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Résumé

La formalisation dans le systéme Coq de la théorie des progressions
de relations de Sangiorgi permet, dans son application au w-calcul, la
vérification du théoréme de preuve au contexte prés. Ce résultat s’avére
crucial dans le cadre d’une mécanisation du w-calcul, dans la mesure ot
il facilite considérablement les preuves de bisimulation, en les rendant
plus compactes et plus lisibles. S’agissant de notre implémentation du
m-calcul en Coq, basée sur une notation de De Bruijn pour I’ensemble
des noms de canaux, cela permet de prouver un certain nombre de
résultats classiques en théorie algébrique du w-calcul: nous présentons
ici les preuves vérifiées des théorémes d’équivalence structurelle, ainsi
que 'unicité des solutions pour les équations.

Abstract

We present a formalisation of polyadic m-calculus in the Calcu-
lus of Inductive Constructions. Processes are implemented using a
De Bruijn notation for names, and early transitions semantics Is rep-
resented with an inductively defined relation. We mechanise some
bisimulation proofs for the m-calculus using an up-to context technique,
which is proved correct within an implementation of Sangiorgi’s the-
ory of progressions [20]. This technique, which allows us to shorten
the proofs by reducing the size of the relations one has to exhibit, is
applied to prove structural equivalence laws, as well as uniqueness of
solutions for equations. Possible applications of this work include the
proof of other important theorems in w-calculus, as well as the design
of a system to check bisimilarities for processes.






Introduction

Implementing a theory into a logical framework can be of interest for many
reasons; on the side of the theory, it can help in understanding the objects it
describes, and acts as a benchmark for the techniques it deals with; on the
side of the target system, it is a test in terms of expressiveness and efficiency.
We describe here such a confrontation, focusing mostly on the subject matter
of the implementation, namely the theory of polyadic w-calculus, and the
proof techniques presented by Sangiorgi in [20]. The logical framework we use
is the Coq proof assistant [4]; this work is indebted to Huet’s implementation
of A-calculus into Coq [9], through its goals and its implementation style.

The present work follows the one described in [8]; it contributes to study
some points that were left obscure (like for example the need for a canonical
representation of output actions - see section 1), and provides new results,
namely the adaptation of the theory to a non-finite calculus (which com-
pells to adapt the proof presented here in section 3), and the proofs for the
structural equivalence theorems.

II-calculus has become a widely accepted theoretical model for concur-
rency; in this process algebra, equivalence between terms is often expressed
using bisimulation [12, 15, 19]. Sangiorgi’s theory of progression of rela-
tions [20], a generalisation of the usual methods for bisimulation proofs, has
seemed adequate for the task of implementation, in that it is at the same
time very general and remarkably tractable in terms of calculation, as will
be seen below. Its implementation allows us to prove some non straightfor-
ward results of w-calculus theory, like uniqueness of solutions of equations,
dramatically relieving the work needed to establish bisimulation properties.
While some of our proofs are direct implementations of the ones in [20], we
also had to reformulate some demonstrations, still staying within Sangiorgi’s
framework.

The system we used, Coq [4], is a proof-assistant based on the Calculus of
Inductive Constructions, [23], a higher-order logic with inductive definitions.
It allows the specification of objects and the verification of properties of these
objects through the use of tactics, in a goal-directed manner. The reader
interested in a more detailed presentation of the system should refer to [4]
and [10].

In the first section, we describe the implementation of the syntax and
operational semantics of the set of processes we have chosen, a sum-free
polyadic m-calculus with replication and without matching construct, insist-
ing on the important technical consequences of our choice of a De Bruijn
representation for names. We then implement in the second section the gen-



eral theory of progressions of relations by Sangiorgi, in order to use it for
w-calculus; this is done in the third section, allowing us to prove the up-
to-context theorem. We demonstrate how to apply this result in the fourth
section, by deriving structural equivalence laws and uniqueness of solutions
for equations. We finally conclude discussing related work, and considering
possible extensions and improvements of our implementation.

