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Abstract

The first purpose of this article is to give a sound mathematical foundation to
perturbation methods for some nonlinear Quantum Chemistry models. This
contributes to the understanding of computations on molecular systems in
situ, such as solvated molecules or molecules subjected to a uniform external
electric field. Our second purpose is to prove in the latter setting a result
of non-existence of solutions to the Thomas-Fermi-Von Weizsdcker and to
the Hartree-Fock equations, which is the nonlinear counterpart of a result by
Avron and Herbst [2].

1 Introduction

The perturbation method is a standard tool in Quantum Mechanics. Its aim is to
compute the eigenstates of a Hamiltonian H, = Hy + aW from the knowledge of
the eigenstates of a reference Hamiltonian Hy. For the reader’s convenience, let us
briefly describe this method.

Denote up a normalized eigenvector of Hy, associated with the eigenvalue —eg.
Let us consider « as a real parameter. We are looking for two analytic functions
e(a) and u(«) satisfying €(0) = ¢y and u(0) = up and so that for all a, u(a) is a
normalized eigenvector of H, associated with the eigenvalue —e(a). By inserting
the expansions e(a) = Y %a® and u(e) = Y- %o into the secular equation and

the normalization condition [ |u(a)|? =1, we get

(RS) { (Ho + €0) “ur, = fr

[ udur = ay



where fi, and ay, only depend on (u;)o<j<k—1 and (€;)1<;j<k—1. When the triangular
system (RS), defined as the union of the subsystems (RSk)r>1, has a solution, we
get two Taylor series ) | 7 X Fand > wX ¥ Those expansions are called Rayleigh-
Schrodinger expansions and abbreviated in the sequel as (RSE). If the convergence
radius of each serial is positive then for « small enough, u(e) = > %a* is a
normalized eigenvector of H, associated with the eigenvalue —e(a) = — Y %a”.
In practice, only the first k£ terms of the expansion are computed, which gives an
approximation of u(«) and e(a). This is called the k-order perturbation method.

The mathematical theory of the perturbation of linear operators, which underlies
that method, has been deeply studied since the pioneering works by Rellich on
regular perturbation theory [18]. We refer the reader to the reference textbooks
[13] and [17].

The main interest of the perturbation method in the early days of Quantum Mechan-
ics was to widely broaden the set of the quantum systems that could be analytically
computed. In fact, only very few equations in Quantum Mechanics can be directly
solved without resorting to computers. The relevance of the perturbation method in
today’s Quantum Chemistry is thus not obvious, since one could at first sight argue
that, with a computer, the calculation of the eigenstates of the perturbed system is
a priori neither easier nor more difficult than the calculation of the eigenstates of
the unperturbed system. Nevertheless, the perturbation methods are still of great
interest in Computational Quantum Chemistry. Let us give a few examples.

First, they are commonly used to improve the mean field approximation in the
Hartree-Fock models: that is the purpose of Moller Plesset perturbation meth-
ods (see [9] for instance) that are implemented in the most widespread Quantum
Chemistry calculation programs. We leave this application aside and focus on the
following one.

Secondly, perturbation methods allow one to take into account the interactions of
the system under consideration with different environments without running a self-
consistent calculation for each environment. This method is for instance used in
nonlinear optics to compute the response of the molecule to the excitation by an
(oscillating) electric field: the so-called coefficients of polarizability of the n-th order
are in fact the coefficients of the Taylor series describing the state of the perturbed
system. As shown from a chemical and a numerical standpoint in [1], the use of the
perturbation methods to study solvated molecules also seems to give satisfactory
results.

We also point out that the “good” behavior of a model when it is subjected to a
perturbation is a guarantee of stability with respect to numerical approximations.

The first purpose of this article is to give to such computations in a nonlinear setting
a sound mathematical foundation.



In Section 2, we present the two nonlinear Quantum Chemistry models we will work
on: the spinless real Hartree-Fock model (HF in short), and the Thomas-Fermi-Von-
Weizsicker model (TFW in short). Other models of Quantum Chemistry could be
considered but those ones have been chosen for the following reasons: some basic
mathematical properties of the former are already known [16], which will make
our work easier; besides, this model is very close to other types of Hartree-Fock
models commonly used in Computational Chemistry at the present time; the latter
is more academic, but it belongs to an important class of models, which, them, are
of general use, namely the density functional theory type models (DFT-type models
in short), and the present work can be seen as a first step towards their study. We
will see how to extend those models to situations when the molecule is no more
isolated, but interacts with its environment. For each of the above two models, we
will consider the following two environments:

e a solvated molecule,
e a molecule in an external electric field,

both situations being very important as far as the applications are concerned.

For the sake of simplicity, we will treat these two applications separately, but it is
possible to study likewise a solvated molecule subjected to an electric field.

In Sections 3, 4 and 5, we study the mathematical foundations of the perturbation
method for the HF and the TFW models.

In Section 3, we investigate the case of a so-called regular perturbation of the HF
model, a notion that will be made precise there, but that we now define somewhat
vaguely as a perturbation which does not modify the domain of definition of the
energy functional. In particular, one of the main features of such a perturbation
is that its effect decreases fast enough at infinity. Under some assumptions on the
local behavior of the unperturbed energy functional in the neighbourhood of the
reference state, we prove that RSE can be built at an unperturbed ground state,
and that the so-obtained series have positive convergence radii. For this purpose,
we use an analytic version of the implicit function theorem.

For the TFW model, considered in Section 4, this method does not allow to conclude
because of a lack of analyticity, and we have to show by hand that the RSE are
still well defined at the unperturbed ground state. We leave open the questions of
convergence of these RSE.

In Section 5, we study a case of a non-regular perturbation, which is very important
in practice: the molecule is subjected to a uniform external electric field. Again,
both the HF and TFW models are studied in this setting. We show in Section 5.1,
that RSE are still well defined by a triangular system similar to (RS), but that
these expansions are divergent. We obtain the latest point as a corollary of a result



(see the details in Section 5.2) of non-existence of non-trivial solutions to the TFW
and HF equations in presence of a uniform external electric field.

This result of non-existence is the second purpose of the present article. It is actually
related to the general question of the existence of bound states for Schrédinger
operators with potentials that do not vanish at infinity (see Section 5.2.4). It is in
particular the nonlinear equivalent of the result of non-existence of bound states for
some linear Stark Hamiltonian ([2] and [11]). Our proof mimics the proof of [2].

We conclude this article by some comments on the computations of “Hartree-Fock
ground states” of a molecular system subjected to a uniform external electric field,
offered by some Quantum Calculation programs.

No attempt will be made here to extend the concept of resonance, which, in the
linear case, allows to draw information from the (divergent) Rayleigh-Schrédinger
series. We will however give some accesses to the vaste literature devoted to the
(linear) resonance theory.

2 Presentation of the models

Let us start from the N-body Hamiltonian

N N 1
H:—ZAM‘FZV(:M)—F Z m
i=1 =1

1<i<j<N

which describes the electronic state of an isolated molecule with M nuclei and N
electrons, when we follow the Born-Oppenheimer approximation of fixed nuclei and
when we neglect the spin terms (all physical constant are set to one). The potential

M

Vig)=-Y —t (2.1)

k=1 |:I; - jk|

is here the electrostatic potential created by the point nuclei (zj is the atomic
number of the k-th nucleus and Ty, its position). The operator H acts on A =
L2 (R? x {|4),|-)}Y,C), the vector space of quadratically integrable functions
of (3+1) x N variables of space and spin (3 space real variables and 1 spin boolean
variable for each electron), totally antisymetric under exchange of two (space and
spin) electron coordinates.

Let us now explain how to take into account the presence of an external electric
field or the solvent effect in the solvated case.

It is easy to model the presence of an external electric field: we just have to add its
electrostatic potential W,y to the Hamiltonian H,



Hep =H + Wy, (2.2)
the subscript ef standing for electric field.

On the other hand, the solvated case is more difficult: a precise description of a sol-
vated molecule requires in principle a quantum treatment of each solvent molecule.
We would then get an electronic Hamiltonian that would act on much too large a
space for the computational means that are available at the present time. Among
all the reasonable approaches, one consists in taking into account only the solvent
molecules that are located in the neighbourhood of the solute. But that method
quickly reaches its limits: the number of nearby solvent molecules fastly increases
with the number of atoms of the solute molecule. An alternative approach, much
more economic in terms of computational memory and CPU time, consists in re-
placing the solvent molecules with a continuous dielectric, which covers the entire
space but a cavity corresponding to the volume occupied by the solute molecule.
This model is called the Polarizable Continuum Model (PCM in short). We refer
the reader to an overview of such methods by J. Tomasi and M. Persico [20].

Let us rewrite the electronic Hamiltonian when taking the dielectric medium into
account

i=1 i=1 1<i<j<N

with

where G, is the Green function on R” of the operator [— A div(e(z) V)] (e(z) being
the value at z of the dielectric constant and the subscript s standing for solvation).
In the traditional versions of PCM, e(x) is set to one inside the cavity and e(z) =
€s > 1 outside, €; being the dielectric constant of the solvent. Here, in order to
avoid some technicalities, we assume that e(z) is a smooth function, everywhere
greater than or equal to 1, and constant (= €5 > 1) out of a ball. Other cases of
e(z) including discontinuity surfaces and anisotropies will be studied elsewhere [7].
Under those assumptions, one can easily see that

_
e(y)lz -yl
where g, € CO(R*xR*)NC= (R’ xR*)\A)NL>®(R*xR*) and A = {(z,2) , = € R*},

Gs(z,y) = +9s(z,y), (2.3)



1

vy € R? Gy(z,y) ~ ——, (2.4)
T — 00 €slal
V(z,y) € (R* xR’)\ A Gs(z,y) = Gs(y,x) > 0. (2:5)

In order to emphasize the fact that we consider this model of a solvated molecule
as a perturbation of the standard model for a molecule, we write

Hy, = H + Wy, (2.6)

where

N

Wep = Zvrf(xi) + Z Gry(wi, wj),

i=1 1<i<j<N

with
Vig=Vs =V

and

Grf(xay) = Gs(x,y) - G(iU,y),

1
7T

G(z,y) = ﬁ being the Green function on R? of the operator [~ A] (the sub-
script rf stands for reaction field).

