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Up to context proofs for the �-calculusin the Coq systemDaniel HirschkoffRésuméLa formalisation dans le système Coq de la théorie des progressionsde relations de Sangiorgi permet, dans son application au �-calcul, lavéri�cation du théorème de preuve au contexte près. Ce résultat s'avèrecrucial dans le cadre d'une mécanisation du �-calcul, dans la mesure oùil facilite considérablement les preuves de bisimulation, en les rendantplus compactes et plus lisibles. S'agissant de notre implémentation du�-calcul en Coq, basée sur une notation de De Bruijn pour l'ensembledes noms de canaux, cela permet de prouver un certain nombre derésultats classiques en théorie algébrique du �-calcul: nous présentonsici les preuves véri�ées des théorèmes d'équivalence structurelle, ainsique l'unicité des solutions pour les équations.AbstractWe present a formalisation of polyadic �-calculus in the Calcu-lus of Inductive Constructions. Processes are implemented using aDe Bruijn notation for names, and early transitions semantics is rep-resented with an inductively de�ned relation. We mechanise somebisimulation proofs for the �-calculus using an up-to context technique,which is proved correct within an implementation of Sangiorgi's the-ory of progressions [20]. This technique, which allows us to shortenthe proofs by reducing the size of the relations one has to exhibit, isapplied to prove structural equivalence laws, as well as uniqueness ofsolutions for equations. Possible applications of this work include theproof of other important theorems in �-calculus, as well as the designof a system to check bisimilarities for processes.





IntroductionImplementing a theory into a logical framework can be of interest for manyreasons; on the side of the theory, it can help in understanding the objects itdescribes, and acts as a benchmark for the techniques it deals with; on theside of the target system, it is a test in terms of expressiveness and e�ciency.We describe here such a confrontation, focusing mostly on the subject matterof the implementation, namely the theory of polyadic �-calculus, and theproof techniques presented by Sangiorgi in [20]. The logical frameworkwe useis the Coq proof assistant [4]; this work is indebted to Huet's implementationof �-calculus into Coq [9], through its goals and its implementation style.The present work follows the one described in [8]; it contributes to studysome points that were left obscure (like for example the need for a canonicalrepresentation of output actions - see section 1), and provides new results,namely the adaptation of the theory to a non-�nite calculus (which com-pells to adapt the proof presented here in section 3), and the proofs for thestructural equivalence theorems.�-calculus has become a widely accepted theoretical model for concur-rency; in this process algebra, equivalence between terms is often expressedusing bisimulation [12, 15, 19]. Sangiorgi's theory of progression of rela-tions [20], a generalisation of the usual methods for bisimulation proofs, hasseemed adequate for the task of implementation, in that it is at the sametime very general and remarkably tractable in terms of calculation, as willbe seen below. Its implementation allows us to prove some non straightfor-ward results of �-calculus theory, like uniqueness of solutions of equations,dramatically relieving the work needed to establish bisimulation properties.While some of our proofs are direct implementations of the ones in [20], wealso had to reformulate some demonstrations, still staying within Sangiorgi'sframework.The system we used, Coq [4], is a proof-assistant based on the Calculus ofInductive Constructions, [23], a higher-order logic with inductive de�nitions.It allows the speci�cation of objects and the veri�cation of properties of theseobjects through the use of tactics, in a goal-directed manner. The readerinterested in a more detailed presentation of the system should refer to [4]and [10].In the �rst section, we describe the implementation of the syntax andoperational semantics of the set of processes we have chosen, a sum-freepolyadic �-calculus with replication and without matching construct, insist-ing on the important technical consequences of our choice of a De Bruijnrepresentation for names. We then implement in the second section the gen-1