In the following, we suppose that the reader is familiar with usual defini-
tions of syntax and semantics of the w-calculus; this allows us to sometimes
state directly the Coq definitions of the objects we need for our proofs,
without giving their usual mathematical formulation. We shall not describe
rigorously the Coq syntax in this paper, but rather just give hints to un-
derstand it along the quotations we make of the Coq specifications (which
will be written in typewriter style). The reader familiar with functional
notation should not have difficulties in following our Coq definitions.

1 m-calculus implementation

1.1 Syntax of processes

We have implemented a polyadic 7-calculus with replications[13]. Names are
represented using a De Bruijn notation [5]: each name is an index denoting
its binding depth in the term, free names being those for which the binding
depth is greater than the depth level inside the term (i.e. the number of
binders above the name in the term); a description of a De Bruijn notation
for monadic w-calculus can be found in [3].

The definitions of types name (for names), 1_name (for name lists) and
pi (for processes) are as follows:

Inductive name : Set := Ref : nat -> name.

Inductive 1l_name : Set := Nil : 1_name
| Cons : name -> l_name -> l_name.

Inductive pi : Set :=

Skip : pi null process 0

| Res : pi -> pi restriction (monadic) v

| Ban : pi -> pi replication !

| Par : pi -> pi -> pi parallel composition |

| Inp : name -> nat -> pi -> pi abstraction: subject, arity, A
and continuation

| Out : name -> 1_name -> pi -> pi. concretion: subject, objet, []

and continuation



The above inductive definitions, when submitted to the Coq system,
introduce three new types of sort Set, with their respective constructors
(Ref for names, Nil and Cons for lists, Skip, Res, Ban, Par, Inp and Out for
processes).

We do not treat symmetrically the two binders of the calculus (A and v):
while abstraction has a real polyadic flavour, denoted by its arity, restriction
is still a monadic constructor. This simplifies the definition of the semantics,
allowing on one side the simple definition of truly polyadic communication
(a list of names is communicated in one step), while keeping on the other
side some kind of precision in the manipulation of restrictions, through the
use of rules RES and OPEN, as will be seen below.

The choice of a replication constructor instead of recursive definitions was
mostly guided by implementation considerations, for the task of simplicity,
the “bang” being more simple to handle in Coq.

1.2 Operational semantics

Following [20], we implemented early semantics for our processes, by defining
a transition relation where names are instantiated as soon as possible in a
communication.

Actions are defined as follows:

Inductive action : Set :=

Ain : nat -> name -> 1l_name -> action
| Aou : nat -> name -> l_name -> action
| Tau : action.

An emission or a reception is characterised by its subject (the name where
the communication occurs), its object (the list of names that is transmitted),
and the number of newly created names it involves (the first argument of
constructors Ain and Aou; note that a natural number suffices for this task,
thanks to the De Bruijn notation). Emissions and receptions are treated
identically because of our early choice for the semantics: when we say that
an input occurs, we have to know the whole information that is received (i.e.
the object of the communication and the number of new names it carries).
Tau stands for the silent action, the result of an internal communication.
Free and bound names of an action are defined in the usual way.

We can now proceed to the definition of commit, the transition relation
in Coq, which is an object of type (pi -> action -> pi -> Prop), Prop
being the sort for propositions in Coq. This is done inductively a la Prolog,
each constructor of commit being a clause:



Inductive commit : pi -> action -> pi -> Prop :=
comm_in : (na:name)(n:nat)(p:pi)
(k:nat)(l:1_name)(l_length 1)=n ->
(commit (Inp na n p) (Ain k na 1)
(low_subst_pi (lift_pi pn k) 1 0 n))
| comm_ou : (na:name)(1l:1_name)(p:pi)
(commit (Out na 1 p) (Aou O na 1) p)
| comm_op : (na:name)(k:nat)(1l:1_name)(x,p:pi)
(commit x (Aou k na 1) p)
-> “(na = (Ref 0)) -> (occ_n_1ln 1 k) (* side conditions *)
-> (commit (Res x)
(Aou (S k) (low_na na 0 (S 0))
(roll_1n 1 k (Nkb_f 1 k k) 0))
(roll p k (Nkb_f 1 k k) 0))
comm_re : (x,p:pi) (a:action) (commit x a p)
-> “(occ_act a) (* side condition *)
-> (commit (Res x) (lower_action a)
(Res (swap p (bound_action a) 0 0)))
| comm_cil : (x,y:pi)(na:name)(k:nat)(1l:1_name)(p,q:pi)
(commit x (Ain k na 1) p) -> (commit y (Aou k na 1) q)
-> (commit (Par x y) Tau (add_nus k (Par p q)))
| comm_pl : (x,p:pi)(a:action) (commit x a p) ->
(y:pi) (commit (Par y x) a
(Par (lift_pi y 0 (bound_action a)) p))
| comm_ba : (x,p:pi) (a:action)
(commit (Par (Ban x) x) a p) -> (commit (Ban x) a p).

