
High temperature regime for a multidimensionalSherrington - Kirkpatrick model of spin glass�(running title: multidimensional SK model)Alain TOUBOLyAbstractComets and Neveu have initiated in [5] a method to prove convergence of thepartition function of disordred systems to a log-normal random variable in the hightemperature regime by means of stochastic calculus. We generalize their approachto a multidimensional Sherrington-Kirkpatrick model with an application to theHeisenberg model of uniform spins on a sphere of Rd , see [9]. The main tool thatwe use is a truncation of the partition function outside a small neighbourhood ofthe typical energy path.IntroductionThe Sherrington and Kirkpatrick model was introduced in [13] in 1975 asa simpli�ed mean-�eld model of spin glass. It has been intensively stud-ied by physicists ever since, as one can see from the broad survey [10] ofphysical results by Mézard, Parisi and Virasoro. However, rigorous mathe-matical results about it are rather scarce. In 1987, Aizemann, Lebowitz andRuelle proved in [1] the convergence in law of the partition function of themodel towards a log-normal random variable, but only for Ising spins, zeromagnetic �eld and high temperature. In 1987, Fröhlich and Zegarlinski gavein [7] complementary results for n-dimensional spins on the sphere, obtain-ing bounds on the annealed free energy in arbitrary magnetic �eld but hightemperature. Among the mathematically rigorous results, let us mentionthe papers by Ben Arous and Guionnet [3] who describe the thermodynamiclimit of the Gibbs measure for arbitrary one dimensional spins by means of a�AMS classi�cation(1991):60K35,82B44,82D30. Keywords: Large deviations, Malli-avin calculus, Sherrington-Kirkpatrick model, spin glass, stochastic calculusyENPC-CERMICS, La courtine F-93167 Noisy-le-Grand Cedex and Université Paris 7,URA 1321 �Statistique et modèles aléatoires� e-mail: toubol@cermics.enpc.fr1



stochastic dynamical system, and the recent paper of Talagrand [15] whereone can �nd very accurate results about the zero and even non-zero magnetic�eld case and the techniques of which could be probably extended to moregeneral situations. However, Talagrand is not interested in the convergencein distribution of the partition function of the model.In 1995, Comets and Neveu gave in [5] an entirely di�erent proof of theresult of Aizenman, Lebowitz and Ruelle, by using stochastic calculus andmartingales. Studying real continuous spins is motivated in particular by [3]and studying vector spins is important for physicists as explained by Gabayand Toulouse in [8] and [9] , because �real� spins always are multidimensional.Thus our goal in this work is to prove some results of convergence in lawfor the partition function of arbitrary multidimensional symmetric spins, inthe high temperature regime with zero magnetic �eld. We will apply ourresults to the Heisenberg model of uniformly distributed spins on the sphereof Rd , see [9]. It seems that the original method of Aizenmann, Lebowitzand Ruelle wouldn't work in such general a situation. This shows the powerof the martingale method. However, the counterpart of the method is thedi�culty to reach what may be expected as the critical temperature.Let us be now describe more precisely the problem that we are tryingto work out. We consider N independent and identically distributed Rd -valued random variables �(i), we denote by � their common distribution.Let (Ji;j)0�i�j a family of independent N (0; 1) random variable. We supposethat the energy of a con�guration � = (�(i))1�i�N can be written as follow:H(1)N (�) = 1pN X1�i<j�N Ji;jh�(i)j�(j)iIn order to simplify the expressions, we add to this energy the following smallterm: H(2)N (�) = 1p2N NXi=1 Ji;ik�(i)k2Denote by P� the measure 
Ni=1�(d�(i)), and by E� the expectation w.r.t.P� . The partition function of the system at the inverse temperature � isthen given by: ZN (�) = E� exp�[H(1)N (�) +H(2)N (�)] (1)Following [5], we replace �Ji;j by Bi;j(�2), where (Bi;j)0�i�j is a family of2



independent standard Brownian motions, and we setHN (�; t) = 1pN X1�i<j�N Bi;j(t)h�(i)j�(j)i + 1p2N NXi=1 Bi;i(t)k�(i)k2The partition function that we are working with is ZN (t) = E� expHN (�; t),which is related to ZN (�) by the formula ZN (�) = ZN (�2) in distribution.In the case of Ising spins, the behaviour of ZN (t) is studied by Comets andNeveu by means of the martingale (E� exp(HN (�; t)�Nt=4))t�1. In the situ-ation of more general spins, the behaviour of (E� exp(HN (�; t)�hHN (�)it=2)and of (E� expHN (�; t)) are extremely di�erent because hHN (�)it dependson �.Hence we have had to introduce another sequence of martingales. Fixt > 0. Denote by F (N)s the natural �ltration of the Brownian motions up tos, for s � t. The right martingale to work with here is the most natural one,that is (E (ZN (t)jF (N)s ))s�t.In the �rst part, we shall state our assumptions and our main results.We then evaluate the scaling factor for ZN , which is closely related to thethermodynamical limit of the free energy. We use this result to introduce twodi�erent types of constraints. On the one hand we keep PNi=1 �(i)
 �(i)=Nis a neighbourhood of its typical value (see [16]) and on the other hand wetry to keep a control on the whole energy path HN (�; � ) . Let us denote byC(�;B) this set of constraints that depends on the disorder B and on thecon�guration � = (�(1); : : : ; �(N). The sequence of martingales that westudy is for s � t:Y CN (s) = E �E� exp(HN (�; t))1C(�;B)��F (N)s � =E �E� exp(HN (�; t))1C(�;B)�In order to prove the convergence of this sequence of auxiliary martingaleson [0; t] towards a log normal process, we need a strong control on its braketwhich we get by means of Malliavin calculus. Then using the terminal valueof the martingale,that is approximately ZN (t), we shall have proved theconvergence in law of ZN (t) toward a log-normal random variable. Notethat we have not been able to consider the process (ZN (t))t, but the randomvariable ZN (t) for �xed t, which is di�ers from [5].In the last section, we prove some convergence results for the quenchedlaw of the spins showing that the Gibbs measure depends in general on t,which is not the case when dealing with Ising spins.Acknowledgement: I would like to thank Professor Francis Comets forhaving introduced me to this topic and for helping me in this work.3



1 Preliminary part and statement of the results1.1 NotationsLet us �rst introduce a few notations before stating our main assumptions. Ifx; y 2 Rd , we write hxjyi =Pdi=1 xiyi for their canonical Euclidean product,and kxk for the associated norm. The vector space of real d� d matrices isdenoted byMd, and the subspace of symmetric matrices by Sd. If x; y 2 Rd ,we set x 
 y = (xiyj)1�i;j�d 2 Md. Scalar product and norm on Md arede�ned accordingly, identifying Md with Rd2 .We assume that we are given a symmetric probability measure � on Rdthat is not supported by a strict a�ne subspace of Rd , and such that forevery � > 0: ZRd exp�k�k4 �(d�) <1 (2)If � is a probability measure on Rd , we de�ne its Cramer transform ���by: ��� ���� Rd ! Rx 7! supfh�jxi � ln RRd exph�j�i �(d�) : � 2 Rdg1.2 Assumptions and resultsWe are now ready to state our assumptions. Let ��1 be the Cramer transformof the law of � 
 � under �(d�) on Sd, ��2 of the law of (� 
 �; � 
 �; � 
 �)under �(d�) 
 �(d�) on Sd � Sd �Md.(H 1) The variational problemsupf t4kxk2 � ��1(x) : x 2 Sdgadmits a unique solution which we denote by v = v(t). Let �̂t be themeasure on Rd with density:d�̂td� / exp t2hvj� 
 �iLet �(t) stand for the covariance matrix of � 
 � under �̂t. Assumethat the matrix I � t2�(t) is positive de�nite.Let us comment on this assumption. First of all, it is clear that bothparts of it are ful�lled when t is small enough. Now, thanks to (2) andlemma 4 in [4], one can easily see that the supremum is reached. Thuswe assume here uniqueness and non-degeneracy.4



