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An overview of the literature.De�nitions.The trajectory of the individual vehicle constitutes the basis of the computation of traveltimes. For a link or a trip, the experienced travel time (ETT) of the vehicle can be deduced,estimated at the exit of the link or at the end of the trip. Conversely, at the beginning ofthe trip, or on the entry of the vehicle on the link, one might try to estimate a predictivetravel time (PTT), deduced from prevailing tra�c conditions.When stationary tra�c conditions are assumed, both de�nitions concur and can beextended in an obvious way to links, since all vehicles crossing a link have the same traveltime. Link travel times can then be de�ned and route travel times computed as the sum oftravel times on the links forming the route. When dynamic tra�c conditions are considered,the problem becomes more complex and the de�nition of link or route travel times is nolonger unique or straightforward. If the above de�nitions remain valid for an individualvehicle, the de�nition and manipulation of link and route travel times depend very muchon the type of assignment considered.De�nitions of various types of dynamic assignment have been widely discussed in theliterature, (see for instance (Papageorgiou 1990) for a very clear presentation). The typol-ogy of travel times is closely related to that of assignment problems. These can roughlybe classi�ed according to the nature of the optimum, whether user or system optimum,and whether predictive or reactive. Furthermore, every assignment problem is related toa speci�c tra�c �ow model and a speci�c time-scale, which have great impact on thecorresponding travel-time model.For a system optimal assignment, the criterion used is the total time spent in thenetwork (i.e. the sum of all individual travel times). This can be considered as an extensionof the notion of mean travel time, and is strictly equivalent if only one origin/destinationis considered. For a user optimal dynamic assignment, it is necessary to distinguish twocases. If a reactive optimum is considered (or the similar Boston equilibrium as de�ned by(Friesz et al. 1989)), a notion of instantaneous travel time (ITT) has to be de�ned, whichhas no physical meaning but characterizes tra�c �ow conditions at a given instant. ThisITT might be constituted of link PTTs, link ETTs, or be a completely synthetic indexof the link or network �ow state. If a predictive optimum is considered, predictive traveltimes must be used, only known at the end of trip time, or predicted, or estimated throughan iterative assignment procedure.The simple cases.In tra�c conditions that are stationary, or simpli�ed as such, the most usual way to com-pute travel times is to use some function deriving link travel times from link �ows. One canrefer to (Branston, 1976) which presents an extensive review of travel time function in useat that time. Some more recent papers on that subject are indicated in the work of Weyn-mann et al. (1994), in which travel time functions having �nite values for over-saturatedtra�c conditions are brie�y presented. Koutsopoulos and Habbal (1994) present a moredetailed review, insisting on travel time functions used in practice for tra�c equilibriummodels.On the contrary, when a system optimal assignment is computed, individual link traveltimes must be replaced by a global cost function: the total time spent on the network by allusers. This quantity can be easily calculated by integrating the number of vehicles presentin the whole network over the optimization horizon, as was initially proposed by Merchantand Nemhauser (1978a and b). This work has been re-used in quite a di�erent context:in the case of route guidance, the discretized macroscopic METACOR model enables theoperator to maintain a system optimum (Eloumi 1996).2



