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Abstract

We describe a new approach of the generalized
Bezout identity for linear time-varying ordinary
differential control systems. We also explain when
and how it can be extended to linear partial
differential control systems. We show that it only
depends on the algebraic nature of the differential
module determined by the equations of the sys-
tem. This formulation shows that the generalized
Bezout identity is equivalent to the splitting of the
exact differential sequence made with the control
system and its parametrization. This point of
view gives an algebraic and geometric interpre-
tation of the entries of the generalized Bezout
identity. This method brings the computations
of the generalized Bezout identity closer to basic
concepts of differential geometry and algebra.
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1 Introduction

Let us denote s = %, R[s] the polynomial algebra
in s and M,,, the set of m x p matrices with entries
in R[s]. It is well known that if

P(s)y + Q(s)u =0, (1)
is a left coprime polynomial system, i.e. control-
lable, where P € M, det P(s) # 0 and Q €
M, then we can find four polynomial matrices
X € My, X,Y € My, P € My, Y,Q € My,
such that:

¢

Q(s)

Y(s) Qs)
where I is the (m + p) X (m + p) identity matrix.
This identity, generally called generalized Bezout

] =1, (2)

identity, is useful in control theory |8, 21|. Re-
cently, it has been shown in [5, 6, 7, 13, 15| that
controllability of control system was a “built-in”
property of the system and thus did not depend
on a separation of the system variables between
inputs and outputs. So, we are led to revisit the
generalized Bezout identity with a more intrinsic
point of view. For controllable surjective linear
time-varying control system, the generalized Be-
zout identity is reformulating in terms of the split-
ting of the short exact differential sequence formed
by the system and its parametrization. Moreover,
it has been suggested in [13, 15, 16] to extend most
of the algebraic and geometric concepts of ordi-
nary differential control theory (OD control the-
ory) within the framework of partial differential
control theory (PD control theory), that is, lin-
ear or nonlinear input/output relations defined by
systems of partial differential equations. Then, we
can wonder if such a generalized Bezout identity
exists for PD control systems. However, the ex-
istence of the generalized Bezout identity for (1)
is deeply based on Bezout theorem which is not
true in general for multivariable polynomial alge-
bra. So (2) does not seem to have a generalization
for PD control systems. We will show that its exis-
tence only depends on the algebraic nature of the
differential module determined by the equations
of the system. Such a generalized Bezout identity
exists for surjective linear PD control system gen-
erating a free differential module. In this case, the
generalized Bezout identity can be reformulated in
terms of a splitting of the short exact differential
sequence made by the system and its parametriza-
tion. In case the differential module is no longer
free but projective, then only the upper part of (2)
is satisfied, or in other words, the system admits
a parametrization and a right-inverse. Finally, if
the system is controllable, i.e. if it generates a
torsion-free differential module, we only have the



right upper part of (2), that is, the system admits a
parametrization. Some tests are known for check-
ing whether a finitely generated differential mod-
ule is torsion-free, projective or free [15, 16, 19, 20].
Thus for linear PD control systems, we are able to
know which parts of the generalized Bezout iden-
tity exist and to compute them.

Moreover, the extension of the generalized Be-
zout identity in the case of none surjective linear
OD and PD control system is obtained. In this
case, we have to build and split a long exact dif-
ferential sequence. Many explicit examples will
illustrate the main results.

2 Controllability

The use of the module language for control system
was initiated by Kalman twenty years ago [9] and
took a new insight with Blomberg and Ylinen [1].
Recently, its use seemed to have given some new
results on structural properties of the system like
controllability, observability, poles and zeros, mo-
tion planing...[3, 5, 6, 7, 11, 13, 15]. We recall a
few results.

A differential field K with n commuting deriva-
tives d1,...,0, is a field which satisfies: Va,b €
K, Vi=1,...,n:

e Ji(a+b) = d;a+ 0;b,
L4 al(ab) = (aia)b—i— aaib,
o 8;0; = 0;0,.