eral theory of progressions of relations by Sangiorgi, in order to use it for�-calculus; this is done in the third section, allowing us to prove the up-to-context theorem. We demonstrate how to apply this result in the fourthsection, by deriving structural equivalence laws and uniqueness of solutionsfor equations. We �nally conclude discussing related work, and consideringpossible extensions and improvements of our implementation.In the following, we suppose that the reader is familiar with usual de�ni-tions of syntax and semantics of the �-calculus; this allows us to sometimesstate directly the Coq de�nitions of the objects we need for our proofs,without giving their usual mathematical formulation. We shall not describerigorously the Coq syntax in this paper, but rather just give hints to un-derstand it along the quotations we make of the Coq speci�cations (whichwill be written in typewriter style). The reader familiar with functionalnotation should not have di�culties in following our Coq de�nitions.1 �-calculus implementation1.1 Syntax of processesWe have implemented a polyadic �-calculus with replications[13]. Names arerepresented using a De Bruijn notation [5]: each name is an index denotingits binding depth in the term, free names being those for which the bindingdepth is greater than the depth level inside the term (i.e. the number ofbinders above the name in the term); a description of a De Bruijn notationfor monadic �-calculus can be found in [3].The de�nitions of types name (for names), l_name (for name lists) andpi (for processes) are as follows:Inductive name : Set := Ref : nat -> name.Inductive l_name : Set := Nil : l_name| Cons : name -> l_name -> l_name.Inductive pi : Set :=Skip : pi null process 0| Res : pi -> pi restriction (monadic) �| Ban : pi -> pi replication !| Par : pi -> pi -> pi parallel composition j| Inp : name -> nat -> pi -> pi abstraction: subject, arity, �and continuation| Out : name -> l_name -> pi -> pi. concretion: subject, objet, [ ]and continuation2



The above inductive de�nitions, when submitted to the Coq system,introduce three new types of sort Set, with their respective constructors(Ref for names, Nil and Cons for lists, Skip, Res, Ban, Par, Inp and Out forprocesses).We do not treat symmetrically the two binders of the calculus (� and �):while abstraction has a real polyadic �avour, denoted by its arity, restrictionis still a monadic constructor. This simpli�es the de�nition of the semantics,allowing on one side the simple de�nition of truly polyadic communication(a list of names is communicated in one step), while keeping on the otherside some kind of precision in the manipulation of restrictions, through theuse of rules RES and OPEN, as will be seen below.The choice of a replication constructor instead of recursive de�nitions wasmostly guided by implementation considerations, for the task of simplicity,the �bang� being more simple to handle in Coq.1.2 Operational semanticsFollowing [20], we implemented early semantics for our processes, by de�ninga transition relation where names are instantiated as soon as possible in acommunication.Actions are de�ned as follows:Inductive action : Set :=Ain : nat -> name -> l_name -> action| Aou : nat -> name -> l_name -> action| Tau : action.An emission or a reception is characterised by its subject (the name wherethe communication occurs), its object (the list of names that is transmitted),and the number of newly created names it involves (the �rst argument ofconstructors Ain and Aou; note that a natural number su�ces for this task,thanks to the De Bruijn notation). Emissions and receptions are treatedidentically because of our early choice for the semantics: when we say thatan input occurs, we have to know the whole information that is received (i.e.the object of the communication and the number of new names it carries).Tau stands for the silent action, the result of an internal communication.Free and bound names of an action are de�ned in the usual way.We can now proceed to the de�nition of commit, the transition relationin Coq, which is an object of type (pi -> action -> pi -> Prop), Propbeing the sort for propositions in Coq. This is done inductively à la Prolog,each constructor of commit being a clause:3



