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Abstract

We prove existence and uniqueness for two classes of diffusions which are the sum of a
Brownian motion and a nonlinear irregular drift. Within each class, we construct diffusions
linked with generalized Burgers’ equations.

Introduction

In this paper, we are interested in diffusions given by two nonlinear martingale problems. Each
problem is closely linked to the nomnlinear partial differential equation satisfied by the time
marginals of any solution. Under our assumptions on the diffusion and the drift coefficients,
the time marginals are absolutely continuous (for ¢ > 0) and the partial differential equation
provides a nice evolution equation for the densities. Our proofs for existence and uniqueness are
based on fixed-point methods for this evolution equation.

The first section is devoted to a mean field martingale problem. For F' a bounded measurable
R? valued function on [0, +00) x R? x P(R?), Lipschitz continuous in its last variable for the
total variation metric, we say that P € P(C([0, +00), R%)) with time marginals (P;);>0 solves the
nonlinear martingale problem (MP1) starting at m € P(R?) if Py = m and for any ¢ € CZ(R?)

P(Xy) — p(Xo) — /Ot (%A¢(Xs) + F(S,XS,PS).ng(Xs)) ds is a P-martingale

where X denotes the canonical process on C([0, +00), R?). We prove existence and uniqueness
for (MP1).

If the drift coefficient F' was Lipschitz continuous in its second and last variables for the sum of
the Fortet-Mourier metric on P(R?) (p(u, ') = sup{[ ¢ du— [ ¢ di'; |p(z) — p(y)| < |z —y|AL})
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and the BEuclidian metric on R¢, we could apply classical existence and uniqueness results for
nonlinear diffusions, which are proved by sample-path couplings (see for example Graham [4]).
But our assumptions are much weaker since we do not suppose any continuity in the second
variable and the Fortet-Mourier metric is obviously smaller than the total variation metric. The
counterpart is that the diffusion coefficient is linear and the drift coefficient F' is bounded. By a
fixed-point method, we prove that the evolution equation satisfied by the densities of the time
marginals of any solution of (MP1) admits a unique solution. The results for the martingale
problem itself follow quite immediately.

By our theorem, for d = 1 and F(s,z,u) = (fg H(z — y)u(dy))? where ¢ > 1 and H denotes
the Heaviside function (H(z) = 1{;>¢}), the martingale problem (MP1) starting at m admits a
unique solution P. Let V(¢,z) and v(z) be the distribution functions of P, and m. Generalizing
results given by Bossy and Talay in [1| for Burgers’ equation (¢ = 1), we prove that V' is a weak

solution of
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with initial condition v and obtain P as the propagation of chaos limit of a sequence of weakly
interacting particle systems. Our propagation of chaos result is trajectorial and stronger than

the one proved by Bossy and Talay.

The second section deals with a moderate martingale problem in which the drift coefficient
depends on the densities of the time marginals. Thus the nonlinearity is more ticklish. For F' a
bounded measurable R? valued function on [0, +00) x R¢ x R, satisfying

Vs € [0,+00),Vz € R, Vy,y' € R, |yF(s,z,y) — y'F(s,2,9)| < Kply — ¢/

we say that P € P(C([0,+00),R?)) with time marginals (P;);>o absolutely continuous with
respect to Lebesgue measure for ¢ > 0 solves the nonlinear martingale problem (MP2) starting
at m € P(RY) if Py = m and for any ¢ € CZ(R?)

A(X2) — H(Xo) — /Ot (%Aﬁb(Xs) v F(S,Xs,p(s,Xs)).ng(Xs)) ds is a P-martingale

where for any t > 0, p(t,.) is a density of P;.
We prove existence and uniqueness for (MP2). This generalizes a result given by Méléard and
Roelly in [7] for F : R x R — R? bounded and satisfying a stronger Lipschitz continuity property

VLE,.’E, € Rda vy7y, € R? |F($,y) - F(xl7y,)| + |yF($,y) - y,F($,,y,)| < KF(|‘,E - LE,| + |y - y’|)

They obtain existence for the corresponding martingale problem (MP2) as a consequence of a
propagation of chaos result for a sequence of moderately interacting particle systems. As for us,
we give a direct proof again based on a fixed-point method for the evolution equation satisfied
by p.

Thanks to this result, we show how it is possible to associate a probabilistic representation to
some classical solutions of Burgers’ equation, as it was sketched by Oelschliger in |9]. The initial
conditions concerned are bounded probability densities on R.

In the last section we generalize the previous existence and uniqueness results to similar martin-
gale problems with a Lipschitz continuous, bounded and uniformly elliptic diffusion coefficient.

Notations
Let Q = C(]0, +00),R?) endowed with the topology of uniform convergence on compact sets and



with the corresponding Borel o-field, Q7 = C([0,T], R?) endowed with the topology of uniform
convergence, X be the canonical process. For a Borel space E, P(E) is the space of probability
measures on F endowed with the topology of weak convergence. We also define the metric of
total variation on P(E)

V(p,p') = Sup{/ ¢ dp — /¢ dp'; || Pl oo gy < 1}

If Z is a random variable with values in E let £(Z) € P(F) denote its law.
If P e P(Q2), (P)i>o0 is the set of time marginals of P.