In both cases (2.2) and (2.6), the perturbed Hamiltonian is of the form
H =H~+W.

In order to compute its ground state with a perturbation method, we introduce a
real parameter A and embed H and H; into the family of Hamiltonians

Hy =H+ \W.

Remark 1. When the pertubation is an external electric field, letting A increase
from 0 to 1 has a physical counterpart: it means that we increase the voltage inside
of the capacitor that creates the field. O

Remark 2. In both cases (2.2) and (2.6), the Hamiltonian H; maps the real valued
functions of A on real valued distributions. Therefore, without lost of generality,
we may choose a real valued ground state. O



2.1 The spinless real Hartree-Fock model

Minimizing the energy (¢, Hy) over the manifold {¢p € A / [|¢|*> =1} is only
possible in practice for the simplest chemical systems, such as Hy, He or H, . A
standard way for dealing with such minimization problems is to look for the mini-
mum of the energy (v, Hiy) over a subset of A. If the subset is large enough, it is
reasonable to think that we will obtain a good approximation of the solution of the
original minimization problem. When the subset of A is chosen as a set of Slater
determinants (ﬁdet(qﬁi (xj)) of N mono-electronic functions (or as a set of finite
sums of such determinants in some improvements of this basic idea), the minimiza-
tion problem is set over much smaller a space (but large enough to keep a physical
meaning), but has lost its quadratic nature. These new minimization problems are
said to be of the Hartree-Fock type. A review of such models can be found in [9].

We now introduce one of them, on which we will work in the following sections,
namely the spinless real Hartree-Fock model.

The spinless Hartree-Fock approximation consists in minimizing (¢, Ht) over the
subset of A of which the elements read as a Slater determinant of N functions ;
on (R? x {|+),]|=)}), chosen so that V1 <n < N, Vz € R?,

{ Yu(@,[+)) = on(2)
Un(z,|=)) =0

with V1 <i,j < N, ¢; € H'(R?) and ng ¢i¢; = dij. In other words, it forces the
N electrons to be in the same spin state. This is of course quite irrelevant from a
physical point of view, but the so-obtained model is nevertheless formally very close
to the Restricted Hartree-Fock model (see [9]), which, him, is perfectly relevant and
commonly used in practice.

Indeed, we come to the following minimization problem

inf{EHF(¢>), $; € H'(R?,C) / ¢>1¢>}‘:61j}
RS

with
N 1 N
HF _ |2 - 12 1h12) = * DD
B0 =3 [ Vol [ Vit 2 D6 65F) - D6 oi00)] @2

where p = Ef\;l |#;]? is the total electronic density, and D(u,v) denotes the integral

fRaxRa u(‘z)_v;‘y) dzx dy. See [9] for instance for the derivation of (2.7).




For technical reasons, we restrict ourselves to real valued ¢;. Since we have seen
in Remark 2 that the ground state could be chosen real valued, this additional
restriction is more natural than that on the spin dependence. Finally we obtain the
spinless real Hartree-Fock minimization problem

inf {EAT(¢), ¢ e BT}

with
B {(¢z)1<z<N / ¢i€ H'(R*,R / bi; = 5”}

Some existence results are known for this model, in particular for the neutral system
(see [16] for instance). To our knowledge, no rigorous result of uniqueness (up to
an ortogonal transform) of the ground state has been proved for any Hartree-Fock
type model.

Perturbation of the spinless real Hartree-Fock model

A perturbation AW of the N-body Hamiltonian gives rise to an additional term AW
in the HF energy functional. We can easily compute its expression for the two cases
we are interested in. In the case of a pertubation by an external electric field, the
functional W(¢) reads

Wes /Zaﬁz W= [ oW,

For a solvated molecule described by PCM, the functional W(¢) consists of two
terms: a quadratic term corresponding to the modification of the nuclei-electrons
interaction

W’rl'f / Z¢z Tf_/I{SPVTfa
i=1

and a term of the fourth order in the ¢;, coming from the modification of the
electron-electron interaction

W,Zaf Z Drf Z D7‘f ¢1¢J7¢l¢1)

3,j=1 3,j=1

with Dys(u,v) = [gsygs Gre(@,y)u(x)v(y) dedy. Notice that in most of the
practical calculations, the solvant effect is not taken into account in the exchange
energy (ie the second term in the above expression is neglected).

The minimization problem then reads



inf {EfF(¢), o€ B}
with

EIT(¢) = BT (9) + AW(9).

2.2 The Thomas-Fermi-Von Weizsacker model

We also establish some results concerning the TF'W model, in the following sections.
This model is a primitive version of the DFT-type models, often used at present
time in Quantum Chemistry calculations [8]. The TFW energy reads

—TFW

3 1
E " (p) =/ IV\/5|2+/ Vp+301/ p5/3+§D(p,p),
R3 R3 R3

the real constant ¢; being non-negative (the case ¢; = 0 gives the so-called Re-
stricted Hartree model). The density p satisfies p > 0, ng p = N, and we require

that \/p € H L(R?) so as the expression above is well defined. It is convenient to
express this energy as a function of the square root u of the density p. Denote

1
ETEW () :/ |Vul|? +/ Vu? + §01/ [ul'*/? + ZD(u?, u?).
R3 R3 5 R3 2
Then, ETFW satisfies: Yu € H'(R®), ETFW(u) = ETFW(|u)) = E' " " (p) if
2
p=u”.

To find the ground state, we have to compute

inf { 7Y (u), we BNV} (2.8)

where BT = {u e H'(R?) / Jgsu? = N}. From now on, we assume that in
the TFW case, N < >z, that is to say that the molecular system is neutral
or positively charged. E.H. Lieb has proved that in this case the minimization
problem (2.8) has a solution, and that all solutions give the same value for p (for

) —TFW . . .
the functional £ is strictly convex with respect to p). In particular, (2.8) has
a unique non-negative minimizer.

If we perturbate the isolated molecule by tuning on an electric field or by solvating
the molecule, its TFW energy reads

—TFW —TFW

Ex " (p=E""(p)+\W(p),

or, as a function of u = ,/p



EFW (u) = ETFW (u) + AW (u).

If the perturbation is an external electric field, of potential denoted by W,r, we
obtain

Wef(u) = / Wef u2 = / pWef :Wef(p).
R3 R3

In the PCM case, the perturbation functional reads

1 1 —
Werlu) = [ Vg 4 5Dus(®) = [ Vi + 3D2s(p.0) = Wios ()
R3 R3

We will use in the following the differential WW'(u) of W at u, which we will identify
with an element of H~!, and the second derivative W' (u) of W at u, which we will
identify with a linear operator mapping H! on H!.

Remark 3. In a more sophisticated DFT-type model taking some exchange terms
into account, the term D, ;(u?, u?) could be replaced by a functional having a more
complicated dependence on u. O

3 Regular perturbations of the HF model

In this Section, we only consider some special perturbations of the energy functional
that we call regular in the following sense. Denote D(W) the domain of definition
of the fonctional W. We say that the perturbation W of the energy functional EH¥
is regular if

o (H'(R*,R))N C D(W);
e W : (H'(R?} R))M - R has an analytic continuation in (H'(R?, C))N.

The first condition is essential: it guarantees that the perturbed energy functional
is well defined on BHF. The second one is more technical; it is sufficient for our
strategy of proof but is not optimal.

Using (2.3) and Hardy inequality, one easily check that the first condition is satisfied
for PCM. The second one is also satisfied: W, is polynomial with respect to the
real functions ¢; and its successive derivatives have the required regularity. The
perturbation W, ¢ is therefore regular.

A perturbation by an external electric field of potential W, so that

10



h+— Wesh is continuous from H'(R?) into H~'(R?) (3.9)

is clearly regular. This condition is fullfilled for instance if W,y € L* or if Wey is
created by a finite density of charge which has compact support (which is sometimes
the case in applied calculations).

On the contrary, a perturbation by a uniform electric field of potential W,s(x) =
(e-z) (for some given vector e # 0 of R®) is not regular. Indeed, let us consider for
example h(x) = ﬁ; h € HY(R?) but [, |(e - 2)||h|* = +o0, which contradicts
the condition (H'(R?,R))N € D(W). Section 5 is devoted to the study of this

perturbation.

Unless otherwise stated, VW will denote in this section any potential satisfying the
two above conditions, in particular W, ¢ or Wey with (3.9).

We now consider a minimum ¢ of the unperturbed HF energy functional (2.7)

EfE(¢) =inf {E"F (y), e B}, (3.10)

Our purpose is to prove that, under some assumptions on the local properties of
the energy in the neighbourhood of the minimum ¢, it is possible to perform a
perturbative treatment of any regular perturbation, which in particular gives a
sound footing to practical calculations like those in [1]. We mean that the same
approach as in the linear case (see Section 1) gives birth to a triangular system
similar to (RS), which has a unique solution. Moreover the so-obtained Taylor
series have positive convergence radii.

We will prove this result by an application of an analytic version of the implicit
function theorem.

Notice that this method does not give any estimation of the convergence radii. If
the perturbation has a meaning for small A, as in the external electric field case, we
have nevertheless obtained a physical result: the existence of a solution for weak
fields. Otherwise, as in the PCM setting, where only the case A = 1 is physically
interesting, the obtained mathematical result has no obvious physical counterpart
(a direct study of the existence of a solution for the Hartree-Fock model in the PCM
setting will be presented elsewhere [7]).