In the above definition, product types can have two notations:

e (x:T)P is the notation for dependent product, and reads as universal
quantification;

e P -> (is the notation for non-dependent product, and reads as impli-
cation.

“P denotes the negation of P. Let us now describe the constructors of type
commit, that implement the rules of early transition semantics.

comm_in is the axiom for input actions, expressing the fact that an abstrac-
tion of the form (Inp na n p) is liable to receive a list of names 1, the k first
names occurring in 1 being new, and become its continuation, instantiated
by the object of the communication; the hypothesis stating (1_length 1)=n
must be verified, in order to preserve arity (recall that n is the arity of the
abstraction (Inp na n p)). Two operators are applied to the continuation



p, namely functions 1ift_pi and low_subst_pi: without entering into the
tedious details of the index manipulations they involve, let us just say that
they insure instantiation for the transmitted list, and management of newly
created names.

The OUT rule, for concretions, is much more simple to implement: con-
structor comm_ou just says that a concretion (Out na 1 p) can emit list 1
along na and become the continuation p. While this emission does not in-
volve private names (hence the 0 in the output action), name extrusions are
built using the comm_op constructor, which is the direct translation of the
usual OPEN rule of w-calculus semantics: if a term is liable to perform an
output action with k bound names, then, if we capture one of the free names
of this action by applying the restriction constructor to the concretion, the
resulting term emits k+1 private names ((S k) in Coq, S being the successor
function). In our implementation, the capture of an emitted name by a re-
striction involves a permutation between names, in order to preserve a kind
of “canonical representation for actions”. Let us give an example to illustrate
this idea; consider processes

P = (va)(vb)z[a,b].P and P, = (vb)(va)z[a,b].P.

We want of course P; and P, to be bisimilar; however, their De Bruijn
translations are something like

P; = vvi[1,0].P and Py = vvi[0,1].P{0 « 1}

(1 being the index representing x in our translation, we will see later on
that the choice of i has to be discussed). In the translation of P, we have
to exchange indexes 0 and 1 in the continuation since we have swapped
the restrictions, which is denoted here informally by the < symbol; the two
translated terms are liable to perform two different actions, and hence cannot
said to be bisimilar if we use a naive approach.

To tackle this problem, a solution could be to modify the definition of
bisimulation, by adding an “a-conversion” mechanism, in order to identify
actions (i.e. say that vwi[l,0] is the same action as vvi[0,1]). Another
point of view, which is the one we actually chose, is to define a kind of
canonical form for output actions, and hence to avoid a-conversion. This
allows to stay close to the “De Bruijn doctrine”, where a-conversion is directly
implemented by the representation of terms, and also to simplify definitions
and bisimulation proofs. The idea is to apply a permutation on the k+1
emitted private names, in order to always place the outermost bound name
as close as possible to the restrictions, as emission is performed. This is



achieved by the roll operator, in conjunction with function Nkb_f, that
computes a parameter of this permutation (we will not enter further the
details of this manipulation here). This way, in our example, as rule comm_op
is used for the emission of private names a and b, names have to be swapped
in P5 in order to satisfy the above condition, and we get identical actions
and identical continuations for P; and F», which ensures bisimilarity.

Along the ideas that are implemented by the comm_op constructor, comm_re
implements the RES rule, the rule used to add a restriction operator to a
term, in the case where the restricted name is not involved in the action (side
condition ~ (occ_act a)). Here again, a permutation has to take place, in
order to bring the restriction that we add as close as possible to the contin-
uation (in other words, the restriction “crosses” the restrictions occurring in
the action itself); this is achieved using the swap operator, one of the param-
eters being the number of bound names occurring in the action, computed
with the bound_action function. This manipulation actually implements in
a way a structural equivalence rule, as will be shown below.