P(Q) = {P € P(Q); Vt >0, P, is absolutely continuous with respect to Lebesgue measure}

If P € P(Q), there is a measurable function p(s,z) on (0,400) x R% such that for any s > 0,
p(s,.) is a density of Ps with respect to Lebesgue measure. See for example Meyer 8] pages
193-194. Such a function is called a measurable version of the densities.

For z € R?, let |z| be the Euclidian norm of .

For t > 0, G denotes the heat kernel on R? : Gy(z) = —1— exp(—m).
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The following estimate will be very useful :

oG,
Baci

1
Ve

for any 1 <i <d, H (0.1)
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1 The mean field martingale problem

1.1 Existence and uniqueness

Let F be a measurable R? valued function on [0, 4+o00) x R¢ x P(R?) bounded by Mg which
satisfies the following Lipschitz continuity property

3K 2 0,Vs € [0, +00),Vz € Rdav:u’aul € P(Rd)v |F'(s, 2, p) — F(5a$,H,)| < KFV(,U,,H,,)

Definition 1.1 Let m € P(R%). We say that P € P(Q) with time marginals (Py)¢>o solves the
nonlinear martingale problem (MP1) starting at m if Py = m and for any ¢ € Cf(Rd)

d(Xy) — d(Xo) — /Ot <%A¢)(Xs) + F(s, X, Ps).V¢>(Xs)> ds is a P-martingale m
1.1

Theorem 1.2 For any m € P(R?), the nonlinear problem (MP1) starting at m admits a unique
solution.



We need the following lemma to prove Theorem 1.2.

Lemma 1.3 Let m € P(R?), g be a measurable RY valued function on [0, +00) x RY bounded by
M, and P be the unique solution of the martingale problem: Py = m and

Vo € CEHRY), ¢p(Xy) — p(Xp) — /Ot (%A(j)(Xs) —I—g(s,Xs).ng(Xs)) ds is a P-martingale

Then P € P(Q). Any measurable version of the densities p(s,z) satisfies the evolution equation,

t
Vit >0, p(t,z) = Gy x m(x Z/ 83; > % ((pg:)(s,.))(x)ds almost everywhere
! (1.2)

Moreover, if q is a measurable function on (0,400) x R which satisfies (1.2) and

VT >0, sup |q(t,.)||;1 < +oo
te(0,T7]

then q is a measurable version of the densities for P.

Proof of Lemma 1.3 : Existence and uniqueness for the martingale problem is a consequence
of Girsanov’s theorem. Let us prove that the solution P belongs to P(Q).

Under P, by Paul Levy’s characterization, X; — Xy — f(fg(s,Xs)ds is a Brownian motion. We
introduce the exponential martingale

s 1 §
Zs = exp <—/ g(r, X;).dX, + 5/ lg(r, XT)|2dr>
0 0

Let ¢ > 0. We set @ = Z; x P. Then Girsanov’s theorem implies that (8s = X5 — Xo)s¢)0,q 18 a
Brownian motion under Q. Let f be a continuous function with compact support in RY.

E(f (X)) = EQ(ZiJf(Xt)D <[me (Zi) EQ(f2(X,)) (13)

E? (£(X)) = E? (f*(X, — Xo + Xo)) =/ F ()G x m(z)dz < QHme (1.4)
Rd (27r 2
1 t 1 st t
E% <Z_t2> =9 (exp </0 2g(s, Xs).dBs — 5/0 12g(s, X,)|*ds —1—/0 |g(s,Xs)|2ds>> < exp(]\é;;))
With equations (1.3), (1.4) and (1.5), we conclude
1 Mgt
[E(f (X)) S E(|f(Xe)]) < P exp ( > £l 2 (1.6)

Hence P, is absolutely continuous with respect to Lebesgue measure and P € P(Q).

Let p(s,z) be a measurable version of the densities for P, ¢ be a C? function with compact
support in R and ¢ > 0. We set ¢(s,z) = Gy * () for s € [0,t) and ¢(t,z) = 1(z). The



function ¢ belongs to Cbl’2([0,t] x R%) and satisfies

9¢

V(s,z) € [0,] x RY, Bs

(s,z) + %Agb(s,x) =0 (1.7)

d 2
V(s,z) € [0,8) x RY, |V(s, )| = \12 ( » 8?;.5 (z — y)¢(y)dy> < % s
Pt i 1.8

Since X; — Xo — f[fg(s, X;)ds is a P-Brownian motion, It6’s formula implies
tro¢ 1
B (9t X)) = E (90, %0) + [ (520520 + 52005, X,) + (5 X.). V(5. X,) ) ds
0
By (1.7), we get rid of % + %Agb. Moreover, (1.8) allows to apply Fubini’s theorem to obtain

[ @00 = [ Gy« plamin) + MRdZ [, 25 o — )t s, s

= [ 9)G s miz dm—/ﬂgdz/tag;s 0i9) ) ) dsw ) dy

Hence p satisfies (1.2).