For example, the field of rational functions R(t)
is a differential field with derivative & (see [13]
for more details). We form the ring of linear dif-
ferential operators with coefficients in K and we
denote it by D = K]Jdi,...,d,]. For example,
every element p € D = R(t)[d—‘i] has the form:
P =D finite ai(t)(%)i, with a; € R(¢). D is a non-
commutative ring which verifies

Ya,be K :ad; (bdk) = abd;dy + a(8zb) dy.,

and possesses the Ore property: V(p,q) €
D?% 3 (u,v) € D? such that up = vq. We intro-
duce the differential indeterminates z = {z* | k =
1,...,m} and denote by Dz = Dz' + ... + Dz™
the left D-module spanned by the set z. Every el-
ement of Dz has the form ) g .. aZduzk where
p = (p1,...,4p) is a multi-index with length
| w|= pm + ...+ py and af € K. We shall

frequently use the notation d;,...d; 2* = zF

01"

If we have a finite set R of linear OD or PD
equations, we form the finitely generated left D-
module [R] of linear differential consequences of
the system generators and the differential residual
D-module M = Dz/[R] = Dn where ¥ is the
canonical image of zF in M.

We call observable any element of M, or in
other words, any linear combination of the sys-
tem variables (inputs and outputs together) and
their derivatives. Only two possibilities may hap-
pen for an observable: it may or may not verify
a OD or a PD equation by itself. An observable
which does not satisfy any OD or PD equation is
called free. We find in [13] the following definition
of controllability:

Definition 1 A system is controllable if every ob-
servable is free.

A characterization of the controllability in terms
of differential closure is shown in [13]. In |5, 6, 11],
the equivalent notion of torsion-free D-module has
been used for linear time-varying OD and de-
lay control systems. A torsion element m of a
D—module is an element which satisfies 3 a €
D,a # 0, such that am = 0 [18] and we denote
7(M) the submodule of M made by all the torsion
elements. We recall that a module is torsion-free
if 7(M) = 0. From Definition 1, a linear OD or
PD control system is controllable if and only if the
module determined by its equations is a torsion-
free D-module |11, 16]. In any case, M/7(M) is a
torsion-free module, a result leading to the concept
of minimal realization [13].

Example 1 We take D = R[£] and we form the
D-modules [R] = [§' +y' —v* + au, §* +y? —
y! —u] and M = (Dy' + Dy? + Du)/[R] = Dn* +
Dn? + D where @ € R and n',n? and n? are
the canonical image of y',4? and u. We have the
following identities in M:
{771_*_771_772_*_0”73:07 (3)
i+ 0" —n' —n* =0,

and all the combination of their derivatives.

e For a = —1, if we substract the first equation
from the second, we find 71 = n' — ? satis-
fying (% +2)7! = 0. The element 7! is a
torsion element of M.

e For oo = 1, if we add the first equation to the
second, we ﬁ121d a torsion element 72 = y! 412
satisfying (%)72 =0.



If D is a principal ring (for example K[%]) the
module M is torsion-free if and only if M is free,
that is to say, if there exists a basis of the D-
module M (it is not always true for a general mod-
ule) [18]. We recall that a basis of a D-module M
is a set of elements which are independent on D
and generate M. In [7, 11], this basis is called
flat outputs or linearizing outputs. We recall that
a D-module M is projective if there exists a D-
module M’ such that the direct sum M & M’
is free [18]. For non principal rings (for example
K[dy,...,dy],n > 2) a free module is a projective
module and a projective module is a torsion-free
module, which can be summed up by the following
module inclusions:

free C projective C torsion-free.

Thus for non principal rings, a torsion-free module
is no more in general a free module. Quillen and
Suslin have independently demonstrated in 1976
the Serre conjecture of 1950 claiming that, over a
polynomial ring k[x1,...,Xxn] where k is a field,
any projective module is also a free module [18].
We can find in [11, 19, 20| some tests permitting to
know if a finitely generated K|[dy, ..., d,]—module
M with K afield of constants (i.e. Va € K : Vi =
1,...,n, d;a = 0) is respectively torsion-free, pro-
jective and free. Remark that in this case, we can
use the Quillen-Suslin theorem and any projective
module is a free module. Recently, some formal
tests have been found in [16] permitting to treat
the situation where D = K|dy,...,d,]| with K a
general differential field (see [12] for more deeper
results). We now recall these tests.

From a geometric point of view, a linear PD con-
trol system may be defined by as a linear PD oper-
ator Dy : Fy — Fy where Fy, F; are vector bundles
over a manifold X of dimension n. In other words,
D; is a PD linear operator acting on the system
variables which are sections of F;. We define its
sheaf of solutions by D1n = 0. An operator Dj is
injective if Din =0 = n =0 and it is surjective if
the equations Din = 0 are differentially indepen-
dent [13| or equivalently if Dy = ¢ have no com-
patibility conditions, that is, if there does not exist
an operator Dy such that Din=( = Dy =0. A
control system defined by D; will be called surjec-
tive if Dy is a surjective operator.