Rule comm_c1, and its symmetric version (that we omitted here), is used
to build a silent transition; its Coq statement should be self-explanatory,
knowing that (add_nus k P) is the term built by adding k restrictions to P.

Another possible behaviour of a term built with a parallel construct,
apart from internal communication, is when only one subterm performs the
action, while the other is simply “watching”; this is implemented by the
comm_pl rule, and its symmetrical version comm_pr (omitted as well). In
the classical literature, this rule has a side condition requiring that bound
names involved in the action do not appear free in the inactive process, in
order to avoid name clash. Within the De Bruijn setting, this is directly
implemented into the rule itself, thanks to the 1ift operator, that insures
freshness of transmitted bound names by “making room” for new names in
the term that is inactive (the bound_action function computes the number of
new names involved in the action). We stress the point that this mechanism
is quite general in the De Bruijn framework, as our implementation testifies.

comm_ba is the constructor for actions performed by a replicated term; it
is the direct translation of the classical BANG rule, which says that we can
get rid of a process when it is put in parallel with its replicated form.

The above paragraphs often allude to operators managing De Bruijn in-
dexes inside a term of type pi; explanations about them have been kept
vague on purpose, to preserve concision and readability. However, we still
feel that entering in some way the detail of the machinery brought by with



the De Bruijn representation is important, because it reveals the influence
that such a choice can have on the style of our proofs. As a last hint on this
technical aspect of our work, let us just say that a big amount of lemmas
have to be proved together with the definition of the operators on indexes.

2 Bisimulations and progressions of relations

We describe here Sangiorgi’s techniques for bisimulation proofs, and the
questions that arise as we apply them to w-calculus.

2.1 Sangiorgi’s techniques

In [20], Sangiorgi describes a theory of relations between elements of a set of
processes Pr, on which a transition relation 7rans included in Pr x Act x
Pris given (Act being a set of actions). In the following, we shall write
P % P for (P,a, P') € Trans. This theory aims at generalising the usual
proof techniques for bisimulation, by introducing the notion of progression
of relations.

Definition 2.1 (Progression of relations) Given two relations R and S on
elements of Pr, we say that R progresses to S, written R— S, of PRQ
mmplies:

1. whenever P 55 P/, there is Q' s.t. Q 5 Q' and P'SQ’;

2. the converse, i.e., whenever Q = Q', there is P’ s.t. P % P and
P'SQ’.

Bisimulation and bisimilarity are then naturally defined in terms of pro-
gressions:

Definition 2.2 (Bisimulation, bisimilarity) R is a bisimulation relation
if R— R holds; two processes P and () are bisimilar, written P ~ Q) if
PRQ holds for some bissmulation relation R.

Sangiorgi then considers what he calls first-order-functions, or more sim-
ply functions (we will adopt this convention in the remainder of the paper),
i.e. functions from relations to relations, and states two useful properties
about them, namely soundness and respectfulness:

Definition 2.3 (Soundness) A function Fis sound if, for any R, R—
F(R) implies R C ~.



Definition 2.4 (Respectfulness) A function F is respectful if whenever
RCS and R — S holds, then F (R) C F(S) and F (R) — F (S) also
holds.

The main result of this general theory is that for functions, respectfulness
implies soundness. Its proof is easy and translates quite straightforwardly
into the Coq system; we just state here the Coq text of a corollary we get
from this theorem, which gives a useful technique when we want to prove
two terms to be bisimilar:

Lemma tech : (p,q:Pr) (R:(relation Pr)) (R p q) ->
(F:(relation Pr) -> (relation Pr))
(respectful Pr Act trans F) ->
(progress Pr Act trans R (F R)) ->
(bisimilar Pr Act trans p q).

Lemma tech above says: “proving two processes P and () bistmilar
amounts to exhibit a relation R containing (P, Q) and a respectful function

F such that R — F(R)".

