7) under fi;(do) ® fi(dr)
on Sy x Sg X My, and (£,71,¢) be a N(0,X) random vector. Then , according
to Bolthausen’s results, the following convergence holds:

Eexp 1([I€1% + lInl*) + 31I<11%)
[Eexp ([1€]1*)]?

One easily checks that the matrix ¥ may be written as follows:

hm ]E[AN(a §5;8))% =

It 0 0
S=| 0 T@ o
0 0 V

The operator V' may be expressed on My by VM = vMwv. A simple cal-
culation shows that it may be diagonalized, with v;(t)v;(t), 1 <4,j < d as
eigenvalues.

Remark 3.1 By making use of Varadhan’s theorem, one can again localize
E[Ay (g,0;5)]?. This means that if we set:

Ay e,05) = BY, [ev(03.5)en (75 )1z 5

we can prove as in (5) that:

E|[Ax (e, 0 8)]2 — An(e, ; s)‘ = o (E[Ay (¢, 8;9)]2) (13)

11



Remark 3.2 In a similar way, we have:

E[An (g,6;5) — An(e/2,6; s:)]2 = o(E[AN (e, ; 5))2)

Proof of Proposition 3.2: We define a function ¥ by:
Sg X Sg x My x Co([o, S],R2) —RU {—OO}
t—s
v zyze e (el + llyll*) + (K (z,,2)'/*(1,1)T(s))

—A3(z,y,2) — 13(p) — 29(1)

Note that (v, v,0, fo, fo) = 0. We first prove that (v,v,0, fo, fo) is a non
degenerate local maximum for the function ¥, and then we show that H2
is a necessary and sufficient condition for the lemma to hold. We of course
restrict ourselves to ¢ € H'. The Cramer transform A} is of class C* in
a neighbourhood of (v,v,0). We may write its Taylor expansion up to the
second order as follows:

AS(0+ 2,0+ 9,2) = A3(0,,0) + <({ols) + {vly) + 3 D*AT(0) )

1, ., 1
+ §D2A1(v)[y2] +35V 22+ ol + [lyl” + 11201%)

(14)

with V' the covariance of c® 7 on Mg under fi;(do) ® fiz(d7). In a neighbour-
hood of (v,v,0), the function K'/2 is also of class C® as it is easily checked
by means of the implicit functions theorem. One checks that:

Kl/Q(v+x,v+y,z):i<””” 0 >+ ! <<v|‘r> 0 )

V2l 0 ol ) " jeiva L0 (uly)
2
L[ lel? - 121
4 o o | ol + Nyl + l12112)
Hﬂ¢§< 102l -

Summing up both expansions, we have:

\Ij(v+x7v+yazaf0+<p17f0+$02) —\If(’l),’l),o,fo,fo)

= (DA — L) — (DAL @)P — LllwlP) — 5 (V[ = sl=l)
1 /%], v z |2 1 /. v y 2
—5/0 ‘Pl(u)m—ﬁ —5/0 ‘P2(U)m—ﬁ du

+o(llz(* + lyll* + [l21*)

12



This clearly proves that (v,v,0, fo, fo) is a non degenerate local maximum
for .

Let us now take ¢ = § = 0 in (12) and evaluate the following quantity
depending on z:

sup {52 ol + 4L DT, £ (6)T) = A3(0,0,2) — () = 29(0)

o € Col[0, ], B2), | K (v,0,2)' 0 = (f, /) lljo5 —0} (15)

Let us study the constraint ion ¢ = (p1,92): If ||2z]| # ||v|, the matrix
K (v,v,2)"/? is invertible and the only possibility is p; = o = V2 //||v|? + ||z]|2.
Hence we have:

sllv]*
I3(p) =
2(Jlvll* + 1lz11*)
If now ||z|| = ||v||, then for every ¢ satisfying the constraint there exists

a continuous function w such that o1 = V2f/y/||[v|]2 + ||z]|2 + w, @2 =
V2f//|Iv]|2 + ||z — w. Denote this ¢ by ¢®. One easily checks that
I5(¢") is minimum for w = 0. Hence in any case,

sol*
B = oo + 1o
It is now clear that H2 implies that when ¢ = § = 0, (v,v,0, fo, fo) is the
maximum of ¥. Since this point is a strict local maximum for ¥, and V¥ is an
upper semi-continuous function with compact level sets, for sufficiently small
g,0 > 0, the point (v,v,0, fo, fo) remains the only maximum. The proof has

also shown the necessity of H2 for the lemma to hold. This completes the
proof of lemma 3.2.