Example 2 e The operator Dy : 5 — ( defined
by (we recall that we use the notation: d;n’ =

m):
¢,

-2
{$771+77—C2a (4)

where (2!, 2%) are local coordinates on X, is

an injective operator as we may easily verified
that n = ¢? — 22¢t — (2?)?¢3 — 2%¢2. Thus,
(¢4 ¢?) =(0,0) = n=0.

e We take the Spencer operator (see [13] for
more details) Dy : n — ( defined by:

771 - n2 ¢,
=% (5)
? ¢,

It is not a surjective operator. Indeed, if dif-
ferentiating ¢! with respect to dy and ¢? to d;
and substracting them, we find (2 — (3 — (3 =
0. The operator Dy : ( — ¥, defined by the
compatibility condition (? —(1—¢3 = x of Dy,
is surjective because it has only one equation.

A fundamental idea is to associate to each oper-
ator D; : n — ¢ the D-module M = Dn/[D;n] and
we will say that that the operator D; determines
the D-module M.

We recall the duality of differential operators
[13, 15]. We denote E* the dual bundle of E
and E = A"T* ® E* its adjoint bundle. If
Dy : Fy — Fy is a linear differential operator, its
formal adjoint Dy, : Fy — Fy is defined by the
following rules:

e the adjoint of a matrix (zero order operator)
is the transposed matrix,

e the adjoint of d; is —d;,

e for two linear PD operators P, () that can be
composed: Po@Q = Qo P.

We have the relation
p'Di€ = (Drp)'e +d(),

with d the exterior derivative. We can directly
compute the adjoint of an operator by multiplying
by test functions on the left and integrating by
part.

Example 3 We compute the adjoint operator of
the Spencer operator (5). We multiply Din by a
row vector A = (A1, A2, Ag) and integrate the result

by part, we obtain the operator Di:A— 1 defined
by:
—di A1 —da Ay = p1,
—da A3 — A1 = 2, (6)
diA3 — Ay = p3



We call an operator Dy parametrizable if there
exists a set of arbitrary functions & = (¢1,...,€")
or “potentials” and a linear operator Dy such that
all the compatibility conditions of the inhomoge-
nous system Dygé = 7 are exactly generated by
Din = 0. We find in [13, 15] the following theo-

rem:

Theorem 1 A linear PD control system is con-
trollable if and only if it is parametrizable.

By a abuse of language, we will say that an op-
erator is controllable, projective or free if the D-
module M associated to the operator is respec-
tively torsion-free, projective or free. We describe
a formal test for checking if the operator D; is
controllable or not (compare with [10]):

1. Start with D;.
2. Construct its adjoint D;.

3. Find the compatibility conditions of D\ = I
and denote this operator by Dy.

4. Construct its adjoint Dy.

5. Find the compatibility conditions of Dyé = 7
and call this operator by Dj.

We are led to two different cases. If D] =
D; then the system D; determines a torsion-free
D-module M, ie. controllable, and Dy is a
parametrization of D;. Otherwise, the operator
D, is among, but not exactly, the compatibility
conditions of Dy. The torsion elements of M are
all the new compatibility conditions modulo the
equations Din = 0.

We recall that an exact differential sequence
is a sequence of differential operators {D;, i =
0,...,1}, which verified Ker D;{;=Im D;. An in-
jective operator D will be denoted by the following
exact differential sequence 0 — E 2, F whereas

the exact differential sequence E Ly F— 0 will
mean that D is a surjective operator. An exact
differential sequence is called formally exact if the
all the sequences at any order, existing on the jet
level, are exact [13]. In practise that means that
each operator generates all the compatibility con-
ditions of its preceding one. The exact sequence
0—>Eﬂ>F0&>F1 — 0 is said to be a split-
ting exact sequence if we have one of the following
equivalent properties [18]:

1. There exists an operator Py : F; — Fp such
that Dy o Py = Idp, .

2. There exists an operator Py : E — Fj such
that Py o Dy = Idg.

3. Fy ~ E @ Fy (on the level of sections).

We can represent the test by the following dif-
ferential sequences where the number indicates the
different stages:

In the preceding sequences, only the dual sequence
and the sequence made with Dy and D] are for-
mally exact. Thus, the defect of controllability of
the operator Dy may be seen as a defect of the for-
mally exactness of the upper sequence formed by
DO and Dl.

