
Generalized Bezout IdentityJ.F. Pommaret, A. QuadratyC.E.R.M.I.C.S.Ecole Nationale des Ponts et Chaussées6 et 8 avenue Blaise Pascal,77455 Marne-La-Vallée Cedex 02, Franceye-mail: quadrat@cermics.enpc.frAbstractWe describe a new approach of the generalizedBezout identity for linear time-varying ordinarydi�erential control systems. We also explain whenand how it can be extended to linear partialdi�erential control systems. We show that it onlydepends on the algebraic nature of the di�erentialmodule determined by the equations of the sys-tem. This formulation shows that the generalizedBezout identity is equivalent to the splitting of theexact di�erential sequence made with the controlsystem and its parametrization. This point ofview gives an algebraic and geometric interpre-tation of the entries of the generalized Bezoutidentity. This method brings the computationsof the generalized Bezout identity closer to basicconcepts of di�erential geometry and algebra.Keywords: Generalized Bezout Identity, control-lability, parametrization, Janet sequence, formalintegrability, D-module, commutative algebra.1 IntroductionLet us denote s = ddt , R[s] the polynomial algebrain s andMmp the set ofm�pmatrices with entriesin R[s]. It is well known that ifP (s)y +Q(s)u = 0; (1)is a left coprime polynomial system, i.e. control-lable, where P 2 Mmm, det P (s) 6= 0 and Q 2Mmp then we can �nd four polynomial matricesX 2 Mmm;X; Y 2 Mpm; P 2 Mmp; Y ;Q 2 Mppsuch that:� P (s) Q(s)X(s) Y (s) � � X(s) P (s)Y (s) Q(s) � = I; (2)where I is the (m+ p)� (m+ p) identity matrix.This identity, generally called generalized Bezout

identity, is useful in control theory [8, 21]. Re-cently, it has been shown in [5, 6, 7, 13, 15] thatcontrollability of control system was a �built-in�property of the system and thus did not dependon a separation of the system variables betweeninputs and outputs. So, we are led to revisit thegeneralized Bezout identity with a more intrinsicpoint of view. For controllable surjective lineartime-varying control system, the generalized Be-zout identity is reformulating in terms of the split-ting of the short exact di�erential sequence formedby the system and its parametrization. Moreover,it has been suggested in [13, 15, 16] to extend mostof the algebraic and geometric concepts of ordi-nary di�erential control theory (OD control the-ory) within the framework of partial di�erentialcontrol theory (PD control theory), that is, lin-ear or nonlinear input/output relations de�ned bysystems of partial di�erential equations. Then, wecan wonder if such a generalized Bezout identityexists for PD control systems. However, the ex-istence of the generalized Bezout identity for (1)is deeply based on Bezout theorem which is nottrue in general for multivariable polynomial alge-bra. So (2) does not seem to have a generalizationfor PD control systems. We will show that its exis-tence only depends on the algebraic nature of thedi�erential module determined by the equationsof the system. Such a generalized Bezout identityexists for surjective linear PD control system gen-erating a free di�erential module. In this case, thegeneralized Bezout identity can be reformulated interms of a splitting of the short exact di�erentialsequence made by the system and its parametriza-tion. In case the di�erential module is no longerfree but projective, then only the upper part of (2)is satis�ed, or in other words, the system admitsa parametrization and a right-inverse. Finally, ifthe system is controllable, i.e. if it generates atorsion-free di�erential module, we only have the1



right upper part of (2), that is, the system admits aparametrization. Some tests are known for check-ing whether a �nitely generated di�erential mod-ule is torsion-free, projective or free [15, 16, 19, 20].Thus for linear PD control systems, we are able toknow which parts of the generalized Bezout iden-tity exist and to compute them.Moreover, the extension of the generalized Be-zout identity in the case of none surjective linearOD and PD control system is obtained. In thiscase, we have to build and split a long exact dif-ferential sequence. Many explicit examples willillustrate the main results.2 ControllabilityThe use of the module language for control systemwas initiated by Kalman twenty years ago [9] andtook a new insight with Blomberg and Ylinen [1].Recently, its use seemed to have given some newresults on structural properties of the system likecontrollability, observability, poles and zeros, mo-tion planing...[3, 5, 6, 7, 11, 13, 15]. We recall afew results.A di�erential �eld K with n commuting deriva-tives @1; : : : ; @n is a �eld which satis�es: 8a; b 2K; 8i = 1; : : : ; n :� @i(a+ b) = @ia+ @ib;� @i(ab) = (@ia)b+ a@ib;� @i@j = @j@i:For example, the �eld of rational functions R(t)is a di�erential �eld with derivative ddt (see [13]for more details). We form the ring of linear dif-ferential operators with coe�cients in K and wedenote it by D = K[d1; : : : ; dn]. For example,every element p 2 D = R(t)[ ddt ] has the form:p = P�nite ai(t)( ddt )i, with ai 2 R(t). D is a non-commutative ring which veri�es8 a; b 2 K : adi (bdk) = ab didk + a(@ib) dk;and possesses the Ore property: 8 (p; q) 2D2; 9 (u; v) 2 D2 such that u p = v q. We intro-duce the di�erential indeterminates z = fzk j k =1; : : : ;mg and denote by Dz = Dz1 + : : : + Dzmthe left D-module spanned by the set z. Every el-ement of Dz has the form P�nite a�kd�zk where� = (�1; : : : ; �n) is a multi-index with lengthj � j= �1 + : : : + �n and a�k 2 K. We shallfrequently use the notation di1 :::dimzk = zki1:::im.

