
Some geometric and combinatorialproperties of (0;m; 2)-nets in base b � 2Yi-Jun XIAO3 June 1997AbstractIn this paper, we study the geometric generation of the (0;m; 2)-nets. Based on some combinatorial methods, a generation property on(0;m; 2)-nets with an applications to a Sobol' sequence and the numberof the (0;m; 2)-nets in equivalent sense are given. We also present somesymmetry properties of the Sobol' sequence and the Roth-Zarembasequence.Key words: Discrepancy, (0;m; 2)-net, Sobol' sequence, Roth-Zarembasequence.1 IntroductionSequences of points in Is = [0; 1)s with even distribution or low dis-crepancy play a fundamental role in Quasi-Monte Carlo methods. The dis-crepancy is a well-known measure for the irregularity of distribution of asequence and the (t; s)-sequences are among the best of low discrepancysequences (see [8],[9], [1], [5] and [6]).Recall some de�nitions concerning with the discrepancy and the (t; s)-sequences. Denote Is = [0; 1)s and let b � 2 be an integer �xed.De�nition 1.1 The discrepancy of N points x1; : : : ;xN in Is is de�ned byDN = supJ2J jAN (J)N � �s(J)j1



where J denotes the family of all subintervals of Is of the form J =�si=1[0; ui), AN (J) represents the number of n, 0 � n < N , for which xn 2 Jand �s stands for Lebesgue measure on Is.De�nition 1.2 An elementary interval in base b of Is is an interval of theform E = sYi=1[ aibdi ; ai + 1bdi );with integers di � 0 and 0 � ai < bdi for 1 � i � s.De�nition 1.3 Let 0 � t � m be integers. A (t;m; s)-net in base b is apoint set of bm points in Is such that every elementary interval in base b ofvolume bt�m contains bt points of this net.A sequence x1,x2; : : : ; of points in Is is called a (t; s)-sequence in baseb if for all integers k � 0 and m > t the point set consisting of the xn withkbm < n � (k + 1)bm is a (t;m; s)-net in base b.(t;m; s)-nets in base b have very good geometrical properties illustratedin the following proposition (cf. [5]).Proposition 1.4 Let P be a (t;m; s)-net in base b, let E be an elementaryinterval in base b with volume b�u, where 0 � u � m � t, and let T be ana�ne transformation from E onto Is. Then the points of P that belong toE are transformed by T into a (t;m� u; s)-net in base b.A (t; s)-sequence has very low discrepancy, and according to [6], its dis-crepancy satisties an e�ective boundDN � Cs(logN)s=N+O((logN)s�1=N)with lims!1Cs = 0.However, the constructions of the (t; s)-sequences are often algebric, suchas Sobol' [8] with linear recurring relations over F2, Faure [1] with Pascalmatrix triangle and Niederreiter [6] with polynomial over �nite �elds whichgeneralize the Sobol' and Faure methods, thus we have not a clear ideaof how the (t; s)-sequences are constructed geometrically and why they aremore uniformely distributed except for their discrepancy properties?The purpose of this paper is to study the geometric generation of the(0;m; 2)-nets which makes us to have a better idea on its structure.We only consider the (0;m; s)-nets of Is in equivalent sense as follows.2



De�nition 1.5 Let R1 and R2 be two (0;m; s)-nets in base b. We say thatR1 ' R2 if for all x 2 R1 such as x 2 E = Qsi=1[ aibm ; ai+1bm ), a elementaryinterval in base b with volume b�sm, there is a y 2 R2 such as y 2 E.It is easy to show that the above relation is an equivalent relation. DenoteFs;bm = f( i1bm ; : : : ; isbm ) j 0 � ik � bm � 1; 1 � k � sg:A (0;m; s)-net in base b, R, is called a normalized (0;m; s)-net in base b ifR � Fs;bm ; for each (0;m; s)-net in base b we can choose a unique representantin Fs;bm .Remark 1.6 If R1 and R2 be two (0;m; s)-nets in base b such that R1 ' R2,then jD(R1)�D(R2)j � sbm . This property is also hold for the other versionof discrepancy, such as Lp-discrepancy with 1 � p <1.To study the (0;m; s)-nets in equivalent sense, we need some notations.Notation : Let s � 2 and b � sup(s � 1; 2) be integers. For i1; : : : ; is =0; 1; � � � ; b � 1, we note Ei1;:::;is = Qsk=1[ ikb ; ik+1b ) the elementary interval inbase b of volume b�s, and Ti1;:::;is the a�ne transformations from Ei1;:::;isonto Is. For any point set Q of Is, we note Ti1;:::;is(Q\Ei1;:::;is) by Ti1;:::;is(Q)to simplify the notation.For 1 � i � s, we note T proji the projection from Is to Is�1 de�ned byT proji (x1; � � � ; xi; � � � ; xs) = (x1; � � � ; xi�1; xi+1; � � � ; xs) for all (x1; � � � ; xs) 2 Is:We also need the following important characteristic lemma of a (0;m; s)-net. It can be proved easily by the de�nition of a (0;m; s)-net in base b andProposition 1.3.Lemma 1.7 Let m � s be an integer. Then a set R of bm points in Is is a(0;m; s)-net in base b if and only if the following conditions are satis�ed:� For all i1; : : : ; is 2 f0; 1; � � � ; b� 1g, Ti1;:::;is(R) is a (0;m� s; s)-net inbase b.� For 1 � i � s, T proji (R) is a (0;m; s� 1)-net in base b.3