To conclude the proof, we consider ¢ a measurable function on (0, 4o00) x R which satisfies (1.2)
and VT' > 0, supye (o, lg(t,-)[[21 < +00. As p also satisfies (1.2),

8G't s

Iot,) — HL1<Z/ | %

Ip(s,-) —a(s,)llee
SMg\/g/O Ji—s L ds

|| gi(s,.)(p(s,.) = q(s,.)||prds

After an iteration, we get

Ip(t,) — a(t, Ml < M2d / = A I, H')“lems
SMgd/O Ip(r

(r, )l / ﬁdm«

t
<wba2d [ lptr,.) = atr, g dr

Gronwall’s lemma implies V¢ > 0, ||p(¢,.) —q(¢,.)||,r = 0 which proves that ¢ is a measurable
version of the densities for P. |

Proof of Theorem 1.2 : The proof is based on the following idea. If (Q(t))¢>0 belongs to
C([0, +00), P(R%)), by Girsanov’s theorem, the martingale problem in which the nonlinearity
Py in (1.1) is replaced by Q(s) admits a unique solution P?. We consider the correspondance
between (Q(t))¢>0 and the time marginals (PtQ)tzo of the solution. If P solves the nonlinear
problem (MP1), then (F;);>o is a fixed-point of this map. Conversely, if (Q(t));>0 is a fixed-
point, then P? solves the nonlinear problem (MP1).



Let T' > 0. We define

Apr =1{Q € C([0,T],P(RY)); Q(0) =m and Vt € (0,T], Q(t) is absolutely continuous

with respect to Lebesgue measure}

If Q € Ay, let A(Q) denote a measurable version of the densities for Q. Ay, 1 is complete for
the metric D(Q, Q') = sup;c(o,r) V(Q(2), Q'(t)) = supse (o) IMQ) () — AMQ) (B 1 -

Let tg > 0. For Q € Ay we define (h,m(Q)(t))icjo,r) s the time marginals of the unique
solution of the martingale problem :

PePQT)and Py =m
Vg € CERY), $(X1) — $(Xo) — JL (AG(X) + Flto + 5, X0, Q).VH(X,)) ds is a P-martingale
Lemma 1.3 implies that for any ¢ € (0,7, t,,m(Q)(t) is absolutely continuous with respect

to Lebesgue measure. Hence vy, ,,(Q) € A,r. We are going to prove that if 7" is small
enough, 1y, m, is a contraction on A, r. Using equation (1.2) given by Lemma 1.3, we obtain for

Q,Q € A, and t € (0,T],
IA(t0,m (@) (£) = A(tbto,m (Q)) (B) |1

d
S Z‘/Ot 8Gt75
=1

ox;

., IAWt0,m (@) (5) Filto + 5., Q(5)) = A(tbto,m(Q))(s) Fi(to + 5., Q' (s))[| 1 ds

t d
< [} 7= (A @)l S+ 5@ = Fito 4.5, @Dl

d
A W10, (Q))(5) = AWro,m (@D () L2 D 1 Filto + 5., Q'(S))IIIL%)dS

=1
= */3/; \/% (KFV(Q<3>, Q'(5)) + Mr Ao m(@)) (s) - wto,m(Q’))(S)“Ll)ds
S 2\/d_T(KFD(Q, Q,) + MFD(¢t0,m(Q)7 ¢to,m(Ql)))

Hence

(1 = 2VdT Mp) D ($19,m(Q)s 1o, (Q")) < 2VdTKpD(Q, Q')

We set T' = m. Then D (1h1,m(Q), ¥1o,m(Q")) < $D(Q,Q"). Picard’s fixed-point the-
orem implies that vy, ,, admits a unique fixed-point in A, 7.

existence for the martingale problem (MP1)

Let Q° denote the fixed-point of Yo,m in Ap, 7. If Q™ is constructed, let Q™! be the fixed-point
of ¢(n+1)T,Q”(T) in AQ”(T),T'

We set Q(t) = Q" (t—nT) if t € [nT,(n+1)T). Let P be the solution of the martingale problem
in which the nonlinearity in (1.1) is replaced by Q(s). For any ¢ € CZ(R?),

A Xnr4t) — Xy )—/Ot <%A¢(XHT+S) + F(nT + s, Xn1+s, Q”(s))).V¢(XnT+s)> ds, t € [0,T]

is a P-martingale.
Hence, by induction, for any n € N, for any ¢ € [0,T], Pyr+: = Q"(t) = Q(nT +t). And P
solves the problem (MP1).



uniqueness for the martingale problem (MP1)

If P is a solution, Lemma 1.3 implies that for any ¢ > 0, P is absolutely continuous with
respect to Lebesgue measure. For any n € N, (PnT+t)te[0,T] is the fixed-point of ¥pr p,, in
Ap,, 7. By induction, uniqueness for the fixed-points implies uniqueness for the time marginals
(P;)¢>0- Since the nonlinearity in the definition of (MP1) is limited to the dependence of the
drift coefficient on the time marginals, uniqueness for this problem follows immediately. [ |

1.2 Application

Theorem 1.2 implies existence and uniqueness for martingale problems associated with a class
of partial differential equations which includes Burgers’ equation.