If we have a �nite set R of linear OD or PDequations, we form the �nitely generated left D-module [R] of linear di�erential consequences ofthe system generators and the di�erential residualD-module M = Dz=[R] = D� where �k is thecanonical image of zk inM.We call observable any element of M, or inother words, any linear combination of the sys-tem variables (inputs and outputs together) andtheir derivatives. Only two possibilities may hap-pen for an observable: it may or may not verifya OD or a PD equation by itself. An observablewhich does not satisfy any OD or PD equation iscalled free. We �nd in [13] the following de�nitionof controllability:De�nition 1 A system is controllable if every ob-servable is free.A characterization of the controllability in termsof di�erential closure is shown in [13]. In [5, 6, 11],the equivalent notion of torsion-free D-module hasbeen used for linear time-varying OD and de-lay control systems. A torsion element m of aD�module is an element which satis�es 9 a 2D; a 6= 0; such that am = 0 [18] and we denote�(M) the submodule ofM made by all the torsionelements. We recall that a module is torsion-freeif �(M) = 0. From De�nition 1, a linear OD orPD control system is controllable if and only if themodule determined by its equations is a torsion-free D-module [11, 16]. In any case,M=�(M) is atorsion-free module, a result leading to the conceptof minimal realization [13].Example 1 We take D = R [ ddt ] and we form theD-modules [R] = [�y1 + y1 � y2 + �u; �y2 + y2 �y1�u] andM = (Dy1+Dy2+Du)=[R] = D�1+D�2 + D�3 where � 2 R and �1; �2 and �3 arethe canonical image of y1; y2 and u. We have thefollowing identities inM:� ��1 + �1 � �2 + ��3 = 0;��2 + �2 � �1 � �3 = 0; (3)and all the combination of their derivatives.� For � = �1, if we substract the �rst equationfrom the second, we �nd �1 = �1 � �2 satis-fying ( d2dt2 + 2)�1 = 0. The element �1 is atorsion element ofM.� For � = 1, if we add the �rst equation to thesecond, we �nd a torsion element �2 = y1+y2satisfying ( d2dt2 )�2 = 0.2



If D is a principal ring (for example K[ ddt ]) themoduleM is torsion-free if and only ifM is free,that is to say, if there exists a basis of the D-moduleM (it is not always true for a general mod-ule) [18]. We recall that a basis of a D-moduleMis a set of elements which are independent on Dand generate M. In [7, 11], this basis is called�at outputs or linearizing outputs. We recall thata D-module M is projective if there exists a D-module M0 such that the direct sum M � M0is free [18]. For non principal rings (for exampleK[d1; : : : ; dn]; n � 2) a free module is a projectivemodule and a projective module is a torsion-freemodule, which can be summed up by the followingmodule inclusions:free � projective � torsion-free:Thus for non principal rings, a torsion-free moduleis no more in general a free module. Quillen andSuslin have independently demonstrated in 1976the Serre conjecture of 1950 claiming that, over apolynomial ring k[�1; : : : ; �n] where k is a �eld,any projective module is also a free module [18].We can �nd in [11, 19, 20] some tests permitting toknow if a �nitely generated K[d1; :::; dn]�moduleM with K a �eld of constants (i.e. 8 a 2 K : 8 i =1; :::; n; @ia = 0) is respectively torsion-free, pro-jective and free. Remark that in this case, we canuse the Quillen-Suslin theorem and any projectivemodule is a free module. Recently, some formaltests have been found in [16] permitting to treatthe situation where D = K[d1; :::; dn] with K ageneral di�erential �eld (see [12] for more deeperresults). We now recall these tests.From a geometric point of view, a linear PD con-trol system may be de�ned by as a linear PD oper-ator D1 : F0 ! F1 where F0; F1 are vector bundlesover a manifold X of dimension n. In other words,D1 is a PD linear operator acting on the systemvariables which are sections of F0. We de�ne itssheaf of solutions by D1� = 0. An operator D1 isinjective if D1� = 0) � = 0 and it is surjective ifthe equations D1� = 0 are di�erentially indepen-dent [13] or equivalently if D1� = � have no com-patibility conditions, that is, if there does not existan operator D2 such that D1� = � ) D2� = 0. Acontrol system de�ned by D1 will be called surjec-tive if D1 is a surjective operator.Example 2 � The operator D1 : � ! � de�nedby (we recall that we use the notation: di�j =�ji ): � ��2 = �1;x2�1 + � = �2; (4)