(H 2) Let v1; : : : ; vd be the eigenvalues of v 2 Sd. Assume that:1. tvivj < 1, for every i; j = 1 : : : ; d2. For every s � t; z 2 Md 7! ��2(v; v; z) + skvk42(kvk2+kzk2) achievesits minimum uniquely at z = 0.Again, the assumption is ful�lled when t is small enough.Assume that t > 0 ful�lls assumptions H 1 and H 2. We shall not repeatthis every time. Our main result is the following:Theorem 1.1 Set (t) = t4kv(t)k2 � ��1(v(t)) and�(t) = �12 dXi;j=1 ln(1� tvi(t)vj(t))Let � be a N (0; �(t)) random variable. Then e�N(t)qdet(I � t2�(t))ZN (t)converges in law to the log-normal random variable exp(� � �(t)=2).Let GtN be the Gibbs measure, that is the measure on (Rd )N given by:GtN(d�(1); : : : ; d�(N)) = expHN (�; t)ZN (t) 
Ni=1 �(d�(i))Let LN = 1N PNi=1 ��(i) be the empirical measure of the con�guration. Thenwe have:Theorem 1.2 Under the Gibbs measure GtN , the empirical measure LN con-verges P�almost surely weakly in probability to �̂t, in the sense that P� al-most surely, we have for any continuous and bounded function g on Rd andfor any � > 0: limN!1GtNfjhLN ; gi � h�̂t; gij � �g = 0Our last result is about some sort of quenched 'propagation of chaos'.Namely,we have:Theorem 1.3 Let k be an arbitrary integer. For any continuous and boundedfunction g on (Rd )k, the following convergence in probability holds:P� limN!1GtN [g(�1; : : : ; �k)] = h�̂
kt ; giAt this point we should emphasize that in general, the Gibbs measure GtNexplicitly depends on t which is not the case for Ising spins (see [5]).5



2 Asymptotical evaluation of EZN (t) and the tra-jectorial localizationIn this section, we assume that t > 0 ful�lls assumption H 1.Let us recall that we are given a family (Bi;j)i�j of independent standardBrownian motions. The symbol E denotes the expectation w.r.t the Brow-nian motions, that is w.r.t. the disorder. We are interested in the partitionfunction, that is:ZN (t) = E� exp24 1pN X1�i<j�N Bi;j(t)h�(i)j�(j)i + 1p2N NXi=1 Bi;i(t)k�(i)k2352.1 An equivalent of EZN (t)The �rst step of the method is an evaluation of EZN (t) up to a factor (1 +o(1)), which provides the scaling factor for ZN (t). We �rst compute thefollowing expression of EZN (t):EZN (t) = E� exp t4N NXi;j=1h�(i) 
 �(i)j�(j) 
 �(j)i= E� exp Nt4  1N NXi=1 �(i) 
 �(i)2We set �:� = NXi=1 �(i) 
 �(i)We now give a logarithmic approximation of EZN (t) that will enable us tolocalize the problem. In order to do so, we use Varadhan's theorem, in theway stated in [6] theorem 2.1.10. Thanks to the convexity of x 7! kxk2, wehave for any N � 1:Nt4  1N NXi=1 �(i)
 �(i)2 � t4 NXi=1 k�(i) 
 �(i)k2 = t4 NXi=1 k�(i)k4As the �(i) are independent, and thanks to (2), the assumption of theorem2.1.10 in [6] is easily checked. Thus,limN!1 1N ln EZN (t) = supf t4kxk2 � ��1(x) : x 2 Sdg = (t)6



Let us notice that even if the law of � 
 � is supported by some stricta�ne subspace of Sd, the matrix v is strictly positive. Indeed, Bolthausenshows in [4], eq.(1.8), that v = �̂t(� 
 �). Hence, for any a 2 Rd n f0g,aT va = �̂t(haj�i2) > 0 because of the hypothesis on the support of �. Wealso deduce from the result v = �̂t(�
 �) and from Azencott [2], prop.I.9.7,that , if we only pay attention to the vector space spanned by the convexhull of the support of the law of � 
 � under � on Sd, then v 2 Dom(��1)�,and thus that ��1 is of class C1 at v. Hence we may restrict ourselves to thecase of a non-degenerate law for � 
 �. Then, according to Bolthausen [4],we have: EZN (t) = expN(t)qdet(I � t2�(t)) (1 + o(1)) (3)2.2 A trajectorial approachIn order to stay as near the problem as possible and to formulate weakassumptions on �, we reformulate the approximation result (3) using thewhole trajectory of HN (�).More precisely, let W be a fresh independent (that is independent ofeverything introduced up to now) one-dimensional Brownian motion. Thefollowing identity in law clearly holds on C0([0; t];R) under P
P�:HN (�; �)N L= 1p2 �:�N  W�pNHence we can write:EZN (t) = E 
E� exp Np2 �:�N  WtpNWe denote by Itd the rate function for Schilder's theorem on [0; t] in Rd . Wemay again use Varadhan's theorem, and get:limN!1 1N ln EZN (t) = supf 1p2kxkw(t)���1(x)�It1(w) : x 2 Sd; w 2 C0([0; t];R)gMaximizing in w with x being �xed, we get w(x)(s) = kxkp2 s, 0 � s � t, andreplacing this value into the variational problem, we are lead to solve theproblem of H 1. Hence we deduce the uniqueness of the solution, namelyx = v and w(s) = f0(s) = kvkp2 s, 0 � s � t. Denote by f the functionf(s) = kvk22 s; 0 � s � t (4)7



Thanks to Varadhan's theorem, the dominating part of EZN (t) is �:�N � vand WpN � f0, which may also be written �:�N � v and HN (�;�)N � f . Thusf appears as the typical value of the energy. This means that if we set forevery "; � > 0Z";�N (t) = E� expHN(�; t)1k �:�N �vk��1sups�t���HN (�;s)N �f(s)����"then : limN!1 E �����ZN (t)� Z";�N (t)EZN (t) ����� = 0 (5)3 An interpolating martingaleFrom now on, the parameter t is assumed to ful�ll H 1 and H 2.3.1 De�nition of Y ";�NFollowing Comets and Neveu, we are to de�ne a sequence of interpolatingmartingales converging in distribution to a log-normal process. For any s � 0and any function g 2 C0([0; s];R), we set kgk[0;s] = supfjg(u)j : 0 � u � sg.Let "; � > 0 be �xed real numbers. For s � t we denote by Bs(g; ") the"�ball of center g in C0([0; s]).Let (F (N)s )s�t be the natural �ltration of theBrownian motions, that isF (N)s = �(Bi;j(u); 1 � i � j � N;u � s)We introduce a few other notations:eN (�; s) = exp �HN (�; s)� Ns4 �:�N 2�We intend to truncate eN (�; s) outside a neighbourhood of the typical valueof HN (�), that is outside a ball of center f � see eq. (4)�. Therefore, we set:e"N (�; s) = eN (�; s)1Bs(f;")�HN (�)N � (6)Clearly eN (�; �) is an exponential (F (N)s )s�t-martingale, whereas e"N (�; �)is a supermartingale. We are also going to truncate the probability measure8