This approach is very general and turns out to be adequate for implemen-
tation for many reasons. Let us recall the usual definition of simulation:

“Pr@Qif (PSP) = 305 (Q BQ)YAN (P ~Q)"

If we consider the above definition from a nearly syntactic point of view,
we see that the symbol ~ occurs twice, in the hypothesis and in the conclu-
sion. This introduces circularity in the definition, which is a serious drawback
in the practice of bisimulation proofs, in that the relations one has to exhibit
to establish bisimulation dramatically increase. To reduce the size of the
relations, “up-to” techniques have been introduced [12, 21|. Sangiorgi’s al-
ternative formulation of bisimulation, focusing on the function, concentrates
in a way the so-called circularity in the function: the function plays the role
of actually building the progression, which allows to considerably reduce the
size of the relation it is applied to. Such a point of view is naturally adequate
for the task of mechanisation of bisimulation proofs, as will be shown below.

Another point we want to stress is that respectfulness is a more interest-
ing property than soundness for our purposes, since it enjoys nice composi-
tional properties. Without entering the details of Sangiorgi’s paper (where
second-order functions are introduced, in order to combine respectful func-
tions), let us just state, as an example of the flexibility and usefulness of



respectful functions, the proof of the bisimulation up to bisimilarity tech-
nique.

We start by defining two trivial functions, namely the identity and the
constant-to-~:

Definition Ident : relation -> relation := [r:relation]r.
Definition U : relation -> relation := [_:relation]bisimilar.

([..1 is the Coq notation for abstraction). We then combine these
functions using the chaining constructor, a function taking two functions as
argument and returning a function:

Definition chaining : constructor :=
[F,G:relation->relation] [R:relation]

[P,Q:Pr](Ex [P’:Pr] ((F R) P P’) /\ ((GR) P’ Q)).

(Ex is the existential quantifier in Coq, while /\ is the and connector).
chaining is a respectful constructor, in that when applied to two respectful
functions as argument, it returns a respectful function. Since Ident and U
are trivially respectful functions, function (chaining U (chaining Ident
U)) (or with a “mathematical” notation: ~ _ ~) is respectful as well. This
shows the correctness of the bisimulation up to bisimilarity technique in our
framework.

2.2 Applying the general framework to w-calculus

The above discussed theory is specialised to w-calculus, through instantiation
of the parameters corresponding to the process algebra (pi), the actions
(action) and the transition relation (commit); this is achieved in Coq using
a Section mechanism, that implements modularity in the specifications. In
[20], Sangiorgi has to reformulate the definition of progression in the case of
w-calculus, in order to handle possible name clashes. Within the De Bruijn
setting, such a side condition is given for free, since the semantics guarantees
freshness for extruded names, hence progression has not to be redefined. Asa
counterpart to this simplification, however, the class of relations we consider
has to be restricted, because of the question of representation of free names.

Indeed, when one considers relations between processes, some stability
properties have to be guaranteed in order to keep our framework realistic:
as seen above, when a subterm of a parallel construct is inactive during a
communication, it gets “lifted” in order to manage fresh names introduced



by the communication. If two such terms are in a relation R, their respective
“liftings” should reasonably also be in R: this compels to restrict the set of
relations over processes we consider, through the definition of a predicate.
This predicate says that we are interested in relations that are preserved by
injective substitutions on free names (actually, in a very general setting, the
manipulations we make on indexes just to guarantee freshness of names can
represent any injective substitution), and is defined as follows:

Definition good : (pi->pi->Prop)->Prop :=
[R: (relatiomn pi)] (p,q:pi) (R p q) ->
(1:1_name) (injective 1) ->
(le (max_nat (max_free_0 p) (max_free_ 0 q)) (l_length 1)) ->
(R (pi_subst_n p 1 0) (pi_subst_n q 1 0)).

We therefore have to reformulate the general theory of progressions,
parametrising it with the good predicate (and its derivative £_good, insuring
that a function preserves the property); actually, we could say that what is
gained on bound names is in some way lost for free names with the De Bruijn
notation. The results, however, are easily adapted to this modification, and
we can reformulate the tech lemma seen above within the m-calculus setting;:

Lemma tech : (p,q:pi)
(R:(relation pi)) (good R) -> (R p q) ->
(F:(relation pi) -> (relation pi)) (f_good pi good F) ->
(respectful pi action commit good F) ->
(progress pi action commit R (F R)) ->
(bisimilar pi action commit good p q).