3.3 Proof of (10)

Thanks to remark 3.2 , we are lead to prove that for sufficiently small €,§ > 0
we have :

E[Ay (g,6;5) — By(g,0;5)]* = o(E[Ay (g, 0; 5))?)

Write this expectation as follows, using two fresh independent one dimen-
sional Brownian motions W and W:

E[Ay (¢,8;8) = By (e, 6;5)]" = E® By, | ey (03 5)ek (75 5)

I L CLCE U |




Using Varadhan’s theorem again, we get:

lim %IHE[AN(&‘, 8;5) — By(g,0;8)]* <

N—oo

sup {8 2 (L )l o) + L2 010 o)+ 1 pte =)

— Ny (@,y,2) = I3(0) = I;°(9) = I1°(9) — 27(1)
,y € Sq,2 € Mg, € Co([0, 5], R*), % € Co([0,£ — ], R), 6 € Co([0, ¢ — 5, R),

lz —oll < e lly —vll < e, I K (@,y,2)" 0 = (£, /) o) < 6,
lell, ol

Vae V2 <)

We first relax the constraints on ¢ and ¢. We then maximize in ¢ and ¢, with

x,y, 2, p being fixed and we get exactly problem (16). Hence the maximum is

uniquely achieved at (v, v, 0, fO\[O,s]a f0|[075}, fO\[O,t—s]a f0|[0,t—s}) and the value is

obviously 2v(t). Since we are trying to maximize an upper semi-continuous

with compact level sets on the closed set of the constraints, the maximum is

achieved at least at a point. As this one cannot be (v, v, 0, folo,s» Jol[0,5): Jo|[0,t—s]> fo‘[o,t,s]),
the maximum is strictly smaller than 27(¢), whence the result follows.

]l -
-_ 7

[0,t—s]

[0,t—s]

4 Convergence in law to a log-normal process

As (Y]f,’é(s))sgt is a positive continuous martingale, it is possible to define
its martingale logarithm, namely:

s Ay’
M;,’(S(S):/ C{VT(U)’ s<t
Yy (u)

Furthermore, we know that Y5°(s) = E[YS]exp[M5’(s) — (M) (s)/2).
The method in [5] is to prove the convergence of (M]E\,’d)(s) towards ¢; uni-
formly in probability. This requires a strong control on the derivative of the
bracket.

In order to get such a control, we are going to write the predictable
representation for Y]f,’a, which will enable us to give an explicit formula for the
bracket by means of the Clark-Haussmann-Ocone formula [12]|. This however

Hy (o)

induces some difficulties because of the truncation function 1z ;) (T)

We will first replace it by a smooth function FJE\;& and then use our machinery.

14



4.1 A smoothly truncated partition function

Concerning the Malliavin calculus, we will use the notations of Nualart[11].
In particular DT> stands for the space of smooth functions on the Wiener
space, and D is the derivation operator.

Let us recall a result of Sugita [14]. A careful reading of the proofs of
Sugita’s lemmas 2.2 and 2.5 shows that the following result holds:

Lemma 4.1 Let 0 < R; < Ry two real numbers. There exists a sequence
Fy : Co([0,t],R) = R, such that:

1. Fy is continuous, Fy € DT,

2. 0< Fy <1,

3. Fy(w) =1 if |w|]| < RiVN, and Fy(w) = 0 if |w| > RoV'N,
4. supy Ji |DyFy|? du € L.

The only modification is the uniformity result 4 which is straightforward
following the lines of [14].

Let us now take Ry = ¢/2 and Ry = ¢. Let F, be a sequence of smooth
truncation functions such as defined in the previous lemma. Obviously we
have:

L fwlpg<eviyz S N S Lju) g <ovm) (17)

We are now considering the following partition function:

F30 1\ _ gatd ) Hy(os) _ Nf()
ZNN (t) =E; eN(Ua t)F]if ool  ~ Jlo.o]
V2N V2N

We may do so because the law of the argument in Fl is equivalent to the
Wiener measure. We then define as previously:

FS.8 FS.0
YV s) = B[Z"° ()| F)]

In order to simplify the notations let us write:

e [ Hn(o3)  Nf(-)
Fn(0) =Fy | —Joal ™ ~ Towl
VAN ViN

15



According to (17) the following inequalities hold under P

Hy (o) Hny (o)
]'Bt(f,””\%‘;a)( N ) SEv(o) < lBt(f,”“j;“s)( N )
Hence clearly:
clvli=s re s vl 5
Yy 227 (s) < Yy¥(s) <Yy 2 (s) (18)

Consequently, limy_, E[Y]\ffz’d(s)?] = exp ¢¢(s).