Inductive commit : pi -> action -> pi -> Prop :=comm_in : (na:name)(n:nat)(p:pi)(k:nat)(l:l_name)(l_length l)=n ->(commit (Inp na n p) (Ain k na l)(low_subst_pi (lift_pi p n k) l O n))| comm_ou : (na:name)(l:l_name)(p:pi)(commit (Out na l p) (Aou O na l) p)| comm_op : (na:name)(k:nat)(l:l_name)(x,p:pi)(commit x (Aou k na l) p)-> ~(na = (Ref O)) -> (occ_n_ln l k) (* side conditions *)-> (commit (Res x)(Aou (S k) (low_na na O (S O))(roll_ln l k (Nkb_f l k k) O))(roll p k (Nkb_f l k k) O))| comm_re : (x,p:pi) (a:action) (commit x a p)-> ~(occ_act a) (* side condition *)-> (commit (Res x) (lower_action a)(Res (swap p (bound_action a) O O)))| comm_c1 : (x,y:pi)(na:name)(k:nat)(l:l_name)(p,q:pi)(commit x (Ain k na l) p) -> (commit y (Aou k na l) q)-> (commit (Par x y) Tau (add_nus k (Par p q)))| comm_pl : (x,p:pi)(a:action) (commit x a p) ->(y:pi) (commit (Par y x) a(Par (lift_pi y O (bound_action a)) p))| comm_ba : (x,p:pi) (a:action)(commit (Par (Ban x) x) a p) -> (commit (Ban x) a p).In the above de�nition, product types can have two notations:� (x:T)P is the notation for dependent product, and reads as universalquanti�cation;� P -> Q is the notation for non-dependent product, and reads as impli-cation.~P denotes the negation of P. Let us now describe the constructors of typecommit, that implement the rules of early transition semantics.comm_in is the axiom for input actions, expressing the fact that an abstrac-tion of the form (Inp na n p) is liable to receive a list of names l, the k �rstnames occurring in l being new, and become its continuation, instantiatedby the object of the communication; the hypothesis stating (l_length l)=nmust be veri�ed, in order to preserve arity (recall that n is the arity of theabstraction (Inp na n p)). Two operators are applied to the continuation4



p, namely functions lift_pi and low_subst_pi: without entering into thetedious details of the index manipulations they involve, let us just say thatthey insure instantiation for the transmitted list, and management of newlycreated names.The OUT rule, for concretions, is much more simple to implement: con-structor comm_ou just says that a concretion (Out na l p) can emit list lalong na and become the continuation p. While this emission does not in-volve private names (hence the O in the output action), name extrusions arebuilt using the comm_op constructor, which is the direct translation of theusual OPEN rule of �-calculus semantics: if a term is liable to perform anoutput action with k bound names, then, if we capture one of the free namesof this action by applying the restriction constructor to the concretion, theresulting term emits k+1 private names ((S k) in Coq, S being the successorfunction). In our implementation, the capture of an emitted name by a re-striction involves a permutation between names, in order to preserve a kindof �canonical representation for actions�. Let us give an example to illustratethis idea; consider processesP1 = (�a)(�b)�x[a; b]:P and P2 = (�b)(�a)�x[a; b]:P:We want of course P1 and P2 to be bisimilar; however, their De Bruijntranslations are something likeP1 = ���i[1; 0]:P and P2 = ���i[0; 1]:Pf0$ 1g(i being the index representing x in our translation, we will see later onthat the choice of i has to be discussed). In the translation of P2, we haveto exchange indexes 0 and 1 in the continuation since we have swappedthe restrictions, which is denoted here informally by the $ symbol; the twotranslated terms are liable to perform two di�erent actions, and hence cannotsaid to be bisimilar if we use a naive approach.To tackle this problem, a solution could be to modify the de�nition ofbisimulation, by adding an ��-conversion� mechanism, in order to identifyactions (i.e. say that ���i[1; 0] is the same action as ���i[0; 1]). Anotherpoint of view, which is the one we actually chose, is to de�ne a kind ofcanonical form for output actions, and hence to avoid �-conversion. Thisallows to stay close to the �De Bruijn doctrine�, where �-conversion is directlyimplemented by the representation of terms, and also to simplify de�nitionsand bisimulation proofs. The idea is to apply a permutation on the k+1emitted private names, in order to always place the outermost bound nameas close as possible to the restrictions, as emission is performed. This is5