A large part of the more theoretical literature concerned with predictive optima isrepresented by models in which the basic component of the tra�c �ow model itself isconstituted of travel time models. These are supposed to be functions of the state of thenetwork, and vehicles are propagated along links according to those travel times which musttherefore be considered as PTTs (Friesz et al. 1993, Fernandez and De Cea 1994, Ran andBoyce 1994, Astarita 1996, Ran et al., 1996). The only real di�culty with such models isthat of internal coherence. We shall say again a few words later about these models, but forthe time being, let us note that they are characterized by: a large time-scale, uninterruptedtra�c, the lack of explicit supply constraints (reputedly such constraints are implicit inthe travel time function itself), travel times which are a function of the network state.Interrupted tra�c �ow: temporal aggregation.When a tra�c �ow model is used in relation to reactive assignment (simulation of informa-tion or guidance on the basis of instantaneous travel times) the time scale of this model istypically shorter than a minute. Therefore, some kind of temporal aggregation or averag-ing must be applied, in order to smoothen the short-term travel time �uctuations resultingfrom tra�c light cycles etc. . . .Further, if the out�ow of the link is nil, most natural travel time estimates yield in�niteor unrealistic values. Predictive travel time, estimated on the basis of prevailing tra�cconditions, will be underestimated. Experienced travel times will not take any e�ectivevalue during the period in which the exiting �ow is nil (but may be given conventionalvalues, as will be seen later). Instantaneous travel times, when calculated on the basis ofthe link length divided by the mean speed on that link, will tend to be in�nite.These di�culties led most authors to compute direcly average travel times, with thechoice of the duration of the averaging period depending closely on the speci�c natureof the problem addressed to by the tra�c model. We shall make in the sequel a briefreview of the averaging methods mentionned in the literature, in various cases of optimumcalculation. But �rst let us stress a point we deem important: that the computation oftravel times and their averaging relate to two distinct processes and should be strictlyseparated. Indeed they belong to two distinct levels of the tra�c model: travel timecomputation is related to the network state estimation, i.e. the basic level of the model,whereas travel time averaging concerns user information and/or tra�c management andcontrol, and is therefore related to the control level of the model, in some broad sense.Hence there are two very distinct problems that must be adressed: the choice of travel timeestimates with reasonable properties, both physical and computational, and the temporalaggregation of these travel times. It is the former problem that will be examined in somemore detail in the second part of the paper.Let us turn towards the literature on temporal aggregation and examine a few cases.Mesoscopic tra�c models divide travel time into two parts: the journey time and the queuewaiting time. In the reactive assignment model DYNASMART (Jayakrishnan et al., 1994),the total travel time is calculated at each time step and, to the knowledge of the authorsof the present paper, never averaged. In case of �xed time signals, the queue length iscalculated on the basis of the e�ective status of the tra�c signal. In the case of tra�cactuated signals, at the end of each cycle, an averaged exit capacity of the link is used tocompute the exiting �ow.CONTRAM is one of the earlier models developed to simulate the user optimum in thecase of day-to-day variation (Leonard et al. 1978, Leonard et al. 1989). The peak houris divided into a dozen periods. For each period and for each link controlled by a tra�csignal an average queueing waiting time is calculated. The calculation is made accordingto time dependent queuing theory, thus re�ecting the stochastic nature of vehicle arrivals.A queuing time is calculated for the whole period, based on the total demand during that3



period and on the ratio of green over the cycle duration. In the more recent mesoscopicmodel of Weynmann et al. (1994), the delay is calculated for the �uid, desaturating andsaturated cases of the tra�c signal. The averaging period is taken to be the minimumcommon multiple of all cycle durations of the network. During this period, the in�ows aresupposed to be constant.To cope with the tra�c light signal problem, the recent macroscopic model STRADA(Buisson et al., 1995) uses also an averaging period that is taken to be the minimumcommon multiple of all cycle durations. During this period, demand can vary.INTEGRATION uses a experimented travel time (ETT) to simulate the on-route guid-ance of drivers. This ETT is aggregated spatially in order to yield link travel times or routetravel times. The link travel time is computed typically every �ve minutes. No mention ismade in the most recent paper (Van Aerde, 1995) of the impact of tra�c signal cycles onthe average values of travel times or of really severe incidents (remaining �ow nil) a�ectingmore than one such averaging period.Travel time estimation in the case of incidents is a relatively new and expanding subject,motivated notably by route guidance problems. If the incident totally blocks the �ow onsome network link, the travel time on that link tends to be in�nite. But this is not a usefulpiece of information because the assignment model can compute the shortest path withoutconsidering that link (which obviously does not belong to the shortest path). On the otherhand, for simulation models whose travel time estimate relate to the ETT category, suchas INTEGRATION, using the travel time of the last vehicle to exit the link leads to asystematic underestimation of the mean travel time values when the exiting �ow is nil. Ifthere is a residual �ow, the mean travel time resulting of ITT-like estimates might take onabsurd values like one day or one week. Various heuristic methods have been proposed, asfor instance in the work of Cremer et al. (1993). These authors propose to estimate thetime necessary for drivers to exit the incident-impeded link by summing the total numberof vehicles between the entrance and the incident bottleneck and dividing this sum by theremaining bottleneck out�ow.Interrupted tra�c �ow: spatial aggregation.All models must also address the problem of spatial aggregation, i.e. the computationof travel times along paths. Spatial aggregation is trivial for both static models anddynamic system optima, as mentioned above. For dynamic models using PTTs as theirbasic propagation model, the situation is straightforward enough. CONTRAM for instance(Leonard et al. (1978)), or the model described by Drissi-Kaïtouni et al. (1992), intend toreproduce the assignment of commuters on the basis of the travel time experienced the daybefore. Therefore, these models use a spatial aggregation based on the following rule. Tocompute the total travel time in a network from one origin to one destination, the meantravel time of the �rst link at the date of entrance in the network is used. The travel timeof the second link is the one computed for the moment following the exit of the �rst link,and so on from one link to the next. This path travel time is e�ectively a predictive traveltime and reproduces the conditions encountered by a vehicle.Other models cannot easily compute such a predictive travel time and must rely onsome link ITTs to be combined in order to yield path ITTs. No car actually experiencessuch a travel time, but it can be a good estimation of the conditions encountered onthe network at that moment. This is the solution retained by the macroscopic assignmentmodels (METACOR and STRADA) which aim to reproduce the e�ect of a guidance and/orinformation system. It is also, for the time being, used by DYNASMART. In the nextsections we shall try to de�ne such travel times in a rigorous manner.
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Link travel times: a general framework.Introduction.Our aim in the following sections is to give rigorous de�nitions and computational proce-dures for di�erent travel times within the macroscopic approximation of interrupted tra�c�ow. The starting point of our analysis of possible travel time expressions is the single link,say [a; b], with its associated tra�c �ow modelled with the help of the usual macroscopicvariables Q (�ow), K (density) and V (speed).
a