Moreover, for every sufficiently small €, , as consequence of Doob’s
inequality and of Varadhan’s theorem, we have:

e lell+s 5 e lvl+s 5 elell+s 5 clloll+s 5 72
E|suplYy ¥? " (s) — Yy 22 (3)12] < 4E [YN V2T =Yy 22T ()| =o(1)
s<t

S

The next lemma, which is more general than lemma 3.1 in [5], is the key
of the proof as shown by Comets and Neveu.

Lemma 4.2 Under H1, H2, for every sufficiently small €,5 > 0, the follow-
ing convergence result holds:

. Eld res FS.0
iy Emw )o — VS ()it ds =0

The end of the section is devoted to the proof of this lemma. Define ¢; ; =1
if i # 7 and 1/4/2 else. With this notation we can write:

HN<a;t>=\/LN S B o()o))
1<i<j<N

Hence the Clark-Haussmann-Ocone formula for Y]\I;IEV’(S reads:

V() — BYy ™ =

L

o Aoiloj)
v [ me,
1<i<j<n /0 b

eN(a;t)FN(a)mm] dBij(u)  (C)

2

I (

S

+ ) / E |EYc uﬂ eN(a;t)DuFN(a)‘f,gm dB; j(u) (D)
1<i<j<n 70

S

il

Q

E

16



Let us introduce again some notations:

% (u) = E[E” ,j<(’\“/|27> W (o5 )P ()| FY ]

V2o @)lol))

D% (u) =E
N lo.o]]

t,0
Eg ¢ij

N (0:) DuFy (o) ‘f,gml

Proof of lemma 4.2 requires two preliminary lemmas which we now state but
that will be proved later on. We shall first show that the term (D) converges
to zero in a sufficiently good sense:

Lemma 4.3 Under H1,H2, for every sufficiently small €,0 we have:
[ 3 moiw?an=o)
0 1<i<j<N
Then we prove the following convergence for the term (C):

Lemma 4.4 Under H1, H2, we have for every sufficiently small ¢, and
every s < t:

El S (CY )P -3 ()P(s)] = o(1)

1<i<j<N
Moreover,
sup E| Y [CF (5)]° — V3" () #i(s)| < o0 (20)
N21s<t T

It is now obviously possible by making use of (18) and (19) to replace Y]f,’a
by Y]€N’6 in lemma 4.4. Now recall that:

L 6P = Y CROF - Y P e)
I<i<j<N

—(V P EP-VR P+ Y DY P2 Y O (DY (s)
1<i<j<N 1<i<j<N

17



Hence ,integrating, we get:

/t]E‘;S(YF ) = P (s ‘ds</Z]ED”

1<j
1/2
+2 E[C% ( ]st E[D% (s)]? ds
['grevors] [
/E|Z () 20(s)] ds
1<j

. 1/2

+tsup (o) [Esg[Yﬁ"s(S)—YziN’(s(S)]Q] 2By () + 280y 2]

The first term goes to 0 according to lemma 4.3, the second one by means of
lemma 4.3 and (21), the third one by means of lemma 4.4 and (20),the last
one by (19). The completes the proof of lemma 4.2.

As an immediate consequence of this result as in [5] we get the conver-

gence result for (Yo" (s))s<¢)n>1 and thus for (Y5'(s))s<t) no1?

Theorem 4.5 Assume HI and H2. For sufficiently small €, > 0 the se-
quence of martingales ((Y]f,’é(s))sst)Nzl converges in distribution on [0,t] to
a log-normal process (exp(ML,(s)—r(s)))s<t where (ML, (s))s<t is a centered
gaussian process with independent increments with covariance

E[M3, (s') — M3, (s)]” = ¢u(s') — u(s), s<s' <t
Taking s = ¢ in the previous theorem we obtain the following corollary:

Corollary 4.6 Let & be a N(0,¢(t)) random variable. Then
L
2008 [oxp | 5| S | g es] 5 exote = o2
Using now (5) the proof of theorem 1.1 is complete.

4.2 Proof of lemma 4.3

Let us recall that the derivation operator on the Wiener space is a local
operator ( see [11]). In particular, for almost every w we have for u < ¢ :

18



< +0 .
Dy Fy ()15 = 0- Set & = 122

V2(o(i)|o(5))

Et76 ..
A P

en(o;t)Dy Fn (o)

E [Dj;,j(u)ﬂ ~E (]E

)

V2(o(i)|o(j Hy(o ’
- (5 o120, OO 1110 (2502 1)
- 2
SE Ef;aciyj% (0’ t)D FN( )

<E :<Et5 27]ME§V(U; t)> (E';"SE%(UW) (DUFN(U))2>]

lo-o]|?