We set ¢ > 1, m € P(R). Let H(x) = lyz>oy and f: (z,p) € R x P(R) = (Jg H(z — y)u(dy))?.
As f is the pointwise limit of the continuous functions (z,p) — (fg Hn(z — y)u(dy))? where
Hy(z) = n(z + 1/n)1{_1/n<s<0} + 1{z>0}, this function is measurable. Moreover, since f takes
its values in [0, 1],

o) = £(op) | < | [ Hlo = tdy) — [ Ha = y)p'an)] < aV (.0

By Theorem 1.2, the martingale problem (MP1) corresponding to the choice F'(s,z,u) = f(x, u)
admits a unique solution P starting at m. Let V (¢,z) and v(z) be the distribution functions of
P, and m.

In [1], Bossy and Talay deal with the case ¢ = 1. They prove that V is a weak solution of

Burgers’ equation
ou  10*u  10(u?)
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with initial condition v and obtain P as the propagation of chaos limit of a sequence of weakly
interacting particle systems. Indeed they define (X%7,..., X™") as the unique weak solution of

the stochastic differential equation

. . ) t1 ) .
X" = X"+ B + / - S H(XP"—X)Mds, 1<i<n
0 -
J=1

where (B, ..., B™") is a R"-valued Brownian motion and E((Xé’n, oy X)) = m®™. They
prove that for any k& € N*, L((X",..., X*")) converges weakly to P®* when n — +oo.

We generalize their results to any ¢ > 1 in Proposition 1.4. In fact, we follow the idea of Méléard
and Roelly in [7] and prove a trajectorial propagation of chaos result. To obtain this result,
we introduce a coupling between the particle systems and the limit processes with law P that
we define on the same probability space. Let B% i € N* be a sequence of independent R-valued
Brownian motions and X§,i € N* be a sequence of random variables IID with law m independent
of the Brownian motions. Proposition 5.17 p.341 [6] implies that the one-dimensional stochastic
differential equation

. . . t .
v :X3+B;+/ (H % Py(Yi))ds
0

admits a unique strong solution. Moreover, considering the linear martingale problem associated
with this equation, by the existence part of the proof of theorem 1.2, we obtain that the law of



the solution is P. The process Y; is nonlinear in the following sense : the drift coefficient of the
stochastic differential equation that it satisfies depends on the time marginals of its law.

Unlike in the one-dimensional case, to obtain a strong solution for a n-dimensional stochastic
differential equation with n > 1, it is necessary to assume that the coefficients are locally Lipschitz
continuous. That is why we replace H by Hy, (Hp(z) = n(x + 1/n)1{_1/n<z<o} + L{z>0}) and
define the weakly interacting particle system as the unique strong solution of the stochastic
differential equation

. . . t 1> . o\ ¢
xin :X3+B;+/ (_E:Hn(xg-n—xg’"» ds, 1<i<n
0 n <
J=1

Proposition 1.4 For any ¢ > 1,

1) The function V is a weak solution of the generalized Burgers’ equation
g g q
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(ii) If P denotes the image of P by the mapping X € Q — (X, X) € Q2 (the support of P is
enclosed in the diagonal of Q2), for any k € N*, L((X"™,Y1),...,(XP",YF))) converges
weakly to P®* asn — 400.

To understand the trajectorial nature of the propagation of chaos result (ii) remark for instance
that, unlike the classical result : Vk € N*, L((X'",..., X®")) converges weakly to P®F, it
implies : V1" > 0, im0 B(1 A supge,<q [(X7", ..., X2 — (V... ¥)]) = 0.

Proof : (i) Our proof is a generalization of the one given by Bossy and Talay in [1]. Under
P, by Paul Levy’s characterization, X; — Xg — f(f Vi(s, Xs)ds is a Brownian motion. Let p be a
measurable version of the densities for P and ¢ € D((0,+00) x R). Applying It6’s formula and
taking expectations, we get

+o00o ) 1 82 9
/0 /Rp(t,x) (8—f(t,x) + 537(5“’5”) + 8—i(t,x)Vq(t,x)> dzdt =0

Hence p is a solution in D'((0, +00) x R) of the equation % =12 8% (pV?). Clearly, %—‘; =p

in D'((0, +00) x R). Moreover, approximating p(t,.) in L'(R) by continuous functions, we obtain
that the distribution function of the bounded measure p(t,z)V4(t, z)dz is #Vq“(t,x) which
1 9(veth

implies pV? = P PR Hence
o0 oV 182‘/ n 1 o(veth _ 0
or \ 0t 2022 q+1 0z N
a(vetl)

The spatial derivative of the distribution %—‘; — l%QT‘Z/ + q}r 57— 18 zero. This implies that the