bNearly everything we shall say in the sequel does not depend on the speci�c nature ofthe underlying tra�c �ow model, whether �rst- or second-order etc . . . . A crucial rolewill be played by the speed �eld V(x; t) def= (V (x; t); 1), assumed to be integrable, withexistence and unicity of the corresponding �eld-lines. Let us denote by X the vehicletrajectory associated to such a �eld-line: X (x0; t0; t) is the position at time t of the userwhose position at time t0 is x0. X (x0; t0; t) is the solution at time t of:_x(t) = V (x(t); t)x(t0) = x0 .Since the �eld-lines associated to trajectories X do not intersect in the (x; t)-plane, this kindof description is intrinsically in agreement with the FIFO hypothesis: in accordance withthis representation, vehicles exit the link in the precise order they entered it. Consideringa vehicle entering the link at time t, exiting it at time E(t), it follows X (a; t;E(t)) = b.The function E is increasing and admits an inverse I: I(t) is the time at which a vehicleabout to leave the link at time t has entered it. If V (b; :) = 0 during some time interval, thede�nition of E and the relationships between I and E are not completely straightforwardsince no vehicle may leave the link during such an interval. Indeed it is necessary to de�neE(t) as: E(t) def= infsfs =X (a; t; s) > bg .It follows that I(E(t)) = t 8t ,but the converse is not true, indeed:� E(I(t)) = t if V (b; t) > 0E(I(t)) � t if V (b; t) = 0 .This last inequality re�ects the fact that the vehicle about to leave the link (after havingentered it at time I(t)) must wait till the speed at exit point b becomes > 0 again. Thegraphs of E and I are illustrated hereafter; they are of course symetric.
E(t) I(t)