Let us sum over (i,7):

> EDY W <E[(BYE (o) (BYe (0:1) (DuFn(0)) ]

1<i<j<N

Thus, after integrating, we get:
/0 1<i<j<N
< CE [(Et b5, (o t)) (Ef;‘seN(a;t)

<C [E (Egag;}(a;t))z] v

1/2

E[DY (u)]? du < E [(Efﬁé;}(a; t)) (E”eN o; 1) / DuFy (o du)]

s o))
2
.l

E
2=
1/2

€
5<

E (Ef;6eN(a; t)1

] ) £ 5 1/2
= 0 [my P [E[Yﬁ’%t) — Yy (t)JQ]

Now, thanks to (19) , the proof of lemma 4.3 is complete.
(Y3 ())s<t) vt

4.3 Proof of lemma 4.4

We first prove the second part of the lemma, assuming that the first one
holds. Using it for s =t we get:

sup EZ Cm < 00 (21)

N>1 i<j

19



As ([C;\}j(s)]Z)sgt and ([Y]f,"s(s)]Q)sgt are positive continuous submartingales,we
also have:

P E g[oxj(sn? — [V () (s)| < sup Eg[oxj(m?

+ sup E[Y, 2 (s) 2 (t) < o0
N>1

Let us now make some simple remarks:
OV ()

= (E?‘Sci,j 7«7(?)%(].)) E [eN(a; t)Fn (o) |fS(N)] ) i

= wy ¢, SN T g [ 50y o) 709 & [ (rst) o (=LY

Hence, summing over (i,7), we get:

“E [en(o) P01 E [en (i u () 7Y

o.T

i,J _ 1, 1
Z [CN] (5)12 - Eag'i \/N

1<i<j<N

Let us now introduce the truncation by setting:

1] o7 ||?
XV () = Bghs | || Elen (@)1 7] Bl (101 7)
According to (17), we get
€\|vl|f—6,5 ” ) €||vy5,5
Xy )< Y IOVEP <Xy () (22)
1<i<j<N

Even if XIE\;‘S seems to be still rather complicated, it is in fact much more
tractable than C}/.

It is very useful to make a careful localization in ng\;‘s in order to stay as
near our problem as possible. Thanks to (13), we know that we may keep
0.7/N as small as needed. Hence we set:

v E 1 2 =€ =€
X (s) = B Lo <oE [ (03 )| FV| B |25 () 2]

)
0',7'2

g.T

o=

20



Then, since ||o.7|? < ||o.o]|.||7.7| S N2(|jv]| + 6)2:

Hence, according to (13),we get for s < ¢:

E” 1) 2z || 5o E[En (03 6) | 7S] E [ (75) T3]

E| XY () - X3 (5)] = o(1) (23)

We are now going to prove the following intermediate lemma and then lemma
4.4 will be an easy corollary of it according to (22).

Lemma 4.7 Under 1, H2, we have for every sufficiently small €,6:
>£,0
E[X3 (s) — Y3 ()]} (s)] = o(1)

Proof of lemma 4.7: Let us transform the quantity we intend to evaluate:

X3 (s) = YR ()i (s)
et 1™ g ) 1 ]E(EE (a't)lf(N))lE(Eg (T't)IF(N))
2 |VN t |57 (<o \ "N s NAD s

_ o He(s)Rtd o H
(& EO’,T |:G (\/—> 1||a’7’||<66

where we have set:

_ o
- o,T

& (7 1Y) B (7 (1)

G(r) = = ( $lll2—e(s )) (24)

The result we wish to prove will be a staightforward corollary of the next
lemma. For A > 0, denote by C(4) the following space:

Cia) = {9 € C(My,R), g(z) = o(exp Allz[|*/2) at oo}

Endowed with the norm ||gl|4) = sup, |g()| exp(—A||z||*/2), C(4) is a Ba-
nach space. A careful reading of HI and H2 shows that if ¢ fulfills these
assumptions then there exists e(¢) > 0 such that H2 is true for s <t + ().
Lemma 4.8 Let ¢ ~ N(0,V) on My. Let C?Hg() = {G € Cuyeqr)) :
EG(¢) = 0}, which is a Banach subspace of C(yic(r)). Define the following

linear form on C(H_E( £)°

An(G) Y EL [G ("—\/1> 1o (<s€ 37

Then Ay is continuous and

VG € Clypy,  Jim An(G) =0

N—oo

(Eiv(a; t)|Fs) E(ey (75 8) Fs)

21



As our function G in (24) belongs to C?t—l—a(t))’ we have:

X(5) = YR 6)16(s) = e”DAN(G) = 1+ o(1)

This completes the proof of lemma 4.7
Proof of lemma 4.8: Indeed, the variational problem

+ &(t)

t t
U+ lyl1*)+—

sup { 2 =Aj(x,y,2) : a—v] <6, [ly—vll <, |l2|| <0}
w’y7z 4

admits (v,v,0) as unique maximum for every sufficiently small £,0. A Taylor

expansion then proves that it is non-degenerate. A standard application of

Laplace method then enables to write:
N(t+e() || our

2
supEf;jsTe 2 ol 1||L.n||<5<oo
N>1 NoA=

And since

N(t+=(t)

ag.T 2
AN(G)] < G pey B e = IF L0y

the proof of the continuity of Ay is completed.

