
On the perturbation methods for somenonlinear Quantum Chemistry models.Eric Canc�es & Claude Le BrisCERMICSEcole Nationale des Ponts et Chauss�ees,Central 2, La Courtine,F-93167 Noisy-Le-Grand Cedex, FranceAbstractThe �rst purpose of this article is to give a sound mathematical foundation toperturbation methods for some nonlinear Quantum Chemistry models. Thiscontributes to the understanding of computations on molecular systems insitu, such as solvated molecules or molecules subjected to a uniform externalelectric �eld. Our second purpose is to prove in the latter setting a resultof non-existence of solutions to the Thomas-Fermi-Von Weizs�acker and tothe Hartree-Fock equations, which is the nonlinear counterpart of a result byAvron and Herbst [2].1 IntroductionThe perturbation method is a standard tool in Quantum Mechanics. Its aim is tocompute the eigenstates of a Hamiltonian H� = H0 + �W from the knowledge ofthe eigenstates of a reference Hamiltonian H0. For the reader's convenience, let usbriey describe this method.Denote u0 a normalized eigenvector of H0, associated with the eigenvalue ��0.Let us consider � as a real parameter. We are looking for two analytic functions�(�) and u(�) satisfying �(0) = �0 and u(0) = u0 and so that for all �, u(�) is anormalized eigenvector of H� associated with the eigenvalue ��(�). By insertingthe expansions �(�) = P �kk!�k and u(�) = P ukk! �k into the secular equation andthe normalization condition R ju(�)j2 = 1, we get(RSk)� (H0 + �0) � uk = fkR u�0uk = ak1



where fk and ak only depend on (uj)0�j�k�1 and (�j)1�j�k�1. When the triangularsystem (RS), de�ned as the union of the subsystems (RSk)k�1, has a solution, weget two Taylor seriesP �kk!Xk andP ukk! Xk. Those expansions are called Rayleigh-Schr�odinger expansions and abbreviated in the sequel as (RSE). If the convergenceradius of each serial is positive then for � small enough, u(�) = P ukk! �k is anormalized eigenvector of H� associated with the eigenvalue ��(�) = �P �kk!�k.In practice, only the �rst k terms of the expansion are computed, which gives anapproximation of u(�) and �(�). This is called the k-order perturbation method.The mathematical theory of the perturbation of linear operators, which underliesthat method, has been deeply studied since the pioneering works by Rellich onregular perturbation theory [18]. We refer the reader to the reference textbooks[13] and [17].The main interest of the perturbation method in the early days of QuantumMechan-ics was to widely broaden the set of the quantum systems that could be analyticallycomputed. In fact, only very few equations in Quantum Mechanics can be directlysolved without resorting to computers. The relevance of the perturbation method intoday's Quantum Chemistry is thus not obvious, since one could at �rst sight arguethat, with a computer, the calculation of the eigenstates of the perturbed system isa priori neither easier nor more di�cult than the calculation of the eigenstates ofthe unperturbed system. Nevertheless, the perturbation methods are still of greatinterest in Computational Quantum Chemistry. Let us give a few examples.First, they are commonly used to improve the mean �eld approximation in theHartree-Fock models: that is the purpose of M�oller Plesset perturbation meth-ods (see [9] for instance) that are implemented in the most widespread QuantumChemistry calculation programs. We leave this application aside and focus on thefollowing one.Secondly, perturbation methods allow one to take into account the interactions ofthe system under consideration with di�erent environments without running a self-consistent calculation for each environment. This method is for instance used innonlinear optics to compute the response of the molecule to the excitation by an(oscillating) electric �eld: the so-called coe�cients of polarizability of the n-th orderare in fact the coe�cients of the Taylor series describing the state of the perturbedsystem. As shown from a chemical and a numerical standpoint in [1], the use of theperturbation methods to study solvated molecules also seems to give satisfactoryresults.We also point out that the \good" behavior of a model when it is subjected to aperturbation is a guarantee of stability with respect to numerical approximations.The �rst purpose of this article is to give to such computations in a nonlinear settinga sound mathematical foundation. 2



In Section 2, we present the two nonlinear Quantum Chemistry models we will workon: the spinless real Hartree-Fock model (HF in short), and the Thomas-Fermi-Von-Weizs�acker model (TFW in short). Other models of Quantum Chemistry could beconsidered but those ones have been chosen for the following reasons: some basicmathematical properties of the former are already known [16], which will makeour work easier; besides, this model is very close to other types of Hartree-Fockmodels commonly used in Computational Chemistry at the present time; the latteris more academic, but it belongs to an important class of models, which, them, areof general use, namely the density functional theory type models (DFT-type modelsin short), and the present work can be seen as a �rst step towards their study. Wewill see how to extend those models to situations when the molecule is no moreisolated, but interacts with its environment. For each of the above two models, wewill consider the following two environments:� a solvated molecule,� a molecule in an external electric �eld,both situations being very important as far as the applications are concerned.For the sake of simplicity, we will treat these two applications separately, but it ispossible to study likewise a solvated molecule subjected to an electric �eld.In Sections 3, 4 and 5, we study the mathematical foundations of the perturbationmethod for the HF and the TFW models.In Section 3, we investigate the case of a so-called regular perturbation of the HFmodel, a notion that will be made precise there, but that we now de�ne somewhatvaguely as a perturbation which does not modify the domain of de�nition of theenergy functional. In particular, one of the main features of such a perturbationis that its e�ect decreases fast enough at in�nity. Under some assumptions on thelocal behavior of the unperturbed energy functional in the neighbourhood of thereference state, we prove that RSE can be built at an unperturbed ground state,and that the so-obtained series have positive convergence radii. For this purpose,we use an analytic version of the implicit function theorem.For the TFWmodel, considered in Section 4, this method does not allow to concludebecause of a lack of analyticity, and we have to show by hand that the RSE arestill well de�ned at the unperturbed ground state. We leave open the questions ofconvergence of these RSE.In Section 5, we study a case of a non-regular perturbation, which is very importantin practice: the molecule is subjected to a uniform external electric �eld. Again,both the HF and TFW models are studied in this setting. We show in Section 5.1,that RSE are still well de�ned by a triangular system similar to (RS), but thatthese expansions are divergent. We obtain the latest point as a corollary of a result3



(see the details in Section 5.2) of non-existence of non-trivial solutions to the TFWand HF equations in presence of a uniform external electric �eld.This result of non-existence is the second purpose of the present article. It is actuallyrelated to the general question of the existence of bound states for Schr�odingeroperators with potentials that do not vanish at in�nity (see Section 5.2.4). It is inparticular the nonlinear equivalent of the result of non-existence of bound states forsome linear Stark Hamiltonian ([2] and [11]). Our proof mimics the proof of [2].We conclude this article by some comments on the computations of \Hartree-Fockground states" of a molecular system subjected to a uniform external electric �eld,o�ered by some Quantum Calculation programs.No attempt will be made here to extend the concept of resonance, which, in thelinear case, allows to draw information from the (divergent) Rayleigh-Schr�odingerseries. We will however give some accesses to the vaste literature devoted to the(linear) resonance theory.2 Presentation of the modelsLet us start from the N-body HamiltonianH = � NXi=1 �xi + NXi=1 V (xi) + X1�i<j�N 1jxj � xijwhich describes the electronic state of an isolated molecule with M nuclei and Nelectrons, when we follow the Born-Oppenheimer approximation of �xed nuclei andwhen we neglect the spin terms (all physical constant are set to one). The potentialV (x) = � MXk=1 zkjx� xkj (2.1)is here the electrostatic potential created by the point nuclei (zk is the atomicnumber of the k-th nucleus and xk its position). The operator H acts on A =L2a �(IR3 � fj+i; j�ig)N ;Cj �, the vector space of quadratically integrable functionsof (3+1)�N variables of space and spin (3 space real variables and 1 spin booleanvariable for each electron), totally antisymetric under exchange of two (space andspin) electron coordinates.Let us now explain how to take into account the presence of an external electric�eld or the solvent e�ect in the solvated case.It is easy to model the presence of an external electric �eld: we just have to add itselectrostatic potential Wef to the Hamiltonian H ,4



Hef = H +Wef , (2.2)the subscript ef standing for electric �eld.On the other hand, the solvated case is more di�cult: a precise description of a sol-vated molecule requires in principle a quantum treatment of each solvent molecule.We would then get an electronic Hamiltonian that would act on much too large aspace for the computational means that are available at the present time. Amongall the reasonable approaches, one consists in taking into account only the solventmolecules that are located in the neighbourhood of the solute. But that methodquickly reaches its limits: the number of nearby solvent molecules fastly increaseswith the number of atoms of the solute molecule. An alternative approach, muchmore economic in terms of computational memory and CPU time, consists in re-placing the solvent molecules with a continuous dielectric, which covers the entirespace but a cavity corresponding to the volume occupied by the solute molecule.This model is called the Polarizable Continuum Model (PCM in short). We referthe reader to an overview of such methods by J. Tomasi and M. Persico [20].Let us rewrite the electronic Hamiltonian when taking the dielectric medium intoaccount Hs = � NXi=1 �xi + NXi=1 Vs(xi) + X1�i<j�N Gs(xi; xj)with Vs(x) = � MXk=1Gs(x; xk);where Gs is the Green function on IR3 of the operator [� 14�div(�(x)r�)] (�(x) beingthe value at x of the dielectric constant and the subscript s standing for solvation).In the traditional versions of PCM, �(x) is set to one inside the cavity and �(x) =�s > 1 outside, �s being the dielectric constant of the solvent. Here, in order toavoid some technicalities, we assume that �(x) is a smooth function, everywheregreater than or equal to 1, and constant (= �s > 1) out of a ball. Other cases of�(x) including discontinuity surfaces and anisotropies will be studied elsewhere [7].Under those assumptions, one can easily see thatGs(x; y) = 1�(y)jx� yj + gs(x; y), (2.3)where gs 2 C0(IR3�IR3)\C1((IR3�IR3)n�)\L1(IR3�IR3) and � = �(x; x) ; x 2 IR3	,5