achieved by the roll operator, in conjunction with function Nkb_f, thatcomputes a parameter of this permutation (we will not enter further thedetails of this manipulation here). This way, in our example, as rule comm_opis used for the emission of private names a and b, names have to be swappedin P2 in order to satisfy the above condition, and we get identical actionsand identical continuations for P1 and P2, which ensures bisimilarity.Along the ideas that are implemented by the comm_op constructor, comm_reimplements the RES rule, the rule used to add a restriction operator to aterm, in the case where the restricted name is not involved in the action (sidecondition � (occ_act a)). Here again, a permutation has to take place, inorder to bring the restriction that we add as close as possible to the contin-uation (in other words, the restriction �crosses� the restrictions occurring inthe action itself); this is achieved using the swap operator, one of the param-eters being the number of bound names occurring in the action, computedwith the bound_action function. This manipulation actually implements ina way a structural equivalence rule, as will be shown below.Rule comm_c1, and its symmetric version (that we omitted here), is usedto build a silent transition; its Coq statement should be self-explanatory,knowing that (add_nus k P) is the term built by adding k restrictions to P.Another possible behaviour of a term built with a parallel construct,apart from internal communication, is when only one subterm performs theaction, while the other is simply �watching�; this is implemented by thecomm_pl rule, and its symmetrical version comm_pr (omitted as well). Inthe classical literature, this rule has a side condition requiring that boundnames involved in the action do not appear free in the inactive process, inorder to avoid name clash. Within the De Bruijn setting, this is directlyimplemented into the rule itself, thanks to the lift operator, that insuresfreshness of transmitted bound names by �making room� for new names inthe term that is inactive (the bound_action function computes the number ofnew names involved in the action). We stress the point that this mechanismis quite general in the De Bruijn framework, as our implementation testi�es.comm_ba is the constructor for actions performed by a replicated term; itis the direct translation of the classical BANG rule, which says that we canget rid of a process when it is put in parallel with its replicated form.The above paragraphs often allude to operators managing De Bruijn in-dexes inside a term of type pi; explanations about them have been keptvague on purpose, to preserve concision and readability. However, we stillfeel that entering in some way the detail of the machinery brought by with6



the De Bruijn representation is important, because it reveals the in�uencethat such a choice can have on the style of our proofs. As a last hint on thistechnical aspect of our work, let us just say that a big amount of lemmashave to be proved together with the de�nition of the operators on indexes.2 Bisimulations and progressions of relationsWe describe here Sangiorgi's techniques for bisimulation proofs, and thequestions that arise as we apply them to �-calculus.2.1 Sangiorgi's techniquesIn [20], Sangiorgi describes a theory of relations between elements of a set ofprocesses Pr, on which a transition relation Trans included in Pr � Act �Pr is given (Act being a set of actions). In the following, we shall writeP a�! P 0 for (P; a; P 0) 2 Trans. This theory aims at generalising the usualproof techniques for bisimulation, by introducing the notion of progressionof relations.De�nition 2.1 (Progression of relations) Given two relationsR and S onelements of Pr, we say that R progresses to S, written R�! S, if PRQimplies:1. whenever P ��! P 0, there is Q0 s.t. Q ��! Q0 and P 0SQ0;2. the converse, i.e., whenever Q ��! Q0, there is P 0 s.t. P ��! P 0 andP 0SQ0.Bisimulation and bisimilarity are then naturally de�ned in terms of pro-gressions:De�nition 2.2 (Bisimulation, bisimilarity) R is a bisimulation relationif R�! R holds; two processes P and Q are bisimilar, written P � Q ifP RQ holds for some bisimulation relation R.Sangiorgi then considers what he calls �rst-order-functions, or more sim-ply functions (we will adopt this convention in the remainder of the paper),i.e. functions from relations to relations, and states two useful propertiesabout them, namely soundness and respectfulness:De�nition 2.3 (Soundness) A function F is sound if, for any R, R�!F (R) implies R��. 7