where (x1; x2) are local coordinates on X, isan injective operator as we may easily veri�edthat � = �2 � x2�1 � (x2)2�12 � x2�22 . Thus,(�1; �2) = (0; 0)) � = 0.� We take the Spencer operator (see [13] formore details) D1 : � ! � de�ned by:8<: �11 � �2 = �1;�12 � �3 = �2;�22 � �31 = �3; (5)It is not a surjective operator. Indeed, if dif-ferentiating �1 with respect to d2 and �2 to d1and substracting them, we �nd �21 � �12 � �3 =0. The operator D2 : � ! �, de�ned by thecompatibility condition �21��12��3 = � of D1,is surjective because it has only one equation.A fundamental idea is to associate to each oper-ator D1 : � ! � theD-moduleM = D�=[D1�] andwe will say that that the operator D1 determinesthe D-moduleM.We recall the duality of di�erential operators[13, 15]. We denote E? the dual bundle of Eand ~E = Vn T ? 
 E? its adjoint bundle. IfD1 : F0 ! F1 is a linear di�erential operator, itsformal adjoint ~D1 : ~F1 ! ~F0 is de�ned by thefollowing rules:� the adjoint of a matrix (zero order operator)is the transposed matrix,� the adjoint of di is �di,� for two linear PD operators P;Q that can becomposed: P̂ �Q = ~Q � ~P .We have the relation�tD1� = ( ~D1�)t� + d(�);with d the exterior derivative. We can directlycompute the adjoint of an operator by multiplyingby test functions on the left and integrating bypart.Example 3 We compute the adjoint operator ofthe Spencer operator (5). We multiply D1� by arow vector � = (�1; �2; �3) and integrate the resultby part, we obtain the operator ~D1 : �! � de�nedby: 8<: �d1�1 � d2�2 = �1;�d2�3 � �1 = �2;d1�3 � �2 = �3: (6)3



We call an operator D1 parametrizable if thereexists a set of arbitrary functions � = (�1; : : : ; �r)or �potentials� and a linear operator D0 such thatall the compatibility conditions of the inhomoge-nous system D0� = � are exactly generated byD1� = 0. We �nd in [13, 15] the following theo-rem:Theorem 1 A linear PD control system is con-trollable if and only if it is parametrizable.By a abuse of language, we will say that an op-erator is controllable, projective or free if the D-module M associated to the operator is respec-tively torsion-free, projective or free. We describea formal test for checking if the operator D1 iscontrollable or not (compare with [10]):1. Start with D1.2. Construct its adjoint ~D1.3. Find the compatibility conditions of ~D1� = �and denote this operator by ~D0.4. Construct its adjoint D0.5. Find the compatibility conditions of D0� = �and call this operator by D01.We are led to two di�erent cases. If D01 =D1 then the system D1 determines a torsion-freeD-module M, i.e. controllable, and D0 is aparametrization of D1. Otherwise, the operatorD1 is among, but not exactly, the compatibilityconditions of D0. The torsion elements of M areall the new compatibility conditions modulo theequations D1� = 0.We recall that an exact di�erential sequenceis a sequence of di�erential operators fDi; i =0; : : : ; lg, which veri�ed Ker Di+1=Im Di. An in-jective operator D will be denoted by the followingexact di�erential sequence 0 �! E D�! F whereasthe exact di�erential sequence E D�! F �! 0 willmean that D is a surjective operator. An exactdi�erential sequence is called formally exact if theall the sequences at any order, existing on the jetlevel, are exact [13]. In practise that means thateach operator generates all the compatibility con-ditions of its preceding one. The exact sequence0 �! E D0�! F0 D1�! F1 �! 0 is said to be a split-ting exact sequence if we have one of the followingequivalent properties [18]:1. There exists an operator P1 : F1 �! F0 suchthat D1 � P1 = IdF1 .