8y 2 IR3 Gs(x; y) �x!1 1�sjxj ; (2.4)8(x; y) 2 (IR3 � IR3) n� Gs(x; y) = Gs(y; x) > 0: (2.5)In order to emphasize the fact that we consider this model of a solvated moleculeas a perturbation of the standard model for a molecule, we writeHs = H +Wrf ; (2.6)where Wrf = NXi=1 Vrf (xi) + X1�i<j�N Grf (xi; xj);with Vrf = Vs � Vand Grf (x; y) = Gs(x; y)�G(x; y);G(x; y) = 1jx�yj being the Green function on IR3 of the operator [� 14��] (the sub-script rf stands for reaction �eld).In both cases (2.2) and (2.6), the perturbed Hamiltonian is of the formH1 = H +W:In order to compute its ground state with a perturbation method, we introduce areal parameter � and embed H and H1 into the family of HamiltoniansH� = H + �W:Remark 1. When the pertubation is an external electric �eld, letting � increasefrom 0 to 1 has a physical counterpart: it means that we increase the voltage insideof the capacitor that creates the �eld. 2Remark 2. In both cases (2.2) and (2.6), the Hamiltonian H1 maps the real valuedfunctions of A on real valued distributions. Therefore, without lost of generality,we may choose a real valued ground state. 26



2.1 The spinless real Hartree-Fock modelMinimizing the energy h ;H i over the manifold � 2 A = R j j2 = 1	 is onlypossible in practice for the simplest chemical systems, such as H2, He or H�2 . Astandard way for dealing with such minimization problems is to look for the mini-mum of the energy h ;H i over a subset of A. If the subset is large enough, it isreasonable to think that we will obtain a good approximation of the solution of theoriginal minimization problem. When the subset of A is chosen as a set of Slaterdeterminants ( 1pN !det(�i(xj)) of N mono-electronic functions (or as a set of �nitesums of such determinants in some improvements of this basic idea), the minimiza-tion problem is set over much smaller a space (but large enough to keep a physicalmeaning), but has lost its quadratic nature. These new minimization problems aresaid to be of the Hartree-Fock type. A review of such models can be found in [9].We now introduce one of them, on which we will work in the following sections,namely the spinless real Hartree-Fock model.The spinless Hartree-Fock approximation consists in minimizing h ;H i over thesubset of A of which the elements read as a Slater determinant of N functions  ion (IR3 � fj+i; j�ig), chosen so that 81 � n � N , 8x 2 IR3,�  n(x; j+i) = �n(x) n(x; j�i) = 0with 81 � i; j � N , �i 2 H1(IR3) and RIR3 �i��j = �ij . In other words, it forces theN electrons to be in the same spin state. This is of course quite irrelevant from aphysical point of view, but the so-obtained model is nevertheless formally very closeto the Restricted Hartree-Fock model (see [9]), which, him, is perfectly relevant andcommonly used in practice.Indeed, we come to the following minimization probleminf �EHF (�) ; �i 2 H1(IR3;Cj ) ZIR3 �i��j = �ij�withEHF (�) = NXi=1 ZIR3 jr�ij2+ZIR3 V �+12 NXi;j=1 �D(j�ij2; j�j j2)�D(�i��j ; ��i �j)� (2.7)where � =PNi=1 j�ij2 is the total electronic density, and D(u; v) denotes the integralRIR3�IR3 u(x) v(y)jx�yj dx dy. See [9] for instance for the derivation of (2.7).7



For technical reasons, we restrict ourselves to real valued �i. Since we have seenin Remark 2 that the ground state could be chosen real valued, this additionalrestriction is more natural than that on the spin dependence. Finally we obtain thespinless real Hartree-Fock minimization probleminf �EHF (�) ; � 2 BHF	with BHF = �(�i)1�i�N = �i 2 H1(IR3; IR) ZIR3 �i�j = �ij� :Some existence results are known for this model, in particular for the neutral system(see [16] for instance). To our knowledge, no rigorous result of uniqueness (up toan ortogonal transform) of the ground state has been proved for any Hartree-Focktype model.Perturbation of the spinless real Hartree-Fock modelA perturbation �W of the N-body Hamiltonian gives rise to an additional term �Win the HF energy functional. We can easily compute its expression for the two caseswe are interested in. In the case of a pertubation by an external electric �eld, thefunctional W(�) readsWef (�) = ZIR3( NXi=1 �2i )Wef = ZIR3 �Wef :For a solvated molecule described by PCM, the functional W(�) consists of twoterms: a quadratic term corresponding to the modi�cation of the nuclei-electronsinteraction W1rf (�) = ZIR3( NXi=1 �2i )Vrf = ZIR3 � Vrf ;and a term of the fourth order in the �i, coming from the modi�cation of theelectron-electron interactionW2rf (�) = 12 NXi;j=1Drf (�2i ; �2j )� 12 NXi;j=1Drf (�i�j ; �i�j)with Drf (u; v) = RIR3�IR3 Grf (x; y)u(x) v(y) dx dy. Notice that in most of thepractical calculations, the solvant e�ect is not taken into account in the exchangeenergy (ie the second term in the above expression is neglected).The minimization problem then reads 8



inf �EHF� (�) ; � 2 BHF	with EHF� (�) = EHF (�) + �W(�):2.2 The Thomas-Fermi-Von Weizs�acker modelWe also establish some results concerning the TFW model, in the following sections.This model is a primitive version of the DFT-type models, often used at presenttime in Quantum Chemistry calculations [8]. The TFW energy readsETFW (�) = ZIR3 jrp�j2 + ZIR3 V �+ 35c1 ZIR3 �5=3 + 12D(�; �);the real constant c1 being non-negative (the case c1 = 0 gives the so-called Re-stricted Hartree model). The density � satis�es � � 0, RIR3 � = N , and we requirethat p� 2 H1(IR3) so as the expression above is well de�ned. It is convenient toexpress this energy as a function of the square root u of the density �. DenoteETFW (u) = ZIR3 jruj2 + ZIR3 V u2 + 35c1 ZIR3 juj10=3 + 12D(u2; u2):Then, ETFW satis�es: 8u 2 H1(IR3), ETFW (u) = ETFW (juj) = ETFW (�) if� = u2.To �nd the ground state, we have to computeinf �ETFW (u); u 2 BTFW	 (2.8)where BTFW = �u 2 H1(IR3) = RIR3 u2 = N	. From now on, we assume that inthe TFW case, N � P zk, that is to say that the molecular system is neutralor positively charged. E.H. Lieb has proved that in this case the minimizationproblem (2.8) has a solution, and that all solutions give the same value for � (forthe functional ETFW is strictly convex with respect to �). In particular, (2.8) hasa unique non-negative minimizer.If we perturbate the isolated molecule by tuning on an electric �eld or by solvatingthe molecule, its TFW energy readsETFW� (�) = ETFW (�) + �W(�);or, as a function of u = p� 9



ETFW� (u) = ETFW (u) + �W(u):If the perturbation is an external electric �eld, of potential denoted by Wef , weobtain Wef (u) = ZIR3 Wef u2 = ZIR3 �Wef =Wef (�):In the PCM case, the perturbation functional readsWrf (u) = ZIR3 Vrfu2 + 12Drf (u2; u2) = ZIR3 �Vrf + 12Drf (�; �) =Wrf (�):We will use in the following the di�erential W 0(u) of W at u, which we will identifywith an element of H�1, and the second derivativeW 00(u) of W at u, which we willidentify with a linear operator mapping H1 on H�1.Remark 3. In a more sophisticated DFT-type model taking some exchange termsinto account, the term Drf (u2; u2) could be replaced by a functional having a morecomplicated dependence on u. 23 Regular perturbations of the HF modelIn this Section, we only consider some special perturbations of the energy functionalthat we call regular in the following sense. Denote D(W) the domain of de�nitionof the fonctionalW . We say that the perturbationW of the energy functional EHFis regular if� (H1(IR3; IR))N � D(W);� W : (H1(IR3; IR))N ! IR has an analytic continuation in (H1(IR3;Cj ))N.The �rst condition is essential: it guarantees that the perturbed energy functionalis well de�ned on BHF . The second one is more technical; it is su�cient for ourstrategy of proof but is not optimal.Using (2.3) and Hardy inequality, one easily check that the �rst condition is satis�edfor PCM. The second one is also satis�ed: Wrf is polynomial with respect to thereal functions �i and its successive derivatives have the required regularity. Theperturbation Wrf is therefore regular.A perturbation by an external electric �eld of potential Wef so that10



h 7!Wefh is continuous from H1(IR3) into H�1(IR3) (3.9)is clearly regular. This condition is full�lled for instance if Wef 2 L1 or if Wef iscreated by a �nite density of charge which has compact support (which is sometimesthe case in applied calculations).On the contrary, a perturbation by a uniform electric �eld of potential Wef (x) =(e �x) (for some given vector e 6= 0 of IR3) is not regular. Indeed, let us consider forexample h(x) = 11+jxj2 ; h 2 H1(IR3) but RIR3 j(e � x)jjhj2 = +1, which contradictsthe condition (H1(IR3; IR))N 2 D(W). Section 5 is devoted to the study of thisperturbation.Unless otherwise stated, W will denote in this section any potential satisfying thetwo above conditions, in particular Wrf or Wef with (3.9).We now consider a minimum � of the unperturbed HF energy functional (2.7)EHF (�) = inf �EHF ( ) ;  2 BHF	 : (3.10)Our purpose is to prove that, under some assumptions on the local properties ofthe energy in the neighbourhood of the minimum �, it is possible to perform aperturbative treatment of any regular perturbation, which in particular gives asound footing to practical calculations like those in [1]. We mean that the sameapproach as in the linear case (see Section 1) gives birth to a triangular systemsimilar to (RS), which has a unique solution. Moreover the so-obtained Taylorseries have positive convergence radii.We will prove this result by an application of an analytic version of the implicitfunction theorem.Notice that this method does not give any estimation of the convergence radii. Ifthe perturbation has a meaning for small �, as in the external electric �eld case, wehave nevertheless obtained a physical result: the existence of a solution for weak�elds. Otherwise, as in the PCM setting, where only the case � = 1 is physicallyinteresting, the obtained mathematical result has no obvious physical counterpart(a direct study of the existence of a solution for the Hartree-Fock model in the PCMsetting will be presented elsewhere [7]).Let us now introduce and discuss the assumptions on the local properties of theenergy in the neighbourhood of the minimum �, that we need to prove our result.We will �rst suppose that the �i are eigenvectors of the Fock operator F associatedwith the N smallest eigenvalues ��i of F . It is always possible to come down tosuch a case through an orthogonal transform of the �i (see [9] for instance for moredetails). We recall 11