by using instead of P� a modi�ed probability measure, namely P�;� :dPt;��dP� / exp �Nt4 �:�N 2� 1k�:�N �vk��Obviously we have: ZN (t) = Et;1� eN (�; t)We now de�ne for s � t the interpolating martingale:Y ";�N (s) = E �Et;�� eN (�; t)1Bt(f;")�HN (�)N � ���F (N)s � = E hEt;�� e"N (�; t) ���F (N)s iWe also set EY ";�N = E [Y ";�N (s)]. It clearly follows from (5) that Y ";�N =1+o(1). The result that we are going to prove in this section is the following:Proposition 3.1 Under H1, H2, for every su�ciently small "; � and forevery s � t,limN!1 E [Y ";�N (s)2] = 1qQ1�i;j�N(1� svi(t)vj(t)) =: exp�t(s)Proof: Let ~W be a fresh independent one dimensional Brownian motion.We set ~eN (�; s) = exp�k�:�kNp2 ~Ws � Ns4 �:�kN 2�. Thanks to the Markovproperty, we have P-almost surely:Y ";�N (s) = E �Et;�� eN (�; t)1Bt(f;")�HN (�)N � ���F (N)s �= Et;�� "eN (�; s)1Bs(f;")�HN (�)N � (7)quad~E  ~eN (�; t� s); k�:�kNp2N ~W + HN (�; s)N � f(s+ �)[0;t�s] � "!#� Et;�� [e"N (�; s)] =: AN ("; �; s) (8)Similarly, on fHN (�)=N 2 Bs(f; "=2)g � fHN (�)=N 2 Bs(f; ")g, since f islinear, we have:( k�:�kNp2N ~W � f[0;t�s] � "=2) � ( k�:�kNp2N ~W + HN (�; s)N � f(s+ �)[0;t�s] � ")9



Whence we deduce that:Y ";�N (s)� Et;�� "e"=2N (�; s)~E  ~eN (�; t� s); k�:�kNp2N ~W + HN(�; s)N � f(s+ �)[0;t�s] � "!#� Et;�� "e"=2N (�; s)~E  ~eN (�; t� s); k�:�kNp2N ~W � f(�)[0;t�s] � "2!#=: BN ("=2; �; s)The proof of proposition 3.1 will the a consequence of the following results:E [AN ("; �; s)]2 = exp�t(s)(1 + o(1)) (9)E [AN ("; �; s) �BN ("=2; �; s)]2 = o(1) (10)�3.2 Proof of (9)Let us rewrite EAN ("; �; s)2 using two independent �replicas� of the system:EAN ("; �; s)2 = E 
Et;��;� [e"N (�; s)e"N (� ; s)] (11)where Pt;��;� = Pt;�� 
 Pt;�� . We notice that (HN (�; �)=N;HN (� ; �)=N)) is atwo-dimensional Brownian motion with variance K(�:�N ; �:�N ; �:�N )=N whereK is de�ned by:K ������ Sd � Sd �Md ! S2x; y; z 7! 12 � kxk2 kzk2kzk2 kyk2 �Hence, by introducing a fresh independent two dimensional Brownian motionW , we get the following identity in law on C0([0; t];R2 ) under P
Pt;��;� :(HN (�; �)=N;HN (� ; �)=N)) L= K(�:�N ; �:�N ; �:�N )1=2 WpNThe equivalent required in (11) is obviously related to the following varia-tional problem (T means transpose):supnt� s4 (kxk2 + kyk2) + hK(x; y; z)1=2(1; 1)Tj'(s)i� ��2(x; y; z) � Is2(')� 2(t) :x; y 2 Sd; z 2Md; ' 2 C0([0; s];R2 );kx� vk � "; ky � vk � "; kK(x; y; z)1=2'� (f; f)Tk[0;s] � �o (12)10



Lemma 3.2 Under H2, for every su�ciently small "; �, the variational prob-lem (12) admits (v; v; 0; f0; f0) as unique solution. Furthermore, the maxi-mum is then non-degenerate in the sense of [4].We prove this lemma later on, after remark 3.2. We now complete theproof of (9) by means of Laplace method. Let us write the following Taylorexpansion in a neighbourhood of (v; v; 0; f0; f0):t� s4 (kx+ vk2 + ky+ vk2) + hK(x+ v; y+ v; z)1=2(1; 1)Tj'(s) + (f0; f0)Ti= t2(hvjxi + hvjyi) + tkvk22 + t4(kxk2 + kyk2) + s2kzk2+ 1kvkp2(hvjxi'1(s) + hvjyi'2(s))� s4kvk2 (hvjxi2 + hvjyi2)Let � be the covariance matrix of (�
�; � 
 �; �
 �) under �̂t(d�)
 �̂t(d�)on Sd�Sd�Md, and (�; �; �) be a N (0;�) random vector. Then , accordingto Bolthausen's results, the following convergence holds:limN!1 E [AN ("; �; s)]2 = E exp t4(k�k2 + k�k2) + s2k�k2)[E exp t4(k�k2)]2One easily checks that the matrix � may be written as follows:� = 0@ �(t) 0 00 �(t) 00 0 V 1AThe operator V may be expressed on Md by VM = vMv. A simple cal-culation shows that it may be diagonalized, with vi(t)vj(t), 1 � i; j � d aseigenvalues.Remark 3.1 By making use of Varadhan's theorem, one can again localizeE [AN ("; �; s)]2. This means that if we set:~AN ("; �; s) = Et;��;� he"N (�; s)e"N (� ; s)1k �:�N k��iwe can prove as in (5) that:E ���[AN ("; �; s)]2 � ~AN ("; �; s)��� = o �E [AN ("; �; s)]2� (13)11



Remark 3.2 In a similar way, we have:E [AN ("; �; s) �AN ("=2; �; s)]2 = o(E [AN ("; �; s))2)Proof of Proposition 3.2: We de�ne a function 	 by:	 ���������Sd � Sd �Md � C0([0; s];R2 )! R [ f�1gx; y; z; ' 7! t� s4 (kxk2 + kyk2) + hK(x; y; z)1=2(1; 1)Tj'(s)i���2(x; y; z) � Is2(')� 2(t)Note that 	(v; v; 0; f0; f0) = 0. We �rst prove that (v; v; 0; f0; f0) is a nondegenerate local maximum for the function 	, and then we show that H 2is a necessary and su�cient condition for the lemma to hold. We of courserestrict ourselves to ' 2 H1. The Cramer transform ��2 is of class C1 ina neighbourhood of (v; v; 0). We may write its Taylor expansion up to thesecond order as follows:��2(v + x; v + y; z) = ��2(v; v; 0) + t2(hvjxi + hvjyi) + 12D2��1(v)[x2]+ 12D2��1(v)[y2] + 12V �1[z2] + o(kxk2 + kyk2 + kzk2)(14)with V the covariance of �
� onMd under �̂t(d�)
�̂t(d�). In a neighbour-hood of (v; v; 0), the function K1=2 is also of class C1 as it is easily checkedby means of the implicit functions theorem. One checks that:K1=2(v + x; v + y; z) = 1p2 � kvk 00 kvk �+ 1kvkp2 � hvjxi 00 hvjyi �+ 1kvkp2  kxk2 � hvjxi2kvk2 kzk2kzk2 kyk2 � hvjyi2kvk2 !+ o(kxk2 + kyk2 + kzk2)Summing up both expansions, we have:	(v + x; v + y; z; f0 + '1; f0 + '2)�	(v; v; 0; f0; f0)= �12(D2��1(v)[x]2 � t2kxk2)� 12(D2��1(v)[y]2 � t2kyk2)� 12(V �1[z]2 � skzk2)� 12 Z s0  _'1(u) vkvk � xp22 du� 12 Z s0  _'2(u) vkvk � yp22 du+ o(kxk2 + kyk2 + kzk2)12