2 T
distribution is invariant by spatial translation. If ¢ € D((0,+00) x R) and z — +00,

0¢ 10 V(t,z — z) 0
/<o,+oo)XR Vt,z —2z) (at (t,x) + 5 902 (t,x) + PRI (t,z) | dadt



goes to 0 by Lebesgue’s theorem. Therefore for any ¢ € D((0,+00) x R),

o 8¢
/(0,+oo)><RV(t7x) (E(tax) t 552

We conclude by proving that the initial condition is v. By density, equation (1.9) still holds if ¢
is C'2 with compact support in (0, +00) x R.
Let 3 be C%2? with compact support in [0, +00) x R. For n € N*, we introduce the C'! functions

Vit z) 0¢

(t,z) + ————= J+1 0z

T4, )) dwdt = 0 (1.9)

0 if s€0,5
gn(s) = ¢ 12n?(s — 2n) —16n3(s — %)3 if s e [%, %]
1if s>1

The function ¢, = gp1 is C1? with compact support in (0, +00) x R. Using (1.9) for ¢,, we get
162 a9t
/ (81/)( T) + Lo w(t z) + Vitt, ) ’x)a—w(t,x)>V(t,x)dtda¢
(0,400) xR

ot 2 0z g+1 0Oz
P 1 0% Va(t,z) O
= / XRd — gn(t))< ot ( ) + im(t 173) + ﬁ%(tax)> V(tax)dtdx
dgn
- /(0 ot i VDV ()i (1.10)

Since P € P(2), the map ¢ — F; is continuous and lim; ¢ V' (¢,z) = v(z) for any = such that v
is continuous at z. Hence by Lebesgue’s theorem, limy_,g [ ¥(t, )V (¢, z)dx = [ (0, z)v(z)dz.
When n — +o0 in (1.10), we get

oy 1 9% Va(t,z) Oy -
/(0 +00)xR ( bt o)+ ﬁa—x(twOV(tw)dtdx = —/Rzp(o,x)v(x)dx

Thus V is a weak solution of the generalized Burgers’ equation with initial condition v.

(ii) We now prove the propagation of chaos result. In the sequel, v and (X,Y’) denote the
canonical variables on P(02?) and Q2. We set v, = vo X 1.

The couples (X»",Y?), 1 < i < n are exchangeable. Therefore the propagation of chaos result
is equivalent to the convergence in distribution of the empirical measures u, = % it 5(Xi,n,yi)
considered as P(02?)-valued random variables to d 5 (see for example [10] and the references cited
in it). Let m, denote the law of p,,.

By exchangeability of the variables (X%" Y*), the tightness of the sequence (m,),, is equivalent
to the tightness of (L(X1" Y1), (see [10]) which is equivalent to the tightness of (L(X1"™)),.
These probability measures are tight since for any 7" > 0 their images by the canonical restriction
from Q to QT are tight (the drift coefficient is bounded by 1 uniformly in ¢ and n).

Let 7o denote the limit of a convergent subsequence of (m,), that we still index by n for
simplicity. To prove that mo = dp, weset p e N, 0 <51 <89 <... <5, <s<t, ¢ € CbZ(RZ),
g € Cp(R?P), and define G(v) to be equal to

t 2 2 2
<w (00070 = 9060 V) = [ (552 + 2 + 28 ) (X0, ¥2) + SL06 V) (T 4 2 (X,)"

0x? oxdy 0y ox
0
+8—j(xr,m(H*P( )))dr)g( X\ Yopsono X V) >



For k € N*,| we define G (v) like G with Hy, replacing H in (H %7, (X;))? but not in (H %P, (Y;))4.
If v — v, the weak convergence of v™, to v, implies that Hy, * v™,(x) converges to Hy * v, (z)
uniformly for x € R. Moreover, for any r > 0, P, is absolutely continuous with respect to
Lebesgue measure and y — H x P, (y) is continuous. Hence G, is continuous.

We are going to prove that ™= (G%(v)) = 0. By the continuity and boundedness of G}, we have

B (G2(v)) < 26 (G — Gp)2(v) +2, lim E(GE(x")
< 2limsup E™ ((G — G¢)%(v)) + 4limsup (G2 (u™)) + 4lim sup lim sup E((Gy, — G,,)*(u"))
1

k—-o00 n—+00 k—+oo m—+00 (1

)

Let us show that each term of the right-hand-side of (1.11) is equal to 0.

For the first term, it is a consequence of the convergence of |H — Hy|*7, () to 0 for any v € P(0?),
z € Rand r > 0 as k — 4o00. Indeed, by the boundedness of G, G, g and % and the Lipschitz
continuity of z — z? for 0 <z < 1, we have

t
B (G — G)2(1)) < CE™ |G(v) — Gp(v)| < CE™ << ”’/s H — Hy| % 5, (X, )dr >>

The second term is easy to deal with. Applying [t6’s formula, we get
2/(.n 1 ¢ ©,n [ ©,N % t 8¢ 8¢ i,n 3 ) ’ ¢
E(Gn(:u )):]E ﬁ;g(‘xﬂ7Ys1""7Xsp7Ysp)L %—i_a_y (Xr 7Yr)dBr SE
and we conclude lim,, , E(G? (u™)) = 0.