F = ��+ V + (� ? 1jxj )� ZIR3 �(x; y)jx� yj � (y) dywith �(x) =PNi=1 �2i (x) et �(x; y) =PNi=1 �i(x)�i(y). The relationsF � �i = ��i�iare the Euler-Lagrange equations of the minimization problem (3.10).The second-order condition at � reads: for all U = (ui) 2 (H1(IR3))N so thatRIR3 �iuj + �jui = 0, hU; ~HHFUi = NXi=1 ZIR3 ui( ~HHFU)i � 0with ( ~HHFU)i = Fui + �iui + 2 NXj=1��juj ? 1jxj��i� NXj=1��iuj ? 1jxj��j � NXj=1��i�j ? 1jxj�uj .DenoteN = �U = fuig1�i�N = ui 2 H1(IR3) ZIR3 �iuj = 0 81 � i; j � N� :We now assume that:1. The N smallest eigenvalues of the Fock operator F are non-degenerate (ie��1 < ��2 < � � � < ��N�1 < ��N < 0);2. ~HHF is coercive on N .These two assumptions correspond to the isolated eigenvalue hypothesis introducedin the linear theory (cf Kato-Rellich Theorem, in [17] for instance), which is thefoundation of the perturbation method in the non-degenerate case (see any Quan-tum Mechanics textbook, [14] for instance).The origin of an eigenvalue degeneracy is often the invariance of the system underthe action of a symmetry group. If the molecule does not exhibit any symmetry12



(which is usually the case for a molecule consisting of several atoms), assumption 1therefore seems reasonable.Assumption 2 (of coercivity) means that � is a strict local minimum of EHF overBHF up to an orthogonal transform of type (3.12) below.As for the Unrestricted Hartree-Fock model considered in [3], one can prove that,if ��N+1 denotes the (N + 1)-th eigenvalue of F , the inequality��N < ��N+1 (3.11)is always satis�ed. In reference to the title of [3], it means that \there are no un�lledshell" , or in other words that there is a gap in energy between the highest occupiedlevel and the lowest unoccupied one, in the HF model we are interested in. Noticethat (3.11) can also be deduced from assumption 2.For any one-electron system, the spinless Hartree-Fock model comes down to thelinear case. Indeed, in this case, the energy functional is quadratic on H1(IR3) andreads EHF (u) = ZIR3 jruj2 + ZIR3 V u2:It is easy to see that both assumptions 1 and 2 are satis�ed for this functional atits ground state (which is known to be non-degenerate).We now state Lemma 1 and Proposition 1, whose proofs are postponed until theend of this section.Lemma 1. Suppose that F and ~HHF satisfy the assumptions 1 and 2 above. Let(fi) 2 (H�1(IR3;Cj ))N and (�i) 2 Cj N. The system(I) � ( ~HHFU)i + �i�i = fi 1 � i � NRIR3 �iui = �i 1 � i � Nhas a unique solution (U = (ui); (�i)) in (H1(IR3;Cj ))N �Cj N. Moreover if the (fi)are real valued and the (�i) are real, so are the (ui) and the (�i). 2Proposition 1. Under assumptions 1 and 2, there exists a range I = ]��inf ;+�sup[,�inf > 0 �sup > 0 and a neighbourhood 
 of ((�i); (�i)) in (H1(IR3))N � IRN so thatthe set of the solutions (�; ( i); (�i)) in I � 
 of the equations81 � i � N F( j) i + �2 @W@�i (( j)) + �i i = 0;F( j) being the Fock operator 13



F( j) = ��+ V + (�( j) ? 1jxj )� ZIR3 �( j)(x; y)jx� yj � (y) dywith �( j)(x) = PNj=1  2j (x) and �( j)(x; y) = PNj=1  j(x) j(y), is a one dimen-sional curve parameterized by �:I ! 
� 7! ((�i(�)); (�i(�))):Moreover �i(�) and �i(�) are analytic real functions on I and verify for all 1 �i � N , �i(0) = �i, �i(0) = �i. In addition, for all � 2 I, �(�) = (�i(�)) isa local minimum of the energy functional EHF� operating on BHF , unique in aneighbourhood of �, up to an orthogonal transform. 2Let us now expand �i(�) and �i(�) in Taylor series around � = 0. By analogywith the linear framework, we will call these expansions Rayleigh-Schr�odingerExpansions.Denote �(k)i = dk�id�k (0), �(k)i = dk�id�k (0). For all k � 1, ((�(k)i ); (�(k)i )) is a solution of(RSHFk )( ( ~HHF�(k))i + �(k)i �i = f (k)i 1 � i � NRIR3 �i�(k)i = �(k)i 1 � i � Nwithf (k)i = �W (k)i � k�1Xl=1 � kl � �(l)i �(k�l)i� NXj=1 Xl1 + l2 + l3 = k0 � l� � k � 1 � k!l1!l2!l3!��(�(l1)j �(l2)j ? 1jxj ) �(l3)i � (�(l1)i �(l2)j ? 1jxj ) �(l3)j �
and �(k)i = �12 k�1Xl=1 � kl �ZIR3 �(l)i �(k�l)i :14



The term W (k)i is made up of the coe�cients of the terms in �k�1 which arisein the Taylor expansion of 12 @W@�i (�(�)) and is thus a function of the (�(l)i ), 1 �j � N , 0 � l � k � 1. The right-hand members f (k)i and �(k)i are functions of((�(j)i ); (�(j)i ))0�j�k�1. The knowledge of the (k � 1)-order terms thus permits todetermine the k-order terms ((�(k)i ); (�(k)i )) (in a unique way from Lemma 1). Inthe following, we will call Rayleigh-Schr�odinger System, and note (RSHF ) thetriangular system de�ned as the union of the subsystems (RSHFk ), k � 1. Lemma 1and Proposition 1 show that (RSHF ) has a unique solution and that the Taylorseries built from the Rayleigh-Schr�odinger expansions have positive convergenceradii.Let us now turn to the two applications we are interested in. In both cases, W isa polynomial, of the second and the fourth degree respectively. The expressions ofW (k)i have thus a simple form: W (k)ef;i = kWef�(k�1)i andW (k)rf;i = kVrf�(k�1)i+ NXj=1 Xl1 + l2 + l3 = k0 � l� � k � 1 � k!l1!l2!l3!��ZIR3 Grf (x; y)�(l1)j (y)�(l2)j (y) dy��(l3)i� NXj=1 Xl1 + l2 + l3 = k0 � l� � k � 1 � k!l1!l2!l3!��ZIR3 Grf (x; y)�(l1)i (y)�(l2)j (y) dy��(l3)j :Notice that in the PCM case as well as in the electric �eld case @W@�i = 2
� � �i.Therefore, the �i are eigenvectors of the operator F� + �
� (associated with theeigenvalues ��i(�)). In the electric �eld case, 
� = Wef (and is then besidesindependent from �), and in the PCM case
� = Vrf +�ZIR3 Grf (x; y)��(y) dy�� ZIR3 Grf (x; y)��(x; y) � (y)dy:Before we turn to the proofs of Lemma 1 and Proposition 1, we need some elemen-tary algebraic results.Let us �rst notice that ~HHF is clearly self-adjoint. Denote T�BHF the tangentvector space at u to the submanifold BHF of (H1(IR3))N . We can writeT�BHF = �U = fuig1�i�N = ui 2 H1(IR3) ZIR3 �iuj + �jui = 0� :15



With these notations, the second-order condition at the minimum � of (3.10) reads:8U 2 T�BHF hU; ~HHFUi � 0.This quadratic form is degenerate on T�BHF according to the following invariance8O 2 O(N); 8 2 BHF ; O 2 BHF and EHF (O ) = EHF ( ) (3.12)where O(N) is the set of orthogonal real N �N matrices. Denote A(N), S(N) andS�(N) the sets of the N �N matrices that are respectively antisymetric, symetricand symetric with their diagonal terms all equal to zero. We recall that A(N) is theLie Algebra of the group O(N), and that A(N), S(N) and S�(N) are respectivelyN(N�1)2 , N(N+1)2 and N(N�1)2 dimensional vector subspaces of MN (IR).We notice that (H1(IR3))N = S(N)��A(N)� �N ; (3.13)T�BHF = A(N)� �N : (3.14)Moreover, for A = [aij ] 2 A(N), a straightforward calculation shows that( ~HHF �A�)i = NXj=1(�j � �i)aij�jfrom which we deduce~HHF (A(N)�) � S�(N)� (3.15)h ; ~HHFA�i = 0 8A 2 A(N) 8 2 T�BHF (3.16)and the inclusion in (3.15) is in fact an equality if assumption 1 of non-degeneracyof the N smallest eigenvalues of F is satis�ed.We can now write theProof of Lemma 1:The (�i) are real valued and ~HHF maps real valued functions on real valued distri-butions. It is therefore possible to split problem (I) into two independent problems(I 0) and (I 00), the former dealing with the real parts and the latter with the imag-inary parts. We now come to prove that for (fi) real valued and (�i) real, system(I) has a unique solution. 16



Uniqueness: Let ((ui); (�i)) and ((u0i); (�0i)) be two solutions of (I) in (H1(IR3; IR))N�IRN , and V = (vi) = (u0i � ui), (�i) = (�0i � �i). We have� ( ~HHFV )i + �i�i = 0 1 � i � NRIR3 �ivi = 0 1 � i � N:We split up V in accordance with (3.13):V = S�+A� + V 0with S = [sij ] 2 S(N), A = [aij ] 2 A(N), V 0 = (v0i) 2 N . Conditions RIR3 �ivi = 0mean that S 2 S�(N). Let A0 = [a0ij ] 2 A(N).On the one hand hA0�; ~HHFV i = � NXi=1 ZIR3 0@ NXj=1 a0ij�j1A �i�i = 0while on the other hand, using (3.14) and (3.16),hA0�; ~HHF V i = h ~HHFA0�; V i= h ~HHFA0�; S�i+ h ~HHFA0�;A�+ V 0i= h ~HHFA0�; S�i= NXi=1 ZIR3 0@ NXj=1 a0ij(�i � �j)�j1A0@ NXj=1 sij�j1A= NXi=1 NXj=1(�i � �j)a0ijsij :Using assumption 1 and letting A0 varying in A(N), we easily show that sij = 0,8i 6= j. Therefore S = 0 since we already know that S 2 S�(N). ThereforeV = A�+ V 0 2 T�BHF .h ~HHFV; V i = � NXi=1 ZIR3 0@ NXj=1 aij�j + v0i1A �i�i = 0:But h ~HHFV; V i = h ~HHFV 0; V 0i according to (3.16). Thus h ~HHFV 0; V 0i = 0, andV 0 = 0 since ~HHF is coercive on N (assumption 2). Therefore V = A� and17