The good condition on the relations we consider actually gives a result
from [20] for free, namely the closure under injective substitutions theorem,
stating respectfulness for the closure under injective substitutions function.
This theorem is actually “built-in” in our implementation; however, we be-
lieve that we do not loose expressiveness using our good predicate, since
weakening the condition on relations could lead to non-realistic situations.

Incidentally, the classical notion of bisimulation is also straightforwardly
proved equivalent to the formulation in terms of functions on relations in
Coq.

3 The respectfulness theorem

A very useful technique for proving bisimulation properties is the ability to
cancel common contexts in two bisimilar terms. To achieve this, we con-
sider the closure under contexts function, in a way that is different from
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Sangiorgi’s, because of our choice of a replication constructor instead of
recursive definitions: we work with polyadic contexts (instead of monadic
ones), and prove respectfulness for the transitive closure of the closure under
contexts of a relation (written _CT).

The implementation of polyadic contexts is similar to the definition of
processes; we then define the notion of guarded context: a context is guarded
if an occurrence of the hole is under some prefix. This property is useful to get
a respectful function when building the closure under contexts of a relation:
indeed, when a term performs an input, the names substitutions that are
generated influence its behaviour. Hence, when we use a guarded context to
build the closure of a relation, we have to consider all possible substitutions
of names for the elements of the relation.

Definition 3.1 (closure under contexts function)

C(R) = Ug non—guarded{(C[P]7 C[Q]) : (P7 Q) € R} U
Uc guarded{ (C[P],C1Q]) : (Po,Qc) € R, for all subst. o},
and in Coq:

Inductive Close [R:pi -> pi -> Prop]l : pi -> pi -> Prop :=
Clo_cons : (c:context)(p,q:pi)(close_cons ¢ R p q) ->
(Close R (c2pi ¢ p) (c2pi c q)).

close_cons is a function that returns the requirement on objects R, p and

q corresponding to the guardness of its first argument (context c). Function

7 is then straightforwardly implemented as function T_Close in Coq.

We now turn to the respectfulness theorem:

Theorem 3.2 (up to context bisimulation)

Theorem Close_respectful: (respectful pi action commit good T_Close).

Proof. For the nontrivial part of this proof, we consider two relations R
and § such that R € § and R — §, and prove RCT — ST, We there-
fore consider a context C, processes P, P’ and @), and an action A such
that PRCTQ and P 5 P'. We first perform an elimination on the in-
ductive function that builds the transitive closure. The transitivity case is
straightforward; we thus suppose PRY Q, and we have to exhibit @’ such

that Q 2 Q" and P’ S (',

11



In [20], this proof is achieved by structural induction on the context C'
(actually, it is only detailed for the application of the general theory to CCS,
the proof for m-calculus having the same shape); we have checked that the
original proof faithfully translates into the Coq system for the finite case
(using monadic contexts). If we want to consider also non finite contexts,
however, we rather have to eliminate the inductively defined proposition
stating the transition relation C[P)] EN P’, otherwise an induction on C
would generate circularity in the proof.

Due to lack of space, we just give as an example the shape of the Coq
proof for the case where the transition relation is obtained using the comm_pl
rule above. The goal to prove is the following:

H : (good R)

HO : (good S)

H1 : (r_incl pi R S) (R C 8)

Hind : (q:pi) (induction hypothesis)
(close_cons ¢ R p q)
->(Ex [q’:pi]

(commit (c2pi ¢ q) lambda q’)/\(T_Close S p’ q’))
Hclose : (close_cons (cPar ¢’ ¢) R p q) (induction hypothesis)
H3 : (commit (c2pi ¢ p) lambda p’) (induction hypothesis)

(Ex [q’:pil (goal to prove)
(commit (Par (c2pi ¢’ q) (c2pi ¢ q)) lambda q’)
/\(T_Close S
(Par (1lift_pi (c2pi ¢’ p) 0 (bound_action lambda)) p’) q’))

((c2pi ¢ p) is the Coq translation of C'[P]). The idea is to use the induction
hypothesis Hind with process q the following way ((close_cons ¢ R p q),
which has to be proved in order to use Hind, is a direct consequence of
Hclose):

Elim (Hind q).
Intros qO0 Hfoo; Elim Hfoo; Clear Hfoo; Intros.
This generates the new hypotheses:

H4 : (commit (c2pi ¢ gq) lambda qO)
H5 : (T_Close S p’ q0)

12



We can now exhibit a process satisfying the conditions of the conclusion:

Exists (Par (lift_pi (c2pi ¢’ q) 0 (bound_action lambda)) qO0); Split.

