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Abstract

In this paper, we study the geometric generation of the (0,m,2)-
nets. Based on some combinatorial methods, a generation property on
(0, m, 2)-nets with an applications to a Sobol’ sequence and the number
of the (0, m, 2)-nets in equivalent sense are given. We also present some
symmetry properties of the Sobol” sequence and the Roth-Zaremba
sequence.

Key words: Discrepancy, (0,m,2)-net, Sobol’ sequence, Roth-Zaremba
sequence.

1 Introduction

Sequences of points in I* = [0,1)* with even distribution or low dis-
crepancy play a fundamental role in Quasi-Monte Carlo methods. The dis-
crepancy is a well-known measure for the irregularity of distribution of a
sequence and the (t,s)-sequences are among the best of low discrepancy
sequences (see [8],[9], [1], [5] and [6]).

Recall some definitions concerning with the discrepancy and the (¢, s)-
sequences. Denote [° =[0,1)® and let b > 2 be an integer fixed.

Definition 1.1 The discrepancy of N points x1,...,xy in I° is defined by
An(J)

- AS(J)|



where J denotes the family of all subintervals of I® of the form J =
IT7_,[0,u;), An(J) represents the number of n, 0 < n < N, for which x,, € J
and A\g stands for Lebesgue measure on I°.

Definition 1.2 An elementary interval in base b of I° is an interval of the
form

a; a;+ 1
b= H bd ’ bd ’
with integers d; > 0 and 0 < a; < bi for1 <14 <s.

Definition 1.3 Let 0 < t < m be integers. A (t,m,s)-net in base b is a
point set of b™ points in I° such that every elementary interval in base b of
volume b'™™ contains b' points of this net.

A sequence X1,Xa, ..., of points in I® is called a (t,s)-sequence in base
b if for all integers k > 0 and m >t the point set consisting of the x, with
k0™ <n < (k+1)b™ is a (t,m,s)-net in base b.

(t,m, s)-nets in base b have very good geometrical properties illustrated
in the following proposition (cf. [5]).

Proposition 1.4 Let P be a (t,m, s)-net in base b, let E be an elementary
interval in base b with volume b™%, where 0 < u < m —t, and let T be an
affine transformation from E onto 1°. Then the points of P that belong to
E are transformed by T into a (t,m — u, s)-net in base b.

A (t,s)-sequence has very low discrepancy, and according to [6], its dis-
crepancy satisties an effective bound Dy < Cy(log N)*/N+O((log N)*~!/N)
with limg_, o, Cs = 0.

However, the constructions of the (¢, s)-sequences are often algebric, such
as Sobol’ [8] with linear recurring relations over Fg, Faure [1] with Pascal
matrix triangle and Niederreiter [6] with polynomial over finite fields which
generalize the Sobol’ and Faure methods, thus we have not a clear idea
of how the (t, s)-sequences are constructed geometrically and why they are
more uniformely distributed except for their discrepancy properties?

The purpose of this paper is to study the geometric generation of the
(0,m, 2)-nets which makes us to have a better idea on its structure.

We only consider the (0,m, s)-nets of I in equivalent sense as follows.



Definition 1.5 Let Ry and Ry be two (0,m, s)-nets in base b. We say that
Ry ~ Ry if for all x € Ry such as v € E = [[}_[5&, “;7—;';1), a elementary
interval in base b with volume b—*™, there is a y € Ry such asy € E.

It is easy to show that the above relation is an equivalent relation. Denote

i1 i .
Frl = Al ) 10 S SH™ =1L 1 <k < s}
A (0,m, s)-net in base b, R, is called a normalized (0,m, s)-net in base b if
R C fﬁ,{b; for each (0, m, s)-net in base b we can choose a unique representant
in F5P.

Remark 1.6 If Ry and Ry be two (0,m, s)-nets in base b such that Ry ~ Ra,
then |D(Ry1) — D(Rg)| < 7. This property is also hold for the other version
of discrepancy, such as LP-discrepancy with 1 < p < oo.

To study the (0,m, s)-nets in equivalent sense, we need some notations.

Notation : Let s > 2 and b > sup(s — 1,2) be integers. For iy,...,is =
0,1,---,b—1, we note E;, ;. = szl[%’“, i’“grl) the elementary interval in
base b of volume ™%, and T;, . ;, the affine transformations from E; ;.
onto I*. For any point set Q) of I, we note T;, . ;. (QNE;, .. i) by Tj, ..i, (Q)
to simplify the notation. .