( ~HHFV )i = NXj=1 aij(�i � �j)�j = ��i�i:Thus �i = 0 and aij = 0 for all i; j. Finaly V = 0, and uniqueness is proved.Existence: Let S = [sij ] 2 S(N) de�ned by( sii = �i 1 � i � Nsij = h�i;fji�h�j;fii�j��i 1 � i; j � N i 6= j:Denote f 0 = (f 0i) = (fi�( ~HHFS�)i). After a straightforward calculation, we obtainh�j ; f 0ii = h�i; fji+ h�j ; fii2� NXk;l=1 skl [2D(�k�l; �i�j)�D(�i�l; �k�j)�D(�k�i; �l�j)] :Thus, in particular 8i; j h�j ; f 0ii = h�i; f 0ji:The self-adjoint operator ~HHF being coercive on N , the minimization probleminf 2N(h ~HHF ;  i � hf 0;  i)has a (unique) solution U 0 = (u0i) 2 N , and this solution satis�es� ( ~HHFU 0)i +PNj=1 �ij�j = f 0i 1 � i � NRIR3 �iu0j = 0 1 � i; j � N:Let A0 2 A(N). As U 0 2 N � T�BHF , hA0�; ~HHFU 0i = 0. By exploiting thesymmetry of the terms h�j ; f 0ii, we get on the other handhA0�; ~HHFU 0i = NXi=1 ZIR3 0@ NXj=1 �ij�j + f 0i1A0@ NXj=1 a0ij�j1A= NXi;j=1 �ija0ij18



and, with suitable choices of A0, we come to �ij = �ji, for all (i; j). Denote �i = �ii,aii = 0 and aij = �ij�i��j for i 6= j. A = [aij ] 2 A(N) and ( ~HHFA�)i =PNj=1 �ij�j .Let U = S�+ A�+ U 0. We see that (U; (�i)) is a solution of (I), which concludesthe proof of Lemma 1. 2We conclude this section with theProof of Proposition 1:In this proof, H1 and H�1 are complex valued distributions. Since W is regular,@W@�i has an analytic continuation in H1 (still denoted @W@�i ) and� : Cj � ((H1)N � Cj N) ! ((H�1)N � Cj N)(�; (ui); (�i)) 7! �(F(uj) � ui + �2 @W@�i ((uj)) + �iui); (RIR3 u2i � 1)�with F(uj) � v = ��v + V v + NXj=1(u2j ? 1jxj )v � NXj=1(ujv ? 1jxj )ujis well de�ned and analytic and if c = (0; (�i); (�i)), we have �(c) = 0. Besides,d(0;(�i);(�i))� � (0; (ui); (�i)) = �(( ~HHFU)i + �i�i); (ZIR3 �iui)� :Thus, from Lemma 1, d�jf0g�(H1)N�Cj N is an isomorphism from f0g� (H1)N �Cj Non (H�1)N � Cj N.We may now apply the implicit function theorem (analytic version): there exist aneighbourhood ! of 0 in Cj , a neighbourhood 
 of ((�i); (�i)) in (H1(IR3;Cj ))N�IRNand 2N analytic functions �i : ! ! H1, �i : ! ! Cj , 1 � i � N , sothat the only solutions of � = 0 in ! � 
 are f(�; (�i(�)); (�i(�))); � 2 !g.Since they are analytic on !, we can expand these functions in Taylor series at� = 0. By inserting the expansions P �(k)ik! �k and P �(k)ik! �k into the equation�((�; (�i(�)); (�i(�))) = 0, we see that their coe�cients (�(k)i ; �(k)i )k�1 are a so-lution of the system (RSHF ) and Lemma 1 proves that this solution is unique andthat (�(k)i ) are real valued and (�(k)i ) are real for all k. Denote I the larger real range(neighbourhood of 0 in IR) so that the above expansions are valid. If we restrict�i(�) and �i(�) to the range I , we obtain 2N analytic real functions de�ned onI , verifying �i(0) = �i and �i(0) = �i, and so that for all � 2 I , �(�) = (�i(�))is the unique critical point of EHF� over BHF in the neighbourhood of � (as usualup to the rotational invariance). At last, does mean restraining I , �i(�) is a strictlocal minimum for all � 2 I : the second-order quadratic form at � is coercive on19



N ; thus, by continuity, the second-order quadratic form at �(�) is also coerciveon N� = nU = fuig1�i�N = ui 2 H1(IR3) RIR3 �i(�)uj = 0 8ijo for � smallenough. 24 Perturbations of the TFW modelThe method used in the proof of Proposition 1 requires the analyticity of the unper-turbed energy functional, at least in the neighbourhood of the ground state underconsideration. This condition is not satis�ed in general for DFT-type models [8]: forinstance, a standard approximation brings a term in �4=3. In this section, we show,on the simple example of the TFW functional, that we can nevertheless get someresults, and notably existence and uniqueness results for the Rayleigh-Schr�odingerexpansions. However we are not able to show that the radii of convergence of theseexpansions are positive.In this section, we will limit ourselves to the situations when the perturbation iseither W(u) =Wrf (u) = ZIR3 Vrfu2 + 12Drf (u2; u2)or W(u) =Wef (u) = ZIR3 Wefu2:In the latter case, the assumption (3.9) is not su�cient to prove the existenceresult in Proposition 2 below. For this purpose, we need moreover some additionalconditions on the regularity and on the behaviour at in�nity of the electrostaticpotential Wef . We require here for instance,Wef = � ? 1jxjwhere � = �+ � �� with �+ and �� being bounded non-negative measures withcompact supports, and so that �+(IR3) = ��(IR3). These assumptions are certainlynot optimal, but they cover in particular the case of a capacitor of �nite size. Thebehaviour of Wef at in�nity is well known. We have indeedlimx!1Wef (x) = 0[Wef ]+(x) 2x!1 o� 1jxj� ;20



where [Wef ]+ denotes the non-negative part of the spherical average of Wef . Inorder to avoid some technicalities, we assume moreover that Wef is smooth ev-erywhere. This condition can be easily suppressed: only local regularity resultsestablished in Proposition 2 will cease to be true at the points where Wef is notsmooth.Proposition 2. For all � 2 [0; 1], the minimization probleminf �ETFW� (�) ; � � 0 p� 2 H1(IR3) ZIR3 � = N� (4.17)has a unique solution �(�). The function u(�) = p�(�) belongs to H2(IR3) \C1(IR3 n fxkg), is positive on IR3 and satis�es��u(�) + V u(�) + c1u(�)7=3 + �2W 0(u(�)) + (u(�)2 ? 1jxj )u(�) + �(�)u(�) = 0:Moreover �(�) > 0 and (u(�); �(�)) is the only pair (u; �) 2 H1(IR3)� IR satisfying8<: ��u+ V u+ c1juj4=3u+ �2W 0(u) + (u2 ? 1jxj )u+ �u = 0RIR3 u2 = Nu � 0: (4.18)2Proposition 3. The functionsU : [0; 1] ! H2 M : [0; 1] ! IR� 7! u(�) � 7! �(�)are C1 and their successive derivatives at � 2 [0; 1], u(k)(�) = dkUd�k (�) and �(k)(�) =dkMd�k (�) are obtained in a univoque way by solving the triangular Rayleigh-Schr�odingersystem (RSTFW (�)) consisting of the subsystems(RSTFWk (�))� ~HTFW (�) � u(k)(�) + �(k)(�)u(�) = f (k)(�)RIR3 u(�)u(k)(�) = �(k)(�)where ~HTFW (�) � v = ��v + V v + 73c1u(�)4=3v + (u2(�) ? 1jxj )v+2(u(�)v ? 1jxj )u(�) + �2W 00(u(�)) � v + �(�)v21



f (k)(�) = �W (k)(�)� k�1Xj=1 �(k�j)(�)u(j)(�)� Xj1 + j2 + j3 = k0 � ji � k � 1 k!j1!j2!j3! (u(j1)(�)u(j2)(�) ? 1jxj )u(j3)(�)� kXl=2 � 7=3l � Xj1 + � � �+ jl = k0 � ji � k � 1 k!j1! � � � jl!u(j1)(�) � � �u(jl)(�)u(�)7=3�l�(k)(�) = �12 k�1Xj=1� kj �ZIR3 u(j)(�)u(k�j)(�)with W (k)ef (�) = kWefu(k�1)(�) andW (k)rf (�) = kVrfu(k�1)(�)+ Xj1 + j2 + j3 = k0 � ji � k � 1 k!j1!j2!j3! �ZIR3 Grf (x; y)u(j1)(�)(y)u(j2)(�)(y) dy� u(j3)(�):2Proposition 3 shows in particular that the Rayleigh-Schr�odinger system (RSTFW (0))has a unique solution and that this solution is the set of the successive derivativesof u(�) and �(�) at 0. But we cannot conclude that the Taylor series thus obtainedhave or do not have positive convergence radii.The case W =Wef being simpler, we carry out the proofs of Propositions 2 and 3with W =Wrf .Proof of Proposition 2:The uniqueness result is a consequence of the strict convexity of the functionalETFW� (�), that can be writtenETFW� (�) = ZIR3 jrp�j2 + ZIR3 [(1� �)V + �Vs] �+35c1 ZIR3 �5=3 + 1� �2 D(�; �) + �2Ds(�; �):22



This property comes from (2.5) (the positivity of the Green function Gs(x; y) impliesthat f 7! Ds(f; f) > 0 for all f 6= 0 regular enough).The proof of the existence of a solution in the non-perturbed case established byE.H. Lieb [15] still allows to conclude in this framework. Indeed, we assume thatthe dielectric constant �(x) is constant out of a ball: the behavior at in�nity (2.4) isthus the same as if �(x) is constant in the whole space. More precisely, using (2.3),we have, for all u 2 H1(IR3)����ZIR3 Vsu2���� � kgskL1kuk2L2 + ����ZIR3 V u2����� kgskL1kuk2L2 + CkukL2krukL2:Moreover (as in [15]), we can prove with (2.3) and (2.4) that, if un * u in H1 weak,then RIR3 Vsu2n ! RIR3 Vsu2.Thanks to the results above, we are able to conclude (see [15] for more details) thatthe minimization problem with relaxed constraintinf �ETFW� (u) ; u 2 H1(IR3) ZIR3 u2 � N� (4.19)has a solution u(�). Besides, it is straightforward to see with a scaling argumentthat u(�) cannot be identically equal to zero. Let us next write the Euler-Lagrangeequation of problem (4.19). We have��u(�) + V�u(�) + �(�)u(�) = 0; (4.20)with V� = (1� �)V + c1u(�)4=3 + (1� �)(u(�)2 ? 1jxj ) + �Ws; (4.21)where Ws satis�es �div(�rWs) = � MXk=1 zk �xk + u(�)2: (4.22)Using (2.3) and Hardy inequality we deduce that� V� u(�) 2 L2(IR3), and thus u(�) 2 H2(IR3) ;� V� 2 Lqloc for some q > 32 . Therefore u(�) > 0 by Harnack inequality.23