Example 4 We wonder if the Spencer operator
(5) is controllable. The adjoint operator of the
Spencer operator is (6). Differentiating the second
equation of D; with respect to dy, the third with
respect to d2 and adding them, we obtain the oper-
ator Dy : @ — v defined by —djpuo —dopus+pu; = v.
We multiply Dy by & and after one integration by
part, we obtain the operator Dy : £ — 7 defined
by:

¢E=n',
51 = 7727 (7)
& =1

We find the compatibility conditions of Dy by dif-
ferentiating the second equation by ds, the third
by d; and substracting them, we obtain the third
equation of D;. Differentiating the first equation
of Dy by respectively d; and dy and susbtracting it
by respectively the second and the third equation,
we obtain the first and the second equation of D;.
Thus, all the compatibility conditions of Dy are
exactly generated by D; and the Spencer operator
is controllable.

In the previous example, it was easy to compute
the compatibility conditions but in the general
case, it might be much more difficult and we have
to use formal integrability theory [13] or differen-
tial algebra [4]. A system of partial differential
equations is said to be formally integrable when-
ever the formal power series of the solutions can



be determined step by step by successive deriva-
tions without obtaining backwards new informa-
tions on lower-order derivatives. For a sufficiently
regular operator D, we are always able to add to
its equations new equations, made by differential
consequences of the first one, in order to have a for-
mally integrable and involutive operator [13]. Such
a new operator is called involutive. If D is an invo-
lutive operator then the sequence starting with D
and, in which, each operator exactly describe the
compatibility conditions of the preceding one, is fi-
nite and stops after atmost n operators where n is
the dimension of X or equivalently the number of
independent variables. The sequence is formally
exact and it is usually called the Janet sequence
[13]. In the course of the text, we will always sup-
pose that these regular conditions are satisfied.

We now give a theorical but non-trivial example
of a computation of a torsion element.

Example 5 We consider the system 7j? + a(t)7n? +
a(t)n? + it —n' = 0 where «(t) is a non zero func-
tion satisfying &(t) + a(t)?2 — 1 = 0. See [17] for
the general situation. We let the reader check that
the operator D} : n — (' is n? + 0t — a(t)n! —
%(772 +nt) = ¢’ (be careful, the adjoint of a(t)y
is —a(t)A —d(t)A). The compatibility condition of
Dy is not the operator D; and thus the system is
not controllable. If we want to find the torsion ele-
ment of the associated D-module, we only have to
compute the compatibility conditions of the sys-
tem:

0?40t —a(tnt = S0P +0t) = ¢,

i’ + a(t)n? + dn? + ' —n' = 0.
After straightforward but tedious computations,
we find that the torsion element (' satisfied
a(t)(" + ¢ =0.

Let D be a surjective operator with a injective
adjoint Di. As Dy is an injective operator, among
the consequences of the equations DI = W, we
must find A = Pl,u A natural way to compute
P, is to bring D; to become formally integrable
[13]. Thus, bringing D; to formal integrability, we
form an operator 751 satisfying 751 ) 251 = IdF1
where Idg The

operator 731 is then a left-inverse of D1 Dualizing
PLoDy = Idy , we obtain Dy o Py = Idp, or in
other words, D1 admits a right-inverse. We also
say that P; is a differential lift of the sequence
[18]:

is the identity operator of Fj.

P1
—
D1
—

E F() Fy — 0.

It is equivalent to say that the D-module M de-
termined by the surjective operator is a projective
module [11, 16, 20].

Theorem 2 A surjective differential operator de-
termines a projective D-module if and only if its
adjoint is injective.

Example 6 To illustrate what has been said, we
show that the system:

ny —a’n +n' =0, (8)
where (2!, 2?) are local coordinates on X, deter-
mines a projective module and we find a right-
inverse. Its adjoint is just (4). We have seen that
D, is an injective operator and thus it determines
a prOJectlve module If we denote the operator
Pip = p? — x?puy — (22)2dopn — 22dop® = X then
its adjoint Py : ( — 5, given by

$2C2 + 2C = 7]17
($2)2C1 - $2C = 7727

is a right-inverse of (8). Indeed, we easily verified
that Dy o P, = Idp,.