For 1 <4 < s, we note TF"” the projection from I* to I*~! defined by

ﬂproj(xla"' y Lgy 7$s) = (xla"' s Lj—1y Li41, """ ,$s) for all (xla"' ,$s) er.

We also need the following important characteristic lemma of a (0, m, s)-
net. It can be proved easily by the definition of a (0,m, s)-net in base b and
Proposition 1.3.

Lemma 1.7 Let m > s be an integer. Then a set R of b™ points in I° is a
(0,m, s)-net in base b if and only if the following conditions are satisfied:

e Foralliy,...,is € {0,1,---,b—1}, T}, i, (R) is a (0,m — s,s)-net in
base b.

e For1<i<s, TipTOj(R) is a (0,m,s — 1)-net in base b.



In this paper, we give the proof parts of the results annonced in the
Note [11] with some generalizitions. First, we generalize the result on the
generation of a (0,m + 1,2)-net from a known (0, m,2)-net with an appli-
cations to a Sobol’ sequence in Section 2. In Section 3 we compute the
number of all (0, m, 2)-nets in base b in equivalent sense, which brings us to
introduce the notion of (0,m, 2)-sequence and ask some questions concern-
ing it. In the end, some symmetry properties of the Sobol’ sequence and the
Roth-Zaremba sequence are presented in Section 4.

2 Generation of (0, m,2)-net with an application to
a Sobol’ sequence

The following theorem shows that a (0,m,2)-net in base b can be self-
generated from an original net and the number of such generation is large if
b>3.

Theorem 2.1 Let Ry, be a (0,m,2)-net in base b with m > 0. Then there
are (b — 1)MTOY™ (0,m, + 1,2)-nets in base b, in equivalent sense, which
mnclude R,,.

We call that a (0, m+1,2)-net in base b, R;;,+1, is generated by (0,m, 2)-
net in base b, Ry, if Ry, D Rpyq1.

Proof . Denote N(b,m) = (b— 1)!m+tDP™ We will use induction on m.

For m = 0, the theorem is trivial.

For m = 1, decompose the I? into b’ elementary intervals in base b,
Ei, iy, with i1, € {0,1,...,b—1} and add one point in E;, ;, if there is no
point of R;. Then, there are b — 1 new points in each elementary inteval of
the form

u u—+1 v v+1
— 1 1 —
25 x 0D or 0,1) x [, )

with u,v = 0,...,b — 1. We have (b — 1)! possibilities to place these b — 1
new points in order that there is one and only one point in each elementary
inteval of the form

ub+s ub+s+1 vb+t vb+t+1
S X0 o 0,1 x [P, )




where s, =0,...,b— 1. Thus, by Lemma 1.7 there are
(b= x (b—1)1" = (b—1)1%

possibilities to construct a (0,2,2)-net in base b containing R;.
Suppose that the theorem is true until m — 1.
In the case of m, for each pair iy,i5 € {0,1,...,b— 1},

Til,iz (Rm) = Qil,iz (m - 2)

is a (0, m—2,2)-net in base b. By the hypothesis of the induction, Q;, 4, (m—
2) can generate Njp,,—2 (0,m —1,2)-nets in base b. Let Q;, ;,(m —1) be one
of such (0,m — 1,2)-nets in base b and write

R = Ui17i2:071a"'7b711—'l.11,i2(Qi17i2 (m - 1))'

Then, R, C R and there are b—1 points of R\ R,, in each elementary inteval
of the form

u u—+1 v v+1
[b_m’b—m) x[0,1) or [0,1) x [b_m’b—m)

with w,v = 0,...,0™ — 1. As in the case of m = 1, there are (b — 1)!
possibilities to place these b — 1 points in order that there is one and only
one point in each elementary inteval of the form

ub+s ub+s+1 vb+t vb+t+1
[bm-i-l’ pmtL ) x[0,1) or [O’I)X[bm-i-l’ 1 )

with s, =0,...,b—1, and the image of the new net by T, ;, is Q;, i, (m—1)
in equivalent sense.
Finally, together with Lemma 1.7 and the hypothesis of the induction,

N(b,m) = (N (b,m —2))""((b — 1))*"

and the result follows. O

Corollary 2.2 Let Ry, be a (0,m,2)-net in base 2 with m > 0. Then the
(0,m + 1,2)-net Ry41 in base 2 generated by R, is unique in equivalent
sense. Moreover, Ry, +1\Rn is a (0,m,2)-net.

Corollary 2.3 If R, D .7-'3,;3_1 is a (0,m,2)-net in base 2, then the unique
normalized (0,m + 1,2)-net R,,4+1 generated by Ry, satisfies Ry, C Rypt1.