t t

V(b , E(.)) = 0

V(b , .) = 0
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Another way yet to express the complications resulting from V (b; :) = 0 is to note thatV (b; t) = 0 implies dIdt (t) = 0.Experienced and predictive travel times.Then we de�ne: ETT (a; b; t) def= t� I(t)the experienced travel time (of the user about to exit the link at time t). Let us note animportant consequence of the preceding considerations:V (b; t) = 0 =) ddtETT (t) = 1 .(1)Conversely, PTT (a; b; t) def= E(t)� tde�nes the predictive travel time of users entering the link at time t. In the case of a�rst-order model of the LWR (Lighthill-Whitham-Richards) type given by@K@t + @@xQe(K; x) = 0with Qe the equilibrium �ow-density relationship, the computation of PTT (a; b; t) at timet would require the initial condition K(:; t) on the link and the downstream tra�c supply�(b; r) for time r ranging from t to E(t), since it would require the computation in the(x; t)-plane of the �eld-lines with origin (x; t) and x 2 [a; b]. We refer to (Lebacque 1995)for a de�nition of the twin notions of local tra�c supply and demand, and the relatedde�nition of boundary conditions for the LWR model. The upstream demand at point ais without in�uence on the �eld-line originating at (a; t), because in the LWR model, thepropagation speed of information, @@Qe (:; x) is always less than the vehicle speed Ve(:; x)(with Ve the equilibrium speed-density relationship). On the other hand, the computationof ETT (a; b; t) can be carried out by solving the following partial di�erential equation:������� V @T@x + @T@t = 1T (a; t) = 0 (8t) .(2)Indeed, dT is equal to dt along trajectories, hence T (x; t) = ETT (a; x; t). This de�nitionof the ETT is important in practice, because it implies that it is not necessary to storepast data in order to compute the ETT function, i.e. T , as the formula (14) will illustratelater on.
a b

cConsidering three points a, b, c in that order on a line, and considering the trajectory of avehicle passing through these points, the following functional equations are satis�ed:PTT (a; c; t) = PTT (a; b; t) + PTT (b; c; t+ PTT (a; b; t))ETT (a; c; t) = ETT (b; c; t) + ETT (a; b; t� ETT (b; c; t)) ,which show how these travel times are to be combined. These are de�nitely not additivequantities! Hence the di�culties related to spatial aggregation.6



Instantaneous travel times.Although experienced travel times may be used for reactive assignment (this is the case inthe INTEGRATION model), they do not necessarily constitute the prime choice, since anexperienced travel time re�ects more what has just happened than what is about to happen.Another possibility is to de�ne directly an instantaneous travel time ITT (a; b; t) for thelink. A standard and natural de�nition (such as the one given by Ran and Boyce (1994))speci�es the instantaneous travel time as the travel time that would result if prevailingtra�c conditions remained unchanged. In the present context of macroscopic models,this means that to compute ITT (a; b; t) we have to de�ne a time-constant speed �eldsay V t(x; r) def= (V (x; t); 1) for all instants r � t, and compute its �eld-lines, which are ofcourse invariant through translations parallel to the time-axis. Therefore the correspondingformula is given by: ITT (a; b; t) def= Z ba d�=V (�; t) .(3)This formula is of course additive (a desirable feature if the estimation of trip travel timesis required) but regrettably it is only applicable if there exists some strictly positive lowerbound for the speed, as in some models. In the general case, the speed may become nilif the tra�c is interrupted, and the above integral might diverge, or take on unrealisticvalues. Therefore, we construct the instantaneous travel time in order to satisfy some setof properties. The properties we retained are that, on a small scale, the ITT should be ofthe order �dx=V (x; t) at low density and high speed (yielding ITT (x; :; t) � R :x d�=V (�; t))and of the order dt for strongly congested tra�c. The former property re�ects simply theidea that the instantaneous travel time should be close to its �natural de�nition� (3) at lowdensity. The latter property is similar to the analogous property of ETT s (1). It re�ectsthe fact that, for interrupted tra�c, d ITT (x; :; t) = dt yields the simplest estimate of theinterruption duration, especially in the case of an incident in which this duration may notby de�nition be known beforehand. The simplest model satisfying to these properties isdescribed by the following partial di�erential equation (Lebacque 1996):������� �V @R@x + (1� VVmax )@R@t = 1R(b; t) = 0 (8t) ,(4)with Vmax the maximum speed and R(x; t) def= ITT (x; b; t) (instantaneous travel time fromx to b estimated at time t, labeled backward ITT in the above reference). To explainformula (4), let us note �rst that at high speed and low density, the model should yield�V @R@x � 1 ,(5)and at low speed and high density, it should yield@R@t � 1 .(6)Of course, in all cases, the boundary condition R(b; t) = 0 should be satis�ed. Now, (4) isnothing more than a linear interpolation between (5) and (6). Of course, (4) constitutes byno way the only possible model satisfying our requirements. Even the boundary conditionmight be changed to say S(a; t) = 0 ,7