This clearly proves that (v; v; 0; f0; f0) is a non degenerate local maximumfor 	.Let us now take " = � = 0 in (12) and evaluate the following quantitydepending on z:supnt� s2 kvk2 + h(1; 1)Tj(f(s); f(s))Ti � ��2(v; v; z) � Is2(') � 2(t) :' 2 C0([0; s];R2); kK(v; v; z)1=2'� (f; f)Tk[0;s] = 0o (15)Let us study the constraint ion ' = ('1; '2): If kzk 6= kvk, the matrixK(v; v; z)1=2 is invertible and the only possibility is '1 = '2 = p2f=pkvk2 + kzk2.Hence we have: Is2(') = skvk42(kvk2 + kzk2)If now kzk = kvk, then for every ' satisfying the constraint there existsa continuous function w such that '1 = p2f=pkvk2 + kzk2 + w, '2 =p2f=pkvk2 + kzk2 � w. Denote this ' by 'w. One easily checks thatI2('w) is minimum for w = 0. Hence in any case,Is2(') = skvk42(kvk2 + kzk2)It is now clear that H 2 implies that when " = � = 0, (v; v; 0; f0; f0) is themaximum of 	. Since this point is a strict local maximum for 	, and 	 is anupper semi-continuous function with compact level sets, for su�ciently small"; � > 0, the point (v; v; 0; f0; f0) remains the only maximum. The proof hasalso shown the necessity of H 2 for the lemma to hold. This completes theproof of lemma 3.2.3.3 Proof of (10)Thanks to remark 3.2 , we are lead to prove that for su�ciently small "; � > 0we have : E [AN ("; �; s) �BN ("; �; s)]2 = o(E [AN ("; �; s))2)Write this expectation as follows, using two fresh independent one dimen-sional Brownian motions ~W and Ŵ :E [AN ("; �; s) �BN ("; �; s)]2 = E 
Et;��;�"e"N (�; s)e"N (� ; s)~E  ~eN (�; t� s)1 k�:�kNp2N ~W�f[0;t�s]>"! Ê  êN (� ; t� s)1 k�:�kNp2N Ŵ�f[0;t�s]>"!#13



Using Varadhan's theorem again, we get:limN!1 1N ln E [AN ("; �; s) �BN ("; �; s)]2 �supnhK(x; y; z)1=2(1; 1)Tj'(s)i + kxkp2 ~'(t� s) + kykp2 '̂(t� s)� ��2(x; y; z)� Is2(') � It�s1 ( ~')� It�s1 ('̂)� 2(t)x; y 2 Sd; z 2Md; ' 2 C0([0; s];R2); ~' 2 C0([0; t� s];R); '̂ 2 C0([0; t� s];R);kx� vk � "; ky � vk � "; kK(x; y; z)1=2'� (f; f)Tk[0;s] � �;kxkp2 ~'� f[0;t�s] � ";kykp2 '̂� f[0;t�s] � "oWe �rst relax the constraints on ~' and '̂. We then maximize in ~' and '̂, withx; y; z; ' being �xed and we get exactly problem (16). Hence the maximum isuniquely achieved at (v; v; 0; f0j[0;s]; f0j[0;s]; f0j[0;t�s]; f0j[0;t�s]) and the value isobviously 2(t). Since we are trying to maximize an upper semi-continuouswith compact level sets on the closed set of the constraints, the maximum isachieved at least at a point. As this one cannot be (v; v; 0; f0j[0;s]; f0j[0;s]; f0j[0;t�s]; f0j[0;t�s]),the maximum is strictly smaller than 2(t), whence the result follows.4 Convergence in law to a log-normal processAs (Y ";�N (s))s�t is a positive continuous martingale, it is possible to de�neits martingale logarithm, namely:M ";�N (s) = Z s0 dY ";�N (u)Y ";�N (u) ; s � tFurthermore, we know that Y ";�N (s) = E [Y ";�N ] exp[M ";�N (s) � hM ";�N i(s)=2].The method in [5] is to prove the convergence of hM ";�N i(s) towards �t uni-formly in probability. This requires a strong control on the derivative of thebracket.In order to get such a control, we are going to write the predictablerepresentation for Y ";�N , which will enable us to give an explicit formula for thebracket by means of the Clark-Haussmann-Ocone formula [12]. This howeverinduces some di�culties because of the truncation function 1Bs(f;") �HN (�)N �.We will �rst replace it by a smooth function F ";�N and then use our machinery.14



4.1 A smoothly truncated partition functionConcerning the Malliavin calculus, we will use the notations of Nualart[11].In particular D+1 stands for the space of smooth functions on the Wienerspace, and D is the derivation operator.Let us recall a result of Sugita [14]. A careful reading of the proofs ofSugita's lemmas 2.2 and 2.5 shows that the following result holds:Lemma 4.1 Let 0 < R1 < R2 two real numbers.There exists a sequenceFN : C0([0; t];R) ! R, such that:1. FN is continuous, FN 2 D+1 ,2. 0 � FN � 1,3. FN (w) = 1 if kwk � R1pN , and FN (w) = 0 if kwk � R2pN ,4. supN R t0 jDuFN j2 du 2 L1.The only modi�cation is the uniformity result 4 which is straightforwardfollowing the lines of [14].Let us now take R1 = "=2 and R2 = ". Let F "N be a sequence of smoothtruncation functions such as de�ned in the previous lemma. Obviously wehave: 1fw:kwk[0;t]�"pN=2g � F "N � 1fw:kwk[0;t]�"pNg (17)We are now considering the following partition function:ZF "N ;�N (t) = Et;�� 24eN (�; t)F "N 0@HN (�; �)k�:�kp2N � Nf(�)k�:�kp2N 1A35We may do so because the law of the argument in FN is equivalent to theWiener measure. We then de�ne as previously:Y F "N ;�N (s) = E [ZF "N ;�N (t)jF (N)s ]In order to simplify the notations let us write:FN (�) = F "N 0@HN (�; �)k�:�kp2N � Nf(�)k�:�kp2N 1A15