Remark 2.4 In dimension 3, the above generation theorem of the net does
not hold in base 2. For example, there is no (0,2,3)-net in base 2 which
contains the (0,1,3)-net in base 2 defined by {(0,0,0),(0.5,0.5,0.5)}. This
can be proved by using the projection nets on two dimensions, which are the
same thanks to Theorem 2.1.

Now, we give an application to two-dimensional Sobol’ sequences which
is a (0, 2)-sequence in base 2. Recall its definition. Let n > 0 be an integer
with n = 3722, n;2/, then the Sobol’ sequence is defined by

(B bz = (3 5 3 =5,

where hj = >3 ( ; ) ni(mod 2). Using the fact that the 2™ first terms
of Sobol” sequence is a normalized (0,m,2) net in base 2, and Theorem 2.1,

we can prove the following proposition.

Proposition 2.5 Let Sy = {(0,0)} be a (0,0,2)-net in base 2. For m >
1, let Sy, denote the normalized (0,m,2)-net in base 2 generated by the
normalized (0,m — 1,2)-net Sy,—1 in base 2. Then Sy, is the set of 2™ first
terms of the Sobol’” sequence.

This proposition showes that the Sobol’s sequence is a nature result of
the characteristic of the (0, 2-sequence in base 2 and the initial point (0, 0).

3 Number of (0,m,2)-net in base b and some ques-
tions

In the following, we compute the number of all different (0, m,2)-nets in
base b in equivalent sense.

Theorem 3.1 Let m > 0 be an integer, then the number of the (0,m,2)-

. . -1
nets in base b is BT

bm—l

Proof . We proceed by induction on m. Denote N (b, m) = b!"™
The result is trivial for m =0, 1.



Suppose that the theorem is true until m — 1.
For m, all (0,m, 2)-nets in base b can be constructed as follows. Given b?
normalized (0,m —2,2)-net in base b, Q;, 5, with i1,i2 = 0,...,b— 1, denote

—_ =1
Ril;iZ - 1—;1,7:2Q7/1;12'

Then in every elementary intervals of volume % of the form

bm
u u-+1 v v+1 v v+1 u  u+1
[Wj7m) x [gvT) or [ga b ) X [bm,la bmfl)
withu =0,...,m—1and v =0,...,b—1, there is one and only one point of
the set R = Ui-’;ilFoRil,iT By Lemma 1.7, in order that R is a (0, m,2)-net

in base b, it suffices that 1) T, ;,(R) ~ @i, ,, and 2) only one point of R
belongs to the elementary intervals of volume b% of the form

u u+1 v v+1
[b_ma b—m) x[0,1) or [0,1) x [b_ma b—m)
with u,v =0,1,...,0™ — 1. Under the condition of 1), there are b! possibil-
ities to satisfy the condition 2) in each elementary interval of the form

u  u+1 v v+l
[bm—*l’ bm—*l) x[0,1) or [bmq’ bmfl)

with u,v = 0,1,...,6"™ ! — 1. In addition that for each 41,45 =0,...,b—1
there are N} ,,—2 possibilities to choose ();, ;,, so the number of all different
R is

2bm—1 b2
b' Nb bem,

m—2 —

and the result follows. O

Remark 3.2 1. In the proof, we give indeed a formal method to con-
struct all of (0,m,2)-nets in base b.

2. Note that b™" " s q very large number. For ezxample, in the case
b=2 and m = 4, we have 232 (0,4,2)-nets in base 2. The usual dis-
crepancy estimation is valid for all (0,m,2)-net in base b apart from
the Roth sequence and the Zaremba sequence (see below). Thus it is
interesting to find the (0,m,2)-net in base b with the lowest discrep-
ancy.



Since there are so many (0, m,2)-nets, to find the best one, we want first
limit our research by introducing so called (0, m, 2)-sequence.
The following is given in dimensition s.

Definition 3.3 A finite sequence x1,Xo, ..., Xpm of b™ points in I° is called
a (t,m,s)-sequence in base b if for all integers m > m' >t and b™~™ >
k > 0 the point set consisting of the x, with kb™ < n < (k+ 1)0™ is a
(t,m', s)-net in base b. A (t,m,s)-net in base b is called (t,m,s)-sequence
in base b if it coincide with a point set consisting of a (t,m, s)-sequence in
base b.

We have immediately the following proposition.