2. There exists an operator P0 : E �! F0 suchthat P0 � D0 = IdE .3. F0 ' E � F1 (on the level of sections).We can represent the test by the following dif-ferential sequences where the number indicates thedi�erent stages: 5D01�! F 01E D0�! F0 D1�! F14 1~E ~D0 � ~F0 ~D1 � ~F13 2In the preceding sequences, only the dual sequenceand the sequence made with D0 and D01 are for-mally exact. Thus, the defect of controllability ofthe operator D1 may be seen as a defect of the for-mally exactness of the upper sequence formed byD0 and D1.Example 4 We wonder if the Spencer operator(5) is controllable. The adjoint operator of theSpencer operator is (6). Di�erentiating the secondequation of ~D1 with respect to d1, the third withrespect to d2 and adding them, we obtain the oper-ator ~D0 : �! � de�ned by �d1�2�d2�3+�1 = �.We multiply ~D0 by � and after one integration bypart, we obtain the operator D0 : � ! � de�nedby: 8<: � = �1;�1 = �2;�2 = �3: (7)We �nd the compatibility conditions of D0 by dif-ferentiating the second equation by d2, the thirdby d1 and substracting them, we obtain the thirdequation of D1. Di�erentiating the �rst equationof D0 by respectively d1 and d2 and susbtracting itby respectively the second and the third equation,we obtain the �rst and the second equation of D1.Thus, all the compatibility conditions of D0 areexactly generated by D1 and the Spencer operatoris controllable.In the previous example, it was easy to computethe compatibility conditions but in the generalcase, it might be much more di�cult and we haveto use formal integrability theory [13] or di�eren-tial algebra [4]. A system of partial di�erentialequations is said to be formally integrable when-ever the formal power series of the solutions can4



be determined step by step by successive deriva-tions without obtaining backwards new informa-tions on lower-order derivatives. For a su�cientlyregular operator D, we are always able to add toits equations new equations, made by di�erentialconsequences of the �rst one, in order to have a for-mally integrable and involutive operator [13]. Sucha new operator is called involutive. If D is an invo-lutive operator then the sequence starting with Dand, in which, each operator exactly describe thecompatibility conditions of the preceding one, is �-nite and stops after atmost n operators where n isthe dimension of X or equivalently the number ofindependent variables. The sequence is formallyexact and it is usually called the Janet sequence[13]. In the course of the text, we will always sup-pose that these regular conditions are satis�ed.We now give a theorical but non-trivial exampleof a computation of a torsion element.Example 5 We consider the system ��2+�(t) _�2+_�(t)�2+ ��1��1 = 0 where �(t) is a non zero func-tion satisfying _�(t) + �(t)2 � 1 = 0. See [17] forthe general situation. We let the reader check thatthe operator D01 : � ! � 0 is _�2 + _�1 � �(t)�1 �_�(t)�(t) (�2 + �1) = � 0 (be careful, the adjoint of �(t) _yis ��(t) _�� _�(t)�). The compatibility condition ofD0 is not the operator D1 and thus the system isnot controllable. If we want to �nd the torsion ele-ment of the associated D-module, we only have tocompute the compatibility conditions of the sys-tem:( _�2 + _�1 � �(t)�1 � _�(t)�(t) (�2 + �1) = � 0;��2 + �(t) _�2 + _��2 + ��1 � �1 = 0:After straightforward but tedious computations,we �nd that the torsion element � 0 satis�ed�(t) _� 0 + � 0 = 0.Let D1 be a surjective operator with a injectiveadjoint ~D1. As ~D1 is an injective operator, amongthe consequences of the equations ~D1� = �, wemust �nd � = ~P1�. A natural way to compute~P1 is to bring ~D1 to become formally integrable[13]. Thus, bringing ~D1 to formal integrability, weform an operator ~P1 satisfying ~P1 � ~D1 = Id ~F1where Id ~F1 is the identity operator of ~F1. Theoperator ~P1 is then a left-inverse of ~D1. Dualizing~P1 � ~D1 = Id ~F1 , we obtain D1 � P1 = IdF1 or inother words, D1 admits a right-inverse. We alsosay that P1 is a di�erential lift of the sequence[18]: P1 �E D0�! F0 D1�! F1 �! 0:

It is equivalent to say that the D-module M de-termined by the surjective operator is a projectivemodule [11, 16, 20].Theorem 2 A surjective di�erential operator de-termines a projective D-module if and only if itsadjoint is injective.Example 6 To illustrate what has been said, weshow that the system:�22 � x2�11 + �1 = 0; (8)where (x1; x2) are local coordinates on X, deter-mines a projective module and we �nd a right-inverse. Its adjoint is just (4). We have seen that~D1 is an injective operator and thus it determinesa projective module. If we denote the operator~P1� = �2 � x2�1 � (x2)2d2�1 � x2d2�2 = � thenits adjoint P1 : � ! �, given by� x2�2 + 2� = �1;(x2)2�1 � x2� = �2;is a right-inverse of (8). Indeed, we easily veri�edthat D1 � P1 = IdF1 .In the general case where D1 is no longer asurjective operator, a characterization of projec-tive module can be found in [2, 16]. We recallit. As D1 is not a surjective operator, there ex-ists a compatibility conditions operator D2. D1de�nes a projective D-module M if and only ifthere exists an operator P1 : F1 �! F0 such thatD1 � P1 = Id ImD1 = IdF1 moduloD2. However,D1 � P1 = Id ImD1 is equivalent toD1 � P1 � D1 = D1; (9)Indeed, the direct way is trivial whereas the reci-procity can be demonstrated as follows. From(9), we have (IdF1 � D1 � P1) � D1 = 0 and thusIdF1 � D1 � P1 must factorized by D2 (see [14]),that is to say, there exists an operator P2 suchthat: D1 � P1 + P2 � D2 = IdF1 ; (10)which proves the inverse way. Moreover, the iden-tity (10) implies D2 �P2 �D2 = D2 and D2 de�nes,at its turn, a projective D-module. In a similarway, all the successive operators of compatibilityconditions de�ne a projective D-module. Now, ifwe dualize (9), we obtain ~D1 � ~P1 � ~D1 = ~D1 andthus ~D1 de�nes a projective D-module. The ad-joints of (10) and D2 � D1 = 0 are respectively~P1 � ~D1 + ~D2 � ~P2 = Id ~F1 and ~D1 � ~D2 = 0. The5