Let us now introduce and discuss the assumptions on the local properties of the
energy in the neighbourhood of the minimum ¢, that we need to prove our result.

We will first suppose that the ¢; are eigenvectors of the Fock operator F associated
with the N smallest eigenvalues —e; of F. It is always possible to come down to
such a case through an orthogonal transform of the ¢; (see [9] for instance for more
details). We recall

11



_ 1y [ Ty
F = A+V+(p*|$|) /Rs|$—y| (y) dy

with p(z) = Zf\il 2 (x) et T(z,y) = Zf\il ¢i(x)¢i(y). The relations

F i = —€idi
are the Euler-Lagrange equations of the minimization problem (3.10).
The second-order condition at ¢ reads: for all U = (u;) € (H'(IR*))N so that
fRa diuj + dju; =0,

N
U, BT :Z/Rg w(HHET); > 0

i=1

with
_ al 1
(H''U); = Fui+eui+2) (qajuj * m) b;
j=1
al ( 1 o 1
> diu; x —> IS <¢,-¢j * —> uj.

=1 ] =1 2

Denote

N:{U:{u,-}KKN / u; € H'(R?) /q&iuj:o Vlgi,jgN}.
<i< -

We now assume that:

1. The N smallest eigenvalues of the Fock operator F are non-degenerate (ie
—€1 < —€e2< - < —ey_1 < —en < 0);

2. HHF ig coercive on N.

These two assumptions correspond to the isolated eigenvalue hypothesis introduced
in the linear theory (cf Kato-Rellich Theorem, in [17] for instance), which is the
foundation of the perturbation method in the non-degenerate case (see any Quan-
tum Mechanics textbook, [14] for instance).

The origin of an eigenvalue degeneracy is often the invariance of the system under
the action of a symmetry group. If the molecule does not exhibit any symmetry

12



(which is usually the case for a molecule consisting of several atoms), assumption 1
therefore seems reasonable.

Assumption 2 (of coercivity) means that ¢ is a strict local minimum of Ef¥ over
BHE up to an orthogonal transform of type (3.12) below.

As for the Unrestricted Hartree-Fock model considered in [3], one can prove that,
if —en41 denotes the (N 4 1)-th eigenvalue of F, the inequality
—€en < —EN41 (3.11)

is always satisfied. In reference to the title of [3], it means that “there are no unfilled
shell” | or in other words that there is a gap in energy between the highest occupied
level and the lowest unoccupied one, in the HF model we are interested in. Notice
that (3.11) can also be deduced from assumption 2.

For any one-electron system, the spinless Hartree-Fock model comes down to the
linear case. Indeed, in this case, the energy functional is quadratic on H'(IR*) and

reads
EHE (y) :/ |Vu|2+/ Vu?.
R3 R3

It is easy to see that both assumptions 1 and 2 are satisfied for this functional at
its ground state (which is known to be non-degenerate).

We now state Lemma 1 and Proposition 1, whose proofs are postponed until the

end of this section.

Lemma 1. Suppose that F and H”F satisfy the assumptions 1 and 2 above. Let
(f)) € (H Y(R?,C))N and («;) € CN. The system

(I) (HATU); + pidi = f; 1<i<N
nggbiui:ai ].SZSN

has a unique solution (U = (us), (15)) in (HY(R?,C))N x CN. Moreover if the (f;)
are real valued and the («;) are real, so are the (u;) and the (u;). O

Proposition 1. Under assumptions 1 and 2, there exists a range I = |—Niny, +supl,
Ning > 0 Nsup > 0 and a neighbourhood Q of ((¢:), (&) in (H*(R*)N x RN so that
the set of the solutions (X, (¥;), () in I x Q of the equations

AOW
VI<i<N Flp) Vi + 5%((%‘)) + Gihs = 0,

Fy;) being the Fock operator

13



T(y;) (@, Y)

=y " (y) dy

1
Flop = =8+ V+lowp *17) = /RS

with py;)(x) = Ejvzl Y3 (x) and Ty, (T, y) = Ejvzl Yi(x)Y;(y), is a one dimen-
stonal curve parameterized by \:

I - Q
A= ((86(N), (€i(N)).

Moreover ¢;(\) and €;(\) are analytic real functions on I and verify for all 1 <
i < N, ¢;(0) = ¢, €(0) = €. In addition, for all X € I, ¢(X) = (¢i(N)) is
a local minimum of the energy functional EfF operating on BHY | unique in a
neighbourhood of ¢, up to an orthogonal transform. O

Let us now expand ¢;(A) and ¢;(\) in Taylor series around A = 0. By analogy
with the linear framework, we will call these expansions Rayleigh-Schrodinger
Expansions.

Denote ¢Ek) = ‘f;;’?j (0), egk) = Cg;i" (0). For all k£ > 1, ((¢§’“)), (egk))) is a solution of

(RS]?F) (-H—HFQS(z))z + G}Ek)ﬁzsi = fi(k) 1 S v S N
Jys G108 = ol 1<i<N
with
k—1 3
k k 0, (k—1
0 S ()
=1

N
- X E ) Tt gle) s Ly ) (g0t 4 Ly 400
: Lg% R D%
j=1 Lh+l+l3=k
0<l,<k—1
and

k—1

w _ 1 ( k ) / () (k1)
;" =3 ?; 9 -
2 Z l R3

=1

14



The term Wi(k) is made up of the coefficients of the terms in A*~! which arise

in the Taylor expansion of %%‘j (¢(\)) and is thus a function of the (¢{"), 1 <

J <N,0<Il<k—1. The right-hand members fl-(k) and al(-k) are functions of
((6251(-])), (6(7)))09’9@,1. The knowledge of the (k — 1)-order terms thus permits to

(2

determine the k-order terms ((¢§k)), (egk))) (in a unique way from Lemma 1). In
the following, we will call Rayleigh-Schrodinger System, and note (RSHY) the
triangular system defined as the union of the subsystems (RSH!), k > 1. Lemma 1
and Proposition 1 show that (RSHF ) has a unique solution and that the Taylor
series built from the Rayleigh-Schrodinger expansions have positive convergence
radii.

Let us now turn to the two applications we are interested in. In both cases, W is
a polynomial, of the second and the fourth degree respectively. The expressions of
Wi(k) have thus a simple form: We(;f)l = kW, f¢£k71) and

(k)
er,i

kVppot ™Y

+ i > (L> / Gy (e, )8™) (0)8 () dy] 1
ll'lz'lg' l/R3 rfA J J ] i

j=1 lLi+l+Il3=k
0<l, <k-1

> k' - (I1) (I2) 1 (Is)
-y > (W) /RgGrf(w,y)@ W)o\ (y) dy| 81"

J=1 Li+l+l3=k
0<l, <k-1

Notice that in the PCM case as well as in the electric field case %\; = 2Q, - ¢;.

Therefore, the ¢; are eigenvectors of the operator Fy + AQ2, (associated with the
eigenvalues —e;(A)). In the electric field case, Qx = Wey (and is then besides
independent from A), and in the PCM case

O =Vop + </RS Gry(z,y)pa(y) dy) - /RS Gry(z,y)Ta(z,y) ® (y)dy.

Before we turn to the proofs of Lemma 1 and Proposition 1, we need some elemen-
tary algebraic results.

Let us first notice that H” is clearly self-adjoint. Denote T,BHE the tangent
vector space at u to the submanifold B#¥ of (H'(R?))N. We can write

T¢,BHF = {U = {U’i}lgiSN / u; € Hl(]Rg) /R3 (1),"(1]' + ¢jui = O} .
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With these notations, the second-order condition at the minimum ¢ of (3.10) reads:
YU € T,BAY (U, HIYU) > 0.

This quadratic form is degenerate on TyBH! according to the following invariance

YO € O(N), Voo € BHY Oy € BAY and E"F(0Oy) = E¥F(y)  (3.12)

where O(N) is the set of orthogonal real N x N matrices. Denote A(N), S(N) and
S*(N) the sets of the N x N matrices that are respectively antisymetric, symetric
and symetric with their diagonal terms all equal to zero. We recall that A(N) is the
Lie Algebra of the group O(N), and that A(N), S(N) and S*(NN) are respectively

N(N-1 N(N+1 N(N-1
(N-1) NW+1) 4pg NOV-1)

dimensional vector subspaces of My (R).

?

We notice that

(HYR*)N = S(N)p D A(N)p d N, (3.13)
T,BH" = A(N)p & N. (3.14)

Moreover, for A = [a;;] € A(N), a straightforward calculation shows that

N
(H"' - Ag)i =Y (e — €i)aijb;
j=1
from which we deduce
H"F(A(N)g) C 5*(N)¢ (3.15)
(b, HTF Agy =0 VA€ A(N) Vo € T,BHF (3.16)

and the inclusion in (3.15) is in fact an equality if assumption 1 of non-degeneracy
of the N smallest eigenvalues of F is satisfied.

We can now write the
Proof of Lemma 1:

The (¢;) are real valued and H#¥ maps real valued functions on real valued distri-
butions. It is therefore possible to split problem (I) into two independent problems
(I') and (I""), the former dealing with the real parts and the latter with the imag-
inary parts. We now come to prove that for (f;) real valued and («;) real, system
(I) has a unique solution.

16



Uniqueness: Let ((u;), (u:)) and ((u}), (1})) be two solutions of (I) in (H'(IR*, R))N x
RY, and V = (v;) = (u}, — u;), (v;) = (4 — p;). We have

(HHEV); + vi; =0 1<i<N
Sz divi =0 1<i<N.

We split up V' in accordance with (3.13):
V=S¢p+Ap+V'

with S = [s;;] € S(N), A = [a;] € A(N), V' = (vj) € N. Conditions [gs ¢v; =0
mean that S € S*(N). Let A" = [a};] € A(N).