De�nition 2.4 (Respectfulness) A function F is respectful if wheneverR� S and R�! S holds, then F (R) � F (S) and F (R) �! F (S) alsoholds.The main result of this general theory is that for functions, respectfulnessimplies soundness. Its proof is easy and translates quite straightforwardlyinto the Coq system; we just state here the Coq text of a corollary we getfrom this theorem, which gives a useful technique when we want to provetwo terms to be bisimilar:Lemma tech : (p,q:Pr) (R:(relation Pr)) (R p q) ->(F:(relation Pr) -> (relation Pr))(respectful Pr Act trans F) ->(progress Pr Act trans R (F R)) ->(bisimilar Pr Act trans p q).Lemma tech above says: �proving two processes P and Q bisimilaramounts to exhibit a relation R containing (P;Q) and a respectful functionF such that R �!F(R)�.This approach is very general and turns out to be adequate for implemen-tation for many reasons. Let us recall the usual de�nition of simulation:�P � Q if (P a�! P 0) ) 9Q0; (Q a�! Q0) ^ (P 0 � Q0)�.If we consider the above de�nition from a nearly syntactic point of view,we see that the symbol � occurs twice, in the hypothesis and in the conclu-sion. This introduces circularity in the de�nition, which is a serious drawbackin the practice of bisimulation proofs, in that the relations one has to exhibitto establish bisimulation dramatically increase. To reduce the size of therelations, �up-to� techniques have been introduced [12, 21]. Sangiorgi's al-ternative formulation of bisimulation, focusing on the function, concentratesin a way the so-called circularity in the function: the function plays the roleof actually building the progression, which allows to considerably reduce thesize of the relation it is applied to. Such a point of view is naturally adequatefor the task of mechanisation of bisimulation proofs, as will be shown below.Another point we want to stress is that respectfulness is a more interest-ing property than soundness for our purposes, since it enjoys nice composi-tional properties. Without entering the details of Sangiorgi's paper (wheresecond-order functions are introduced, in order to combine respectful func-tions), let us just state, as an example of the �exibility and usefulness of8



respectful functions, the proof of the bisimulation up to bisimilarity tech-nique.We start by de�ning two trivial functions, namely the identity and theconstant-to-�:Definition Ident : relation -> relation := [r:relation]r.Definition U : relation -> relation := [_:relation]bisimilar.([..] is the Coq notation for abstraction). We then combine thesefunctions using the chaining constructor, a function taking two functions asargument and returning a function:Definition chaining : constructor :=[F,G:relation->relation][R:relation][P,Q:Pr](Ex [P':Pr] ((F R) P P') /\ ((G R) P' Q)).(Ex is the existential quanti�er in Coq, while /\ is the and connector).chaining is a respectful constructor, in that when applied to two respectfulfunctions as argument, it returns a respectful function. Since Ident and Uare trivially respectful functions, function (chaining U (chaining IdentU)) (or with a �mathematical� notation: � �) is respectful as well. Thisshows the correctness of the bisimulation up to bisimilarity technique in ourframework.2.2 Applying the general framework to �-calculusThe above discussed theory is specialised to �-calculus, through instantiationof the parameters corresponding to the process algebra (pi), the actions(action) and the transition relation (commit); this is achieved in Coq usinga Section mechanism, that implements modularity in the speci�cations. In[20], Sangiorgi has to reformulate the de�nition of progression in the case of�-calculus, in order to handle possible name clashes. Within the De Bruijnsetting, such a side condition is given for free, since the semantics guaranteesfreshness for extruded names, hence progression has not to be rede�ned. As acounterpart to this simpli�cation, however, the class of relations we considerhas to be restricted, because of the question of representation of free names.Indeed, when one considers relations between processes, some stabilityproperties have to be guaranteed in order to keep our framework realistic:as seen above, when a subterm of a parallel construct is inactive during acommunication, it gets �lifted� in order to manage fresh names introduced9



by the communication. If two such terms are in a relationR, their respective�liftings� should reasonably also be in R: this compels to restrict the set ofrelations over processes we consider, through the de�nition of a predicate.This predicate says that we are interested in relations that are preserved byinjective substitutions on free names (actually, in a very general setting, themanipulations we make on indexes just to guarantee freshness of names canrepresent any injective substitution), and is de�ned as follows:Definition good : (pi->pi->Prop)->Prop :=[R: (relation pi)] (p,q:pi) (R p q) ->(l:l_name) (injective l) ->(le (max_nat (max_free_O p) (max_free_O q)) (l_length l)) ->(R (pi_subst_n p l O) (pi_subst_n q l O)).We therefore have to reformulate the general theory of progressions,parametrising it with the good predicate (and its derivative f_good, insuringthat a function preserves the property); actually, we could say that what isgained on bound names is in some way lost for free names with the De Bruijnnotation. The results, however, are easily adapted to this modi�cation, andwe can reformulate the tech lemma seen above within the �-calculus setting:Lemma tech : (p,q:pi)(R:(relation pi)) (good R) -> (R p q) ->(F:(relation pi) -> (relation pi)) (f_good pi good F) ->(respectful pi action commit good F) ->(progress pi action commit R (F R)) ->(bisimilar pi action commit good p q).The good condition on the relations we consider actually gives a resultfrom [20] for free, namely the closure under injective substitutions theorem,stating respectfulness for the closure under injective substitutions function.This theorem is actually �built-in� in our implementation; however, we be-lieve that we do not loose expressiveness using our good predicate, sinceweakening the condition on relations could lead to non-realistic situations.Incidentally, the classical notion of bisimulation is also straightforwardlyproved equivalent to the formulation in terms of functions on relations inCoq.3 The respectfulness theoremA very useful technique for proving bisimulation properties is the ability tocancel common contexts in two bisimilar terms. To achieve this, we con-sider the closure under contexts function, in a way that is di�erent from10