last identity shows that Im ~D2 � Ker ~D1 whereasif we take � 2 Ker ~D1, the second shows that~D2( ~P2�) = � and thus � 2 Im ~D2. We have thefollowing exact sequence:~F2 ~D2�! ~F1 ~D1�! ~F0:For a none surjective operator D1, a test for check-ing if theD-moduleM determined by the operatorD1 is a projective module can be found in [16]. Werecall this test:1. Construct the Janet sequence starting withD1.2. Ckeck if the adjoint of the last operator of thesequence is injective.3. Check if the backward sequence made withthe adjoint of the Janet sequence is an exactsequence.Example 7 The Spencer operatorD1 is not a sur-jective operator as we have seen in the example 2.The operator D2 : � ! � de�ning the compatibil-ity conditions of D1 is�21 � �12 � �3 = �; (11)and it is surjective. Dualizing the operator D2 bymultiplying it by � and integrating the result bypart, we obtain the injective operator ~D2 : � ! �de�ned by: 8<: �2 = �1;��1 = �2;�� = �3:Thus, we have only to verify that all the compat-ibility conditions of the operator ~D2 are exactlyde�ned by the operator ~D1. Up to a change ofsign, it is the same as to verify that all the com-patibility conditions of D0 are de�ned by D1 (seethe example 4). We conclude that the Spenceroperator determines a projective module M. Weeasily �nd that P2 : �! � de�ned by:8<: 0 = �1;0 = �2;�� = �3; (12)is a right-inverse of D2. As the Spencer opera-tor is a PD system with constant coe�cients, thenaccording to the theorem of Quillen-Suslin, it de-termines a free D-module. Indeed, the D-moduleM determined by the Spencer operator is equal tothe module D� = D�1 which is a free D-module(see the parametrization (7) of D1).

Let D1 be an operator de�ning a projective D-module. Thus, we have the two following formallyexact sequences:F0 D1�! F1 : : : Fn Dn+1�! Fn+1�! 0~F0 ~D1 � ~F1 : : : ~Fn ~Dn+1 � ~Fn+1 � 0As Dn+1 is a surjective operator with an injec-tive adjoint ~Dn+1 there exists an operator Pn+1 :Fn+1 �! Fn such that Dn+1�Pn+1�Dn+1 = Dn+1.Let us denote Qn = IdFn �Pn+1 �Dn+1. We haveDn+1 � Qn = Dn+1 � Dn+1 � Pn+1 � Dn+1 = 0and thus ~Qn � ~Dn+1 = 0. However, we have~Dn � ~Dn+1 = 0 which implies that ~Qn factorizesby ~Dn: ~Qn = ~Pn � ~Dn ) Qn = Dn � Pn )Dn�Pn+Pn+1�Dn+1 = IdFn ) Dn�Pn�Dn = Dn.In a similar way, we can �nd Pi for i 2 f1; : : : ; ngsatisfying Di�Pi �Di = Di. If we want to computee�ectively the di�erent Pi, we �rst have to con-struct the Janet sequence starting with D1. Thelast operator Dn+1 of the Janet sequence is a sur-jective operator with a injective adjoint and Pn+1can be computed as it has been explained preced-ingly. So let us suppose that we know Pi then Pi�1can be computed as it follows:1. Compute Qi�1 = IdFi�1 �Pi � Di and ~Qi�1.2. As before, ~Qi�1 must factorized through ~Di�1and we �nd ~Pi�1 such that ~Qi�1 = ~Pi�1� ~Di�1and dualizing, we have Pi�1.Example 8 We have seen that the Spencer op-erator de�ned a projective D-module. We showhow to compute P1. We start by de�ning Q1 =IdF1 �P2 � D2. The operator Q1 : � ! � 0 is thus:8<: �1 = � 01;�2 = � 02;�21 � �12 = � 03:Taking its adjoint, we obtain ~Q1 : �! �:8<: d2�3 + �1 = �1;�d1�3 + �2 = �2;0 = �3;whereas ~D1 is given by (6). We easily �nd that ~P1is de�ned by: 8<: ��2 = �1;��3 = �2;0 = �3;and we have P1 : � ! �:8<: 0 = �1;��1 = �2;��2 = �3: (13)6