Using Sobolev injection H2(IR3) ,! C0;1=2 and a bootstrap argument on the system((4.20), (4.21), (4.22)) based on Schauder elliptic regularity results, we obtain u(�) 2C1(IR3 n fxkg).It remains to prove that the constraint RIR3 u2 � N is saturated. If we supposeRIR3 u2 < N , there comes �(�) = 0. Thus, u(�) > 0 is a C2 function in the domainD = fx = jxj > ag and u(�) satis�es (�� + V�)u(�) = 0 on D. Denote [V�] thespherical average of V� and [V�]+ = max([V�]; 0). Let b � a so that �(x) = �s inBcb . We have, in Bcb ,[V�] = (1� �)[V + u(�)2 ? 1jxj ] + �[Ws] + c1[u(�)4=3]:By an application of the Gauss theorem, we obtain, for all x 2 Bcb ,[V + u(�)2 ? 1jxj ](x) = �Z + RBjxj u2jxj < 0; [Ws](x) = �Z + RBjxj u2�sjxj < 0:Thus in Bcb , [V�]+ � c1[u(�)4=3]. As c1[u(�)4=3] is in L3=2(Bcb ), so is [V�]+. Lemma 7.18in [15] enables us to conclude that u(�) =2 L2(Bcb), which is a contradiction. Theexistence of a solution of the minimization problem (4.17) is thus proved. With thesame argument, we also obtain �(�) 6= 0. Fixing � and considering N as a realparameter, we conclude as in [15] that �(�) > 0. 2Proof of Proposition 3:First stepLet � 2 [0; 1]. We begin by proving that (RSTFW (�)) has a unique solution.First of all, we show that ~HTFW (�) is coercive on Tu(�)BTFW = u(�)?L2 . Wealready know that 8h 2 H1hh; ~HTFW (�)hi = hh; (��+ V� + �(�))hi+2(1� �)D(u(�)h; u(�)h) + 2�Ds(u(�)h; u(�)h)� hh; (��+ V� + �(�))hi:The Euler-Lagrange equation (4.20) shows that u(�) is an eigenvector of the Hamil-tonian operator ��+V�. As u(�) > 0 on IR3, u(�) is in fact a ground state. With(2.1), (2.3), we can see furthermore that V+� 2 L1loc and that V�� 2 L1 + L3=2. Aresult by Faris and Simon mentioned in [17], enables us to conclude that the groundstate u(�) is non-degenerate. It follows that if h 2 Tu(�)BTFW , thenhh; (��+ V� + �(�))hi � � khk2L2 ; (4.23)24



the real constant � being the (positive) gap between ��(�) and the second eigen-value of ��+V�. Let us now show that there exists  > 0 so that 8h 2 Tu(�)BTFW ,hh; (��+ V� + �(�))hi �  khk2H1 :Let us assume that there exists a sequence (hn) of elements of Tu(�)BTFW so thatkhnkH1 = 1 and hhn; (�� + V� + �(�))hni ! 0. Inequality (4.23) proves thathn ! 0 in L2. From Hardy inequality, the sequence (V�hn)n2IN is bounded inL2(IR3). Therefore, with Schwarz inequality RIR3 V�h2n ! 0. Thus RIR3 jrhnj2 =hhn; (��+ V� + �(�))hni � RIR3 V�h2n � �(�) RIR3 h2n ! 0. Therefore khnkH1 ! 0,which contradicts khnkH1 = 1. Coercivity is proved.We now prove the following inequalities: 8(;�) =  <p�(�) < � 9 0 < c < C =8x 2 IR3 c e��jxj � u(�)(x) � C e�jxj: (4.24)Let � > 0. As V� tends to zero at in�nity, we can �nd R � 1 + max(jxkj) so that8x 2 BcR, jV�(x)j � �. The function u(�) is in C1(BcR), goes to 0 at in�nity andsatis�es the following inequalities on BcR��u(�) + (�(�) � �)u(�) � 0 � ��u(�) + (�(�) + �)u(�):Consider f�;!(x) = � Rjxje�!(jxj�R), which is in C1(BcR) and satis�es for ! > 08<: ��f�;! + !2f�;! = 0 in BcRf�;! = � on SRf�;! = 0 at in�nity:By comparing u(�) �rst with f�1;!1 where �1 = supSR u(�) and !1 = �(�)��, thenwith f�2;!2 where �2 = infSR u(�) and !2 = �(�) + �, we show that on BcR( inf@BcR u(�)) Rjxj e�p�(�)+�(jxj�R) � u(�)(x) � (sup@BcR u(�)) Rjxj e�p�(�)��(jxj�R):(4.25)Since u(�) is bounded from above and from below on the compact BR by a positivenumber, inequalities (4.24) are a consequence of (4.25).To show existence and uniqueness of �(u(k)(�); �(k)(�))�k�0, we argue by inductionon the following hypothesis:(Hk) There exists a unique solution �(u(j)(�); �(j)(�))�0�j�k of the system �(RSTFW0 (�)) ,� � � , (RSTFWk (�))�, In addition u(j)(�) 2 H2(IR3) \ C1(IR3 n fxkg) and satis�es8j � k 8� <p�(�) 9Cj;� = 8x 2 IR3 ju(j)(�)(x)j � Cj;�e��jxj:25



We denote by (RSTFW0 (�)) the system (4.18). The results established above showthat (H0) is true. Let us assume that (Hk�1) is satis�ed. Using inequalities (4.24)and the induction hypothesis (Hk�1), we claim that f = f (k)(�) is in L2(IR3). Infact, uj(�) 2 H2(IR3) for all 0 � j � k � 1. Thus the more delicate terms arethose of the form u(j1)(�) : : : u(jl)(�)u7=3�l(�) (0 � ji � k � 1) with l � 3. Let� > 0 small enough so that � = lp�(�)� � + ( 73 � l)p�(�) + � � p�(�). From(4.24) and hypothesis (Hk�1), we can choose c0 > 0 and cji � 0 so that for allx 2 IR3, u(�)(x) � c0e�p�(�)+�jxj and ju(ji)(�)(x)j � cjie�p�(�)��jxj. Denote C =c7=3�l0 cj1 : : : cjl . We have ju(j1)(�)(x) : : : u(jl)(�)(x)u7=3�l(�)(x)j � Ce�p�(�)jxj forall x 2 IR3, which implies in particular that the left hand member of the inequalityis in L2(IR3).The pair (u; �) is a solution of (RSTFWk (�)) in (H1 � IR) if and only if v =u � �(k)(�)u(�) is a solution of the Euler-Lagrange equation of the minimizationproblem inf nhv; ~HTFW (�) � vi � hf; vi ; v 2 Tu(�)BTFWoand � is the Lagrange multiplier associated with the constraint v 2 Tu(�)BTFW .The coercivity result established above proves that this minimization problem has aunique solution. It follows that (RSTFWk (�)) has a unique solution (u(k)(�); �(k)(�))in (H1 � IR).Denote f = u(k)(�) (in order to simplify notations). f satis�es the equation��f + V�f + �(�)f = g (4.26)with g 2 L2(IR3) \ C1(IR3 n fxkg) and so that8� <p�(�) 9C� = 8x 2 IR3 jg(x)j � C� e��jxj:By a bootstrap argument on equation (4.26), we get f 2 H2(IR3)\C1(IR3 n fxkg).Let 0 < � < p�(�) and � = �(�) � �2. Let R � 1 + max(jxkj) so that jV�j � � inBcR. Denote L = �� �2, B = supSR juj andv(x) = C�4�2 �1 + �jxj � �R2 +Rjxj � e��jxj + BRr e��(r�R):The function v(x) satis�es Lv = �C�e��jxj, v = B on SR and v ! 0 at in�nity. Letw = v � juj and I = infBcR(w). Let us assume I < 0. As w goes to zero at in�nityand w � 0 on SR, I is achieved at x0 2 �BcR. We have ju(x0)j > v(x0) > 0. Weconclude that juj is C1 in a neighbourhood of x0, and so is w. Besides, �w(x0) � 0,26



and therefore, as w(x0) = I < 0, we have Lw(x0) > 0. On the other hand, usingKato inequality, we get on BcRLw = Lv ��juj+ �2juj� Lv � sgn(u)�u+ �2juj= �C�e��jxj � sgn(u)(V�u+ �(�)u� g) + �2juj� �(C�e��jxj � jgj)� (�� jV�j)juj� 0:We reach a contradiction. Thus I = 0, ie juj � v. Finaly, (Hk) is satis�ed.Second stepLet us now show that U and M are C1 and that their successive derivatives at �are solutions of (RSTFW (�)). Let us consider�0 : IR� (H2 � IR) ! (L2 � IR)(�; u; �) 7! (��u+ V u+ c1juj4=3u+ �2W 0(u) + (u2 ? 1jxj)u+ �u;RIR3 u2 �N):To check that �0 is C1, it is enough showing that so is F : u 7! juj4=3u. Letu 2 H2. Let us consider the linear operator G(u) : h 7! 73 juj4=3h from H2 intoL2. Let � > 0. We have u 2 L1 and the real function t 7! jtj4=3t is C2 on IR. Thusthere exists � > 0 so that8x 2 IR3 8jtj � � ����ju(x) + tj4=3(u(x) + t)� ju(x)j4=3u(x)� 73 ju(x)j4=3t���� � �:Let � > 0 so that khkH2 � � ) khkL1 � �. We have8h 2 H2 ; khkH2 � � kF (u+ h)� F (u)�G(u) � hkL2 � � khkL2 � � khkH2Thus F is di�erentiable at u and F 0(u) = G(u). We easily check that u 7! G(u) iscontinuous from H2 into L(H2; L2), which proves that F is C1.Let � 2 [0; 1] and c = (�; u(�); �(�)). We have �0(c) = 0 and dc�0jf0g�H2�IR is anisomorphism from f0g�H2� IR into L2� IR. We can thus use the implicit functiontheorem in a neighbourhood of � (for all � 2 [0; 1]) and conclude that U andM areC1 and that their derivatives satisfy@�0@� (�; u(�); �(�)) + @�0@(u; �) (�; u(�); �(�)) � (dud� (�); d�d� (�)) = 0: (4.27)From (4.27) we draw that (dud� (�); d�d� (�)) is a solution of (RSTFW1 (�)) in (H1� IR).Since this system has a unique solution: (u(1)(�); �(1)(�))), we conclude that U andM are C1 and that djUd�j = u(j), djMd�j = �(j), for 0 � j � 1.27