Let us prove the second part of the lemma. Continuous and bounded
functions are dense in C(44c()) which enables us to replace a function G €
C?Hg(t)) by such a function. So we now assume G to be continuous and
bounded. As a first step, we are going to replace the conditional expectation

]E(E?V(a;tﬂ]:s(]v)) by €4 (o;s) and the same for 7. This will be possible

because €% (0; s) is a supermartingale (see (6)). Define:

g.T

An(6) =88E 6 (T2 ) 1o e T B @ @il B (01|

2
S

. t,6 o.T -3

Now using the supermartingale property and the Cauchy-Schwarz inequality

% éiv(a;s)éiv(m)]
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we get:

2

|AN(G)| = E®Eff’g VN

o.T _5
I 2
G(\/_> 1||0'N7'||S6€

((E(Eiv(aa t)|Fs) — e (o59)) E(ey (75 1) Fs)

[EAn (e, 05 5)?]

+ey(o;s) (E(ey (7 1) Fs) —en(T; 8)))

1/2 1/2

< 2|6 o [B(Y3 () — Aw(e,5:5))%]

As the first term goes to zero and the second one is bounded, the difference
AN (G) goes to zero.
The proof now follows the lines of [5]:

.8 g7 —3
(68 [0 (Z2) 101

with

2

o.T
vV N

E%(U;S)E%(T;S)DQ

= Un(G) x E @ EY&5 (03 1)

_Ns||e.r||?_Ns||en||?
e b e

UN(G) =E® Et’6

o 55)e
N(o;

( o.n
VN
en (03 8)el (73 8)el (1 8) 1 o || <51 | oon || <5 | (25)
As in section 3.1 (8), we now prove the convergence of Uy (G).

Limit of Un(G): We obviously wish to apply the central limit theorem,
which will be a consequence of Laplace method. Let K be the following

function:

SgXSgXSgXx Mgx Mgx Mg — Sz
K Izl Nzl (|2l
1 2 2 2
T,Y, 2, T1, T, T3 = g [ lell® llyll® o sl
lzol® [lzsll* 2]

The precise asymptotic in (25) is clearly related to the following variational
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problem:

sup{(K(z,y, 2, 21,22, 23)"/*(1,1,1)T|o(s)) + tTTS[II%'IIZ + Iyl + 1l211%]
- %[Ilﬂmll2 +[|l22”] = A3 (@, y, 2,21, 22, 23) — I3(0) = 37(1) :
lz —vll <6, lly —vll <6,llz —vll <6, [lz1]]| <6, |22l <6,
1K@y, 221,22, 28) %0 = (£, £, ) o) < € (26)
As we are now used to doing, we first take € = § = 0. As we have:
A3 (v,v,v,0,0,23) = AS(v,v,z3) + Al (v)

we are exactly lead to the problem (15). Hence, the maximum is achieved
at 3 = 0 and ¢ = (fo, fo, fo). A Taylor expansion enables to check that
(v,v,v,0,0,0,(fo, fo, fo)) is a non-degenerate local maximum. Hence, for
sufficiently small ¢, ¢, it is the unique solution of problem (26). We may now
complete the proof by using a standard Laplace method:

lim Un(G)

i oy = EvorenGQ)6(&) =0

The only point that remains to be noticed is the following:
Un(1) = (det(Iy — sV)) " (1 +o(1))

This completes the proof of lemma 4.8.

5 Example: Heisenberg spins

In this example, we consider 2—dimensional spins with uniform distribution
on the circle of radius R > 0. Clearly the assumption (2) holds because p is
of compact support. Let us denote by v = R?I5/2 the expectation of o0 ® 0.
(I3 is the identity matrix of dimension 2)

The first result is the following: for £ > 0 small enough, the variational
problem in (H1) admits v as unique and non degenerate solution.