Sangiorgi's, because of our choice of a replication constructor instead ofrecursive de�nitions: we work with polyadic contexts (instead of monadicones), and prove respectfulness for the transitive closure of the closure undercontexts of a relation (written CT ).The implementation of polyadic contexts is similar to the de�nition ofprocesses; we then de�ne the notion of guarded context: a context is guardedif an occurrence of the hole is under some pre�x. This property is useful to geta respectful function when building the closure under contexts of a relation:indeed, when a term performs an input, the names substitutions that aregenerated in�uence its behaviour. Hence, when we use a guarded context tobuild the closure of a relation, we have to consider all possible substitutionsof names for the elements of the relation.De�nition 3.1 (closure under contexts function)C(R) = [C non�guardedf(C[P ]; C[Q]) : (P;Q) 2 Rg S[C guardedf(C[P ]; C[Q]) : (P�;Q�) 2 R, for all subst. �g;and in Coq:Inductive Close [R:pi -> pi -> Prop] : pi -> pi -> Prop :=Clo_cons : (c:context)(p,q:pi)(close_cons c R p q) ->(Close R (c2pi c p) (c2pi c q)).close_cons is a function that returns the requirement on objects R, p andq corresponding to the guardness of its �rst argument (context c). FunctionCT is then straightforwardly implemented as function T_Close in Coq.We now turn to the respectfulness theorem:Theorem 3.2 (up to context bisimulation)Theorem Close_respectful: (respectful pi action commit good T_Close).Proof. For the nontrivial part of this proof, we consider two relations Rand S such that R � S and R �! S, and prove RCT �! SCT . We there-fore consider a context C, processes P , P 0 and Q, and an action � suchthat P RCT Q and P ��! P 0. We �rst perform an elimination on the in-ductive function that builds the transitive closure. The transitivity case isstraightforward; we thus suppose P RC Q, and we have to exhibit Q0 suchthat Q ��! Q0 and P 0 SCT Q0. 11



In [20], this proof is achieved by structural induction on the context C(actually, it is only detailed for the application of the general theory to CCS,the proof for �-calculus having the same shape); we have checked that theoriginal proof faithfully translates into the Coq system for the �nite case(using monadic contexts). If we want to consider also non �nite contexts,however, we rather have to eliminate the inductively de�ned propositionstating the transition relation C[P ] ��! P 0, otherwise an induction on Cwould generate circularity in the proof.Due to lack of space, we just give as an example the shape of the Coqproof for the case where the transition relation is obtained using the comm_plrule above. The goal to prove is the following:H : (good R)H0 : (good S)H1 : (r_incl pi R S) (R � S)Hind : (q:pi) (induction hypothesis)(close_cons c R p q)->(Ex [q':pi](commit (c2pi c q) lambda q')/\(T_Close S p' q'))Hclose : (close_cons (cPar c' c) R p q) (induction hypothesis)H3 : (commit (c2pi c p) lambda p') (induction hypothesis)============================(Ex [q':pi] (goal to prove)(commit (Par (c2pi c' q) (c2pi c q)) lambda q')/\(T_Close S(Par (lift_pi (c2pi c' p) O (bound_action lambda)) p') q'))((c2pi c p) is the Coq translation of C[P ]). The idea is to use the inductionhypothesis Hind with process q the following way ((close_cons c R p q),which has to be proved in order to use Hind, is a direct consequence ofHclose):Elim (Hind q).Intros q0 Hfoo; Elim Hfoo; Clear Hfoo; Intros.This generates the new hypotheses:H4 : (commit (c2pi c q) lambda q0)H5 : (T_Close S p' q0)============================ 12