On the one hand
) N N
(Alp, HFHY'VY = — Z/RS > aj;; | vigi =0
i=1 j=1

while on the other hand, using (3.14) and (3.16),

(A'g, HHEV) = (H"FA'$,V)
= (HFA'¢,S¢) + (HPFA'g, Ap+ V')
= (H"FA'¢,S¢)

Using assumption 1 and letting A’ varying in A(N), we easily show that s;; = 0,
Vi # j. Therefore S = 0 since we already know that S € S*(IV). Therefore
V =A¢+ V' e T,BHE.

i N N
(HTTV,V) = - Z/ (Z aijPj + U;) vid; = 0.
i—1 /R?

j=1

But (HH''V, V)= (HHEV' V'Y according to (3.16). Thus (HHFV' V') = 0, and
V' =0 since H*F is coercive on N (assumption 2). Therefore V = A¢ and
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N
(HA'V); = Zaij (€i — €j)p; = —vidhi.

j=1
Thus v; = 0 and a;; = 0 for all 7, j. Finaly V' =0, and uniqueness is proved.

Ezistence: Let S = [s;5] € S(IN) defined by

Sii = O 1 S ] S N
sij = (Di,f5)=(®s,13) 1<i,j<N i#]j.

€5 —€4

Denote f' = (f!) = (fi— (H®¥S¢);). After a straightforward calculation, we obtain

<¢]7le> = 2

WE

Sk [2D (Db, Pids) — D(bidr, drdj) — D(drdi, d19;)] -

k=1

Thus, in particular
The self-adjoint operator H”¥ being coercive on A, the minimization problem

Jgﬁ/((ﬁHFipaip) - (f’7¢>)

has a (unique) solution U’ = (u}) € N, and this solution satisfies

~ N .
(HTEU" + 3052 Nijos = fi 1<i<
Sy din =0 1<i,j <N.

Let A’ € A(N). As U' € N C T,BHF (A'¢, HHFU')Y = 0. By exploiting the
symmetry of the terms (¢;, f{), we get on the other hand

i N N N
(A, HHEU"Y = Z/RS S oo+ ) | Dl
=1 j=1 j=1
N

_ oAl
= E : Aij @y

ij=1

18



and, with suitable choices of A’, we come to A;; = Aj;, for all (4, j). Denote p; = Ay,
@ = 0 and ay; = 2 for i # j. A = [a;] € A(N) and (HT" A¢); = 71, X

Let U =S¢+ Ap + U'. We see that (U, (u;)) is a solution of (I), which concludes
the proof of Lemma 1. O

We conclude this section with the
Proof of Proposition 1:

In this proof, H' and H ! are complex valued distributions. Since W is regular,
%‘j has an analytic continuation in H' (still denoted %‘j) and

®: C x((HYHYN x CN) o (H YN x CN)
O (), () (Pl o+ 358w + i), (o w? = 1))
with
N 1 N 1
Fluy)rv=—Av+ Vv + Z(u? * m)v - Z(ujv * H)uj

is well defined and analytic and if ¢ = (0, (¢;), (&;)), we have ®(c) = 0. Besides,
ooy eon® - 0,0, ) = ((E7O)s + o), ([ 600

Thus, from Lemma 1, d‘I>|{O}X( is an isomorphism from {0} x (H')N x CN

on (H~Y)N x CN.

HYO)N xCN

We may now apply the implicit function theorem (analytic version): there exist a
neighbourhood w of 0 in €, a neighbourhood Q of ((¢;), (¢;)) in (H*(R?,C))N x RN
and 2N analytic functions ¢; : w — H!', ¢ : w — C,1 < i < N, so
that the only solutions of ® = 0 in w x Q are {(A, (¢;(N)),(e;(N)), A€ w}.
Since they are analytic on w, we can expand these functions in Taylor series at

(k) (k)
A = 0. By inserting the expansions ) d),i! Mand Y 6;'6! A into the equation

D((A, (i(N)), (€:(N))) = 0, we see that their coefficients (¢§k),e£k))k21 are a so-
lution of the system (RST) and Lemma 1 proves that this solution is unique and

that (¢l(»k)) are real valued and ((—:gk)) are real for all k. Denote I the larger real range
(neighbourhood of 0 in R) so that the above expansions are valid. If we restrict
¢i;(A) and €;(\) to the range I, we obtain 2N analytic real functions defined on
1, verifying ¢;(0) = ¢; and €;(0) = ¢;, and so that for all A € I, ¢(A) = (¢:(N))
is the unique critical point of Efff over BHF in the neighbourhood of ¢ (as usual
up to the rotational invariance). At last, does mean restraining I, ¢;()) is a strict
local minimum for all A € I: the second-order quadratic form at ¢ is coercive on
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N; thus, by continuity, the second-order quadratic form at ¢(\) is also coercive
on Ny = {U ={uiticicn | wi€ HYR?)  [gs ¢i(Au; =0 Vij} for A small
enough. O

4 Perturbations of the TFW model

The method used in the proof of Proposition 1 requires the analyticity of the unper-
turbed energy functional, at least in the neighbourhood of the ground state under
consideration. This condition is not satisfied in general for DFT-type models [8]: for
instance, a standard approximation brings a term in p*/®. In this section, we show,
on the simple example of the TFW functional, that we can nevertheless get some
results, and notably existence and uniqueness results for the Rayleigh-Schrodinger
expansions. However we are not able to show that the radii of convergence of these
expansions are positive.

In this section, we will limit ourselves to the situations when the perturbation is
either

1
W) = Weglw) = | Vaul + 5 Dosla )
RS 2
or
W(u):Wef(u):/ W, .
R3

In the latter case, the assumption (3.9) is not sufficient to prove the existence
result in Proposition 2 below. For this purpose, we need moreover some additional
conditions on the regularity and on the behaviour at infinity of the electrostatic
potential W,;. We require here for instance,

1
Wer =p*x—
where p = py — p_ with py and p_ being bounded non-negative measures with
compact supports, and so that py (R*) = p_ (R?). These assumptions are certainly
not optimal, but they cover in particular the case of a capacitor of finite size. The
behaviour of Wey at infinity is well known. We have indeed

lim Wef(:c) =0

Tr—r00

Wl < o).



where [W,s]+ denotes the non-negative part of the spherical average of W,;. In
order to avoid some technicalities, we assume moreover that W,y is smooth ev-
erywhere. This condition can be easily suppressed: only local regularity results
established in Proposition 2 will cease to be true at the points where W, is not
smooth.

Proposition 2. For all A € [0,1], the minimization problem

wt {0, pz0 vpemm) [ p-n] (4.17)

has a unique solution p(X). The function uw(\) = /p(\) belongs to H*(R*) N
C>®(R*\ {Z1}), is positive on R* and satisfies

A

—Au(X) + Vu(A) + cu(N)7? + §W’(u()\)) + (u(N)? * i)u(A) + 1(N)u(X) = 0.

x|

Moreover p(X\) > 0 and (u(X), p(X)) is the only pair (u, p) € H'(R?) x R satisfying

—Au+ Vu+ e [ul*Pu+ 3W'(u) + (u? * ﬁ)u +pu=0

Jpzu® =N (4.18)

u > 0.

O
Proposition 3. The functions
u: 0,1 —» H? M: [0,1] - R
A = u()) A= u(N)

are C™ and their successive derivatives at X € [0, 1], u® (\) = %(A) and p®) () =

dkT/L/’(/\) are obtained in a univoque way by solving the triangular Rayleigh-Schridinger

system (RSTEW (X)) consisting of the subsystems
HTEW(X) - u® () + pB (Nu(r) = FB (A
(RSIZ“FW(A)){ ng u(}\()lz(k)()\) (:)Oj(_kéj/()\)( ) ( ) f ( )
where
1
W
SOu) + W @(X) v+ (Ao

x|

FITFW()\) o= —Av+Vu+ §C1U(>\)4/3U + (UQ()\) *

+2(u(N)v
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k—1
PR = =WRR) = 3 () (3
Jj=1

k!

— Z m(u(h)(}\)u(h)(}\) * E)u(js)( )
hti2tiz=k
0<5:<k-1
k
7/3 k! : ; _
- X)) T o o
=2 Jit =
0<ji<k-1
1 k—1 k
aP(\) = -5 < > / uD (A)uF=9 (\)
s N e
with W () = kWepu* () and
wPN = kD)
k! , , -
Y (] G 0w ) dy) )
ntpti=k
0<5:<k-1

O

Proposition 3 shows in particular that the Rayleigh-Schrédinger system (RSTHW (0))
has a unique solution and that this solution is the set of the successive derivatives
of u(A) and p(A) at 0. But we cannot conclude that the Taylor series thus obtained
have or do not have positive convergence radii.

The case W = W,y being simpler, we carry out the proofs of Propositions 2 and 3
with W = W,;.

Proof of Proposition 2:

The uniqueness result is a consequence of the strict convexity of the functional
—TFW .

E\" " (p), that can be written

—TFW

B0 = [ vvek [ -0 eavi

3 1- A A
+za / P+ ==D(p,p) + 5Ds(p, ).
R3
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This property comes from (2.5) (the positivity of the Green function G(z,y) implies
that f +— Ds(f, f) > 0 for all f # 0 regular enough).

The proof of the existence of a solution in the non-perturbed case established by
E.H. Lieb [15] still allows to conclude in this framework. Indeed, we assume that
the dielectric constant e(x) is constant out of a ball: the behavior at infinity (2.4) is
thus the same as if €(x) is constant in the whole space. More precisely, using (2.3),
we have, for all v € H'(IR?)

‘/ Vyu?
RS

Moreover (as in [15]), we can prove with (2.3) and (2.4) that, if u,, — u in H' weak,
then [ps Viul — [ Veu?.

IN

gsll i ullZs + \ [ v
RS

lgsllzolullZz + Cllull 2l Vul|z.