Under p(do) it holds that trace(c ® o) = R?. Hence A} is infinite outside
the affine hyperplane H = {trace(z) = R*} in Sy. Thus

Aj(z) = sup {{z—v|A) —InE;exp(oc @ o|\)}, zEH
AES.
tracee(/\%zo
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We can also compute:

R?||A
E, exp(o ® o|\) =Ty ( \ﬂ? “)

where Zy denotes the Bessel function Zy(r) = 1/27 f027r exp(r cos 0) df, whence
we deduce:

RQT}
Af(x) =sup{rl|lz —v|| — InZy(—
() Qg{ o vl - 1 Zo( )

Restricting us to € H, we have to maximize:
t t t
Zlel? = Af(2) = Zllol* + 2l — o] = Af(2)
4 4 4

One can check that InZy(r) < r?/4 thus Aj(x) > Lﬁyﬁ. As a conclu-
sion, as soon as tR* < 8, the maximum in (H1) is uniquely achieved at v
and is non-degenerate. If tR* = 8, point v is still the unique maximum but
is degenerate and if tR* > 8, point v is not a maximum any longer.

The real problem is to check assumption H2.2. Let us denote by A3 the
Cramer transform of the distribution of o ® 7 under p®2. It is easy to see
that:

I

K sllvll? _ sll=|f?

(ol +1=21%) = 2 2

As(v,v,2) — AS(v,v,0) > A5(2) and 5

Hence it is clear that assumption (H2.2) is satisfied as soon as Aj(z) —

2
SH;” achieves its minimum uniquely at z = 0 for every s < ¢ which is easily

2
seen to be equivalent to Aj(z) > % with equality only when z = 0.

d
distribution of o ® 7:

1 2w 2 4 p2 2 4 2
E, exp(oc @ T|A) = —/ To (RQ\/G Tr e —i—acosﬁ) do
0

Let A = < CCL b ) € Msy. We compute the Laplace transform of the

2 2

for some positive a = «a(a, b, ¢,d) <
on Rt thus

2 2 2 2 . .. .
w. Function Zy is increasing

lnEO',T eXp(O’ ® T|>\) <InZy (R2\/a2 + b2 + 2+ d2)

< R4a2+b2+c2+d2 _ R*||\\||?
= 4 4
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As a immediate consequence, we get A%(z) > ||z||?/R*. Hence, if t < 2/R*,
assumption (H2.2) is fulfilled.
Our results now lead to the following conclusions. Let ¢ < 2/R*. Then

tR"\ ! NtR?
EZn(t) = (1 — —) exp

- (1+0(1)

Furthermore,

Zn(t)/EZy (t) = (1 - %) expé

where ¢ is a N(0,—21n (1 - %)) random variable.

We can generalize the previous results to d—dimensional spins. Let p be
the uniform distribution on the sphere of radius R in R%, then there exists
a ty > 0 such that for ¢ <t} we have:

R\ NiR?
EZy (t) = (1 ~id+Y exp — - (1+o0(1))
and Ny
In(8)/EZy (1) 5> (1 - %) exp €
where ¢ is a N(0, —% In ( - %)) random variable.

We recognize Gabay and Toulouse temperatures 3. = d/R? and B* =

Vd(d+2)/R?, see [9].

6 Convergence of the Gibbs measure

6.1 Convergence of the empirical measure

We are going to prove some results about the quenched law of the spins.
In order to do so, we are first working with the empirical measure Ly =
+ Ef\; 85, under the Gibbs measure GY; associated with Zy(t). Let oY be

defined by:
Hpy (ot)
t o e
R T
E,edll'n

Let ¢(0) = 0 ® 0. For any borel subset B of P = P(R?), the space of
probability measures on R?, we have:
2
By exp [N || 57]°] Loyes
EZn (1)

Eo'y (0 : Ly(0) € B) =
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Hence according to Varadhan’s theorem, we have:

lim %MEQ}%(U : Ly(0) € B) < sup {%II(% Ol —H(vlp) :v € E}—“Y(t)

N—oo

where H (-|p) denotes the relative entropy w.r.t. p. Denote by J the function
of the right hand side, that is:

10) = B0l - S0+ (S0l - A50))

One can easily check easily that J is a good rate function on P that achieves
its minimum uniquely at jis.