We let the reader check that D1 � P1 � D1 = D1.We now state a very useful theorem [13, 15].Theorem 3 A surjective linear time-varying ODcontrol system is controllable if and only if its ad-joint is injective.Proof In a principal ring, the notion of torsion-free and projective module are equivalent. Thus,a linear OD control system is controllable if andonly if the moduleM is projective. D1 is a surjec-tive operator with its adjoint ~D1 which is injective,then M is projective and the system is control-lable. Conversely, if ~D1 is not injective then wecan �nd a test vector � which satis�es ~D1� = 0.Thus �tD1� is a total derivative of an observablewhich is therefore a torsion element as its deriva-tive is null as soon as � is a solution of the systemand the system is not controllable.Example 9 We take again the �rst example.Multiplying it by a row vector � = (�1; �2) and in-tegrating the result by part, we obtain ~D1 : �! �de�ned by: 8<: ��1 + �1 � �2 = �1;��2 + �2 � �1 = �2;��2 + ��1 = �3:Di�erentiating twice the zero-order equation andsubstituting it, we obtain(�+ 1)(� � 1)�1 = 0;and thus the operator ~D1 is injective and thus con-trollable if and only if � 6= �1 and � 6= 1.Theorem 4 An operator D1 determines a free D-module M if an only if there exists an injectiveparametrization of D1.Indeed, let D0� = � be an injective parametriza-tion of D1� = �. As � does not satisfy anyequation, the D-module D� generated by � is afree module. If D1 is controllable then we haveM� D�. Remark that it is nothing else than a re-formulation of the property of a torsion-free mod-ule: any submodule of a free module is torsion-free.Now, if D0� = � is an injective parametrization ofD1 then there exists a left-inverse P0 of D0 suchthat � = P0 � D0� , � = P0� ) D� � M. Thus,M = D�.

Example 10 We take the operator made withthe compatibilty condition of the Spencer oper-ator D2 : � ! � de�ned by �21 � �12 � �3 = � . Itsadjoint ~D2 is injective and ~D1, de�ned by (6), isthe operator made by the compatibility conditionsof ~D2. But, D1 is not an injective parametrizationof D2. However, we have �1 = d1�2 + d2�3 andthus if we take only the �rst and the second equa-tion of ~D1 as a new operator, we easily see that itsadjoint D]1 : �! �, de�ned by8<: ��1 = �1;��2 = �2;��21 + �12 = �3;is an injective parametrization of D2 and D2 de-termines a free D-module.3 Generalized Bezout IdentityLet D1 : F0 �! F1 be an operator determininga projective D-moduleM then we have seen thatwe could construct its Janet sequenceF0 D1�! F1 : : : Fn Dn+1�! Fn+1 �! 0:Let us suppose that we have found some operatorsPi such that Di � Pi � Di = Di for i = 1 : : : nand Pn+1 � Dn+1 = IdFn+1 . Let us foccus, onlyfor the moment, on the exact di�erential sequenceFi�1 Di�! Fi Di+1�! Fi+1 with Di+1 � Pi+1 � Di+1 =Di+1 and Di � Pi � Di = Di. We have 8 � 2 Fi :Di+1 � (IdFi � Pi+1 � Di+1)� = 0 ) 9 � 2 Fi�1 :(IdFi �Pi+1 �Di+1)� = Di� as the sequence madeby Di and Di+1 is exact. However, we have 8 � 2Fi�1 : (Di � Pi � IdFi) � Di� = 0 ) (Di � Pi �IdFi)� (IdFi �Pi+1 �Di+1)� = 0;8� 2 Fi. Finally,we obtain the new identity IdFi = Di �Pi+Pi+1 �Di+1 �Di � Pi � Pi+1 � Di+1. This identity can berewritten under the two di�erent following forms:� P 0i = Pi � (IdFi �Pi+1 � Di+1);IdFi = Di � P 0i + Pi+1 � Di+1: (14)or � P 00i+1 = (IdFi �Di � Pi) � Pi+1;IdFi = Di � Pi + P 00i+1 � Di+1; (15)Now, let us suppose that Pi+1�Di+1�Pi+1 = Pi+1,then we have P 0i � Pi+1 = 0 ) ImPi+1 � KerP 0i.Let us take � 2 KerP 0i then from the second equa-tion of (14) we have, � = Pi+1(Di+1�) ) � 2ImPi+1 showing thatFi+1 Pi+1�! Fi P 0i�! Fi�1;7