A

Thanks to the results above, we are able to conclude (see [15] for more details) that
the minimization problem with relaxed constraint

inf {E{’FW(u) , u€ H'(R?) /R u? < N} (4.19)

has a solution u(\). Besides, it is straightforward to see with a scaling argument
that u(A) cannot be identically equal to zero. Let us next write the Euler-Lagrange
equation of problem (4.19). We have

—Au(A) + Vau(A) + p(MNu(A) =0, (4.20)
with
Va = (1= NV 4 auW)Y3 + (1= N (V)2 * ﬁ) AW, (4.21)
where W, satisfies
M
—div(eVIV,) = — ) 2 65, +u(N)’. (4.22)
k=1

Using (2.3) and Hardy inequality we deduce that
e V\u()\) € L2(R?), and thus u()\) € H*(R?) ;

o V) € L, for some ¢ > 3. Therefore u()\) > 0 by Harnack inequality.

loc
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Using Sobolev injection H2(IR?) < C%'/2 and a bootstrap argument on the system
((4.20), (4.21), (4.22)) based on Schauder elliptic regularity results, we obtain u(\) €
C>(R*\ {Zt}).-

It remains to prove that the constraint ng u? < N is saturated. If we suppose
Jgzu? < N, there comes p(A) = 0. Thus, u(X) > 0 is a C* function in the domain
D = {x/|z| > a} and u()) satisfies (—A + V)\)u(A) = 0 on D. Denote [V,] the
spherical average of V and [V\]+ = max([V\],0). Let b > a so that e(z) = ¢ in
B;. We have, in By,

VAl = (1= V[V + u(V)?* %1 AW, + 1 [u(N)*3].

By an application of the Gauss theorem, we obtain, for all x € By,

1 —7Z+ fBIwI u?

Liw) = kil Vi

< 0.
€s|z|

[V +u(V) <0, W@ =

]

Thusin Bf, W]+ < e1[u(MN)*3]. As e;[u(N)*/?]isin L3/2(Bg), sois [V3]+. Lemma 7.18
in [15] enables us to conclude that u(A) ¢ L?(Bf), which is a contradiction. The
existence of a solution of the minimization problem (4.17) is thus proved. With the
same argument, we also obtain u(\) # 0. Fixing A and considering N as a real
parameter, we conclude as in [15] that p(A) > 0. O

Proof of Proposition 3:
First step
Let A € [0,1]. We begin by proving that (RS™*" (\)) has a unique solution.

First of all, we show that HT¥W()) is coercive on Ty, BTEW = u(M)te2. We
already know that Vh € H!

(b, H'"W(Nh) = (b, (A +Va + p(N)h)
+2(1 — A)D(u(N)h, u(A)h) + 2ADg(u(A)h, u(A)h)
= (b, (A + Vi + p(A)h).
The Euler-Lagrange equation (4.20) shows that u(A) is an eigenvector of the Hamil-
tonian operator —A +Vy. As u(\) > 0 on R?, u()) is in fact a ground state. With
(2.1), (2.3), we can see furthermore that V" € L} . and that V, € L>® + L3/2. A

result by Faris and Simon mentioned in [17], enables us to conclude that the ground
state u(\) is non-degenerate. It follows that if h € T,,(\)BT*"W, then

(B, (=A + Va + u(N)h) > BlIhl[Z, (4.23)
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the real constant 3 being the (positive) gap between —u(\) and the second eigen-
value of —A+Vy. Let us now show that there exists v > 0 so that VA € Ty, BTFW,

(h, (A +Va + u(N)h) > v ||kl

Let us assume that there exists a sequence (h,,) of elements of TU(A)BTFW so that
hellgr = 1 and (hp, (—A 4+ Vx + u(A))h,) — 0. Inequality (4.23) proves that
hp, — 0 in L2 From Hardy inequality, the sequence (Vyhy)nen is bounded in
L?(IR?). Therefore, with Schwarz inequality [is VAh2 — 0. Thus [y |Vh,|*> =
(Bs (A + Vx + (M) b)) = [ VahZ — w(A) [gs b2 — 0. Therefore ||h, || — 0,
which contradicts ||h,||g: = 1. Coercivity is proved.

We now prove the following inequalities: V(v,T) / v < /u(A) <T F0<e<C/

Ve e R®  ce 'l < u(\)(z) < Ce Il (4.24)

Let € > 0. As V) tends to zero at infinity, we can find R > 1 + max(|Zx|) so that
Vz € B, |[Va(z)| < e. The function u(A) is in C*°(B%), goes to 0 at infinity and
satisfies the following inequalities on Bj

—Au(A) + (#(A) = u(A) <0 < =Au(A) + (u(A) + eu(A).

Consider fqu . (z) = a‘%e_“’(‘w‘_m, which is in C*°(B%) and satisfies for w > 0

_Afozw + w2foz7w =0 in B]C:g
foz,w =« on Sg
faw=0 at infinity.

By comparing u(A) first with fo, ., where ay = supg, u(\) and w1 = p(A) —¢, then
with fa, w, where as =infg, u(A) and wy = () + €, we show that on Bf

(inf u(\) Lo e=VEOFEE=R) < y(3) (@) < (sup u(\)-Lee= Vi =<(zl=F)
OB, z| OB, |z
(4.25)
Since u()) is bounded from above and from below on the compact Bg by a positive
number, inequalities (4.24) are a consequence of (4.25).

To show existence and uniqueness of ((u®) (\), u® (X)) we argue by induction

on the following hypothesis:

k>0

(M) There exists a unique solution ((ul)(X), ul) (/\)))Ogjgk of the system ((RSg¥Y (X)),

o+, (RSFEW(N)), In addition u)(X) € H*(R®) N C>®(R® \ {Z1}) and satisfies

Vi<k Va<+u\) 30 / VeeR?® |[uD\)(2)] < Cjae el
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We denote by (RSTFW())) the system (4.18). The results established above show
that (Ho) is true. Let us assume that (H_1) is satisfied. Using inequalities (4.24)
and the induction hypothesis (Hj_1), we claim that f = f*)()) is in L*(R?). In
fact, u/(\) € H*(R?) for all 0 < j < k — 1. Thus the more delicate terms are
those of the form u(1)(X\)...ul)(N)u"/21(\) (0 < j; < k—1) with [ > 3. Let
€ > 0 small enough so that 8 = [\/u(X) — e+ (5 — 1)/u(X) +€ > /u(A). From
(4.24) and hypothesis (Hy—1), we can choose ¢g > 0 and ¢;; > 0 so that for all
z € R? u(\)(z) > coe” VFIFelel and |ulid) (V) (2)] < ¢j,e” VFV =2l Denote C =

08/3_lcj1 ...¢j,. We have [ulV) (\)(z) ... ulD (X)) (2)u™/ 3 (N ()| < Ce ViNlal for
all z € R®, which implies in particular that the left hand member of the inequality
is in L2(R?).

The pair (u,p) is a solution of (RSIYW(N)) in (H' x R) if and only if v =
u — a™ (A\)u(N) is a solution of the Euler-Lagrange equation of the minimization
problem

inf{(v,HTFW()\) Y= (fv) , we TU(A)BTFW}

and g is the Lagrange multiplier associated with the constraint v € TU(A)BTF w,
The coercivity result established above proves that this minimization problem has a
unique solution. It follows that (RS} " ()\)) has a unique solution (u*) (\), u(®) (X))
in (H! x R).

Denote f = u®)()\) (in order to simplify notations). f satisfies the equation

—Af+Wf+pNf=g (4.26)
with g € L>(R*) N C®(R? \ {Z+}) and so that

Va <u(\) 3Co [ VreR’ |ga)| < Cae V.

By a bootstrap argument on equation (4.26), we get f € H?(R*)NC>®(R?®\ {Z}}).
Let 0 < a < \/u()) and € = pu(A\) — a®. Let R > 1+ max(|Zx|) so that |[V\| < € in
B§,. Denote L = A — o?, B = supg,, |u| and

Ca aR®+ R\ _,,  BR _._
o(0) = o (1-+alel = R ) emsid 4 emecm,

r

The function v(z) satisfies Lv = —Cype~l?l v = B on Sk and v — 0 at infinity. Let
w=v — |u| and I = infpe (w). Let us assume I < 0. As w goes to zero at infinity

and w > 0 on Sg, I is achieved at xg eﬁcR. We have |u(zo)| > v(zo) > 0. We
conclude that |u| is C* in a neighbourhood of zg, and so is w. Besides, Aw(zg) > 0,
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and therefore, as w(xg) = I < 0, we have Lw(zg) > 0. On the other hand, using
Kato inequality, we get on B§

Lw Lv — Alu| + o2 |u]

Lv — sgn(u)Au + o?|u|

—Che Tl — sgn(u)(Vau + p(Nu — g) + a?|ul
a(cae_“‘w‘ = lgl) = (e = VaDlul

ININ I IAN

We reach a contradiction. Thus I =0, ie |u| < wv. Finaly, (Hy) is satisfied.
Second step

Let us now show that ¢/ and M are C°° and that their successive derivatives at A
are solutions of (RST*" (X)). Let us consider

@ : Rx(H*xR) — (L*xR)
(A, u, ) = (—Au+ Vu+ e |u*Pu+ 3W (u) + (UQ*ﬁ)u+uu,
ng u? — N).

To check that ® is C', it is enough showing that so is F' : u + |u|*/u. Let
u € H?. Let us consider the linear operator G(u) : h — §|u|4/3h from H? into

L?. Let € > 0. We have u € L™ and the real function ¢ ~ |¢t|*/3t is C? on R. Thus
there exists n > 0 so that

Ve € R® Vil < |lu(z) + 6P (u(e) + 1) — Ju(@)|*Pu(z) ~ g|U($)|4/3t <e
Let ¢ > 0 so that [|h||gz < ¢ = ||h|lpe < n. We have

Vhe H? , |IMllg2 ¢ |IF(u+h) = F(u) = G(u) - bz < ellhllzz < ellhll e
Thus F is differentiable at u and F'(u) = G(u). We easily check that u — G(u) is

continuous from H? into £(H?, L?), which proves that F is C*.