To prove the result at order k, we also argue by induction. Let us suppose that wehave shown that U andM were Ck and djUd�j = u(j), djMd�j = �(j), for 0 � j � k. Weresume the processes above with�k : IR� (H2 � IR) ! (L2 � IR)(�; u; �) 7! ( ~HTFW (�)u+ �u(�)� f (k)(�); RIR3 u(�)u� �(k)(�))which is C1 (as the reader can check) and so that 8� 2 IR, �k(�; u(k)(�); �(k)(�)) = 0and d(�;u(k)(�);�(k)(�))�kjf0g�H2�IR is an isomorphism from f0g�H2�IR into L2�IR.Using the implicit function theorem, we claim that u(k)(�) and �(k)(�) are C1 andthat their derivatives satisfy@�k@� (�; u(k)(�); �(k)(�)) + @�k@(u; �)(�; u(k)(�); �(k)(�)) � (du(k)d� (�); d�(k)d� (�)) = 0:After a simple manipulation of that equality, we can see that (du(k)d� (�); d�(k)d� (�))is a solution of system (RSTFWk+1 (�)) in (H1 � IR). Since this system has a uniquesolution: (u(k+1)(�); u(k+1)(�)), we conclude that U and M are Ck+1 and thatdjUd�j = u(j), djMd�j = �(j), for 0 � j � k + 1. The induction goes on. 2Remark 4. In the case of a perturbation by an external electric �eld, Propositions 2and 3 are true for � 2 IR. 2Remark 5. By resuming the proof of Proposition 1, we recover the analyticity ofU and M for c1 = 0, that is to say for the Restricted Hartree functional. 25 Molecule in a uniform external electric �eldWe now put the molecule in a uniform external electric �eld of modulus E > 0oriented along Ox. The electrostatic potential of the �eld readsWef (x; y; z) = �Ex.From a mathematical point of view, this situation is radically di�erent from thoseconsidered previously in Section 3 and 4 (in which the electric potential satis�es(3.9)), since here, the potential becomes in�nite in some directions. Let us take forinstance the simple example of the hydrogen atom (M = 1, N = 1) in a uniformelectric �eld of modulus E > 0 oriented as Ox. Its Hamiltonian readsHE = H0 � Ex = ��� 1r � Exand operates on L2(IR3). It is known (see [2]) that HE is essentially self-adjoint andthat the pure point spectrum of its closure is empty and that its essential spectrumis equal to IR.The operator HE has thus no eigenvalue: there exists no stationary state.28



However, from a physical point of view (see [14]), the eigenstates have not com-pletely disappeared: for small values of E , experiments con�rm that there ex-ist some metastable states, also called long-life states, closed to non-perturbedstationary states, whose evolution by the time-dependent Schr�odinger equationi @ =@t = HE �  is \slow". The \energies" of those states can be computed quiteprecisely using the perturbation method (stopping after the �rst terms since theserial diverges); their life-times can also been estimated with a WKB calculus oftunneling through a potential barrier. The relative shift of the energies of metastablestates can be observed by spectroscopy: it is the Stark e�ect.Attempts to give a mathematical sense to these calculations lead up to the notionof resonance. This theory enables us to understand how the Rayleigh-Schr�odingerserial, which is not summable in a usual sense, can nevertheless be summed in a moresophisticated way to compute the \energies" and the life-times of the metastablestates. We refer the reader to the original article by E. Balslev and J.M. Combes[4] on dilation analyticity and to the article by I. Herbst [10] to see the applicationof this tool for the study of Stark Hamiltonians. We refer also to [12], and to [6] fora more physical point of view.Let now come back to the nonlinear settings of the HF and TFW models. For theTFW model, we �rst notice that for all E > 0,inf �ETFW (u)� E ZIR3 xu2 ; u 2 D(IR3) ; ZIR3 u2 = 1� = �1:Indeed, let u 2 D(IR3) so that RIR3 u2 = 1 and un(�) = u(� � nE~ex), where ~ex isthe unit vector associated with the direction Ox. It is straightforward to see thatETFW (un)! �1. The standard de�nition of the ground state as the state whichminimizes the energy, has no more a meaning. We even show in Section 5.2 that theTFW equation has no non-null solution in H1(IR3) as soon as a uniform externalelectric �eld is turned on. Same conclusions can be drawn for the spinless realHartree-Fock model.On the other hand, we will see in Section 5.1, that Rayleich-Schr�odinger expansionsare still perfectly de�ned as solutions of the system (RSHF ) (resp. (RSTFW (0)))when the perturbation is a uniform electric �eld. But, the so-obtained Taylor series(at least some of them) have convergence radii equal to zero, and thus are notsummable in a usual sense, even if E is small.5.1 Rayleigh-Schr�odinger expansionsProposition 4: The Rayleigh-Schr�odinger system (RSHF ) (resp. (RSTFW (0)))still has a unique solution in presence of a uniform electric �eld. But at least oneof the so-obtained Taylor series has a convergence radius equal to zero. 229



Proof:For the TFW model, existence and uniqueness can be proved as in Proposition 3with � = 0 and W(u) = �E RIR3 xu2: just notice that x v is in L2(IR3) if v decaysexponentially.For the HF model, we can prove this result as in Proposition 3 by arguing byinduction on(Hk) There exists a unique solution �((�(j)i ); (�(j)i ))�0�j�k of the system �(RSHF1 ) ,� � � , (RSHFk )� with, moreover:8i 8j � k 9�i;j > 0 9Ci;j = 8x 2 IR3 j�(j)i (x)j � Ci;je��i;j jxj:The exponential decay of the �i is already known [16]. At the order k, we show theexponential decay of the �ki as follows: denote hi = �ki to simplify the notations.We have ��hi + (V + � ? 1jyj )hi + �ihi � NXj=1(�i�j ? 1jyj )hj = riwith ri = �2 NXj=1(�jhj ? 1jyj )�i + NXj=1(�jhi ? 1jyj )�j + NXj=1(�ihj ? 1jyj )�j + fki :We easily deduce from the induction hypothesis (Hk�1) that there exists C � 0 and� > 0 so that jri(x)j � Ce��jxj for all x 2 IR and 1 � i � N . Denote g =PNi=1 h2i .We have��g = �2 NXi=1 hi�hi � 2 NXi=1 jrhij2� �2(V + � ? 1jxj )g � 2 NXi=1 �ih2i + 2 NXi;j=1(�i�j ? 1jxj )hihj + 2 NXi=1 rihi:We know that hi 2 H2 � L1. Thus there exists a constant C so that j2PNi=1 rihij �Ce��jxj. On the other hand jP(�i�j ? 1jxj)hihj j � (� ? 1jxj)g. It comes��g + c(x)g + �Ng � Ce��jxjwith c(x) = 2V (x) ! 0 when x goes to in�nity. As in the proof of Proposition 3,we conclude that there exists � > 0 so that g(x) � C e��jxj. Thus for all i,jhi(x)j � Ce��2 jxj. 30



To prove that one at least of the Taylor series obtained with the Rayleigh-Schr�odingersystem has a convergence radius equal to zero, it is enough to prove that equation(5.32) (resp. (5.45)) below has no solution as soon as E > 0 (in fact, if all theTaylor series were convergent for some E > 0, they would give birth to solutionsof equation (5.32) (resp. (5.45)). This non-existence result is the purpose of thefollowing section. 25.2 Non-existence of non-trivial solutions to the TFW andHF equationsWe prove here the non-existence of non-trivial solutions to the TFW and HF equa-tions in H1(IR3) and (H1(IR3))N respectively in presence of a uniform electric �eldchosen oriented along Ox. We take, as in Section 5.1, Wef (x; y; z) = �Ex withE > 0.To establish this non-existence result, we will follow the method used by Avronand Herbst [2] in the linear case. This method extends to higher dimensions thefollowing simple idea in one dimension. Let us consider the equation�v00(x) � Exv(x) + V (x)v(x) + �v(x) = 0 (5.28)on IR with the following assumptions: x 7! V (x) is C1 andlim supx!+1 jV 0(x)j < E : (5.29)Then v = 0 is the unique solution of equation (5.28) in H1(IR).Indeed, denote v 2 H1(IR) a solution of (5.28). Let us de�neG(x) = �v0(x)2 + (�Ex+ V (x) + �)v(x)2: (5.30)The �rst derivative of G readsG0(x) = �(E � V 0(x))v(x)2:Thus, according to assumption (5.29), G is decreasing for x large enough and hasa �nite limit at +1 (because G0 is in L1(]1;+1[)). As G(x)x is in L1(]1;+1[), thislimit is zero. Thus G(x) decreases to zero when x goes to +1. On the other hand,also in accordance with hypothesis (5.29), �Ex+ V (x) +� < 0 for x � x0, x0 largeenough. Therefore G(x) = 0 for x � x0, and thus v(x) = v0(x) = 0 for x � x0.The unique continuation principle (or the linear Cauchy-Lipschitz theorem, sincewe work in one dimension) enables us to conclude that v = 0.We �rst establish the non-existence for the TFW model, which needs a more carefuladaptation of the proof by Avron and Herbst. Then, we will prove this result forthe HF model. 31