According to (17) the following inequalities hold under Pt;�� :1Bt(f; kvk��p2 ")(HN (�)N ) � FN (�) � 1Bt(f; kvk+�p2 ")(HN (�)N )Hence clearly: Y " kvk��2p2 ;�N (s) � Y F "N ;�N (s) � Y " kvk+�p2 ;�N (s) (18)Consequently, limN!1 E [Y F "N ;�N (s)2] = exp�t(s).Moreover, for every su�ciently small "; � , as consequence of Doob'sinequality and of Varadhan's theorem, we have:E �sups�t [Y " kvk+�p2 ;�N (s)� Y " kvk+�2p2 ;�N (s)]2� � 4E �Y " kvk+�p2 ;�N (t)� Y " kvk+�2p2 ;�N (t)�2 = o(1)(19)The next lemma, which is more general than lemma 3.1 in [5], is the keyof the proof as shown by Comets and Neveu.Lemma 4.2 Under H1, H2, for every su�ciently small "; � > 0, the follow-ing convergence result holds:limN!1Z t0 E ���� ddshY F "N ;�N is � [Y F "N ;�N (s)]2�0t(s)���� ds = 0The end of the section is devoted to the proof of this lemma. De�ne ci;j = 1if i 6= j and 1=p2 else. With this notation we can write:HN (�; t) = 1pN X1�i�j�N ci;jBi;j(t)h�(i)j�(j)iHence the Clark-Haussmann-Ocone formula for Y F "N ;�N reads:Y F "N ;�N (s)� EY F "N ;�N =+ X1�i�j�N Z s0 E �Et;�� ci;j h�ij�jipN eN (�; t)FN (�) ���F (N)u � dBi;j(u) (C)+ X1�i�j�N Z s0 E 24Et;�� ci;j h�ij�jipNk�:�kp2N eN (�; t)DuFN (�) ���F (N)u 35 dBi;j(u) (D)16



Let us introduce again some notations:Ci;jN (u) = E �Et;�� ci;j h�ij�jipN eN (�; t)FN (�)���F (N)u �Di;jN (u) = E "Et;�� ci;jp2h�(i)j�(j)ik�:�k eN (�; t)DuFN (�) ���F (N)u #Proof of lemma 4.2 requires two preliminary lemmas which we now state butthat will be proved later on. We shall �rst show that the term (D) convergesto zero in a su�ciently good sense:Lemma 4.3 Under H1,H2, for every su�ciently small "; � we have:Z t0 X1�i�j�N E [Di;jN (u)2] du = o(1)Then we prove the following convergence for the term (C):Lemma 4.4 Under H1, H2, we have for every su�ciently small "; � andevery s � t: E ������ X1�i�j�N[Ci;jN (s)]2 � [Y ";�N (s)]2�0t(s)������ = o(1)Moreover, supN�1;s�t E ������Xi�j [Ci;jN (s)]2 � [Y ";�N (s)]2�0t(s)������ <1 (20)It is now obviously possible by making use of (18) and (19) to replace Y ";�Nby Y F "N ;�N in lemma 4.4. Now recall that:ddshY F "N ;�N i � [Y F "N ;�N (s)]2�0t(s) = X1�i�j�N[Ci;jN (s)]2 � [Y ";�N (s)]2�0t(s)�([Y F "N ;�N (s)]2�[Y ";�N (s)]2)�0t(s)+ X1�i�j�N[Di;jN (s)]2+2 X1�i�j�N Ci;jN (s)Di;jN (s)
17



Hence ,integrating, we get:Z t0 E ���� ddshY F "N ;�N i � [Y F "N ;�N ]2�0t(s)���� ds � Z t0 Xi�j E [Di;jN (s)]2 ds+ 224Z t0 Xi�j E [Ci;jN (s)]2 ds351=2 24Z t0 Xi�j E [Di;jN (s)]2 ds351=2+ Z t0 E jXi�j [Ci;jN (s)]2 � [Y ";�N (s)]2�0t(s)j ds+ t sups�t �0t(s) �E sups�t [Y ";�N (s)� Y F "N ;�N (s)]2�1=2 h2E [Y ";�N (t)]2 + 2E [Y F "N ;�N (t)]2i1=2The �rst term goes to 0 according to lemma 4.3, the second one by means oflemma 4.3 and (21), the third one by means of lemma 4.4 and (20),the lastone by (19). The completes the proof of lemma 4.2.As an immediate consequence of this result as in [5] we get the conver-gence result for ((Y F "N ;�N (s))s�t)N�1 and thus for ((Y ";�N (s))s�t)N�1:Theorem 4.5 Assume H1 and H2. For su�ciently small "; � > 0 the se-quence of martingales ((Y ";�N (s))s�t)N�1 converges in distribution on [0; t] toa log-normal process (exp(M t1(s)��t(s)))s�t where (M t1(s))s�t is a centeredgaussian process with independent increments with covarianceE [M t1(s0)�M t1(s)]2 = �t(s0)� �t(s); s � s0 � tTaking s = t in the previous theorem we obtain the following corollary:Corollary 4.6 Let � be a N (0; �(t)) random variable. ThenZ";�N (t)=E� �exp �Nt4 �:�N 2�1k �:�N �vk��� L! exp(� � �(t)=2)Using now (5) the proof of theorem 1.1 is complete.4.2 Proof of lemma 4.3Let us recall that the derivation operator on the Wiener space is a localoperator ( see [11]). In particular, for almost every w we have for u � t :
18



DuF "N (w)1kwk�"pN = 0. Set ~" = kvk+�p2 ":E hDi;jN (u)2i = E  E "Et;�� ci;jp2h�(i)j�(j)ik�:�k eN (�; t)DuFN (�) ���F (N)u #!2= E  E "Et;�� ci;jp2h�(i)j�(j)ik�:�k eN (�; t)DuFN (�)1Bt(f;~")�HN(�)N � jF (N)u #!2� E "Et;�� ci;jp2h�(i)j�(j)ik�:�k e~"N (�; t)DuFN (�)#2� E ��Et;�� c2i;j 2h�(i)j�(j)i2k�:�k2 e~"N (�; t)��Et;�� e~"N (�; t) (DuFN (�))2��Let us sum over (i; j):X1�i�j�N E [Di;jN (u)]2 � E h�Et;�� e~"N (�; t)� �Et;�� e~"N (�; t) (DuFN (�))2�iThus, after integrating, we get:Z t0 X1�i�j�N E [Di;jN (u)]2 du � E ��Et;�� e~"N (�; t)��Et;�� e~"N (�; t)Z t0 DuFN (�)2 du��� CE ��Et;�� e~"N (�; t)��Et;�� eN (�; t)1 ~"2�HN (�;�)N �f(�)�~"��� C �E �Et;�� e~"N (�; t)�2�1=2 "E �Et;�� eN (�; t)1 ~"2�HN (�;�)N �f(�)�~"�2#1=2= C hE [Y ~";�N ]2i1=2 �E [Y ~";�N (t)� Y ~"2 ;�N (t)]2�1=2Now, thanks to (19) , the proof of lemma 4.3 is complete.((Y ";�N (s))s�t)N�14.3 Proof of lemma 4.4We �rst prove the second part of the lemma, assuming that the �rst oneholds. Using it for s = t we get:supN�1 EXi�j [Ci;jN (t)]2 <1 (21)19



As ([Ci;jN (s)]2)s�t and ([Y ";�N (s)]2)s�t are positive continuous submartingales,wealso have:supN�1;s�t E ������Xi�j [Ci;jN (s)]2 � [Y ";�N (s)]2�0t(s)������ � supN�1 EXi�j [Ci;jN (t)]2+ supN�1 E [Y ";�N (s)]2�0t(t) <1Let us now make some simple remarks:[Ci;jN (s)]2= �Et;�� ci;j h�(i)j�(j)ipN E heN (�; t)FN (�)jF (N)s i�2= Et;��;� c2i;j h�(i)j�(j)ipN h�(i)j�(j)ipN E heN (�; t)FN (�)jF (N)s i E heN (� ; t)FN (�)jF (N)s iHence, summing over (i; j), we get:X1�i�j�N[Ci;jN (s)]2 = Et;��;� 12  �:�pN 2 E heN (�; t)FN (�)jF (N)s i E heN (� ; t)FN (�)jF (N)s iLet us now introduce the truncation by setting:X";�N (s) = Et;��;� 12  �:�pN 2 E [e"N (�; t)jFs] E [e"N (� ; t)jFs]According to (17), we get:X" kvk��2p2 ;�N (s) � X1�i�j�N[Ci;jN (s)]2 � X" kvk+�p2 ;�N (s) (22)Even if X";�N seems to be still rather complicated, it is in fact much moretractable than Ci;jN .It is very useful to make a careful localization in X";�N in order to stay asnear our problem as possible. Thanks to (13), we know that we may keep�:�=N as small as needed. Hence we set:~X";�N (s) = Et;��;� 12  �:�pN 2 1k�:�N k��E he"N (�; t)jF (N)s i E he"N (� ; t)jF (N)s i20