Let A € [0,1] and ¢ = (A, u(A), u(N)). We have ®q(c) = 0 and d.Po|{o}x g2 xR 18 an
isomorphism from {0} x H? x R into L? x R. We can thus use the implicit function
theorem in a neighbourhood of A (for all A € [0, 1]) and conclude that &/ and M are
C! and that their derivatives satisfy

O O ), 1) +

0P du du _
S (i) - (GE. e =0, @2)

From (4.27) we draw that (2 ()), 2 ())) is a solution of (RSTFW ())) in (H' x R).
Since this system has a unique solution: (u(®(X), u(*)()))), we conclude that ¢ and

M are C! and that %\Zf— =ul), %"— =pY) for 0<j <1
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To prove the result at order k, we also argue by induction. Let us suppose that we
have shown that ¢/ and M were C* and £Y = (@), L& = (1) for 0 < j < k. We
resume the processes above with

P : Rx(H°xR) — (L*xR)
(A, u, ) = (HTTY Nu A+ puN) = FP ), fgs uN)u = a® ()

which is C* (as the reader can check) and so that VA € R, @5 (X, u® (X), u® (X)) =0
and d ) (0,40 (1)) k| {0} x B2 xR 18 an isomorphism from {0} x H* xR into L* xR.
Using the implicit function theorem, we claim that u*)()\) and p(®)(\) are C* and
that their derivatives satisfy

0Py,

du®) \ dp(®)
O(u, p)

(k) (k)
O (0, 1D ) - (=),

) =0.

. . . . ()
After a simple manipulation of that equality, we can see that (d'é(;) N, g’%(A))

is a solution of system (RS (N)) in (H' x R). Since this system has a unique

solution: (u®*+1(X),u* D (X)), we conclude that &/ and M are C*+' and that

‘5)\%—{ =ul), d;)f\f = pu9), for 0 < j < k+ 1. The induction goes on. O

Remark 4. Inthe case of a perturbation by an external electric field, Propositions 2
and 3 are true for A € R. O

Remark 5. By resuming the proof of Proposition 1, we recover the analyticity of
U and M for ¢; = 0, that is to say for the Restricted Hartree functional. O

5 Molecule in a uniform external electric field

We now put the molecule in a uniform external electric field of modulus € > 0
oriented along Ox. The electrostatic potential of the field reads We¢(z,y, 2) = —Ex.
From a mathematical point of view, this situation is radically different from those
considered previously in Section 3 and 4 (in which the electric potential satisfies
(3.9)), since here, the potential becomes infinite in some directions. Let us take for
instance the simple example of the hydrogen atom (M = 1, N = 1) in a uniform
electric field of modulus € > 0 oriented as Oz. Its Hamiltonian reads
1
Hg:HO—E:c:—A—;—Ex

and operates on L*(IR*). It is known (see [2]) that He is essentially self-adjoint and
that the pure point spectrum of its closure is empty and that its essential spectrum
is equal to RR.

The operator Hg¢ has thus no eigenvalue: there exists no stationary state.
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However, from a physical point of view (see [14]), the eigenstates have not com-
pletely disappeared: for small values of £, experiments confirm that there ex-
ist some metastable states, also called long-life states, closed to non-perturbed
stationary states, whose evolution by the time-dependent Schrédinger equation
i0yY /0t = Hg -1 is “slow”. The “energies” of those states can be computed quite
precisely using the perturbation method (stopping after the first terms since the
serial diverges); their life-times can also been estimated with a WKB calculus of
tunneling through a potential barrier. The relative shift of the energies of metastable
states can be observed by spectroscopy: it is the Stark effect.

Attempts to give a mathematical sense to these calculations lead up to the notion
of resonance. This theory enables us to understand how the Rayleigh-Schrodinger
serial, which is not summable in a usual sense, can nevertheless be summed in a more
sophisticated way to compute the “energies” and the life-times of the metastable
states. We refer the reader to the original article by E. Balslev and J.M. Combes
[4] on dilation analyticity and to the article by I. Herbst [10] to see the application
of this tool for the study of Stark Hamiltonians. We refer also to [12], and to [6] for
a more physical point of view.

Let now come back to the nonlinear settings of the HF and TFW models. For the
TFW model, we first notice that for all £ > 0,

inf{ETFW(u)—S zu?, u€DR?), / uzzl}:—oo.
R3

R3
Indeed, let u € D(R®) so that Jrzv® =1 and un() = u(- — n€e,), where &, is
the unit vector associated with the direction Oz. It is straightforward to see that
ETFW (y,,) — —oo. The standard definition of the ground state as the state which
minimizes the energy, has no more a meaning. We even show in Section 5.2 that the
TFW equation has no non-null solution in H'(IR®) as soon as a uniform external
electric field is turned on. Same conclusions can be drawn for the spinless real
Hartree-Fock model.

On the other hand, we will see in Section 5.1, that Rayleich-Schrédinger expansions
are still perfectly defined as solutions of the system (RS (resp. (RST¥Y(0)))
when the perturbation is a uniform electric field. But, the so-obtained Taylor series
(at least some of them) have convergence radii equal to zero, and thus are not
summable in a usual sense, even if £ is small.

5.1 Rayleigh-Schrodinger expansions

Proposition 4: The Rayleigh-Schridinger system (RSTF) (resp. (RSTFW(0)))
still has a unique solution in presence of a uniform electric field. But at least one
of the so-obtained Taylor series has a convergence radius equal to zero. O
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Proof:

For the TFW model, existence and uniqueness can be proved as in Proposition 3
with A = 0 and W(u) = —€ [i;s zu?: just notice that zv is in L*(IR®) if v decays
exponentially.

For the HF model, we can prove this result as in Proposition 3 by arguing by
induction on

(Hr) There ezists a unique solution (((d)l(-j)), (egj)))) of the system ((RS{'T),

0<j<k
, (RSEE)) with, moreover:
Vi Vji<k 3p;>0 3C,; | VeeR® ¢ ()| < C;jetiilel,

The exponential decay of the ¢; is already known [16]. At the order k, we show the
exponential decay of the ¢F as follows: denote h; = ¢¥ to simplify the notations.
We have

N
=Ahi+ (V4 px |)h +eihi =Y (dighy * " |)h =7,
j=1
with
N
ri=—2Y (¢;h *| | ¢>Z+Z (¢hi *| | ¢]+Z (@il * o |)¢>J+fz-
j=1

We easily deduce from the induction hypothesis (H_1) that there exists C > 0 and
A > 0 so that |r;(z)| < Ce Ml for all z € R and 1 < i < N. Denote g = Zf\il hZ.
We have

N N
_Ag = —QthAhz—2Z|vhz|z
i=1 i

< (V+p* —QZe,h +2Z (i, * hh +22m i-

i,j=1
We know that h; € H? C L>®. Thus there exists a constant C' so that |2 Zf\;l rih| <
Ce=Mzl. On the other hand | Y"(¢;h; * )h ihil < (p* E ‘)g It comes
—Ag +c(x)g + eng < Ce Nl

with ¢(xz) = 2V (z) — 0 when x goes to infinity. As in the proof of Proposition 3,
we conclude that there exists @ > 0 so that g(x) < Ce~°lZl. Thus for all i,
|hi(x)] < Cezlel,
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To prove that one at least of the Taylor series obtained with the Rayleigh-Schrodinger
system has a convergence radius equal to zero, it is enough to prove that equation
(5.32) (resp. (5.45)) below has no solution as soon as £ > 0 (in fact, if all the
Taylor series were convergent for some £ > 0, they would give birth to solutions
of equation (5.32) (resp. (5.45)). This non-existence result is the purpose of the
following section. O

5.2 Non-existence of non-trivial solutions to the TFW and
HF equations

We prove here the non-existence of non-trivial solutions to the TFW and HF equa-
tions in H*(R?) and (H'(R?))" respectively in presence of a uniform electric field
chosen oriented along Ox. We take, as in Section 5.1, Weyr(z,y,2) = —Ex with
E>0.

To establish this non-existence result, we will follow the method used by Avron
and Herbst [2] in the linear case. This method extends to higher dimensions the
following simple idea in one dimension. Let us consider the equation

—v"(z) — Exv(z) + V(z)v(z) + po(z) =0 (5.28)
on R with the following assumptions: z — V(z) is C' and
limsup [V'(z)] < €. (5.29)
r—+00
Then v = 0 is the unique solution of equation (5.28) in H'(IR).
Indeed, denote v € H'(R) a solution of (5.28). Let us define

G(z) = —v' (@) + (=Ex + V(x) + p)v(z)?. (5.30)
The first derivative of G reads
G'(x) = —(€ = V'(2))o()*.

Thus, according to assumption (5.29), G is decreasing for x large enough and has
a finite limit at +oo (because G’ is in L' (]1,+00])). As %I) is in L'(]1, +00]), this
limit is zero. Thus G(z) decreases to zero when z goes to +00. On the other hand,
also in accordance with hypothesis (5.29), =€z + V(z) + u < 0 for > x9, xo large
enough. Therefore G(z) = 0 for x > xo, and thus v(z) = v'(x) = 0 for x > xg.
The unique continuation principle (or the linear Cauchy-Lipschitz theorem, since
we work in one dimension) enables us to conclude that v = 0.

We first establish the non-existence for the TFW model, which needs a more careful
adaptation of the proof by Avron and Herbst. Then, we will prove this result for
the HF model.
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5.2.1 Notations

For v € H'(IR?), denote T, the function from R into L?(IR?) which, with all 2 € R
associates the trace of v on the plane x = zy.