Proposition 3.4 Let m > t+ 2. A finite sequence x1,X3,...,Xpm of b
points in I° is a (t,m, s)-sequence in base b if and only if

1. The point set {xp | 1 <n <b™} is a (t,m,s)-net in base b.

2. For all 0 < k < b— 1, the finie sequences, y* = Xpikpm-1, 1 <n <
b are (t,m — 1, s)-sequences in base b.

For s = 2, we have a result on the affine transformations of (0,m,2)-
sequence in base b.

Proposition 3.5 Let m > 2 be an integer and Ry, be a (0,m,2)- sequence
in base b. Then for all iy,i2 € {0,1,---,b—1}, T;, 4, (Rp) is a (0,m —2,2)-
sequence in base b.

Proof . We show it by induction on m.

If m = 2 and m = 3, it is obvious that the proposition is true.

Suppose that the proposition is hold until m — 1.

In the case of m, by Proposition 3.4, there exist two (0,m — 1,2)-
sequence in base b, RL | and R2, , such that R,, = R.,_, N R%_,. For
all i1,iy € {0,1,---,b— 1}, by the hypothesis of the induction. T}, ;,(RL,_;)

m—1
and T;, ;,(R2,_;) are two (0,m — 3,2)-sequences in base b. However

Til,iQ (Rm) = Til,iz (R}nfl) U Til,iz (R717l*1)

is a (0, — 2,2)-net in base b. Applying once Proposition 3.4, we have that
T, iy (R) is a (0,m — 2, 2)-sequence in base b. O



The examples of (¢, m, s)-sequences in base b can be obtained by taking
the first ™ terms in a (¢, s)-sequence in base b. In one dimension, every
(0,m,1)-net in base b is a copy (in equivalent sense) of the first o™ terms
of the Van der Corput sequence in base b, so it is a (0,m, 1)-sequence in
base b. But if the dimension s > 2, whether all (¢,m, s)-nets in base b are
(t,m, s)-sequences in base b 7

It is easy to see that this is true for (0,m,2)-nets in base 2 in the case
m < 2. However, in the case of m = 3, we give the following negative
example, which implies that for m > 3 there exists a (0,m, 2)-net but not a
(0,m, 2)-sequence in base 2.

Example 3.6 Let R be the set of x; = (0,0), xo = (0.125,0.75), x3 =
(0.25,0.5), x4 = (0.375,0.375), x5 = (0.5,0.625), x5 = (0.625,0.125), x7 =
(0.75,0.875) and xg = (0.875,0.25) as in the figure bellow:

X7

1

It is easy to see that R3 is a (0, 3,2)-net in base 2. If R3 is a (0,3,2)-
sequence, then there are two disjoint (0,2,2)-nets noted by R} and R2 such
that R U R3 = R3. We can suppose that x; belongs to R3, then x3 belongs
to Ri. But in this case neither x5 nor xg can be in R}, it is impossible
because there is not point of R} in the elementary interval [0.5,0.75) x [0, 1)
of volume %.

Finally, for the Roth sequence and the Zaremba sequences, we do not
know whether they are (0, m, 2)-sequences.

Thus, we want ask the following questions: 1) Whether (¢, m, s)-sequences
are more uniformly distributed than (¢,m, s)-nets in base b which are not
the sequences? 2) Can we generate a (t,m + 1, s)-sequence in base b, as well
as a (t, s)-sequence in base b from any (¢, m, s)-sequence in base b? 3) In the
equivalent sense of (0,m, s)-nets in base b, how many (0, m, s)-sequences are
there in base b?



4 Some symmetry properties of the Sobol’ sequence
and the Roth-Zaremba sequence

We first present a symmetric property of the 2™ first terms of the Sobol’
sequence Sp,.

Proposition 4.1 For m > 1, we have
Tgyo(Sm) ~ Tl,l(Sm) and T()’l(Sm) ~ TI,O(Sm)-

This proposition can be shown using the following lemma on the succes-
sion symmetric property of a (0,m,2)-net in base 2.