In the general case where D; is no longer a
surjective operator, a characterization of projec-
tive module can be found in |2, 16]. We recall
it. As D; is not a surjective operator, there ex-
ists a compatibility conditions operator Dy. D,
defines a projective D-module M if and only if
there exists an operator P; : F1 —> Fj such that
Dl o 731 = Id[mpl = IdFl moduloDQ.
Dy o Py = Idmmp, is equivalent to

However,

DyoProDy =Dy, (9)
Indeed, the direct way is trivial whereas the reci-
procity can be demonstrated as follows. From
(9), we have (Idp, — Dy o Py) oDy =0 and thus
Idp, — Dy o Py must factorized by Da (see [14]),
that is to say, there exists an operator Ps such
that:

DioP1+ProDy = Idp, (10)

which proves the inverse way. Moreover, the iden-
tity (10) implies Dy 0Py 0Dy = Dy and D, defines,
at its turn, a projective D-module.
way, all the successive operators of compatibility
conditions define a projective D-module. Now, if
we dualize (9), we obtain Dy o Py oDy = Dy and
thus D; defines a projective D-module. The ad-
joints of (10) and Dy o Dy = 0 are respectively
ProDy+DyoPy = Idg and Dy 0Dy = 0. The

In a similar



last identity shows that Im ﬁQ C Ker 151 whereas
if we take A € KerDj, the second shows that
Dy(Po)) = A and thus A € ImD,. We have the
following exact sequence:

- Py o~ P o~
JRNRCENY RGN 7

For a none surjective operator Dy, a test for check-
ing if the D-module M determined by the operator
D is a projective module can be found in [16]. We
recall this test:

1. Construct the Janet sequence starting with
D;.

2. Ckeck if the adjoint of the last operator of the
sequence is injective.

3. Check if the backward sequence made with
the adjoint of the Janet sequence is an exact
sequence.

Example 7 The Spencer operator Dj is not a sur-
jective operator as we have seen in the example 2.
The operator Dy : { — x defining the compatibil-
ity conditions of Dy is

G-G-C=x (11)

and it is surjective. Dualizing the operator D2 by
multiplying it by 8 and integrating the result by
part, we obtain the injective operator Dy:ff— A
defined by:

/62 = >‘1a
_ﬁl = >\27
6= s

Thus, we have only to verify that all the compat-
ibility conditions of the operator Dy are exactly
defined by the operator Dy. Up to a change of
sign, it is the same as to verify that all the com-
patibility conditions of Dy are defined by D (see
the example 4). We conclude that the Spencer
operator determines a projective module M. We
easily find that Ps : x — ¢ defined by:

0=¢,
0=¢%
_X:CB?

is a right-inverse of Dy. As the Spencer opera-
tor is a PD system with constant coefficients, then
according to the theorem of Quillen-Suslin, it de-
termines a free D-module. Indeed, the D-module
M determined by the Spencer operator is equal to
the module D¢ = Dn' which is a free D-module
(see the parametrization (7) of Dy).

(12)

Let Dy be an operator defining a projective D-
module. Thus, we have the two following formally
exact sequences:

Fo 25 o By P By -0
Fb (ﬂ Fl FNR zﬁl Fn+1<—0
As D11 is a surjective operator with an injec-
tive adjoint ﬁn+1 there exists an operator Pp41 :
Fhi1 — Fj, such that Dy 10Pp 110Dy 41 = Dy
Let us denote Q,, = Idp, — Ppt+1 0 Dpy1. We have
Dn—l—l o Qn = D@—l—l - Dn—l—l o Pn—i—l o Dn—l—l =0
and thus Q, o D41 = 0. However, we have
D,, o ﬁn+1 = 0 which implies that Q,, factorizes
by f)n: Qn = 'ﬁnof)n = @O, = D,oP, =
DpoPp+Pnt19Dpt1 = Idp, = DpoPpoDy = Dy,
In a similar way, we can find P; for i € {1,...,n}
satisfying D;oP; o D; = D;. If we want to compute
effectively the different P;, we first have to con-
struct the Janet sequence starting with D;. The
last operator D, 41 of the Janet sequence is a sur-
jective operator with a injective adjoint and Pp41
can be computed as it has been explained preced-
ingly. So let us suppose that we know P; then P;
can be computed as it follows:

1. Compute Q; | = Idr, | — P; o D; and Qi,l.

2. As before, Q£*1 must factorized thrgugh Z:)i,l
and we find P;_1 such that Q;_1 = P;_10D;_1
and dualizing, we have P;_1.