Ty(zo) : R? —=C
(y,2) = v(2o,y,2).
We will use the following results, which are proved in the appendix:
o If v € H'(R?), T, € C°(R, L*(R?)).
o If v € H*(R?), T\, € C*(R, L*(R?)) N C°(R, H'(IR?)) and

0
! —
T, = Tg; _y (Ty(z0)) = Ta;

T

() L Teo) =Taelz)  (53)

Let a € R and Q, =], +oo[xR?. We will also use the Banach spaces:

HE 0 (00) Y o € HE Q) / h(@)o(z,y,2) € H*(Q4) Vh € D(Ja, +oo])}

The function T, is continuous on |a, +oof for all v € H}_, .(,) and equalities
(5.31) still hold for v € H2_, (Qq) and zg €]a, +oo[.

From now on, we denote by H = L*(R?) and for (v,w) € H x H, ||v||g =
(Jgz [v1)? and (v, w) g = [ge v*w.

5.2.2 The Thomas-Fermi-Von Weizsacker case

In presence of a uniform electric field of modulus £ > 0 oriented along Oz, the

TFW equation reads

s 1
—Au+Vu+cl|u|4/3u+(|u|2*ﬂ)u—&vu+uu:0 (5.32)
b
where p is the Lagrange multiplier associated with the constraint fRS u? = N. Our
purpose is to show

Proposition 5. For all £ > 0 and p € R, the unique solution u to (5.32) in
H'(R®) is u=0.0

Remark 6: We emphasize that the above result states the non-existence on non-
trivial solutions to equation (5.32) in a functional set which is far larger than the set
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{ue H'(R?), [gs|z|u? < +oo} which gives a sense to the energy ETFW (u) —
Jgs zu® formally associated with (5.32).

Remark 7: The reader will check that if the energy functional contains terms of the
form ¢ ng |u|P (2 < p < 6), the following proof will apply if and only if ¢ > 0. The
case of the Thomas-Fermi-Dirac-Von Weizsicker functional (see [16]) is therefore
still open.

Proof:

Let 4 € R. Denote u a solution to (5.32) in H'(IR*). We want to prove that u = 0.
As in the 1-dimension case treated above, we look at the region where = goes to
infinity. For this purpose, we consider the function

o) = [ w2 dydz = 1@,

By analogy with (5.30), we define a function G(z), which enables us to reach a
contradiction if we assume g(z) non-identically equal to zero for large x.

First step

We first need some regularity results. Denote a = 1 4+ max(|Zx|). By a bootstrap
argument, we see that u is in H>_; .(Qg).

We now split up the effective potential (V + (u® % ﬁ) + c1]u|*?) into two parts:
the first one regroups the terms that go to zero at infinity as well as their first
derivatives with respect to x; we put the other terms in the second part. Notice
that if we had supposed u € H3(]R3), the three terms in the effective potential
would have their first derivatives with respect to z going to zero at infinity (for in
this case both u and Vu are continuous and go to zero at infinity) and it would not
have been necessary to resort to this split.

Therefore we define the operator
W(ZE) = W1 (ZU) + Wz(l‘),
with on the one hand,

H
(V4 % o) (@, y,2)0(y, 2),

x|

W1 (.’L‘) : H
v(y,z)

and on the other hand

Wy(z) : H — H
'U(y,Z) = c1|u|4/3(ar,y,z)v(y,z).
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Since u € H?_,,.(Q,), the operator Wi (z) is well defined if > a and the function
x — Wi(z) is in C'(Ja, +oo[, L(H)). Moreover its derivative satisfies

Wi(z) H - H
v(y,2) = (G +2uf * 5@y, 2)v(y, 2).
As
lim  sup V+(u2*i) (z,y,2) =0,
r—+00 (y,2)ER? |X|
and
oV ou
I CASND Y -
N il R
we have
m W1 ()|l c(ery = 0
and

lim ||W{(2)llc(z) = 0.

z—400
Let 0 < 6 < € and zg > a so that
Vo >wo , [IWi(@)llcm) <€ -6 (5.33)
As for Wy, its derivative is

Wiz : H — H
U(.’L‘,y) = %cl(|u|1/3sgn(u)%)(x,y,z)v(y,z)

and we cannot say how Wj(z) behaves when = goes to +o0o. The key point that
enables us to overcome this difficulty is that c;|u|*/? is everywhere non-negative.

In order to simplify the notations, we denote by

¢(x) = Tu(z).

For all z > ¢, we define, by analogy with (5.30), the function
G(z) = —[l¢'(@)|lFr + (8(x), W1 — Ex + p+ W (2)) - b(2))u

with p? = — (;—; + g—;). For all z > zo,
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@) = (g, (€~ W) 9
= (@€~ W) oD + 2en g ([ WP dys).

Thus, Vog < z < a’,

(@ (ﬂf)——clf 2 [u'3 (2, y, 2) dy dz) — (G(2') — 2e1 [ [u]'3 (2!, y, 2) dy dz)
= [7(8(t), (€ —W{(t) - p(t))mr dt.

From (5.33), we conclude that the integral in the right hand side converges when
a' goes to +00. Therefore G(z') — 2¢1 [1o |u|'®/3 (2’ y, 2) dy dz has a finite limit at
+00 and this limit must be zero because L(G(x) — 2 [g2 [u|'*/3(2,y,2) dy dz) is in
L (Jzg, +o00[). Thus for z > xg

+oo
G@) = [ (60, (€ WO 6O dt+3er [ u*3(w,,2) dy de. (5.3)

R

The point is to remark that in (5.34), the nonlinear term appears with a positive
sign. Using (5.33), we have for all z > o,

) > 6 / o0 d. (5.35)

From now on, the proof is almost the same as in [2]. However, we reproduce it here
in full for the convenience of the reader.

The result of (5.35) is that for all x > xo:

9" (@) = 4]1¢' (@)l + 2G(x) > 0. (5.36)

The function g is a positive convex function integrable on ]zg, +o0o[. Thus ¢'(z) <0
on Jxg, +oof, and limg 4 g(z) = lim,—, t oo ¢'(z) = 0, which allows us to write, for

all z > xg,
+oo
/ dtl/ dtz g
t1

and with Fubini Theorem
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As ¢"(2') > 2G(2") > 26 f;,oo g(t) dt, we obtain after another application of Fubini
Theorem,

+0oo
o(z) > 5/ (& — 2)%g(a') da. (5.37)

We have also, with (5.35) and Fubini Theorem,

20¢'@)II° +Gx) > G(z)
+oo
> 5[ o
+0oo (pl _ )2
— 6/ ( 2 ) gll(xl) d:l?’,
and therefore with (5.36),
« +OO «
214" (@)|I” + G(z) > 5/ (@' —2)? 2] (")|I* + G(z)) da’. (5.38)

We refer the reader to [2] for the proof of the following result: if a real valued
function h satisfies

e 0 < h(zx) <400 ae. on [zg,+00]
o Vo >z h(z)> 6fw+oo(x' —z)%h(x")dz’,
then h(zx) also satisfies for all v so that 3 < 24:

+0o0
/ e’ h(z)dr < +o0.
T

o]

Therefore, from (5.37) and (5.38) we obtain for all v so that v* < 24,

—+oo
/ e g(x) dr < +oo, (5.39)

Zo

and

+00
/ 72|l (@) + Clx)) dz < +oo.

o]

and the latter can also be written as

+oo
/ e [(l¢ ()] +<¢(w),pi-¢(w)>H+cl/2 [ul % (2, y, 2) dy d)

o R
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+ ((p(x), Wi(z) - p(x)) 1 — Exg(x) + pg(z))] do < +oo.

Using (5.39), it is easy to see that or all v so that v3 < 24,

+oo
/ e’ ([(p(), Wi (2) - (@)} u| + [Exlg(2) + |ulg(2)) dz < +o0 (5.40)

Therefore, each of the following integrals of non-negative functions converges:

+00
/ ¢ (@)|]2 d < +o0 (5.41)
+00
/ " ¢(x),p1 - ¢(x))mr dx < 400 (5.42)
+oo
/ e’ (cl/ [u|'*3(z,y, 2) dydz) dr < +00 (5.43)
o R2

Second Step
For A >0,0<e<1and z > a, let us denote

Pre(a) =

¢(),

Wie(z) = Ae(1 — )z 1€ + A2 (1 — €)%z,
and

Gae(@) = =187 (@) 1T + (Dne(@), W] = Ex + p+ W (2) = Wae(2)) - ore(@))n-

We see that

Grelw) = e 7 [G(2) = Me(l — )z 7g() +2(1 — )z~ ((x), ¢ ()} )
—N(2(1 - €’z g(x))]
(5.44)
and

% (G}\7E(ﬂ?) - %6162)@1_6 fRZ |u|10/3(w,y,z) dy dZ)

=~ = Qe |gh (@)} — e (P (@), (€ = W{(2)) - dr,e (@)
— W} (@)g(@) = B (1 = a™ee " (fpo [l (2, y, 2) dy d2).
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Let us assume there exists x1 > xg so that g(x;) # 0. Equation (5.44) shows that
we can choose g large enough to have Ve €]0,1/2[, G, (1) < 0. Let us now fix
0 <€ < 1/2so0that 0 < —Wy _ (21) < /2. The convex function Wy, ., also
satisfies Vo > 21, 0 < =WJ__ (z) < /2, which implies

0,€0

d 2 onetc 10/3
_Z <
I <G>\,E($) 5016 /R2 ul (x,y,2z)dydz ) <0

on ]zy,+o0o[. As furthermore G (z1) — %clezmi_e Jgz w3 (21, y,2) dy dz < 0,

we get

oo 2 -
/ (GA7€(x) - gcle”‘w / [ul**73(z,y, z) dy dz) dr = —o0.
z R?2

1

This result is in contradiction with inequalities (5.39) to (5.43). Thus g(z) = 0 if
T > xp, le u =0 on [:Uo,—l—oo[xIR2. By unique continuation, v = 0 in the whole
space. O

5.2.3 The Hartree-Fock case

In presence of the same electric field, the HF equations read

N N
—A¢i + Vi + (D b7 * %)ﬁﬁi = (gid; * i)d’j —&x¢i +€ip; =0.  (5.45)
j=1

20y

Proposition 6. If £ > 0, for all (;) € RY, the unique solution to (5.45) in
(HY(R*))N is the trivial solution. O

Proof:
Denote

N
®i(x) =Ty, (x) g(z) = Z 1®4(2) 17 -

We define the operators

Wi(z) - H

v(y, 2) (V + (551 67 % i) (@, 9, 2)0(y, 2)

and
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H
_(Qsl(bj * ﬁ)(wﬂu;z)v(y; Z)

Wiﬂ'(:l?) . H —
v(y,z)

The functions z — W (z) and = — W, ;(z) are in C*(Ja,+oo[, L(H)) and their
respective derivatives W'(z) and W; ;(z) tend to 0 in norm when = — +oo. Let
0<d<28/3and 2y > a so that [|W ()| sy < E€—30/2and ||W;;j(x)llc) <6/2
for all (z,1,7), x > xo.