is an exact di�erential sequence. Moreover, fromthe second equation of (14), we have P 0i �Di �P 0i =P 0i. For showing that Pi+1�Di+1�Pi+1 = Pi+1, wehave only to prove it for i = n. However, Dn+1 �Pn+1 = IdFn+1 ) Pn+1 � Dn+1 � Pn+1 = Pn+1.Finally, we obtain the following exact di�erentialsequence:0! Fn+1 Pn+1�! Fn P 0n�! Fn�1 : : : F1 P 01�! F0;with Di �P 0i �Di = Di and P 0i �Di �P 0i = P 0i. Now,as D1 determines a projective D-module, there ex-ists a parametrization D0 and we can prolong theabove di�erential sequence in order to have thefollowing exact di�erential sequence:0! Fn+1 Pn+1�! Fn P 0n�! Fn�1 : : : F1 P 01�! F0 P 00�! E;with D0 �P 00 �D0 = D0 and P 00 �D0 �P 00 = P 00. Wenow explain the link of the preceding results withthe generalized Bezout identity.3.1 PD Control Systems with VariableCoe�cientsWe sum up the di�erent results of the precedingsections in the following theorem. We insist on thefact that everything that follows can be computed.See the examples illustrating the main results.Theorem 5 Let D1 : F0 ! F1 be a PD controlsystem with variable coe�cients.1. If D1 determines a free D-module M thenthere exists three operators D0 : E ! F0,P0 : F0 ! E and P1 : F1 ! F0 such that:8>><>>: D1 � D0 = 0;P0 � D0 = IdF0 ;D1 � P1 � D1 = D1;P0 � P1 = 0:The sequences 0 �! E D0�! F0 D1�! F1 andF1 P1�! F0 P0�! E �! 0 are exact.2. If D1 determines a projective D-module Mthen there exists three operators D0 : E ! F0,P0 : F0 ! E and P1 : F1 ! F0 such that:8>><>>: D1 � D0 = 0;D0 � P0 � D0 = D0;D1 � P1 � D1 = D1;P0 � P1 = 0:The sequence E D0�! F0 D1�! F1 and F1 P1�!F0 P0�! E are exact.

3. If D1 determines a torsion-free D-moduleM,i.e. D1 is controllable, then there exists oneoperator D0 : E ! F0 such that:D1 � D0 = 0:The sequence E D0�! F0 D1�! F1 is a formallyexact sequence.Example 11 Let us take again the Spencer oper-ator D1 de�ned by (5). We have shown that D1determines a free D-module and that the followingsequence0! E D0�! F0 D1�! F1 D2�! F2 ! 0; (16)was a formally exact, where D0 and D2 are de�nedrespectively by (7) and by (11). The operator P2de�ned by (12) is a right-inverse of D2 and P1,de�ned by (13), satis�es D1 � P1 � D1 = D1. Welet the reader check that P 01 = P1 and P 00 = P0 :� ! � de�ned by �1 = � satis�es P0 � D0 = IdF0 .Thus, we have:8>>>>>>>>>><>>>>>>>>>>:
D1 � D0 = 0;D2 � D1 = 0;P0 � D0 = IdF0 ;D1 � P1 � D1 = D1;P1 � D1 � P1 = P1;D2 � P2 = IdF2 ;P1 � P2 = 0;P0 � P1 = 0:Moreover, the sequences0 �! F2 P2�! F1 P1�! F0 P0�! E �! 0;and (16) are exact.In the case where D1 is an surjective operator,the previous theorem leads to the existence of thegeneralized Bezout identity.Corollary 1 Let D1 : F0 �! F1 be a surjectivePD control system with variable coe�cients.1. If the operator D1 determines a free D-modulethen we have:� D1P0 � � � P1 D0 � = � IdF1 0F10E IdE � ;and the generalized Bezout identity is equiva-lent to the splitting of the following formallyexact di�erential sequence:P0 � P1 �0 �! E D0�! F0 D1�! F1 ! 0:8