We can now exhibit a process satisfying the conditions of the conclusion:Exists (Par (lift_pi (c2pi c' q) O (bound_action lambda)) q0); Split.The proof of the left part of the conclusion is done easily using thecomm_pl rule:Apply comm_pl; Trivial.For the right part of the conclusion, we use the transitivity property, andsome basic manipulations lead to the following goal:H6 : (Close S (c2pi c' p) (c2pi c' q))============================(Close S (lift_pi (c2pi c' p) O (bound_action lambda))(lift_pi (c2pi c' q) O (bound_action lambda)))The proof of this subgoal is conducted using hypothesis H0 : (good S),which allows to remove the lift_pi operator from the conclusion of thegoal, thanks to a lemma stating that this function can be represented byan injective substitution. We conclude this way the proof for this sub case,and work similarly for the other cases. We thus show respectfulness of theCT function, which means correctness for the up to context bisimulationtechnique.4 Applying the up-to-context proof techniqueIn this section we derive some classical results of �-calculus theory; afterproving some algebraic laws, known as structural equivalence, we turn toa less technical result, namely uniqueness of solutions for equations. Theproofs are performed in a remarkably uniform manner, by taking advantageof theorem 3.2, in conjunction with the bisimilarity up to bisimulation prooftechnique (see section 2): in each case, the method is to exhibit a relationR and to prove that R �!� RCT � (this is enough to show bisimulation,thanks to theorem 3.2 and to respectfulness of the chaining operator). Withrespect to classical proofs, this technique allows to reduce considerably thesize of relation R, and hence reduces the number of cases to consider whenperforming an induction over the transitions of elements of R.For lack of space, we only sketch the shape of the proofs below, withoutentering the technical details. 13



4.1 Structural equivalence resultsWe prove here some of the bisimilarity properties called structural equiva-lence in [13], or alternatively �-calculus equivalence in [1].Theorem 4.1 (structural equivalence) We have:� (restriction construct)1. 8P; 8x; y; (�x)(�y)P � (�y)(�x)P ;2. 8P;Q; 8x; (�x)(P j Q) � P j (�x)Q if x =2 fn(P );� (parallel construct) Parallel composition is symmetrical and associativewith respect to bisimulation, and admits Skip as neutral element.� (replication construct) 8P; !P jP � !P .Proof The proofs for the lemmas for the restriction operator are somewhattedious, in that they involve heavy De Bruijn indexes manipulation (forresult 1, however, work can be factorised by proving a simulation instead ofa bisimulation, since the operation that exchanges two names inside a termis an involution). Once we have proved these results, the laws for parallelcomposition and replication are easily derived, in almost �mathematical�style.It has to be noted that for these proofs, we do not use the full powerof theorem 3.2, as only closure under restrictions is needed. This allowsanyway to shorten our proofs: if we were to work without the up-to contexttechnique, this would compell to close every relation R we exhibit underreplications. As we work with inductively de�ned relations, this would meanadding a constructor of type ((p,q:pi)(R p q) -> (R (Res p) (Res q))).Every time an induction over transitions of elements in R is performed, twosupplementary cases would have to be considered in our proof (according tothe possible transition rules for terms beginning with a restriction).4.2 Unique solution of equationsWe prove here another result, following the method given for CCS in [20].We �rst need a lemma:Lemma 4.2 Let C be a guarded context; if we have C[P ] ��! P 0, there existsa context C0, and a substitution � such that P 0 = (C0[P ])�, and, moreover,for any Q, we have C[Q] ��! (C0[Q])�.14