Example 8 We have seen that the Spencer op-
erator defined a projective D-module. We show
how to compute P;. We start by defining ); =
Idp, — Py 0 Dy. The operator @y : ¢ — ¢’ is thus:

Cl — Cll
C2 — CI2,
G- =c"
Taking its adjoint, we obtain Q1:\— ¢
doA3 + A1 = ¢,
—di A3+ Ay = ¢o,
0= ¢3,

whereas D is given by (6). We easily find that P,
is defined by:

— U2 = ¢17
—K3 = ¢2a
0= ¢s,

and we have Py : ( — n:

(13)



We let the reader check that D; o Py o D; = Dy.

We now state a very useful theorem [13, 15].

Theorem 3 A surjective linear time-varying OD
control system is controllable if and only if its ad-
joint is injective.

Proof In a principal ring, the notion of torsion-
free and projective module are equivalent. Thus,
a linear OD control system is controllable if and
only if the module M is projective. Dy is a surjec-
tive operator with its adjoint D; which is injective,
then M is projective and the system is control-
lable. Conversely, if D; is not injective then we
can find a test vector A which satisfies D3\ = 0.
Thus A'Dyn is a total derivative of an observable
which is therefore a torsion element as its deriva-
tive is null as soon as 7 is a solution of the system
and the system is not controllable.

Example 9 We take again the first example.
Multiplying it by a row vector A = (A1, A2) and in-
tegrating the result by part, we obtain Di:A— I
defined by:

:>:\1+>\1—>\2=M1,
Ao + Ay — A1 = pa,
—Xo + aX| = ug3

Differentiating twice the zero-order equation and
substituting it, we obtain

(O[+ 1)(0( - 1))\1 = 0,

and thus the operator D is injective and thus con-
trollable if and only if & # —1 and a # 1.

Theorem 4 An operator Dy determines a free D-
module M if an only if there exists an injective
parametrization of Dy.

Indeed, let Dyé = 1 be an injective parametriza-
tion of Din = (. As & does not satisfy any
equation, the D-module D¢ generated by £ is a
free module. If Dy is controllable then we have
M C D¢E. Remark that it is nothing else than a re-
formulation of the property of a torsion-free mod-
ule: any submodule of a free module is torsion-free.
Now, if Dyé = 7 is an injective parametrization of
D, then there exists a left-inverse Py of Dy such
that £ = Py o Dyé & & = Pon = DE C M. Thus,
M = DE.

Example 10 We take the operator made with
the compatibilty condition of the Spencer oper-
ator Dy : { — x defined by C1 (-3 =yx. Its
adjoint D, is injective and Dy, defined by (6), i
the operator made by the compatibility condltlons
of Dy. But, Dy is not an injective parametrization
of Dy. However, we have p1 = dipo + dops and
thus if we take only the first and the second equa-
tion of D; as a new operator, we easily see that its
adjoint Dg : 0 — (, defined by

_91 = Cla
—0? = §2
_9% + 0% = Cga

is an injective parametrization of Dy and Dy de-
termines a free D-module.

3 Generalized Bezout Identity

Let Dy : Fy — F} be an operator determining
a projective D-module M then we have seen that
we could construct its Janet sequence

D Dy
Fo =% F,...F, ™% F,., — 0.

Let us suppose that we have found some operators
P; such that D; o PioD; = D; for i = 1...n
and P41 0 Dyy1 = Idp,,,- Let us foccus, only
for the moment, on the exact differential sequence

Fioy 25 F, 25 Fypy with Dy o Pigy 0 Dipy =
Dit1 and D; o Py o D; = D;. We have Vn € F; :
D10 (Idp, — Pig1 0 Dig1)n = 0 = I € Fiy -
(Idp, —Pit10Djit1)n = D;€ as the sequence made
by D; and D;1; is exact. However, we have V¢ €
F;, 4 (Dz oP; — IdFi) oD =0 = (Dz oP; —
Idp,)o(Idp, —Piy10Diy1)n = 0,Yn € F;. Finally,
we obtain the new identity Idp, = D;joP;+Piy10
Diy1 —D; o P;o Pty 0Diy1. This identity can be
rewritten under the two different following forms:

PZI =P;o (IdFi — Piy1°Dij1), (14)
Idp, = Dj o P} + Pit1 0 Ditr.
or
7,+1 - (IdF - D © P’L) o 737/"‘17 (15)
IdFl — D o} PZ + PZ+1 o D1,+1’
Now, let us suppose that P;110D;410P;ir1 = Pit1,

then we have P/ o P41 =0 = Im Py C Ker P..
Let us take n € Ker P/ then from the second equa-
tion of (14) we have, n = Pjt1(Diy1n) = n €
Im P;4+1 showing that