The proof of the left part of the conclusion is done easily using the
comm_pl rule:

Apply comm_pl; Trivial.

For the right part of the conclusion, we use the transitivity property, and
some basic manipulations lead to the following goal:

H6 : (Close S (c2pi ¢’ p) (c2pi ¢’ q))

(Close S (lift_pi (c2pi ¢’ p) O (bound_action lambda))
(lift_pi (c2pi ¢’ q) 0 (bound_action lambda)))

The proof of this subgoal is conducted using hypothesis HO : (good S),
which allows to remove the lift_pi operator from the conclusion of the
goal, thanks to a lemma stating that this function can be represented by
an injective substitution. We conclude this way the proof for this sub case,
and work similarly for the other cases. We thus show respectfulness of the
<’ function, which means correctness for the up to context bisimulation
technique.

4 Applying the up-to-context proof technique

In this section we derive some classical results of w-calculus theory; after
proving some algebraic laws, known as structural equivalence, we turn to
a less technical result, namely uniqueness of solutions for equations. The
proofs are performed in a remarkably uniform manner, by taking advantage
of theorem 3.2, in conjunction with the bisimilarity up to bisimulation proof
technique (see section 2): in each case, the method is to exhibit a relation
R and to prove that R —~ R ~ (this is enough to show bisimulation,
thanks to theorem 3.2 and to respectfulness of the chaining operator). With
respect to classical proofs, this technique allows to reduce considerably the
size of relation R, and hence reduces the number of cases to consider when
performing an induction over the transitions of elements of R.

For lack of space, we only sketch the shape of the proofs below, without
entering the technical details.
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4.1 Structural equivalence results

We prove here some of the bisimilarity properties called structural equiva-
lence in [13], or alternatively w-calculus equivalence in [1].

Theorem 4.1 (structural equivalence) We have:

e (restriction construct)

1. VP Vz,y, (vz)(vy)P ~ (vy)(vz)P;
2. VP, Q, YV, (va)(P| Q) ~ P | (va)Q ifx & fn(P);

e (parallel construct) Parallel composition is symmetrical and associative
with respect to bistmulation, and admits Skip as neutral element.

e (replication construct) VP, '\P|P ~ P,

Proof The proofs for the lemmas for the restriction operator are somewhat
tedious, in that they involve heavy De Bruijn indexes manipulation (for
result 1, however, work can be factorised by proving a simulation instead of
a bisimulation, since the operation that exchanges two names inside a term
is an involution). Once we have proved these results, the laws for parallel
composition and replication are easily derived, in almost “mathematical”
style.

It has to be noted that for these proofs, we do not use the full power
of theorem 3.2, as only closure under restrictions is needed. This allows
anyway to shorten our proofs: if we were to work without the up-to context
technique, this would compell to close every relation R we exhibit under
replications. As we work with inductively defined relations, this would mean
adding a constructor of type ((p,q:pi) (R p q) -> (R (Res p) (Res q))).
Every time an induction over transitions of elements in R is performed, two
supplementary cases would have to be considered in our proof (according to
the possible transition rules for terms beginning with a restriction).

4.2 Unique solution of equations

We prove here another result, following the method given for CCS in [20].
We first need a lemma:

Lemma 4.2 Let C' be a guarded context; if we have C[P] £ P, there exists
a context C', and a substitution o such that P' = (C'[P])o, and, moreover,

for any Q, we have C[Q] 5 (C'@Q))o.
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This lemma is proved by induction over the term stating the transition
relation C[P] £ P’. We can then state the uniqueness of solutions for
equations theorem, in which we work with the induced congruence, written
~¢ and defined by “P ~°¢ @ if for all substitution o, Po ~ Qo”.