2. If D1 determines a projective D-module thenwe have:� D1 � � � P1 D0 � = � IdF1 0F1 � :In the next example, we illustrate each situationfor a surjective operator.Example 12 1. The system �12 � x2�21 � �3 = 0determines a free-module and we have:24 d2 �x2d1 �1�1 0 00 1 0 35 �24 0 �1 00 0 1�1 �d2 �x2d1 35 = I:2. We have seen that the system (8) de�ned by�22�x2�11+�1 = 0; was generating a projectivemodule and we found a right-inverse. We letthe reader check that:� �x2d1 + 1 d2 � �� x2d2 + 2 x2d22 + 2d2(x2)2d1 � x2 (x2)2d1d2 � x2d2 � 1 � = [1; 0]:3. The system �22 � x1�11 + �1 = 0 determinesonly a torsion-free module and we have:� �x1d1 + 1 d2 � � � �d2�x1d1 + 1 � = 0:Projective module and right-inverse are usefulif we want to know whether a system of polyno-mial equations admits some solutions. We give anexample.Example 13 The Hilbert theorem claims thatthe system P1; : : : ; Pm 2 k[�1; : : : ; �n] has no so-lution if and only if there exists Q1; : : : ; Qm 2k[�1; : : : ; �n] such that Q1P1 + Q2P2 + : : : +QmPm = 1. We can reformulate the Hilbert the-orem saying that the system of polynomial equa-tions P1; : : : ; Pm 2 k[�1; : : : ; �n] has no solution ifand only if the adjoint of the surjective operatorD1 : � ! � de�ned by P1�1 + : : : + Pm�m = �,where we have substituted �i by di in Pj, is injec-tive. We give an example.We search the common solutions of the followingset of polynomial equations:8<: P1 = �33 + �1�3 + 1;P2 = �23 + �2�3;P3 = �22 + �1: (17)

We de�ne D1 by (d33+d1d3+1)�1+(d23+d2d3)�2+(d22 + d1)�3 = �. It is quite easy to see that weobtain � = �1+(d3�d2)�2+d3�3 from ~D1� = �.Thus, P1 : � ! �, de�ned by8<: � = �1;(d2 � d3)� = �2;�d3� = �3;is a right-inverse of D1, we have P1+(�2��3)P2��3P1 = 1 and the system (17) has no solution.3.2 Time-varying OD Control SystemsThe following theorem leads to the existence of thegeneralized Bezout identity.Theorem 6 Let D1 : F0 ! F1 be a controllabletime-varying OD control system then there existsthree operators D0 : E ! F0, P0 : F0 ! E andP1 : F1 ! F0 such that:8>><>>: D1 � D0 = 0;P0 � D0 = IdF0 ;D1 � P1 � D1 = D1;P1 � P0 = 0:Moreover, the sequences 0 �! E D0�! F0 D1�! F1and F1 P1�! F0 P0�! E �! 0 are exact. If D1 is asurjective operator then we have:� D1P0 � � � P1 D0 � = � IdF1 0F10E IdE � ;and the generalized Bezout identity is equivalentto the splitting of the following exact di�erentialsequence: P0 � P1 �0 �! E D0�! F0 D1�! F1 ! 0:If we start with the system (1), we can rewrite itunder the form D1� = � where D1 = [P (s); Q(s)],s = ddt and � = (y; u)t. The asumption ofdet P (s) 6= 0 amounts to the surjectivity of D1and by the theorem 6, we have (2).We now give an example of a computation ofthe generalized Bezout identity for a time-varyingOD control system.Example 14 We compute a generalized Bezoutidentity for the following time-varying OD controlsystem:��1 + �(t) _�1 + �1 � _�2 � �(t)�2 = 0:9



We take the surjective operator D1 associated withthe previous system and dualizing it, we obtain theoperator ~D1 : �! �:� ��� �(t) _�� _�(t)�+ � = �1;_�� �(t)� = �2:It is easy to see that ~D1 is an injective operator aswe have ~P1 � ~D1 = Id ~E where ~P1 : �! � is givenby: � _�2 + �1 = �. Thus, the adjoint of ~P1 is aright-inverse of D1 and we �nd P1 : � ! � de�nedby: � � = �1;_� = �2:Substituting � = ~P1� in ~D1, we �nd the operator~D0� = ���2 + �(t) _�2 � �2 + _�1 � �(t)�1 = �. Du-alizing ~D0, we obtain a parametrization D : � ! �de�ned by:� _� + �(t)� = �1;�� + �(t) _� + (1 + _�(t))� = �2:This parametrization is injective and we have theleft-inverse of P� = � _�1+�2 = �. We easily checkthat P 0 = P generates exactly the compatibilityconditions of P1. We haveM = D(� _�1 + �2) andtheM is a free D-module. We have:� s2 + �s+ 1 �s� ��s 1 � �� 1 s+ �s s2 + �s+ (1 + _�) � = I:4 ConclusionWe have seen how the generalized Bezout identitycould be extended to none surjective linear time-varying OD control system. In the case where thelinear time-varying OD control system is surjec-tive, we have shown that the generalized Bezoutidentity was, in fact, the well-kwown algebraic no-tion of splitting exact sequence: the generalizedBezout identity is a splitting of the formally exactdi�erential sequence made with the system and itsparametrization. We have seen when and how itcould be extended for general linear PD controlsystem with variable coe�cients. We have shownthat it was only depend on the algebraic nature ofthe di�erential module determined by the system.This new formulation has the advantage to bringthe generalized Bezout identity and its computa-tion closer to algebraic and geometric concepts. Inparticular, we have made clear that it did not de-pend at all on a separation of the system variablesbetween inputs and outputs.
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