The third term is the most ticklish. By a calculation similar to the one carried out for the first
term, we get

B(Gr — G (") < O (<, [ Ho = il =7, (X, > )

Hence if (X,Y, Z, W) denotes the canonical variable on Q%

t

By the exchangeability of the couples (X", Y?),1 <i<n,

t t
. n n — |3 .
11msup]E<< IR, ,/5 1{|erZr|§n,1\k}dT >> = hmsup]E(/s 1{X}’H_Xf’n|§nik}dr>

n—-+0o00 n—-+o0o

t
< limsupE </5 1{X}’"—Xf’"|§%}1{|Xr1’n|§\/E}dr>

n—-+0oo

> Vk)dr (1.13)

t

+limsup/ P(|xt"
n—+o0 Js

Since P(| X" > Vk) < P(|B}| > @) + P(|X¢| > @), the second term of the right-hand-

side of (1.13) has a limit equal to 0 when k — 4o00. To prove that the same is true for the first

term, we bound the L? norm of the density of £((X}", X>")) (r > 0) uniformly in n. Like in

the beginning of the proof of Lemma 1.3, we obtain an estimate similar to (1.6) :

1
Vf e L?(R?), Vn > 2, Vr > 0, E(f(X", X2")) <
f ( ) n = r (f( r r )) = \/%QXP(T)H']CHLQ

10



C
Hence Vn > 2, ]E(f (Ixbn_x2r|<Ly {‘X1n‘<\/—}dr) < 4 which implies

k4

t
klim limsup]E</s ].{X},nX;Z‘,n|§%}1{|X},n|§\/E}dT> =0

—+00 p—+oo
With (1.12) and (1.13) we conclude limy_, o limsup,,_, , oo E((Gr — Gp)?(u")) = 0.
As we have proved that each term of the right-hand-side of (1.11) is equal to 0, E™ (G?(v)) = 0.

Restricting ¢, g, s1,...,5p,5,t to countable subsets then taking limits by Lebesgue’s theorem,
we obtain that m a.s., v solves the martingale problem

vp=m®m and V¢ € CZ(R?),
HOX YD) — 3000, Yo) = Ji (5( 58 + 258 + 58 ) (X Y0) + (X, YO (H 2, (X)"

—I—g—;’j(Xs,Ys)(H * PS(YS))‘1> ds is a v-martingale

Let us now suppose that v is solution of this problem.

Choosing ¢(z,y) = () with ¢ € CZ(R), we obtain that o X ! solves the nonlinear martingale
problem starting at m. By uniqueness for this problem v o X_1 = P and vy, = P;. Moreover,
it is easy to see that ﬁt = X; — Xo — [J(H % 75(Xy))ds = — Xo — JI(H % Py(X;))9ds
and B2 =Y, — Yy — fo (H * Ps(Ys))%ds are v-Brownian motions and next that 8 = (2. As
v a.s., Yy = Xy, by trajectorial uniqueness for the stochastic differential equation satisfied by
both X and Y, v a.s., X =Y. Hence v = P.

We conclude that mo, = d which puts an end to the proof. [ |

2 The moderate martingale problem

2.1 Existence and uniqueness

Let F be a measurable R? valued function on [0, +00) x R? x R bounded by M which satisfies
the following Lipschitz continuity property

E|I(F Z O,VS S [0,+OO),V.’E € Rdavy7y, € R? |yF(S,.’E,y) - ylF(SaxayI” S KF|y - yl|

Definition 2.1 Let m € P(R?). We say that P € 75(9) solves the nonlinear martingale problem
(MP2) starting at m if Py =m and for any ¢ € CZ(R?)

tr1
d(Xy) — p(Xo) — /0 <§A¢(Xs) + F(S,Xs,p(s,Xs)).V¢>(Xs)> ds is a P-martingale o
2.1

where p(s,x) is a measurable version of the densities for P.

11



This definition does not depend on the choice of the measurable version. Indeed, if p'(s, z) is
another such version then

a.s., Vt Z 07 /tF(S,Xs,p(s,Xs)).ng(Xs)ds = /tF(SaXsap,(saXS))'V¢(XS)dS
0 0

Theorem 2.2 For any m € P(R?), the nonlinear problem (MP2) admits a unique solution P
starting at m.

Proof :

Uniqueness

It is an easy consequence of the Lipschitz continuity assumption made on F. The proof was
given by Méléard and Roelly in [7].

Let P and @ be two solutions of (MP2) starting at m and p(s,x), ¢(s,z) denote measurable
versions of the densities for P and Q. Using equation (1.2) given by Lemma 1.3, we get

oG
Vi > 0, o, )~ g, hl<§j/\\&;sD
(3

Ip(s,-) —als, )1
< VdKp / d 2.2
’—t — s (2.2)
By Gronwall’s lemma, we conclude that for any ¢ > 0, ||p(¢,.) — ¢(¢,.)||;r = 0. Hence both P
and @ solve the martingale problem in which the nonlinearity in (2.1) is replaced by q(s, X5).
By uniqueness for this problem, P = Q.