yielding an estimate S(x; t) def= ITT (a; x; t) (instantaneous travel time from a to x esti-mated at time t, labeled forward ITT in the above reference). A partial di�erential equationfor S can be constructed according to the same ideas as those used for R, yielding:������� V @S@x + (1� VVmax )@S@t = 1S(a; t) = 0 (8t) .(7)The choice between R and S is essentially a matter of application. In the sequel, forbrevity's sake, we shall concentrate our attention on R.The ITT estimate R can be computed analytically. The method is the following.Denoting u the variable u def= t� xVmax ,(8)and W the �eld W(x; t) def= (�V (x; t); 1� V (x; t)Vmax )(9)whose �eld-lines (�(u); �(u)) are given by:" d�du = �V (�; �)d�du = 1� VVmax (�; �)(10)it follows that dR = du(11)along such a �eld-line. Hence, to compute R, it su�ces to compute the �eld-lines (10).The trivial graphical interpretation of u in the (x; t) plane extends to R along �eld-lines ofW.A di�culty arises at shock-waves; it is indeed possible that two distinct �eld-lines ofW originate from the same point of a shock-wave, as is illustrated hereafter.
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Shock-Wave

t

x

In that case, the shock-wave itself must be considered a �eld-line of W, along which (11)applies. By considering three consecutive points of a �eld-line, the following three-pointfunctional equation results:ITT (a; c; t) = ITT (a; b; t) + ITT (b; c; t� a� bVmax � ITT (a; b; t)) .It may be noted that, if the speed is near Vmax on [a; b], i.e. ITT (a; b; t) is nearly equal tob�aVmax , then the above functional equation becomes nearly additive, i.e.:ITT (a; c; t) � ITT (a; b; t) + ITT (b; c; t) ,which is precisely what is to be expected. Similar properties are satis�ed by the forwardITTs. 8



Semidiscretized models.By semidiscretized models we mean models continuous in time and discretized in space,with the link as the space discretization unit. As indicated above, the link PTT (t) isessentially a function of the link state K(:; t) at time t and the downstream tra�c �owsupply �(b; s) for s 2 [t; E(t)]. In �uid tra�c conditions (i.e. downstream tra�c �owsupply su�cient to accomodate the tra�c demand of the link at all times), and at thezero-th order approximation, one might consider PTT (t) as a function of N(t). This is thebasis of some �ow models for assignment problems (Fernandez and de Cea 1994, Friesz etal. 1993, Astarita 1996, Ran et al. 1996). In such models the link tra�c �ow dynamicsare described by a model of the following kind:dNdt (t) = u(t)� v(t)(u(t) the link in�ow and v(t) the link out�ow), supplemented by a model for the PTT (t),called here �(t): �(t) = f(N(t))and the FIFO condition, which in the present case does not result naturally from the model.This last condition implies (Astarita 1996) that:v(t+ �(t)) = u(t)1 + d�dt (t) = u(t)dEdt (t)(12)by expressing that users entering the link at time t exit it at time t+ �(t). With the FIFOhypothesis, the following integral relationships result:N(t) = Z tI(t) u(s)ds = Z E(t)t v(s)ds .These are the same as the relationships that would be obtained within the framework ofthe preceding section. Indeed, by integrating the conservation equation@K@t + @Q@x = 0over areas (1) and (2) depicted hereafter (and bounded diagonally by a �eld-line in the(x; t) plane),
(1)

(2)

t
xba

the following relationships result:N(t) def= Z ba K(�; t)d� = Z tI(t)Q(a; s)ds = Z E(t)t Q(b; s)ds ,9