5.2.1 NotationsFor v 2 H1(IR3), denote Tv the function from IR into L2(IR2) which, with all x0 2 IRassociates the trace of v on the plane x = x0.Tv(x0) : IR2 ! Cj(y; z) 7! v(x0; y; z):We will use the following results, which are proved in the appendix:� If v 2 H1(IR3), Tv 2 C0(IR; L2(IR2)).� If v 2 H2(IR3), Tv 2 C1(IR; L2(IR2)) \ C0(IR; H1(IR2)) andT 0v = T @v@x @@y (Tv(x0)) = T @v@y (x0) @@z (Tv(x0)) = T @v@z (x0): (5.31)Let � 2 IR and 
� =]�;+1[�IR2. We will also use the Banach spaces:Hkx�loc(
�) def= �v 2 Hkloc(
�) = h(x)v(x; y; z) 2 Hk(
�) 8h 2 D(]�;+1[)	The function Tv is continuous on ]�;+1[ for all v 2 H1x�loc(
�) and equalities(5.31) still hold for v 2 H2x�loc(
�) and x0 2]�;+1[.From now on, we denote by H = L2(IR2) and for (v; w) 2 H � H , kvkH =(RIR2 jvj2)1=2 and hv; wiH = RIR2 v�w.5.2.2 The Thomas-Fermi-Von Weizs�acker caseIn presence of a uniform electric �eld of modulus E > 0 oriented along Ox, theTFW equation reads��u+ V u+ c1juj4=3u+ (juj2 ? 1jxj )u� Exu+ �u = 0 (5.32)where � is the Lagrange multiplier associated with the constraint RIR3 u2 = N . Ourpurpose is to showProposition 5. For all E > 0 and � 2 IR, the unique solution u to (5.32) inH1(IR3) is u = 0. 2Remark 6: We emphasize that the above result states the non-existence on non-trivial solutions to equation (5.32) in a functional set which is far larger than the set32



�u 2 H1(IR3) ; RIR3 jxju2 < +1	 which gives a sense to the energy ETFW (u) �RIR3 xu2 formally associated with (5.32).Remark 7: The reader will check that if the energy functional contains terms of theform c RIR3 jujp (2 � p � 6), the following proof will apply if and only if c � 0. Thecase of the Thomas-Fermi-Dirac-Von Weizs�acker functional (see [16]) is thereforestill open.Proof:Let � 2 IR. Denote u a solution to (5.32) in H1(IR3). We want to prove that u = 0.As in the 1-dimension case treated above, we look at the region where x goes toin�nity. For this purpose, we consider the functiong(x) = ZIR2 u2(x; y; z) dy dz = kTu(x)k2:By analogy with (5.30), we de�ne a function G(x), which enables us to reach acontradiction if we assume g(x) non-identically equal to zero for large x.First stepWe �rst need some regularity results. Denote a = 1 + max(jxkj). By a bootstrapargument, we see that u is in H3x�loc(
a).We now split up the e�ective potential (V + (u2 ? 1jxj ) + c1juj4=3) into two parts:the �rst one regroups the terms that go to zero at in�nity as well as their �rstderivatives with respect to x; we put the other terms in the second part. Noticethat if we had supposed u 2 H3(IR3), the three terms in the e�ective potentialwould have their �rst derivatives with respect to x going to zero at in�nity (for inthis case both u and ru are continuous and go to zero at in�nity) and it would nothave been necessary to resort to this split.Therefore we de�ne the operatorW (x) =W1(x) +W2(x);with on the one hand,W1(x) : H ! Hv(y; z) 7! (V + u2 ? 1jxj)(x; y; z)v(y; z);and on the other handW2(x) : H ! Hv(y; z) 7! c1juj4=3(x; y; z)v(y; z):33



Since u 2 H3x�loc(
a), the operator W1(x) is well de�ned if x > a and the functionx 7!W1(x) is in C1(]a;+1[;L(H)). Moreover its derivative satis�esW 01(x) : H ! Hv(y; z) 7! (@V@x + 2u@u@x ? 1jxj)(x; y; z)v(y; z):As limx!+1 sup(y;z)2IR2 ����V + (u2 ? 1jxj )���� (x; y; z) = 0;and limx!+1 sup(y;z)2IR2 ����@V@x + 2(u@u@x ? 1jxj )���� (x; y; z) = 0;we have limx!+1 kW1(x)kL(H) = 0and limx!+1 kW 01(x)kL(H) = 0:Let 0 < � < E and x0 � a so that8x � x0 ; kW 01(x)kL(H) � E � �: (5.33)As for W2, its derivative isW 02(x) : H ! Hv(x; y) 7! 43c1(juj1=3sgn(u)@u@x )(x; y; z)v(y; z)and we cannot say how W 02(x) behaves when x goes to +1. The key point thatenables us to overcome this di�culty is that c1juj4=3 is everywhere non-negative.In order to simplify the notations, we denote by�(x) = Tu(x):For all x � x0, we de�ne, by analogy with (5.30), the functionG(x) = �k�0(x)k2H + h�(x); (p2? � Ex+ �+W (x)) � �(x)iHwith p2? = �� @2@y2 + @2@z2 �. For all x � x0,34



G0(x) = �h�(x); (E �W 0(x)) � �(x)iH= �h�(x); (E �W 01(x)) � �(x)iH + 25c1 ddx �ZIR2 juj10=3(x; y; z) dy dz� :Thus, 8x0 � x � x0,�G(x) � 25c1 RIR2 juj10=3(x; y; z) dy dz�� �G(x0)� 25c1 RIR2 juj10=3(x0; y; z) dy dz�= R x0x h�(t); (E �W 01(t)) � �(t)iH dt:From (5.33), we conclude that the integral in the right hand side converges whenx0 goes to +1. Therefore G(x0)� 25c1 RIR2 juj10=3(x0; y; z) dy dz has a �nite limit at+1 and this limit must be zero because 1x (G(x) � 25 RIR2 juj10=3(x; y; z) dy dz) is inL1(]x0;+1[). Thus for x � x0G(x) = Z +1x h�(t); (E �W 01(t)) ��(t)iH�H dt+ 25c1 ZIR2 juj10=3(x; y; z) dy dz: (5.34)The point is to remark that in (5.34), the nonlinear term appears with a positivesign. Using (5.33), we have for all x � x0,G(x) � � Z +1x g(t) dt: (5.35)From now on, the proof is almost the same as in [2]. However, we reproduce it herein full for the convenience of the reader.The result of (5.35) is that for all x � x0:g00(x) = 4k�0(x)k2H + 2G(x) � 0: (5.36)The function g is a positive convex function integrable on ]x0;+1[. Thus g0(x) � 0on ]x0;+1[, and limx!+1 g(x) = limx!+1 g0(x) = 0, which allows us to write, forall x � x0, g(x) = Z +1x dt1 Z +1t1 dt2 g00(t2);and with Fubini Theoremg(x) = Z +1x (x0 � x) g00(x0) dx0:35



As g00(x0) � 2G(x0) � 2� R +1x0 g(t) dt, we obtain after another application of FubiniTheorem, g(x) � � Z +1x (x0 � x)2g(x0) dx0: (5.37)We have also, with (5.35) and Fubini Theorem,2k�0(x)k2 +G(x) � G(x)� � Z +1x g(t) dt= � Z +1x (x0 � x)22 g00(x0) dx0;and therefore with (5.36),2k�0(x)k2 +G(x) � � Z +1x (x0 � x)2(2k�0(x0)k2 +G(x0)) dx0: (5.38)We refer the reader to [2] for the proof of the following result: if a real valuedfunction h satis�es� 0 � h(x) < +1 a.e. on [x0;+1[� 8x � x0 h(x) � � R +1x (x0 � x)2h(x0)dx0,then h(x) also satis�es for all  so that 3 < 2�:Z +1x0 exh(x)dx < +1:Therefore, from (5.37) and (5.38) we obtain for all  so that 3 < 2�,Z +1x0 exg(x) dx < +1; (5.39)and Z +1x0 ex(2k�0(x)k2 +G(x)) dx < +1:and the latter can also be written asZ +1x0 ex[(k�0(x)k2 + h�(x); p2? � �(x)iH + c1 ZIR2 juj10=3(x; y; z) dy dz)36



+(h�(x);W1(x) � �(x)iH � Exg(x) + �g(x))] dx < +1:Using (5.39), it is easy to see that or all  so that 3 < 2�,Z +1x0 ex (jh�(x);W1(x) � �(x)iH j+ jExjg(x) + j�jg(x)) dx < +1 (5.40)Therefore, each of the following integrals of non-negative functions converges:Z +1x0 exk�0(x)k2 dx < +1 (5.41)Z +1x0 exh�(x); p2? � �(x)iH dx < +1 (5.42)Z +1x0 ex�c1 ZIR2 juj10=3(x; y; z) dy dz� dx < +1 (5.43)Second StepFor � � 0, 0 < � < 1 and x � a, let us denote��;�(x) = e�x1���(x);W�;�(x) = ��(1� �)x�1�� + �2(1� �)2x�2�;andG�;�(x) = �k�0�;�(x)k2H + h��;�(x); (p2? � Ex+ �+W (x) �W�;�(x)) � ��;�(x)iH :We see thatG�;�(x) = e2�x1�� [G(x) � �(�(1� �)x�1��g(x) + 2(1� �)x��h�(x); �0(x)iH )��2(2(1� �)2x�2�g(x))] (5.44)andddx �G�;�(x)� 25c1e2�x1�� RIR2 juj10=3(x; y; z) dy dz�= �4�(1� �)x��k�0�;�(x)k2H � e2�x1��h��;�(x); (E �W 01(x)) � ��;�(x)iH�W 0�;�(x)g(x) � 45c1�(1� �)x��e2�x1��(RIR2 juj10=3(x; y; z) dy dz):37



Let us assume there exists x1 � x0 so that g(x1) 6= 0. Equation (5.44) shows thatwe can choose �0 large enough to have 8� 2]0; 1=2[, G�0;�(x1) < 0. Let us now �x0 < �0 < 1=2 so that 0 � �W 0�0;�0(x1) � �=2. The convex function W�0;�0 alsosatis�es 8x � x1, 0 � �W 0�0;�0(x) � �=2, which impliesddx �G�;�(x)� 25c1e2�x1�� ZIR2 juj10=3(x; y; z) dy dz� � 0on ]x1;+1[. As furthermore G�;�(x1) � 25c1e2�x1��1 RIR2 juj10=3(x1; y; z) dy dz < 0,we get Z +1x1 �G�;�(x)� 25c1e2�x1�� ZIR2 juj10=3(x; y; z) dy dz� dx = �1:This result is in contradiction with inequalities (5.39) to (5.43). Thus g(x) = 0 ifx � x0, ie u = 0 on [x0;+1[�IR2. By unique continuation, u = 0 in the wholespace. 25.2.3 The Hartree-Fock caseIn presence of the same electric �eld, the HF equations read���i + V �i + ( NXj=1 �2i ? 1jxj )�i � NXj=1(�i�j ? 1jxj )�j � Ex�i + �i�i = 0: (5.45)Proposition 6. If E > 0, for all (�i) 2 IRN , the unique solution to (5.45) in(H1(IR3))N is the trivial solution. 2Proof:Denote �i(x) = T�i(x) g(x) = NXi=1 k�i(x)k2H :We de�ne the operatorsW (x) : H ! Hv(y; z) 7! (V + (PNj=1 �2i ? 1jxj))(x; y; z)v(y; z)and 38