This lemma is proved by induction over the term stating the transitionrelation C[P ] ��! P 0. We can then state the uniqueness of solutions forequations theorem, in which we work with the induced congruence, written�c, and de�ned by �P �c Q if for all substitution �, P� � Q��.Theorem 4.3 (unique solution of equations, proposition 4.14 (2) in [12])Suppose C is a guarded context, with P �c C[P ] and Q �c C[Q]. ThenP �c Q.Proof. The proof boils down to show thatR = f(P�;Q�); � substitutiongprogresses to � RCT �. Very informally, the congruence hypotheses are usedfor the ��� part of � RCT �, while lemma 4.2 is used for the � CT � part.It has to be noticed that this proof does not use the structural equivalenceproperties above, and can be conducted in a very formal way, following [20].5 ConclusionWe have presented an implementation of �-calculus, together with an ac-count of classical results of �-calculus theory. Proofs for these results havebeen conducted using the up to context technique, which has turned out tobe e�cient in performing short and elegant proofs. Technical work, how-ever, still represents the biggest part of our implementation, mainly due tothe managing of De Bruijn indexes: indeed, as stressed above, the De Bruijnnotation, while drastically simplifying work for bound names, requires accu-racy in dealing with free names. Of our 700 proved lemmas, about 500 areconcerned with operators on free names; the implementation consists of 64�les of Coq speci�cations and proofs in Coq V6.1 [4].The work that can be considered as the closest to ours has been donewithin the HOL system. M. Nesi has de�ned CCS and a modal logic for thisalgebra in [16]; regarding �-calculus, the original formalisation by T. Mel-ham [11] has been used as a starting point for the work of O. Aït-Mohamed,which consisted in proving equivalence [1], and building a system to provebisimilarities for processes interactively [2]. Di�erences from our implemen-tation and these works arise at the level of technical issues, as well as at thelevel of the general presentation. Regarding the calculus itself and the wayit is implemented, our choice of the De Bruijn notation is a key issue (whilein [16], assumptions are made about the avoiding of name clashes, in [11]and [2], renaming has to be done in order to preserve freshness for boundnames). Moreover, our choice of the replication construct instead of recur-15



sive de�nitions as in [2], provides a more clean mathematical formulation forthe possibly in�nite behaviour of a term (replication was also chosen in [11]).Regarding the approach we had in our work, and from a more theoret-ical point of view, the implementation of Sangiorgi's theory of progressionsand its application to �-calculus tends to be more general and closer to a�mathematical� (as opposed to �technical� or �computational�) formulation.Although we cannot get rid of technical work involving De Bruijn indexesmanipulation, the general shape of our bisimulation proofs in section 4 turnedout to be reasonably simple and clear, and quite remarkably it has been pos-sible to con�ne in some way the tedious technical work to speci�c parts ofthe proof, keeping the backbone of the derivation readable. Moreover, per-spectives are quite open regarding results of �-calculus theory we can hopeto prove in the future, thanks to the generality of our approach.Other relevant implementations of �-calculus include the Mobility Work-bench [22], a tool for checking open bisimilarities, as well as PICT [17],which is a programming language based on �-calculus, the way ML is basedon �-calculus; PICT is aimed at showing that a real-size language can beconstructed on top of a very small �-calculus, supporting functionality in anatural way.Finally, let us mention as well Giménez work in Coq on coinductive types[7] includes an implementation of CBS; we did not use coinductive types,except in a toy example, to prove that our notion of bisimulation coincideswith a formulation in terms of a greatest �x point of a combinator (using thefact that a coinductive de�nition implicitly implements a greatest �xpoint).Future work on this implementation should follow two directions. On oneside, one could think of proving a rewriting algorithmmore or less in the samefashion as in Aït-Mohamed's PIC system [2], and take advantage of Coq'sextraction capability to obtain a veri�ed system for checking bisimilarities.It should be of interest for that approach to see how we can exploit our proofsinvolving the replication operator, a rather original feature with respect toother �-calculus implementations which are designed towards veri�cation.Another interesting opportunity is the exploitation and development ofour proofs in a more theoretical direction. Work has already been done inproving the so-called replication theorems (still with the up-to context prooftechnique), which should allow to consider the veri�cation of the functionsas processes paradigm [14], which is a key result often used as a benchmarkfor theoretical models of concurrency [6], [18].16
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