relating the link in�ow and out�ow to the number N(t) of vehicles contained in the linkat a given time.Let us note at this point some di�erences in the terminology, since in (Ran and Boyce1994) for instance, the PTT is called the actual travel time.It can be shown that the only consistent FIFO model of the above kind is the oneassociated to a linear travel time function:�(t) = � + �N(t) .This result was suggested in (Daganzo 1995), the su�ciency of this linear form was demon-strated in (Friesz et al. 1993), and its necessity in (Lebacque and Lesort 1996). The linearpart represents the average time lost in the queue at the exit of the link, which is somewhatat odds with the hypothesis that the downstream tra�c supply can be neglected. It is notknown to the authors of the present paper whether non-FIFO models of the above kindcan be built. The analysis of such models might prove di�cult since they would not admitany closed expressions such as (12) for the link out�ow.Fully discretized macroscopic models.We shall now consider discretized macroscopic models and develop recursive formulas forETTs and ITTs. The emphasis on recursive formulas is motivated by the need for formulasrequiring as little computational e�ort as possible in order to be suitable for real-timeapplications. Unless stated otherwise, the report (Lebacque 1996) is the reference for allresults described in the present section.For discretized macroscopic models, either there exist no intrinsic estimates of speed(1st order models), or, if such estimates exist, they may lead to unrealistic values of thetravel times. Hence we propose the following methodology. In most discretized macro-scopic models, links are divided into cells say (s) = [xs�1; xs], of length ls, containing N tsvehicles at time t�t, with the average cell exit �ow Qts during time-step [t�t; (t + 1)�t],estimated at the cell exit point xs. A notable exception to this kind of approach to dis-cretized macroscopic modelling is the particle discretization approach, as illustrated inINTEGRATION.
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. . . . . . . .No hypothesis is made on the macroscopic model itself, nor on the manner in which theabove quantities are computed. We denote by V ts the cell exit speed de�ned asV ts = QtsKts = QtslsN tswith Kts def= N ts=ls the mean cell density at time t�t. The signi�cance of this choice is thatit permits emulation of FIFO behaviour within each cell. We shall consider only what wecall proper discretizations i.e. discretizations such that the cumulated cell out�ow Qts�tduring a time-step be less than the number of vehicles N ts contained in the cell at time t�t:Qts�t � N ts .10



Let us de�ne now the coe�cients������ �s = Vs;max�t=ls ,�ts = V ts =Vs;max = Qts�t=(�sN ts) ,�ts = Qts�t=N ts = �s�ts .(13)The fact that the discretization is proper can be translated as�ts � 1and in order for the discretization to work at all, it is necessary that�s � 1 .Those inequalities are assumed to hold throughout the present section.For a link containing cells s = 1 to S, equation (2) for the experienced travel-time Tmay be discretized according to:T t+1s = �tsT ts�1 + (1� �ts)T ts +�t ,(14)with T ts denoting the approximate experienced travel time from x0 to xs at time t�t. WithS = 1, this formula is equivalent to the ITT formula introduced in (Buisson et al. 1995)on a completely heuristic basis. The boundary condition is T t0 = 0. Introducing the celltravel times ETT ts = T ts � T ts�1, the above formula can be rewriten as:ETT t+1s = �(T t+1s�1 � T ts�1) + (1� �ts)ETT ts +�t .This last formula is important in two ways. First it gives an indication of how to aggregatespatially travel-times. Second, it impliesETT t+1s � lsV ts = �(T t+1s�1 � T ts�1) + (1� �ts)(ETT ts � lsV ts ) ,showing that the cell-travel time relaxes towards ls=V ts if the tra�c �ow is not too unsta-tionary.The recursive formula (14) is obtained in the following way.
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T (x; t) def= ETT (a; x; t) is approximated by a continuous piecewise linear function whosevalues at points xs are T ts at times t�t. The �eld-lines of V are approximated by lines,and we use the fact that dT = dt along such a line. Let (yts; t�t) denote the origin of the�eld-line ending at (xs; (t+ 1)�t), then:yts = xs � V ts�t11