Wi;j(x) : H ! Hv(y; z) 7! �(�i�j ? 1jxj)(x; y; z)v(y; z):The functions x 7! W (x) and x 7! Wi;j(x) are in C1(]a;+1[; L(H)) and theirrespective derivatives W 0(x) and W 0i;j(x) tend to 0 in norm when x 7! +1. Let0 < � < 2E=3 and x0 � a so that kW (x)kL(H) � E � 3�=2 and kWi;j(x)kL(H) � �=2for all (x; i; j), x � x0.Denote this timeG(x) = NXi=1 ��k�0i(x)k2H + h�i(x); (p2? � Ex+ �i +W (x)) ��i(x)iH�+ NXi;j=1hWi;j(x) ��i(x);�j(x)iH :We have�G0(x) = NXi=1h�i(x); (E �W 0(x)) ��i(x)iH � NXi;j=1hW 0i;j(x) ��i(x);�j(x)iH :There comes 8x � x0 �G0(x) � � g(x)and thus 8x � x0 G(x) � � Z +1x g(x) dx + cAs G(x)x 2 L1(]x0;+1[), c = 0 and therefore8x � x0 G(x) � � Z +1x g(x) dxwhich enables us to resume the proof by Avron and Herbst (cf [2] and Section 5.2.2).2The extension of this proof to some other classical real or complex Hartree-Focktype models is straightforward. 39



5.2.4 Remarks on the non-existence proofWe wish to make a few comments on the above result. Let us come back to theequation considered by Avron and Herbst:��u+ V u� xu = 0:The proof of non-existence of bound states, that we have mimicked above, makes useof the behaviour of the derivative of the potential V with respect to the coordinate xalong the electric �eld: if for instance V is bounded but @V@x has large deviations, theabove proof does nos allow to conclude. For example, let us consider V (x; y; z) =sin(x2)p1+jxj . This potential does not fall into the scope of our proof. Unfortunately, wedo not know how to extend the proof by Avron and Herbst to cover such situations.However, we wish to draw the reader's attention on the following point. If werestrict ourselves to considering positive solutions, then it is possible to prove anon-existence result that covers much a wider class of potentials that the onesconsidered so far. Indeed a variational argument allows us to proveLemma 2. Let us consider the system(II)� ��u+ Vu = 0 on IR3u > 0 on IR3with V 2 Lqloc for some q � 6=5 and so that9 (Rn) Rn > 0 9 (yn) = R2n ess supBRn (yn)V ! �1: (5.46)Then the system (II) has no solution in H1loc(IR3). 2Before we give the simple proof of this lemma, we would like to mention that, sofar as we know, results of non-existence of positive solutions are rather seldom.Here we consider a rather simple case when the potential (at least in some wellchosen areas of IR3) goes to �1 as jxj ! +1, and we obtain that the only positivesolution is trivial, only by assuming the local integrability of the solution and its�rst derivative. If the potential does not go to �1, but still does not go fastenough to zero at in�nity, the situation is less simple, and a standard result is thatif V 2 L3=2(IR3) there is no solution u to (II) (see [19]). Also in the frameworkof Quantum Mechanics we refer the reader to [5], where various conditions on thebehaviour of the potential at in�nity are considered. More generally, this questionis connected to the interesting and di�cult question of existence of bound statesfor Schr�odinger operators with a potential that does not vanish at in�nity.Remark 8: Note that when we get rid of the assumption u � 0, results of non-existence are even more seldom: we only are aware of the result by Avron and40



Herbst [2] (and its extension to the N-body problem in [11]) and of the VirialTheorem (see [17]).Proof of Lemma 2:Denote �1 > 0 the �rst eigenvalue of the operator �� on B1(0) with the Dirichletcondition u = 0 on the boundary S1(0). Let �1 > 0 be the positive eigenvec-tor associated with �1. As a consequence of the strong maximum principle, �1also satis�es @�1@� < 0 on S1(0) (� denotes the outward pointing normal). Denote�(n)1 (x) = �1((x � yn)=Rn). The function �(n)1 is the �rst eigenvector of the oper-ator �� on BRn(yn) with the Dirichlet condition u = 0 on the boundary SRn(yn)associated with the eigenvalue �1=R2n. Suppose that there exists a solution u 2 H1locof (II). As �(n)1 and u are positive on BRn(yn), we have0 = ZBRn(yn)(��u+ Vu)�(n)1� ZBRn(yn)(���(n)1 )u+ ZSRn(yn) @�(n)1@� u+ ZBRn (yn) Vu�(n)1� 1R2n (�1 +R2n ess supBRn (yn)V)(ZBRn (yn) �(n)1 u)and thus �1 � �R2n ess supBRn (yn) V , which contradicts hypothesis (5.46). 25.3 On \states" computed by Quantum Calculation programsAll Quantum Calculation programs o�er to compute the \Hartree-Fock ground-state" of a molecular system subjected to a uniform external electric �eld. Havingregard to our result of non-existence, that seems, at �rst sight, irrelevant.We can easily understand the reason why these programs may converge, for theyactually minimize the Hartree-Fock energy over the unit ball of a �nite dimensionalvector space (of linear combinations of Slater or Gaussian functions). This problemis obviously compact in the usual sense, and the minimum is thus always achieved.The question is that of the intrinsic nature of the result obtained by such a cal-culation. On the one hand, it is clear that the computed energy can be made aslow as one wish by choosing an appropriate �nite basis. On the other hand, it isreasonable to think, though this is not proved at the present time, that the par-ticular �nite basis function sets considered by the chemists, which consist of Slateror Gaussian functions that are centered on the nuclei (or on \chemical bonds"),force the electrons to stay close to the nuclei, and prevent them from tunnellingthrough the potential barrier separating the potential wells created by the nucleifrom the regions of large x where the electrostatic potential is highly negative. The41



so-obtained numerical result may therefore have an intrinsic nature which might berelated to some resonance state.We underline that our non-existence result that claims that, for Hartree-Fock mod-els, it is impossible to bind nuclei and electrons together under a uniform externalelectric �eld, is only in apparent contradiction with the calculations performed bythe Chemists. It only shows that an additional mathematical study is necessary tomake the situation clear.6 AppendixLet v 2 H1(IR3). Let us prove that x 7! Tv(x) is continuous (and even Lipschitz)from IR into H = L2(IR2). Let v 2 S(IR3) and (x1; x2) 2 IR � IR. Denote v̂1 theFourier transform of v with respect to the �rst coordinate. It comeskTv(x2)� Tv(x1)k2L2(IR2)= RIR2(v(x2; y; z)� v(x1; y; z))2 dy dz= RIR2 �R +1�1 v̂1(�; y; z)(ei�x2 � ei�x1) d��2 dy dz= RIR2 �R +1�1 v̂1(�; y; z)(1 + j�j2)1=2( ei�x2�ei�x1(1+j�j2)1=2 ) d��2 dy dz� �RIR3 jv̂1j2(�; y; z)(1 + j�j2) d� dy dz��R +1�1 jei�x2�ei�x1 j21+�2 d��� kvk2H1(IR3) �R +1�1 sin2tt2 dt� jx2 � x1j2:Thus there exists A > 0 so that 8v 2 S(IR3) 8(x1; x2) 2 IR� IR,kTv(x2)� Tv(x1)k � AkvkH1(IR3)jx2 � x1j:As for x �xed, v 7! Tv(x) is continuous from H1(IR3) into H , and as S(IR3) is densein H1(IR3), we conclude that8v 2 H1(IR3) 8(x1; x2) 2 IR� IR kTv(x2)� Tv(x1)k � AkvkH1(IR3)jx2 � x1j:Let us now consider v 2 H2(IR3). We will prove that Tv 2 C1(IR; L2(IR2)) andT 0v = T @v@x .Let v 2 S(IR3) and (x1; x2) 2 IR� IR with x1 6= x2.
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k 1x2�x1 (Tv(x2)� Tv(x1))� T @v@x (x1)k2H= RIR2 � v(x2;y;z)�v(x1;y;z)x2�x1 � @v@x (x1)�2 dy dz= RIR2 �R +1�1 v̂1(�; y; z)( ei�x2�ei�x1x2�x1 � i�ei�x1) d��2 dx dy= RIR2 �R +1�1 v̂1(�; y; z)(1 + �2)( ei�x2�ei�x1x2�x1 �i�ei�x11+�2 ) d��2 dx dy� �RIR3 jv̂1j2(�; y; z)(1 + �2)2 d� dy dz��R +1�1 j ei�x2�ei�x1x2�x1 �i�ei�x1 j2(1+j�j2)2 d��� �2(x1; x2) kvk2H2(IR3)with �(x1; x2) =  Z +1�1 j ei�x2�ei�x1x2�x1 � i�ei�x1 j2(1 + j�j2)2 d�!1=2 :For x �xed, v 7! (Tv(x); T @v@x (x)) is continuous from H2(IR3) on H � H . BesidesS(IR3) is dense in H2(IR3). Therefore8v 2 H1(IR3) 8(x1; x2) 2 IR� IR = x1 6= x2,k 1x2 � x1 (Tv(x2)� Tv(x1))� T @v@x (x1)kH � �(x1; x2)kvkH2(IR3):There remains to prove that for x1 2 IR, �(x1; x2) tends to zero as x2 goes to x1.Let x1 2 IR. Let us consider a real sequence (x(n)2 )n2IN which converges to x1.Denote fn(�) = ���� ei�x(n)2 �ei�x1x(n)2 �x1 � i�ei�x1����2(1 + j�j2)2 :We see that� 8� 2 IR limn!+1 fn(�) = 0,� 8� 2 IR jfn(�)j � 41+�2 .By dominated convergence limn!+1 �(x1; xn2 ) = 0.Finally if v 2 H2(IR3), it is clear that for all x0 2 IR, @@y (Tv(x0)) = T @v@y (x0) andthat @@z (Tv(x0)) = T @v@z (x0) (it is true for v 2 D(IR3); we conclude with a densityargument).References 43
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