77H—1 ,le
Fiyw — F; — Fi_q,



is an exact differential sequence. Moreover, from
the second equation of (14), we have P/oD;o P} =
P.. For showing that P;y10D;y10Pip1 = Piy1, we
have only to prove it for ¢ = n. However, Dy o
Pni1 = Idp,,;, = Pny1°Dpy1 0 Ppyr = Py
Finally, we obtain the following exact differential
sequence:

Prt1

P, P
0= Fopl -5 F, —% F,_1...F| =5 Fy,

with Dz OP{ODZ' = Dz and P{ODiO'PZ( = 'PZ’ NOW,
as D; determines a projective D-module, there ex-
ists a parametrization Dy and we can prolong the
above differential sequence in order to have the
following exact differential sequence:

Pn+1

P} P P}
0—)Fn+1 —)Fn—>Fn_1...F1—1)F0—O>E,

with Dy o PyoDy = Dy and PjoDyo Py = P,. We
now explain the link of the preceding results with
the generalized Bezout identity.

3.1 PD Control Systems with Variable
Coefficients

We sum up the different results of the preceding
sections in the following theorem. We insist on the
fact that everything that follows can be computed.
See the examples illustrating the main results.

Theorem 5 Let D1 : Fy — F; be a PD control
system with variable coefficients.

1. If Dy determines a free D-module M then
there exists three operators Dy : E — Fy,
Po: Fy = E and Py : Fy — Fy such that:

D10D0:0,

Po oDy = Idp,,
Dy oPyoDy =Dy,
PooPr=0.

The sequences 0 — FE &) Fy ﬂ) Fy and
F ﬂ) Fy ﬂ E — 0 are exact.

2. If Dy determines a projective D-module M
then there exists three operators Dy : E — Fy,
Po: Fy — E and Py : F1 — Fy such that:

DIODOZO,
Dy o Py oDy = Dy,
Dy oProDy =Dy,
Poo P =0.

D D P
The sequence E —% Fy — F| and F; —
P
Fy =% E are ezact.

3. If Dy determines a torsion-free D-module M,
i.e. Dy 1s controllable, then there exists one
operator Dy : E — Fy such that:

D10D0:0.

The sequence E Do, Fy D, Fy is a formally
exact sequence.

Example 11 Let us take again the Spencer oper-
ator D; defined by (5). We have shown that D;
determines a free D-module and that the following
sequence

05E2% R 2R 25 F o, (16)

was a formally exact, where Dy and D5 are defined
respectively by (7) and by (11). The operator P,
defined by (12) is a right-inverse of Dy and Py,
defined by (13), satisfies D; o P; o D; = D;. We
let the reader check that P; = Py and Py = Py :
n — & defined by n! = ¢ satisfies Py o Dy = Idp,.
Thus, we have:

( DloD():O,
D20D1:0,
POODOZIdF07

Dy oPyoDy =Dy,

< ProDyo Py =P,
DQOPZZIdF27
PIOP2:0a
(L PooP; =0.

Moreover, the sequences
00— 252 E—0,
and (16) are exact.

In the case where D; is an surjective operator,
the previous theorem leads to the existence of the
generalized Bezout identity.

Corollary 1 Let Dy : Fy — F1 be a surjective
PD control system with variable coefficients.

1. If the operator Dy determines a free D-module

then we have:
D, 01
n et =[]

and the generalized Bezout identity is equiva-
lent to the splitting of the following formally
exact differential sequence:

O

Po P1
— —
Dy Dy
0—F — Fy — F —0.



2. If Dy determines a projective D-module then
we have:

[Di]o[P1 Dy |=[Idr1 Op1].

In the next example, we illustrate each situation
for a surjective operator.

Example 12 1. The system 0 —z?p? —n3 =0
determines a free-module and we have:

d2 —$2d1 -1

-1 0 0 o

0 1 0
0 -1 0
0 0 1 =1.
-1 —d2 —$2d1

2. We have seen that the system (8) defined by
n2—xnt+nt = 0, was generating a projective
module and we found a right-inverse. We let
the reader check that:

[ —$2d1 + 1 d2 ] 9]
$2d2 +2 $2d% + 2ds . [1 0]
(1132)2(11 - .TZ ($2)2d1d2 - $2d2 -1 IR,
3. The system 73 — x'nl + n' = 0 determines
only a torsion-free module and we have:

—dy B
—ztd, +1 ] =0

[ —$1d1+1 d2 ] O|:
Projective module and right-inverse are useful
if we want to know whether a system of polyno-
mial equations admits some solutions. We give an
example.