(5, ) Fi(5,p(5,.)) — a5, VFi(s, - (s, )| a s

Existence

In the sequel, if I is a real interval and v € C(I, L'(R?)) let v(¢, z) denote a measurable function
on I x R? such that for any ¢ € I the class of v(¢,.) in L'(R?) is v(t).

Let T'> 0 . We define Ay = {v € C((0,71, Ll(Rd)) supse(o,17 [v(¢) |1 < +oo}. For the metric
D(v,v") = SUPye (0,7 Hv( ) —v'(¢)||1, Ar is complete.

Let m € P(RY). For v € A, we set

vVt € (0,T], ¥m(v)(t) = Gy xm — Z/t 85;5 x (v(s,.)F;i(s,.,v(s,.)))ds

By the continuity of the map t — Gy € L'(R?), t — Gy *+ m € L'(R?) is continuous for ¢ > 0.
Since sup,e(o. [v(s, ) Fi(s, - v(s,.)) Lt < Mpsupser llv(s, )L < +oo, it is quite easy to
deduce that ,,(v) € Ap. Let us find T such that 1), is a contraction. For v,v" € Ar and
t € (0,T], we get an estimate similar to (2.2)

v'(s)

[ (0)0) = (0 02 < VK [ IUDZ2E

Hence D (¢, (v), ¥ (v")) < 2KpVdT D(v,v"). From now on, T' =

theorem, 1), admits a unique fixed-point in Arp.
Let to > 0 and f € L'(R?). For v € C([0,T], L'(R?)) we define

“le < 2KpVdtD(v,v")

deZ . By Picard’s fixed-point

bro,p(v) () = Gy x f — Z/tag;s* s, )Fi(to +s,.,0(s,.)))ds

12



The same estimates as above imply that ",Eto,f admits a unique fixed-point in C([0,T], L*(R?)).

Let v° denote the fixed-point of 4, in Az. If v™ is constructed, let ¥+ be the fixed-point of
'l/)(n_i_l)T,vn( 7y in C([0,T7, LY (RY)). We set v(t) = v"(t — nT) if t € (nT, (n + 1)T]. The map v
belongs to C((0, +00), L' (R?)) and satisfies

Vtg >0, sup |jv(t)|p < 400 (2.3)
te(0,t0]

Let ¢t € (0,T]. We compute v(T + t) thanks to Fubini’s theorem.

o(T 4+ t) = Gy xv(T) — Z/Otag;s * (0T + s, )Fi(T +s,.,0(T +s,.)))ds
i=1 ¢

=Gy * (GT *m — Z/o “on, x (v(s,.)Fi(s,.,v(s, )))ds)

d t
-3 [P (T 4 BT 4 50T 5, )
0 Ty

=1

t
_Z/ 00 o (0T 3, )BT 4 5,.,0(T +5,)ds
Zj

T+t 3GT+t s

=Grig*m — Z/ * (v(s,.)Fi(s,.,v(s,.)))ds

By induction, we conclude

Vit >0, v(t,z) = Gt *m( Z/ aggz ® % (v(s,.)Fi(s,.,0(s,.)))(z)ds almost surely
! (2.4)

Let P be the solution of the martingale problem in which the nonlinearity in (2.1) is replaced
by v(s, Xs). Equations (2.3), (2.4) and Lemma 1.3 imply that v(s, z) is a measurable version of
the densities for P. Hence P solves (MP2). |

2.2 Application

Theorem 2.1 allows us to associate a probabilistic representation with some classical solutions
of Burgers’ equation. The initial conditions concerned are not distribution functions like in
Proposition 1.4 but bounded probability densities.

We take up Oelschlidger’s approach in |9] (pages 306-307). Let ug be a probability density on R
bounded by M. The Cole-Hopf transformation (see Cole [2] and Hopf [5])

Jzx Gi(x —y) exp (— . uo(z)dz) uo(y)dy
Jg Gi(z —y) exp (— Y uo(z)dz) dy

uw(0,2) =ug(z) and Vi>0, u(t,z) =

13



provides a classical solution of Burgers’ equation. Indeed, u € C'%2((0, +00) x R) and

ou 1 0%u ou

It is easy to check that V¢t > 0,Vz € R, |u(t,z)| < M. This boundedness property is essential
for the sequel. We set f(y) = %(0 Vy AM). The functions f and y — yf(y) are respectively
bounded and Lipschitz continuous.