We are now proving theorem 1.2. Let us first consider continuous func-
tions with compact support. Since the space of such functions is separable,
we just have to consider one such function. Let then g be a continuous
function with compact support, and let § > 0 be an arbitrary number. We
have:

— 1 . ) .
Jim < InEoly {|(Ln,g)—{fit, 9)| > 6} < —inf{J(v); |, g)—(ju, g)| > 0} <O

The infimum is actually achieved because J is a good rate function and the
set that we consider is a closed set. Hence there exists an integer N(g,0)
such that for N > N(g,0), we have for a ¢(g,0) > 0:

Eoly {[(Ln,g) — (fu, g)| > 0} < e V¥(9:0)

As a consequence, for N > N(g,0), we have:
P{ohdI(Lw,9) = (e, )] = 0} > e~ NV@D/2} < (= NVl00)/2

The measure g is related to G by the relation:

EZy (t)
Gly = —2N W) ot

Let us state a lemma that we will prove afterwards:

Lemma 6.1 Under H1, H2, for any u > 0, there exists a constant C(u,t) >
0 such that:

N—oo

— 1 1 1
lim NlnP{|NanN(t) - Nln]EZN(t)| > u} < —C(u,t)
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Choose now 1 > 0. We have for N > N(g,9):

P{GN{I(Ln,g) — (i, 9)] > 6} > n}

= ]P{]EZZA]TV(S) Q?V{KLN,g) — i, 9)| = 6} > 77}

< P{Qﬁv{KLN,g) — {fir, )| >0} > e—Nw(g,(S)/Q}

P) > ne g,

B EZy (t)
< o~ NU(g,0)/2 BIZn() o Nog0)/2
=€ + IP){ ZN(t) = 1e

Moreover, for N > M (g,0) > N(g,0), we have:

p > ne 9,6)/2

1 1 1 1
= _— — > R
IP’{ NanN(t) + Nln]EZN(t) > 2zp(g, 5) + Nlnn}

<P{- a0 + yER 2 (0 2 14(0.0) |

C(¥*(9,9)/4, t)]

< _
<exp | !

Hence:
> P{GNI(LN.9) = (i, )] 2 0} 2 n} < o0
N

According to Borel-Cantelli’s lemma, we obtain a set €, 5 of full probability
such that:

Vo Qs lim G{l{Lx,g) — (ing)] = 0} =0
N—oo

We now conclude the proof for continuous functions with compact support
by considering a dense sequence g, and the following set of full probability:

Q= () Qs
6€Qy ,n>0

Let now g be such an arbitrary countinuous and bouded function, and M =
[sup|g|] + 1. Let 6 > 0. Chose a constant A(M,d) > 0 such that:

J
~ d .
ut{xER .||x||2A(M,6)}§—6
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Let tpr5 be a continuous truncation function such that 0 < #p5 < 1,
tas(z) = 1if ||z < A(M,9), tys(z) = 0if & > A(M,d) + 1. Then
we have:

KL, g) — e, 9)| = 6} CH{I(LN, gtm,s) — (fie, gtars)| = 0/2}
U{KLN, g(1 —tars)) — (e, 9(1 — tars))| > 6/2}

Moreover,

{(Ln,g(1 = tar0)) — (i, g(1 = ta9))| = 6/2} C{I(Lw,9(L = tars))| = 0/3}
C {LN {x e R : || > A(M, 5)} > 5/3M}
Since {v : v{z € R? : ||z|| > A(M,8)} > §/3M} is a closed set that does

not contain jfi;, we conclude as in the first part of the proof that there exists
a Q5 of full probability such that:

Vw € Qurg,  lim Gl {LN {x e R : ||z > A(M, 5)} > 5/3M} ~0
N—oo
Since gtpr,s is continuous with compact support, we also have:
VWEQ, lim GSV{|<LNagtM,5>_(ﬂtagtM,5>| 25/2}:0
N—oo
We now complete the proof by considering now the set of full probability

Q=0n n QM,(;
MeN*

5€Q;
Proof of lemma 6.1

In order to prove this lemma, let us prove first the result for stv(t) =
E”1||%—v||ﬁ5 exp Hy(o;t). We are going to use an exponential inequality
for the martingale associated with % In stv(t) in its predictable representa-
tion. Let us recall that ¢; ; = 1if 7 # j and 1/+/2 otherwise:

1 1
v Z3(t) = By In Z3(t)

; /tz [ 1 (DG meon
N Bl 5 nErl oyl <5Cirj =t €N o
NJo i Z3 @) O <™ TN

f§N>] dB; ;(s)
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Let G?{,‘s denote the Gibbs measure associated with Z (). We get the fol-
lowing upper bound for the bracket:

2
f(m]

1
g[ Z5 ()" ||T_U||§JCZ,J<Uz|U]>6

=3 [Eci,jaﬁ’v5(<ai|aj>)‘f§fv>r <> EF [c?,j(Gﬁ\’f(wilaﬁ))z}

(Y] (Y]

2

— 2
i<j
_ N2([ol] +9)?
- 2
Hence:
1 / 7 [ 1 (0il93) Hy(o50) (N)]
— E™ | —=———E;1l|jgo_ Cij—F=—e N F dB; ;(s)
<N 0; Z3 () Il Ty s inj s
_ t(l] +0)?
- 2N

An inequality for exponential martingales gives for any u > 0:

1 1 Nu?
Pl In Z% (t) — B In Z% (t)| > u) < 2exp [— i ]

(Ioll + 6)*¢
Let us now prove the lemma for Zy(t).