Then, since k�:�k2 � k�:�k:k�:�k � N2(kvk+ �)2:E ���X";�N (s)� ~X";�N (s)��� � N(kvk+ �)22 Et;��;�1k �:�N k>�E [e"N (�; t)jFs] E [e"N (� ; t)jFs]Hence, according to (13),we get for s � t:E ���X";�N (s)� ~X";�N (s)��� = o(1) (23)We are now going to prove the following intermediate lemma and then lemma4.4 will be an easy corollary of it according to (22).Lemma 4.7 Under 1, H2, we have for every su�ciently small "; �:E j ~X";�N (s)� [Y ";�N (s)]2�0t(s)j = o(1)Proof of lemma 4.7: Let us transform the quantity we intend to evaluate:~X";�N (s)� [Y ";�N (s)]2�0t(s)= Et;��;� " 12  �:�pN 2 � �0t(s)! 1k �:�N k��E �e"N (�; t)jF (N)s � E �e"N (� ; t)jF (N)s �#= e�t(s)Et;��;� �G� �:�pN�1k �:�N k��e� s2 �:�pN 2E �e"N (�; t)jF (N)s � E �e"N (� ; t)jF (N)s ��where we have set: G(x) = dds �e s2 kxk2��t(s)� (24)The result we wish to prove will be a staightforward corollary of the nextlemma. For A > 0, denote by C(A) the following space:C(A) = fg 2 C(Md;R); g(x) = o(expAkxk2=2) at 1gEndowed with the norm kgk(A) = supx jg(x)j exp(�Akxk2=2), C(A) is a Ba-nach space. A careful reading of H1 and H2 shows that if t ful�lls theseassumptions then there exists "(t) > 0 such that H2 is true for s � t+ "(t).Lemma 4.8 Let �  N (0; V ) on Md. Let C0(t+"(t)) = fG 2 C(t+"(t)) :EG(�) = 0g, which is a Banach subspace of C(t+"(t)). De�ne the followinglinear form on C0(t+"(t)):�N (G) def= Et;��;� �G� �:�pN�1k �:�N k��e� s2 �:�pN 2E (e"N (�; t)jFs) E (e"N (� ; t)jFs)�Then �N is continuous and8G 2 C0(t+"(t)); limN!1�N (G) = 021



As our function G in (24) belongs to C0(t+"(t)), we have:~X";�N (s)� [Y ";�N (s)]2�0t(s) = e�t(s)�N (G) = 1 + o(1)This completes the proof of lemma 4.7Proof of lemma 4.8: Indeed, the variational problemsupx;y;zf t4(kxk2+kyk2)+ t+ "(t)4 z2���2(x; y; z) : kx�vk � �; ky�vk � �; kzk � �gadmits (v; v; 0) as unique maximum for every su�ciently small "; �. A Taylorexpansion then proves that it is non-degenerate. A standard application ofLaplace method then enables to write:supN�1Et;��;�eN(t+"(t))2 k �:�N k21k�:�N k�� <1And since j�N (G)j � kGk(t+"(t))Et;��;� eN(t+"(t))2 k�:�N k21k �:�N k��the proof of the continuity of �N is completed.Let us prove the second part of the lemma. Continuous and boundedfunctions are dense in C(t+"(t)) which enables us to replace a function G 2C0(t+"(t)) by such a function. So we now assume G to be continuous andbounded. As a �rst step, we are going to replace the conditional expectationE �e"N (�; t)jF (N)s � by e"N (�; s) and the same for � . This will be possiblebecause e"N (�; s) is a supermartingale (see (6)). De�ne:�N (G) = E
Et;��;� �G� �:�pN�1k�:�N k��e� s2 �:�pN 2E (e"N (�; t)jFs) E (e"N (� ; t)jFs)�� E 
Et;��;� �G� �:�pN�1k �:�N k��e� s2 �:�pN 2e"N (�; s)e"N (� ; s)�Now using the supermartingale property and the Cauchy-Schwarz inequality
22



we get:j�N (G)j = �����E 
Et;��;�"G� �:�pN�1k�:�N k��e� s2 �:�pN 2 (E (e"N (�; t)jFs)� e"N (�; s)) E (e"N (� ; t)jFs)+ e"N (�; s) (E (e"N (� ; t)jFs)� e"N (� ; s))!#������ 2kGk1 hE (Y ";�N (s)�AN ("; �; s))2i1=2 �EAN ("; �; s)2�1=2As the �rst term goes to zero and the second one is bounded, the di�erence�N (G) goes to zero.The proof now follows the lines of [5]:�E 
Et;��;� �G� �:�pN�1k�:�N k��e� s2 �:�pN 2e"N (�; s)e"N (� ; s)��2= UN (G)� E 
Et;�� e"N (�; t)withUN (G) = E 
Et;��;�;�hG� �:�pN�G� �:�pN� e�Ns2 k�:�N k2�Ns2 k�:�N k2e"N (�; s)e"N (� ; s)e"N (�; s)1k �:�N k��1k�:�N k��i (25)As in section 3.1 (8), we now prove the convergence of UN (G).Limit of UN (G): We obviously wish to apply the central limit theorem,which will be a consequence of Laplace method. Let K be the followingfunction:K �������� Sd � Sd � Sd �Md �Md �Md ! S3x; y; z; x1; x2; x3 7! 12 0@ kxk2 kx1k2 kx2k2kx1k2 kyk2 kx3k2kx2k2 kx3k2 kzk2 1AThe precise asymptotic in (25) is clearly related to the following variational
23



problem:supfhK(x; y; z; x1 ; x2; x3)1=2(1; 1; 1)Tj'(s)i + t� s4 [kxk2 + kyk2 + kzk2]� s2[kx1k2 + kx2k2]� ��3(x; y; z; x1; x2; x3)� I3(') � 3(t) :kx� vk � �; ky � vk � �; kz � vk � �; kx1k � �; kx2k � �;kK(x; y; z; x1 ; x2; x3)1=2'� (f; f; f)�k[0;s] � "o (26)As we are now used to doing, we �rst take " = � = 0. As we have:��3(v; v; v; 0; 0; x3) = ��2(v; v; x3) + ��1(v)we are exactly lead to the problem (15). Hence, the maximum is achievedat x3 = 0 and ' = (f0; f0; f0). A Taylor expansion enables to check that(v; v; v; 0; 0; 0; (f0 ; f0; f0)) is a non-degenerate local maximum. Hence, forsu�ciently small "; �, it is the unique solution of problem (26). We may nowcomplete the proof by using a standard Laplace method:limN!1 UN (G)UN (1) = EN (0;V 
V )G(�1)G(�2) = 0The only point that remains to be noticed is the following:UN (1) = (det(Id � sV ))�1 (1 + o(1))This completes the proof of lemma 4.8.5 Example: Heisenberg spinsIn this example, we consider 2�dimensional spins with uniform distributionon the circle of radius R > 0. Clearly the assumption (2) holds because � isof compact support. Let us denote by v = R2I2=2 the expectation of � 
 �.(I2 is the identity matrix of dimension 2)The �rst result is the following: for t > 0 small enough, the variationalproblem in (H1) admits v as unique and non degenerate solution.Under �(d�) it holds that trace(�
�) = R2. Hence ��1 is in�nite outsidethe a�ne hyperplane H = ftrace(x) = R2g in S2. Thus��1(x) = sup�2S2trace(�)=0 fhx� vj�i � lnE� exph� 
 �j�ig ; x 2 H24