By theorem 2.2, the martingale problem (MP2) corresponding to the choice F(s,z,y) = f(y)
admits a unique solution P starting at ug(z)dz. Let us prove that u is a measurable version of
the densities for P. Since clearly V¢ > 0, [|u(t,.)||;1 < e, according to the proof of uniqueness
for (MP2) (theorem 2.2), it is enough to establish

Vit > 0,Vz € R, u(t,z) = Gy * up(z) — Ot 8%;_5 « (u(s,.)f(u(s,.)))(x)ds (2.6)

Let t > 0, ¢ be a C%? function with compact support in [0,#] x R and € € (0,¢). As %, % and
%(uf(u)) = u% are bounded on the intersection of the support of ¢ with [e,¢] x R, using the
integration by parts formula, Fubini’s theorem and (2.5) we get

/Ru(t,x)gb(t,x)dx:/Ru(e,x)gb(e,x)dx

0¢ 10%¢

+ (e,t]XRU(s,x) (E(S,x) + §W(s’$) + f(u(S,x))%(s,xO dzds

(2.7)
We have limg_,o ||u(s,.) — uol||1 = 0. Indeed for U(z) = exp (— [ uo(z)dz),
-7
Gs U L=
< e||Gs* (Uwo) — Uugllzr + €l (Gs + U — U)uol| 11
Since Uug € L'(R), the first term of the right hand side converges to 0 when s — 0. The
continuity and the boundedness of U imply that G5 x U is bounded uniformly in s and converges

pointwise to U. Hence, by Lebesgue’s theorem, the second term also goes to 0.
Thus limg_g [p u(s, z)d(s,z)dr = [z uo(x)$(0,z)dr and taking the limit e — 0 in (2.7), we get

/Ru(t,x)gb(t,x)dx:/uo(x)gb(O,x)dx

R
2
+ (Oyt]XRu(s,x) (%(S,x) + %%(s,x) + f(U(S,x))%(s,x)> dads

luls, ) —uoll 11 <

Gs * (Uug) — (Gs * U)ug|| 1

By spatial truncation, this equation still holds if ¢ € C’bl’2([0,t] x R). For the particular choice
$(s,x) = Gy_s * 1p(z) with ¢p C? with compact support in R, we conclude like in the proof of
Lemma 1.3 that (2.6) holds. Therefore u(t,z) is a measurable version of the densities for P and
P provides a probabilistic representation of u.

3 Extension of the results to martingale problems with a non-
constant diffusion coefficient

Let a be a Lipschitz continuous map on R? with values in the set of symmetric non-negative
d x d matrices satisfying for M, > my > 0, Vo,y € RY, mgly|? < y*a(z)y < Myly|? and L be
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the operator Lo(z) = %Z;-{j:l ai,j(x)%;’;—j(x).

Let o denote the square-root of a. By the assumptions made on a, the map = — o(z) is bounded
and Lipschitz continuous. According to Friedman [3| pages 139-150, there is a transition density
Ly(z,y), s >0, 2,y € R? associated with the time-homogeneous stochastic differential equation
dXt = O'(Xt)dBt.

Moreover, for any ¢ > 0 and any continuous function ¢ with compact support in R?, the function
¢(3,7) = [ga Di—s(z,y)1p(y)dy defined on [0,£) x R? satisfies

9¢

Vs € [0,t),Yz € RY, Lo(s,z) + ==(s,2) =0 and Vz € R, lim $(s,z) = 9 (x)
88 s—t (3'1>
and VM > M, there is a constant C(t) such that,
C(t) |z —y|?
t R, T, < —— - .2
Vo € (0,1) ¥y € B Day) < P ewp (- 00 ) (32)
: OLs(z,y)| _ C(t) |z —yP?
d )
Vs € (0,t],Vz,y e R*V1 < <d, o ‘SS% exp(—m> (3.3)
By (3.3), we obtain the following estimate
or K(t
Vvt > 0,3K(t) > 0,Vs € (0,4],Vz € R, V1 < i < d, HM < KO (3.4)
Oz iy = Vs

Theorem 3.1 Vm € P(R?), the martingale problem (MP1) (resp (MP2)) in which $A¢(X,) is
replaced by Lop(Xs) in (1.1) (resp in (2.1)) admits a unique solution starting at m.

The proofs of Theorem 1.2 and Theorem 2.2 are based on Lemma 1.3. Therefore we explain how
to adapt the conclusions and the proof of this lemma. As o is Lipschitz continuous and bounded,
for any m € P(R?), the martingale problem : Py = m and

Vo € C2(RY), ¢(Xy) — p(Xo) — /Ot L¢o(Xs)ds is a P-martingale

admits a unique solution P. Moreover, by the existence of I'; for any ¢ > 0, P, has a den-
sity equal to [ga I't(2,y)m(dz). For g like in Lemma 1.3, by Girsanov’s theorem, as o~ 'g
is bounded, the martingale problem with L¢(Xs) + g(s, X5).Vp(X;) replacing Lp(X;) admits
a unique solution and this solution belongs to P(). Let p(s,z) be a measurable version of
the densities for the solution. If ¢ is a continuous function with compact support on R¢ and
d(s,z) = JgaTi—s(z,y)9(y)dy, by the uniform continuity of ¢ and (3.2), the convergence of
$(s,2) to (x) in (3.1) is uniform in x € R?. By (3.4), we upper-bound V¢(s,z). These two

remarks allow to transpose the proof of (1.2) and obtain

t
Vit >0, p(t,y) = /d Li(z, y)m(dz) —|—/ /d Vil s(x,y).9(s,z)p(s, z)drds almost surely
R 0 JR

With this equation and (3.4) instead of (1.2) and (0.1), we easily adapt the proofs of Theorem
1.2 and Theorem 2.2.
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