1. We have previously proved that P—almost surely,

1 1
lim {N InZ% () — B 1an‘V(t)} =0

N—00

2. Since Z%(t)/EZ4 (t) converges in law to an almost surely non-zero
random variable, we have in P-probability:

. 1 1
lim {N InZ3 () — ﬁln]EZjiv(t)} =0

N—00

Hence we get:

N—0

1 1
lim {NIEIH Z%(t) — N InEZY, (t)} =0
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As a consequence, for any u > 0, as soon as |InEZy (t) — InEZ} ()| +
|InEZ4 (t) — Eln Z(¢)| < Nu/2 we have :

1 1 1 1
Py nZn(t) = T IEZy ()] > u) < P52y (t) - Eln Z3(t)] > u/2)

< P(% InZy(t) — %mz;‘v(m > u/4)

1 1
+P(| 5 In Z3(t) — B In Z% (t)] > u/4)

Let us study these expressions. Since Zy () > Z3(t), we have:

IP(|% In Zy(t) — %anjiv(tﬂ > u/d) = P(gg\’g; > exp(Nu/4))
N
_pZn) =2y (1) 7%, (t)
Z — 70 70 (1
< P(% >1- e*N“/‘l) +P(ﬁ((2) < efNu/4)

1 Ezy®)-2Z30)
T 1—e Nu/d EZ$ ()

1 1
+ P In Z3(t) — B In Z3(t) < —u/4)
As a conclusion,

E[Zn (t) — Z3(t)]

1 1  Nu/de
Py nZx(0) = 5 B2y (1)] > ) < (1 - e M) =75
N

1 1
+2P(| In Z(t) — B In Z% (t)] > u/4)
Since both expressions go exponentially quickly to zero, the result is proved.
|

Corollary 6.2 Let G4 Ly be the random probability measure on R? defined
by:

Gl Ly(dz) = /va(da)LN(a, dx)

Then P—almost surely, G4\ Ly converges weakly to fi.
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6.2 Finite dimensional marginals of the Gibbs measure

We are now proving theorem 1.3. Let k be a fixed integer. We study the
convergence in law of (o1,... ,0x) under GY.

The proof of the proposition relies on the use of two replicas. Let p’; be
defined by:

o; R
eHN( 7t)1||o}vi—'l}||s618t(f,s)< ]\]IV( ))

E® Eg@HN(U;t)1“%_U||S5]-Bt(f,e) (HA]IV(G)>

dply = dP,

Set o’ = [EZ5° (1))2/E[Z5’ (t)?]. Define q1(0,0) =0 ® 0, g2(0,7) = 7@ T
and g3(o,7) =0 ® 7. Under a;’ré]E(ufv ® ply), the empirical measure LS\Q,) =

% Zf\; ds(i),r(i) Statisfies for any Borel subset B of P(R? x RY):

— 1
lim I In a5 Eply @ ply {(0, T): Lg\z,) € B} <

N—oo

sup { (K (v, 1), (v, @2), (v,45)) /2 (1, 1) o) — H(v|o™) — Lo(p) : v € T,
(v ) =oll < 6, 11w, @2)—vll < &K (v q), (v, o), (v a3) o= (f, )Tl < 8}
We can then check as previously that under a;’,‘sEpg\, ® ply, LS\Q,)
converges to fix ® fi;. By exchangeability, we get the propagation of chaos,
in the sense that for any integer k, the law of ((o1,71),...,(0k,7%)) un-
der af\’,a]Eu’}v ® ply weakly converges to (f; ® fi;)®*. Hence we get for any
conitnuous and bounded function g on R? x R¢:

weakly

. 0 s
]\;gnooa?\f EM?V ®/~L§\fg(0'17 s 7Uk)g(717' .. 7779) - (:U‘?kag>2

As a consequence, by polarizing the result and taking one of the functions
equal to 1, we get:

. ¥} —n
]\}Lnéoaiv Euly ® plvg(on, ... ,or) = (iFF, g)
As a result, we get:
2
Ze,ﬁ(t)
lim E | uh (9(o1,... ,0%) — =22 (3@ g)| =0
N—o0 N EZ;:\}d(t) !

We now divide by Z5°(#)/E[Z% (t)] which converge in law to a almost surely
non zero random variable and according to (5) the proof is complete.
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