at the �rst order approximation. It follows:T t+1s = T (yts; t�t) + �tand the linear interpolation of T (yts; t�t) between T ts and T ts�1 yields (14).The discretization of (4) yields:2664 Rt+1s�1 = �t1��s + (1� �s�ts1��ts )Rts�1 + �s�ts1��tsRts if �ts � 11+�sRt+1s�1 = 1�s�ts [�t+ (1� �ts)Rts + (�s�ts + �ts � 1)Rt+1s ] if �ts � 11+�s(15)The boundary condition is T tS = 0. Introducing the cell travel time ITT ts = Rts � Rts�1, itfollows: 2664 ITT t+1s = �t1��s + (1� �s�ts1��ts )ITT ts � (Rt+1s�1 � Rts�1) if �ts � 11+�sITT t+1s = �t�s�ts � 1��ts�s�ts (Rt+1s�1 �Rts�1) if �ts � 11+�s .It follows:2664 ITT t+1s � lsV ts = (1� �s�ts1��ts )(ITT ts � lsV ts )� (Rt+1s�1 � Rts�1) if �ts � 11+�sITT t+1s � lsV ts = �1��ts�s�ts (Rt+1s�1 � Rts�1) if �ts � 11+�s .showing that the cell-travel time relaxes towards ls=V ts if tra�c �ow conditions approachstationary, and that this relaxation process is much faster for ITT estimates than for ETTestimates, and this is precisely the result that was hoped for: that the ITT should be asclose to the ideal formula (3) as possible even in interrupted tra�c conditions. It is in thisrestrictive sence that our de�nition of an ITT and the above-mentionned de�nition of Ranand Boyce (1994) may be said to concur.The recursive formula (15) is obtained in the following way.
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R(x; t) def= ITT (x; b; t) is approximated by a continuous piecewise linear function whosevalues at points xs are Rts at times t�t. The �eld-lines of W are approximated by lines,and we use the fact that dR = du along such a line. Depending on whether �ts � 1=(1+�s),or �ts � 1=(1 + �s), the �eld-line ending at (xs�1; (t + 1)�t) originates at point (xs; � ts) orat point (�ts; t�t), with: 2664 � ts = (t+ 1� 1��ts�ts )�t�ts = xs�1 + ls �ts1��ts .12



Applying dR = du and the linearity of R, it follows:Rt+1s�1 = R(xs; � ts) + (t+ 1)�t� � ts + (ls=Vs;max)= R(xs; � ts) + (�t=�ts) if �ts � 1=(1 + �s)and Rt+1s�1 = R(�ts; t�t) + �t + (�ts � xs�1)=Vs;max= R(�ts; t�t) + �t=(1� �ts) if �ts � 1=(1 + �s) .Both formulas (14) and (15) are recursive, hence easy to implement and of reducedcomputational cost. Further, they can be extended to the case where the global �ow is splitinto partial �ows, according to destination, path, type of driver (informed or uninformed),depending on the assignment problem. They can also, whithin the framework developedfor the STRADA model (Buisson et al. 1995), be extended to movements of intersections.Finally, when the tra�c �ow is nearly stationary, both formulas imply the convergence ofthe ETT tss, ITT tss, towards lsV ts on every cell s, as already noticed, with a better convergencefor the ITT.Conclusion.Much work remains to be done. Other ITT estimates are conceivable, depending on theproperties one deems important for such quantities. The problem of the time-aggregationof travel times must be addressed, especially in the case of adaptative regulation schemeslacking periodicity. The impact of the proposed estimators on tra�c assignment andmanagement schemes must be studied as well. Especially since one of the motivationsbehind such an �axiomatic� de�nition of travel times as we have given here is to providesome solid ground for assignment computations. Finally, some experimental assesment ofthe proposed travel time estimators should be attempted, although it would seem di�cultto separate the properties of the estimators from those of the associated macroscopic tra�c�ow model.References.Astarita, V. (1996). A continuous-time link model for dynamic network loading based ontravel time function. In: Proceedings of the 13th ISTTT (International Symposiumon Transportation and Tra�c Theory), Lyon 1996 (J.B. Lesort, ed.), pp 79-102.Pergamon.Branston, D. (1976). Link travel time functions: a review. Transportation Research 10:223-236.Buisson, C., J.P. Lebacque and J.B. Lesort (1995)1. Macroscopic modelling of tra�c �ow and assignment in mixed networks. In:Proceedings of the 6th International Conference on Computing in Civil and BuildingEngineering, Berlin 1995 (P.J. Pahl and H. Werner, ed.), pp 1367-1374.2. STRADA, a discretized macroscopic model of vehicular tra�c �ow in complex net-works based on the Godunov scheme. In: Proceedings of the IEEE-SMC IMACS'96Multiconference, Lille 1996, Symposium on Modelling, Analysis and Simulation Vol2, pp 976-981. 13
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