Theorem 4.3 (unique solution of equations, proposition 4.14 (2) in [12])
Suppose C' is a guarded context, with P ~° C[P] and Q ~° C[Q]. Then
P ~°qQ.

Proof. The proof boils down to show that R = {(Po,Q0c), o substitution}
progresses to ~ RE ~. Very informally, the congruence hypotheses are used
for the “~” part of ~ RC ~, while lemma 4.2 is used for the «CT» part.
It has to be noticed that this proof does not use the structural equivalence

properties above, and can be conducted in a very formal way, following [20].

5 Conclusion

We have presented an implementation of w-calculus, together with an ac-
count of classical results of w-calculus theory. Proofs for these results have
been conducted using the up to context technique, which has turned out to
be efficient in performing short and elegant proofs. Technical work, how-
ever, still represents the biggest part of our implementation, mainly due to
the managing of De Bruijn indexes: indeed, as stressed above, the De Bruijn
notation, while drastically simplifying work for bound names, requires accu-
racy in dealing with free names. Of our 700 proved lemmas, about 500 are
concerned with operators on free names; the implementation consists of 64
files of Coq specifications and proofs in Coq V6.1 [4].

The work that can be considered as the closest to ours has been done
within the HOL system. M. Nesi has defined CCS and a modal logic for this
algebra in [16]; regarding w-calculus, the original formalisation by T. Mel-
ham [11] has been used as a starting point for the work of O. Ait-Mohamed,
which consisted in proving equivalence [1], and building a system to prove
bisimilarities for processes interactively [2]|. Differences from our implemen-
tation and these works arise at the level of technical issues, as well as at the
level of the general presentation. Regarding the calculus itself and the way
it is implemented, our choice of the De Bruijn notation is a key issue (while
in [16], assumptions are made about the avoiding of name clashes, in [11]
and [2], renaming has to be done in order to preserve freshness for bound
names). Moreover, our choice of the replication construct instead of recur-
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sive definitions as in [2], provides a more clean mathematical formulation for
the possibly infinite behaviour of a term (replication was also chosen in [11]).

Regarding the approach we had in our work, and from a more theoret-
ical point of view, the implementation of Sangiorgi’s theory of progressions
and its application to w-calculus tends to be more general and closer to a
“mathematical” (as opposed to “technical” or “computational”) formulation.
Although we cannot get rid of technical work involving De Bruijn indexes
manipulation, the general shape of our bisimulation proofs in section 4 turned
out to be reasonably simple and clear, and quite remarkably it has been pos-
sible to confine in some way the tedious technical work to specific parts of
the proof, keeping the backbone of the derivation readable. Moreover, per-
spectives are quite open regarding results of m-calculus theory we can hope
to prove in the future, thanks to the generality of our approach.

Other relevant implementations of w-calculus include the Mobility Work-
bench [22], a tool for checking open bisimilarities, as well as PICT [17],
which is a programming language based on w-calculus, the way ML is based
on A-calculus; PICT is aimed at showing that a real-size language can be
constructed on top of a very small w-calculus, supporting functionality in a
natural way.

Finally, let us mention as well Giménez work in Coq on coinductive types
[7] includes an implementation of CBS; we did not use coinductive types,
except in a toy example, to prove that our notion of bisimulation coincides
with a formulation in terms of a greatest fix point of a combinator (using the
fact that a coinductive definition implicitly implements a greatest fixpoint).

Future work on this implementation should follow two directions. On one
side, one could think of proving a rewriting algorithm more or less in the same
fashion as in Aft-Mohamed’s PIC system [2], and take advantage of Coq’s
extraction capability to obtain a verified system for checking bisimilarities.
It should be of interest for that approach to see how we can exploit our proofs
involving the replication operator, a rather original feature with respect to
other w-calculus implementations which are designed towards verification.

Another interesting opportunity is the exploitation and development of
our proofs in a more theoretical direction. Work has already been done in
proving the so-called replication theorems (still with the up-to context proof
technique), which should allow to consider the verification of the functions
as processes paradigm [14], which is a key result often used as a benchmark
for theoretical models of concurrency [6], [18].
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