Denote this time
N
Gx) = > (—I®¥@)F + (®i(x), P - Ex + e + W(2)) - Bi(x))n)

=1

N
+ Y (W) - Bi(w), ®5(2))a-

We have
N N
—G'(x) =D (Ri(x), (€ = W'(x)) - i(2))u — Y (W}, (x) - i(), ®;(2)) i
i=1 i,j=1
There comes
Yz > zo —G'(z) > 6§ g(x)

and thus

—+o0
Vo >z G(z) >6/ g(z)dx + ¢

As €2 ¢ 11|z, +00[), ¢ = 0 and therefore

+00
Vo > xo G(z) > 5/ g(z) dx

which enables us to resume the proof by Avron and Herbst (cf [2] and Section 5.2.2).
a

The extension of this proof to some other classical real or complex Hartree-Fock
type models is straightforward.
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5.2.4 Remarks on the non-existence proof

We wish to make a few comments on the above result. Let us come back to the
equation considered by Avron and Herbst:

—Au+Vu—zu=0.

The proof of non-existence of bound states, that we have mimicked above, makes use
of the behaviour of the derivative of the potential V' with respect to the coordinate x
along the electric field: if for instance V' is bounded but % has large deviations, the
above proof does nos allow to conclude. For example, let us consider V(z,y,2) =
sin(z?)
v 1+|z]|
do not know how to extend the proof by Avron and Herbst to cover such situations.
However, we wish to draw the reader’s attention on the following point. If we
restrict ourselves to considering positive solutions, then it is possible to prove a
non-existence result that covers much a wider class of potentials that the ones
considered so far. Indeed a variational argument allows us to prove

. This potential does not fall into the scope of our proof. Unfortunately, we

Lemma 2. Let us consider the system

—Au+Vu=0 on R?
() { u>0 on R?
with V € L}, . for some ¢ > 6/5 and so that
I(R,) R,>0 3F(yn) / R? ess sup V — —oo. (5.46)
Br, (yn)

Then the system (II) has no solution in H} (R?). O

Before we give the simple proof of this lemma, we would like to mention that, so
far as we know, results of non-existence of positive solutions are rather seldom.
Here we consider a rather simple case when the potential (at least in some well
chosen areas of R®) goes to —oo as |¢| — 400, and we obtain that the only positive
solution is trivial, only by assuming the local integrability of the solution and its
first derivative. If the potential does not go to —oo, but still does not go fast
enough to zero at infinity, the situation is less simple, and a standard result is that
if V € L*/?(IR?) there is no solution u to (II) (see [19]). Also in the framework
of Quantum Mechanics we refer the reader to [5], where various conditions on the
behaviour of the potential at infinity are considered. More generally, this question
is connected to the interesting and difficult question of existence of bound states
for Schrédinger operators with a potential that does not vanish at infinity.

Remark 8: Note that when we get rid of the assumption u > 0, results of non-
existence are even more seldom: we only are aware of the result by Avron and
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Herbst [2] (and its extension to the N-body problem in [11]) and of the Virial
Theorem (see [17]).

Proof of Lemma 2:

Denote A; > 0 the first eigenvalue of the operator —A on B;(0) with the Dirichlet

condition v = 0 on the boundary S;(0). Let ¢; > 0 be the positive eigenvec-

tor associated with A;. As a consequence of the strong maximum principle, ¢,
091

also satisfies <>+ < 0 on S1(0) (v denotes the outward pointing normal). Denote

gn) (x) = ¢1((x — yn)/Ry)- The function gzﬁgn) is the first eigenvector of the oper-
ator —A on Bg, (y,) with the Dirichlet condition v = 0 on the boundary Sg, (y,)

associated with the eigenvalue A\; /R%. Suppose that there exists a solution u € H}.

of (I). As ¢§") and u are positive on By, (y,), we have

0 = / (—Au + Vu) g")
Br,, (yn)

n ¢y "
< [ adus [ Zus [ v
B, (yn) Sna(yn) OV B, (yn)
1 n
< — (M +Rless sup V)(/ g )u)
Br,, (yn)

R?L Br,, (yn)

and thus A\; > —R? ess SUPg,, (y,) v, Which contradicts hypothesis (5.46). O

5.3 On “states” computed by Quantum Calculation programs

All Quantum Calculation programs offer to compute the “Hartree-Fock ground-
state” of a molecular system subjected to a uniform external electric field. Having
regard to our result of non-existence, that seems, at first sight, irrelevant.

We can easily understand the reason why these programs may converge, for they
actually minimize the Hartree-Fock energy over the unit ball of a finite dimensional
vector space (of linear combinations of Slater or Gaussian functions). This problem
is obviously compact in the usual sense, and the minimum is thus always achieved.
The question is that of the intrinsic nature of the result obtained by such a cal-
culation. On the one hand, it is clear that the computed energy can be made as
low as one wish by choosing an appropriate finite basis. On the other hand, it is
reasonable to think, though this is not proved at the present time, that the par-
ticular finite basis function sets considered by the chemists, which consist of Slater
or Gaussian functions that are centered on the nuclei (or on “chemical bonds”),
force the electrons to stay close to the nuclei, and prevent them from tunnelling
through the potential barrier separating the potential wells created by the nuclei
from the regions of large x where the electrostatic potential is highly negative. The
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so-obtained numerical result may therefore have an intrinsic nature which might be
related to some resonance state.

We underline that our non-existence result that claims that, for Hartree-Fock mod-
els, it is impossible to bind nuclei and electrons together under a uniform external
electric field, is only in apparent contradiction with the calculations performed by
the Chemists. It only shows that an additional mathematical study is necessary to
make the situation clear.

6 Appendix

Let v € H'(R?). Let us prove that = — T,(z) is continuous (and even Lipschitz)
from R into H = L?*(R?). Let v € S(R?) and (z1,22) € R x R. Denote &' the
Fourier transform of v with respect to the first coordinate. It comes

”T (;UZ) T, ($1)||%2(R2)
= fRz $2ay7 _U($17y7 )) dy dz

= fo (S22 0w o) — ) ) dydz
ifxo ixq 2
—fR2(_+OO L&, )L+ 61) 2 (St ) de) - dy d
< (Jys [P (€ y, 2)(1 + |2 de dy dz) (13 12 de)

< ||U||H1(R3) (f+;° szn 2t dt) |.’I,'2 _ .’IJ1|2.

Thus there exists A > 0 so that Yo € S(R®) V(z1,22) € R x R,

1Ty (x2) = Tu (@)l < Alloll g o2 — 2.

As for z fixed, v = T, () is continuous from H'(IR?) into H, and as S(R?) is dense
in H'(IR?), we conclude that

Yv € Hl(]R3) V(;L'l,ilfz) ceR xR ||Tv(£132) — Tv($1)“ < A||U||H1(R3)|£L'2 — £U1|.

Let us now consider v € H?(R?). We will prove that T\, € C'(R, L*(R?)) and
T = Tau .

Let v € S(]Rg) and (z1,z2) € R x R with 21 # z,.
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oo (To(@2) = To(@1)) — T (1)

T2—T o
2
— e (Meeitnnd o)) dyds
R pifma ik L 2
(S22 0 (6 y ) (<™ —igei®r) dg) dudy

400 1872 18T e ik 2
= Jgz (foo 0 (& y,2) (1 + &) (— e )df) dz dy
i€wy _ifey

" |5 =e— —ige’t
< (s 07 P(E, 201+ €00 dedy ) (13— )

< 02 (1, @) [[0] % )

with
1/2

( ) /+oo |ei€:Z:;i1£w1 _ ifei5w1|2 dg
al(xry,x2) =
b . (1 + [€[?)?

For z fixed, v — (T, (x),T% (z)) is continuous from H?(IR*) on H x H. Besides
S(IR?) is dense in H?(IR?). Therefore
VYo € H'(R?) V(z1,22) € R xR /[ x1 # o2,

I L (To(22) = Ty (1)) — Tpe

ro — I ow
There remains to prove that for z; € R, a(z1,z2) tends to zero as z goes to x.
Let 1 € R. Let us consider a real sequence (:cg"))neN which converges to 1.

Denote

(@)l < aley, z2)||v] p2gs)-

ifw;n) iceq i€ 2
e —e _ sepifm
_1:;7;)7:1:1 ile

We see that
e Ve R lim, t00 fr(§) =0,

o VEER |fu(d)] < -

By dominated convergence lim,,, o a(z1,2%) = 0.

Finally if v € H?(IR?), it is clear that for all 7, € R, (%(TU(:UO)) =To (zo) and
that %(Tv (x0)) = Tos (zo) (it is true for v € D(IR?); we conclude with a density
argument).
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