We can also compute:E� exph� 
 �j�i = I0�R2k�kp2 �where I0 denotes the Bessel function I0(r) = 1=2� R 2�0 exp(r cos �) d�, whencewe deduce: ��1(x) = supr�0 �rkx� vk � lnI0(R2rp2 )�Restricting us to x 2 H, we have to maximize:t4kxk2 � ��1(x) = t4kvk2 + t4kx� vk2 � ��1(x)One can check that lnI0(r) � r2=4 thus ��1(x) � 2kx�vk2R4 . As a conclu-sion, as soon as tR4 < 8, the maximum in (H1) is uniquely achieved at vand is non-degenerate. If tR4 = 8, point v is still the unique maximum butis degenerate and if tR4 > 8, point v is not a maximum any longer.The real problem is to check assumption H 2.2. Let us denote by ��3 theCramer transform of the distribution of � 
 � under �
2. It is easy to seethat:��2(v; v; z) � ��2(v; v; 0) � ��3(z) and skvk42(kvk2 + kzk2) � skvk22 � skzk22Hence it is clear that assumption (H2:2) is satis�ed as soon as ��3(z) �skzk22 achieves its minimum uniquely at z = 0 for every s � t which is easilyseen to be equivalent to ��3(z) � tkzk22 with equality only when z = 0.Let � = � a bc d � 2 M2. We compute the Laplace transform of thedistribution of � 
 � :E�;� exph� 
 � j�i = 12� Z 2�0 I0 R2ra2 + b2 + c2 + d22 + � cos �! d�for some positive � = �(a; b; c; d) � a2+b2+c2+d22 . Function I0 is increasingon R+ thuslnE�;� exph� 
 � j�i � lnI0 �R2pa2 + b2 + c2 + d2�� R4a2 + b2 + c2 + d24 = R4k�k2425



As a immediate consequence, we get ��3(z) � kzk2=R4. Hence, if t < 2=R4,assumption (H2:2) is ful�lled.Our results now lead to the following conclusions. Let t < 2=R4. ThenEZN (t) = �1� tR48 ��1 exp NtR28 (1 + o(1))Furthermore, ZN (t)=EZN (t) L�! �1� tR44 � exp �where � is a N (0;�2 ln�1� tR44 �) random variable.We can generalize the previous results to d�dimensional spins. Let � bethe uniform distribution on the sphere of radius R in Rd , then there existsa t�d > 0 such that for t < t�d we have:EZN (t) = �1� tR4d(d + 2)�� (d�1)(d+2)4 exp NtR24d (1 + o(1))and ZN (t)=EZN (t) L�! �1� tR4d2 �d2=4 exp �where � is a N (0;�d22 ln�1� tR4d2 �) random variable.We recognize Gabay and Toulouse temperatures �c = d=R2 and �� =pd(d+ 2)=R2, see [9].6 Convergence of the Gibbs measure6.1 Convergence of the empirical measureWe are going to prove some results about the quenched law of the spins.In order to do so, we are �rst working with the empirical measure LN =1N PNi=1 ��i under the Gibbs measure GtN associated with ZN (t). Let %tN bede�ned by: d%tN = eHN (�;t)E�eNt4 k�:�N k2 dP�Let q(�) = � 
 �. For any borel subset B of P = P(Rd ), the space ofprobability measures on Rd , we have:E%tN (� : LN (�) 2 B) = E� exp hN t4 �:�N 2i1LN2BEZN (t)26



Hence according to Varadhan's theorem, we have:limN!1 1N ln E%tN (� : LN (�) 2 B) � sup� t4kh�; qik2 �H(�j�) : � 2 B��(t)where H(�j�) denotes the relative entropy w.r.t. �. Denote by J the functionof the right hand side, that is:J(�) = H(�j�)� t4h�; qi2 +� t4kvk2 � ��1(v)�One can easily check easily that J is a good rate function on P that achievesits minimum uniquely at �̂t.We are now proving theorem 1.2. Let us �rst consider continuous func-tions with compact support. Since the space of such functions is separable,we just have to consider one such function. Let then g be a continuousfunction with compact support, and let � > 0 be an arbitrary number. Wehave:limN!1 1N ln E%tN fjhLN ; gi�h�̂t; gij � �g � � inffJ(�); jh�; gi�h�̂t ; gij � �g < 0The in�mum is actually achieved because J is a good rate function and theset that we consider is a closed set. Hence there exists an integer N(g; �)such that for N � N(g; �), we have for a  (g; �) > 0:E%tN fjhLN ; gi � h�̂t; gij � �g � e�N (g;�)As a consequence, for N � N(g; �), we have:Pn%tNfjhLN ; gi � h�̂t; gij � �g � e�N (g;�)=2o � e�N (g;�)=2The measure %tN is related to GtN by the relation:GtN = EZN (t)ZN (t) %tNLet us state a lemma that we will prove afterwards:Lemma 6.1 Under H1, H2, for any u > 0, there exists a constant C(u; t) >0 such that:limN!1 1N lnP�j 1N lnZN (t)� 1N ln EZN (t)j > u� � �C(u; t)27



Choose now � > 0. We have for N � N(g; �):P�GtNfjhLN ; gi � h�̂t; gij � �g � �	= P�EZN (t)ZN (t) %tNfjhLN ; gi � h�̂t; gij � �g � ��� Pn%tNfjhLN ; gi � h�̂t; gij � �g � e�N (g;�)=2o+ P�EZN (t)ZN (t) � �eN (g;�)=2�� e�N (g;�)=2 + P�EZN (t)ZN (t) � �eN (g;�)=2�Moreover, for N �M(g; �) � N(g; �), we have:P�EZN (t)ZN (t) � �eN (g;�)=2�= P�� 1N lnZN (t) + 1N ln EZN (t) � 12 (g; �) + 1N ln ��� P�� 1N lnZN (t) + 1N E ln ZN (t) � 14 (g; �)�� exp ��NC( 2(g; �)=4; t)2 �Hence: XN P�GtNfjhLN ; gi � h�̂t; gij � �g � �	 <1According to Borel-Cantelli's lemma, we obtain a set 
g;� of full probabilitysuch that: 8! 2 
g;�; limN!1GtNfjhLN ; gi � h�̂t; gij � �g = 0We now conclude the proof for continuous functions with compact supportby considering a dense sequence gn and the following set of full probability:~
 = \�2Q�+ ;n�0
gn;�Let now g be such an arbitrary countinuous and bouded function, and M =[sup jgj] + 1. Let � > 0. Chose a constant A(M; �) > 0 such that:�̂t nx 2 Rd : kxk � A(M; �)o � �6M28