Lemma 4.2 Let R, be a normalized (0,m,2)-net in base 2 and let Ry, 41
be the unique normalized (0,m + 1,2)-net in base 2 generated by R,. If

Tgyo(Rm) ~ Tl,l(Rm) and T()’l(Rm) ~ Tl,()(Rm),
then

To,0(Rm+t1) = T11(Rm41) and Toi(Rmt1) = Tio(Rmt1)-

Proof . For any i1,is € {0,1}, let Qy,,—1(i1,%2) be the normalized (0, m —
1,2)-net in base 2 generated by the (0,m — 2,2)-net in base 2, Tj, ;, (Ry,).
Since Tj, i, (Rm) € 73{31, using the hypothesis of the lemma and Corollary
2.3, we have

Qm-1(0,0) = Qm-1(1,1) and @mn-1(0,1) = Qm-1(1,0) (1)

Let Py 1(i1,i2) = Tj, 5, (Qm-1(i1,32)\ Ty iy (Rin))- Since Qu1(i1,i2) €
.7:,2,;2_1, we have P, 1(i1,i2) € F2%. Because R,, is a normalized (0,m, 2)-
net, for each point (z,y) € Pp_1(i1,42), there exist a point of R,, with
abscissa « and an anthor point of R,, with ordinate y. To construct a
(0,m + 1,2)-net in base 2, we transform (x,y) into (z + W%,y + ﬁ)
Denote the new points set by

1 1 .
Pm = {($ + 2m+1ay + 2m+1) | (l',y) € Uil,iz:O,IPm—l(ZlaZQ)}a

we have

TO,[](Pm) ~ Tl,l (Pm) and Tgyl(Pm) ~ T1 O(Pm),

)

10



which imply
TO,[](Pm U Rm) ~ Tl,l(Pm U Rm) and TO,I (Pm U Rm) ~ Tl,O(Pm U Rm)

It is clear that P,,UR,, € 73{31 satisfies the conditions of the Lemma, 1.7, so
it is a (0, m + 1,2)-net in base 2. Moreover, by Corollary 2.2 and Corollary
2.3,

PmURm:Rm-H

d

Now, we give the definition of the Roth-Zaremba sequence (see [3], [4],
[10] and [2]). For n = 0 a;(n)b’ € N, let ¢ (n) = 322, 04(a;(n))b 1
be the generalized van der Corput sequences in base b where ¥ = (0;)i>0
being an infinite sequence of permutations of the set {0,1,...,b—1}. Then,
for each positive integer m, the Roth-Zaremba sequence is defined by

n
Zpm = (b_m’ Oy (1)) o<n<hm—1.

In the case of 0; = I with I the identity permutations of the set {0,1,...,b—

1} for all i > 0, we have the original Roth sequence Ry ,,, = (g, $5(1))o<n<tm—1-
In the case of b = 2, and o; = (01) for i even, o; = I for i odd, we get the
original Zaremba sequence.

Proposition 4.3 For the Roth-Zaremba sequence Zy,,, we have, for all
i,7 €4{0,1,...,b—1},

T3 (Zbm) =~ To0(Zpm)-
For the original Roth sequence Ry,

T ; (Rom) =~ Ry 2.

Proof . For 0 <mn < b™ —1, write n = ng + nib+ ... + ny,_106™ 1 with

9, N1y ..., Nm—1 = 0,1,...,b— 1. We have
i — @ + + -1 and ¢E(n) _ UO(nO) + + Um—l(nm—l)
bm bm e b b b .. bm .

11



Thus (g, ¢;(n)) € Py = [£,51) x [£, 25L) if and only if n,_1 = 4 and
0'0(710) = ja and

n 1 J
Tij(Zom) = {(b(b—m - 5)7 b(ey (n) — g))}ogngbm—1,nm,1:i,ao(n0):j
. no Nm—2 01(n1) Om—1(Tm—1) \yo<n<btm 1
= {(—bmfl +... —b 5 7[) + ...+ bmfl )}nv_nfT:l',O'O(no):j
ny Nm—2 01(n1) Om—2(Nm—2)
=~ {(W +...F n(z) b b +...+ mbmi_gl)}nl,...,nm_Q:O,l,...,bfl-

In the case of the Roth sequence, o; = I and

sl Nym—2 11 Ny —2
Ry o = {(W +...+ nz " +...+ #)}nl,...,nm_gio,l,...,bfla
therefore, the result follows. a

Applying Lemma 1.7, we can construct directly some “symmetrie” (0, m, 2)-
nets in base 2.

Proposition 4.4 Let R, be a normalized (0,m,2)-net in base 2, then we
can construct a “symmetrie” (0,m+2,2)-net Ry,42 in base 2 in the following
meaning:

To,0(Rm+2) = Th1(Rmi2) ~ Ry,
and

1
To1 (Rimt2) = Ti0(Rmy2) = T2 (Ry,).

where T (z,y) = {z + 5o 1 {y + g7 }) with {-} the fraction part of
a real.

Example 4.5 Let Ry = F» as in the following figure.

12



Then the figure of the Ry symmetric (0,4,2)-net in base 2 is as follows.
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