Example 13 The Hilbert theorem claims that
the system Pi,..., Py, € k[x1,--.,Xn] has no so-
lution if and only if there exists @Q1,...,Qm €
k[Xl,...,Xn] such that Q1P + Q2P + ... +
QP = 1. We can reformulate the Hilbert the-
orem saying that the system of polynomial equa-
tions Py, ..., Py, € k[x1,. .., Xxn] has no solution if
and only if the adjoint of the surjective operator
Dy : n — ¢ defined by Pip' + ... + Puy™ = ¢,
where we have substituted x; by d; in P;, is injec-
tive. We give an example.

We search the common solutions of the following
set of polynomial equations:

P =x3+xixs+1,
Py =% + x2x3,
P3 = x3 + x1.

(17)

We define Dy by (di +dids+1)n' + (d% + dad3)n? +
(d2 + dy)n® = ¢. It is quite easy to see that we
obtain A = 1 + (ds — da) pio + ds s from Dy X = pu.
Thus, Py : { = n, defined by

¢ ="
(d2 - d3)< = 772a
_d3C = 7737

is a right-inverse of Dy, we have P+ (x2 —x3) P2 —
X3P = 1 and the system (17) has no solution.

3.2 Time-varying OD Control Systems

The following theorem leads to the existence of the
generalized Bezout identity.

Theorem 6 Let Dy : Fy — Fy be a controllable
time-varying OD control system then there exists
three operators Dy : E — Fy, Py : Fy — E and
Py . Fy — Fy such that:

DlODOZO,
POODOZIdFO,
Dy oPyoDy =Dy,
P10P0:0.

D D
Moreover, the sequences 0 — E —% Fy —% I}

and Fy ﬂ> Fy &> E — 0 are exact. If Dy is a
surjective operator then we have:

gl o[ P Dy =
7] |

and the generalized Bezout identity is equivalent
to the splitting of the following exact differential
sequence:

Idp

0r1
O ’

ldg

Po P1
— —
Do D,
0—F — Fy — F —0.

If we start with the system (1), we can rewrite it
under the form Din = ¢ where Dy = [P(s), Q(s)],
5 = % and 7 = (y,u)!. The asumption of
det P(s) # 0 amounts to the surjectivity of Dy
and by the theorem 6, we have (2).

We now give an example of a computation of
the generalized Bezout identity for a time-varying

OD control system.

Example 14 We compute a generalized Bezout
identity for the following time-varying OD control
System:

it + a)nt + 0 —9? —a(t)n* =0.



We take the surjective operator D; associated with
the previous system and dualizing it, we obtain the
operator Dy : A — u:

A —a®)A — @)X+ X = p,
{ A= a(t)A = pa.
It is easy to see that Dj is an injective operator as
we have 751 ) 251 = Idj where 751 D — A is given
by: —fiz + p1 = A. Thus, the adjoint of P, is a
right-inverse of D; and we find P; : { — 7 defined

by:
{ ¢ =1

Substituting A = Pip in Dy, we find the operator
Doy = j,ilQ +at)p? —p? + 4t — a(t)p' = v. Du-
alizing Dy, we obtain a parametrization D : £ — n

defined by:
{ £+ alt) =7,
€+ a(t)s + (1 +a(t)E =’

This parametrization is injective and we have the
left-inverse of Pn = —n' +n? = £. We easily check
that P’ = P generates exactly the compatibility
conditions of P;. We have M = D(—n' +?) and
the M is a free D-module. We have:

| |

1 s+«
s s2tas+(1

¢=n',

—S —

1

s2+as+1
—5

4 Conclusion

+ @) ] =1

We have seen how the generalized Bezout identity
could be extended to none surjective linear time-
varying OD control system. In the case where the
linear time-varying OD control system is surjec-
tive, we have shown that the generalized Bezout
identity was, in fact, the well-kwown algebraic no-
tion of splitting exact sequence: the generalized
Bezout identity is a splitting of the formally exact
differential sequence made with the system and its
parametrization. We have seen when and how it
could be extended for general linear PD control
system with variable coefficients. We have shown
that it was only depend on the algebraic nature of
the differential module determined by the system.
This new formulation has the advantage to bring
the generalized Bezout identity and its computa-
tion closer to algebraic and geometric concepts. In
particular, we have made clear that it did not de-
pend at all on a separation of the system variables
between inputs and outputs.
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