Let tM;� be a continuous truncation function such that 0 � tM;� � 1,tM;�(x) = 1 if kxk � A(M; �), tM;�(x) = 0 if x � A(M; �) + 1. Thenwe have:fjhLN ; gi � h�̂t; gij � �g � fjhLN ; gtM;�i � h�̂t; gtM;�ij � �=2g[ fjhLN ; g(1 � tM;�)i � h�̂t; g(1 � tM;�)ij � �=2gMoreover,fjhLN ; g(1 � tM;�)i � h�̂t; g(1 � tM;�)ij � �=2g � fjhLN ; g(1 � tM;�)ij � �=3g� nLN nx 2 Rd : kxk � A(M; �)o � �=3MoSince f� : � �x 2 Rd : kxk � A(M; �)	 � �=3Mg is a closed set that doesnot contain �̂t, we conclude as in the �rst part of the proof that there existsa 
M;� of full probability such that:8! 2 
M;�; limN!1GtN nLN nx 2 Rd : kxk � A(M; �)o � �=3Mo = 0Since gtM;� is continuous with compact support, we also have:8! 2 ~
; limN!1GtN fjhLN ; gtM;�i � h�̂t; gtM;�ij � �=2g = 0We now complete the proof by considering now the set of full probability
̂ = ~
 \ \M2N��2Q�+ 
M;�Proof of lemma 6.1In order to prove this lemma, let us prove �rst the result for Z�N (t) =E�1k �:�N �vk�� expHN (�; t). We are going to use an exponential inequalityfor the martingale associated with 1N lnZ�N (t) in its predictable representa-tion. Let us recall that ci;j = 1 if i 6= j and 1=p2 otherwise:1N lnZ�N (t) = E 1N lnZ�N (t)+ 1N Z t0 Xi�j E � 1Z�N (t)E�1k �:�N �vk��ci;j h�(i)j�(j)ipN eHN (�;t)����F (N)s � dBi;j(s)
29



Let Gt;�N denote the Gibbs measure associated with Z�N (t). We get the fol-lowing upper bound for the bracket:Xi�j �E 1Z�N (t)E�1k �:�N �vk��ci;jh�ij�jieHN (�;t)����F (N)s �2=Xi�j �Eci;jGt;�N (h�ij�ji)����F (N)s �2 �Xi�j EFs hc2i;j(Gt;�N (h�ij�ji))2i� E 24Gt;�N 0@Xi�j c2i;jh�ij�ji21A����F (N)s 35 = E �hk�:�k22 i�����F (N)s �� N2(kvk + �)22Hence:* 1N Z �0 Xi�j EFs � 1Z�N (t)E�1k �:�N �vk��ci;j h�ij�jipN eHN (�;t)����F (N)s � dBi;j(s)+s� t(kvk + �)22NAn inequality for exponential martingales gives for any u > 0:P(j 1N lnZ�N (t)� E 1N lnZ�N (t)j > u) � 2 exp �� Nu2(kvk+ �)2t�Let us now prove the lemma for ZN (t).1. We have previously proved that P�almost surely,limN!1� 1N lnZ�N (t)� E 1N lnZ�N (t)� = 02. Since Z�N (t)=EZ�N (t) converges in law to an almost surely non-zerorandom variable, we have in P-probability:limN!1� 1N lnZ�N (t)� 1N ln EZ�N (t)� = 0Hence we get: limN!1� 1N E ln Z�N (t)� 1N ln EZ�N (t)� = 030



As a consequence, for any u > 0, as soon as j ln EZN (t) � ln EZ�N (t)j +j ln EZ�N (t)� E ln Z�N (t)j � Nu=2 we have :P(j 1N lnZN (t)� 1N ln EZN (t)j > u) � P(j 1N lnZN (t)� 1N E ln Z�N (t)j > u=2)� P(j 1N lnZN (t)� 1N lnZ�N (t)j > u=4)+P(j 1N lnZ�N (t)� E 1N lnZ�N (t)j > u=4)Let us study these expressions. Since ZN (t) � Z�N (t), we have:P(j 1N lnZN (t)� 1N lnZ�N (t)j > u=4) = P(ZN (t)Z�N (t) � exp(Nu=4))= P(ZN (t)� Z�N (t)EZ�N (t) � (exp(Nu=4) � 1) Z�N (t)EZ�N (t) )� P(ZN (t)� Z�N (t)EZ�N (t) � 1� e�Nu=4) + P( Z�N (t)EZ�N (t) � e�Nu=4)� 11� e�Nu=4 E [ZN (t)� Z�N (t)]EZ�N (t)+ P( 1N lnZ�N (t)� E 1N lnZ�N (t) � �u=4)As a conclusion,P(j 1N lnZN (t)� 1N ln EZN (t)j > u) � (1� e�Nu=4)�1 E [ZN (t)� Z�N (t)]EZ�N (t)+ 2P(j 1N lnZ�N (t)� E 1N lnZ�N (t)j � u=4)Since both expressions go exponentially quickly to zero, the result is proved.�Corollary 6.2 Let GtNLN be the random probability measure on Rd de�nedby: GtNLN (dx) = Z GtN (d�)LN (�; dx)Then P�almost surely, GtNLN converges weakly to �̂t.31



6.2 Finite dimensional marginals of the Gibbs measureWe are now proving theorem 1.3. Let k be a �xed integer. We study theconvergence in law of (�1; : : : ; �k) under GtN .The proof of the proposition relies on the use of two replicas. Let �tN bede�ned by:d�tN = eHN (�;t)1k �:�N �vk��1Bt(f;") �HN (�)N �E 
E�eHN (�;t)1k�:�N �vk��1Bt(f;") �HN (�)N � dP�Set �";�N = [EZ";�N (t)]2=E [Z";�N (t)2]. De�ne q1(�; �) = � 
 �, q2(�; �) = � 
 �and q3(�; �) = � 
 � . Under �";�N E (�tN 
 �tN ), the empirical measure L(2)N =1N PNi=1 ��(i);�(i) statis�es for any Borel subset B of P(Rd � Rd ):limN!1 1N ln�";�N E�tN 
 �tN n(�; �) : L(2)N 2 Bo �supnhK(h�; q1i; h�; q2i; h�; q3i)1=2(1; 1)Tj'i �H(�j�
2)� I2(') : � 2 B;kh�; q1i�vk � �; kh�; q2i�vk � �; kK(h�; q1i; h�; q2i; h�; q3i1=2'�(f; f)Tk � "oWe can then check as previously that under �";�N E�tN 
 �tN , L(2)N weaklyconverges to �̂t 
 �̂t. By exchangeability, we get the propagation of chaos,in the sense that for any integer k, the law of ((�1; �1); : : : ; (�k; �k)) un-der �";�N E�tN 
 �tN weakly converges to (�̂t 
 �̂t)
k. Hence we get for anyconitnuous and bounded function g on Rd � Rd :limN!1�";�N E�tN 
 �tNg(�1; : : : ; �k)g(�1; : : : ; �k) = h�̂
kt ; gi2As a consequence, by polarizing the result and taking one of the functionsequal to 1, we get:limN!1�";�N E�tN 
 �tNg(�1; : : : ; �k) = h�̂
kt ; giAs a result, we get:limN!1 E "�tN (g(�1; : : : ; �k))� Z";�N (t)EZ";�N (t)h�̂
kt ; gi#2 = 0We now divide by Z";�N (t)=E [Z";�N (t)] which converge in law to a almost surelynon zero random variable and according to (5) the proof is complete.32
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