In this paper, we give the proof parts of the results annonced in theNote [11] with some generalizitions. First, we generalize the result on thegeneration of a (0;m + 1; 2)-net from a known (0;m; 2)-net with an appli-cations to a Sobol' sequence in Section 2. In Section 3 we compute thenumber of all (0;m; 2)-nets in base b in equivalent sense, which brings us tointroduce the notion of (0;m; 2)-sequence and ask some questions concern-ing it. In the end, some symmetry properties of the Sobol' sequence and theRoth-Zaremba sequence are presented in Section 4.2 Generation of (0;m; 2)-net with an application toa Sobol' sequenceThe following theorem shows that a (0;m; 2)-net in base b can be self-generated from an original net and the number of such generation is large ifb � 3.Theorem 2.1 Let Rm be a (0;m; 2)-net in base b with m � 0. Then thereare (b � 1)!(m+1)bm (0;m + 1; 2)-nets in base b, in equivalent sense, whichinclude Rm.We call that a (0;m+1; 2)-net in base b, Rm+1, is generated by (0;m; 2)-net in base b, Rm, if Rm � Rm+1.Proof . Denote N(b;m) = (b� 1)!(m+1)bm . We will use induction on m.For m = 0, the theorem is trivial.For m = 1, decompose the I2 into b2 elementary intervals in base b,Ei1;i2 , with i1; i2 2 f0; 1; : : : ; b� 1g and add one point in Ei1;i2 if there is nopoint of R1. Then, there are b� 1 new points in each elementary inteval ofthe form [ub ; u+ 1b )� [0; 1) or [0; 1) � [vb ; v + 1b )with u; v = 0; : : : ; b � 1. We have (b � 1)! possibilities to place these b � 1new points in order that there is one and only one point in each elementaryinteval of the form[ub+ sb2 ; ub+ s+ 1b2 )� [0; 1) or [0; 1) � [vb+ tb2 ; vb+ t+ 1b2 )4



where s; t = 0; : : : ; b� 1. Thus, by Lemma 1.7 there are(b� 1)!b � (b� 1)!b = (b� 1)!2bpossibilities to construct a (0; 2; 2)-net in base b containing R1.Suppose that the theorem is true until m� 1.In the case of m, for each pair i1; i2 2 f0; 1; : : : ; b� 1g,Ti1;i2(Rm) = Qi1;i2(m� 2)is a (0;m�2; 2)-net in base b. By the hypothesis of the induction, Qi1;i2(m�2) can generate Nb;m�2 (0;m� 1; 2)-nets in base b. Let Qi1;i2(m� 1) be oneof such (0;m� 1; 2)-nets in base b and writeR = [i1;i2=0;1;:::;b�1T 1i1;i2(Qi1;i2(m� 1)):Then, Rm � R and there are b�1 points of RnRm in each elementary intevalof the form [ ubm ; u+ 1bm )� [0; 1) or [0; 1) � [ vbm ; v + 1bm )with u; v = 0; : : : ; bm � 1. As in the case of m = 1, there are (b � 1)!possibilities to place these b � 1 points in order that there is one and onlyone point in each elementary inteval of the form[ub+ sbm+1 ; ub+ s+ 1bm+1 )� [0; 1) or [0; 1) � [vb+ tbm+1 ; vb+ t+ 1bm+1 )with s; t = 0; : : : ; b�1, and the image of the new net by Ti1;i2 is Qi1;i2(m�1)in equivalent sense.Finally, together with Lemma 1.7 and the hypothesis of the induction,N(b;m) = (N(b;m� 2))b2((b� 1)!)2bmand the result follows. 2Corollary 2.2 Let Rm be a (0;m; 2)-net in base 2 with m � 0. Then the(0;m + 1; 2)-net Rm+1 in base 2 generated by Rm is unique in equivalentsense. Moreover, Rm+1nRm is a (0;m; 2)-net.Corollary 2.3 If Rm � F2;2m+1 is a (0;m; 2)-net in base 2, then the uniquenormalized (0;m + 1; 2)-net Rm+1 generated by Rm satis�es Rm � Rm+1.5



Remark 2.4 In dimension 3, the above generation theorem of the net doesnot hold in base 2. For example, there is no (0; 2; 3)-net in base 2 whichcontains the (0; 1; 3)-net in base 2 de�ned by f(0; 0; 0); (0:5; 0:5; 0:5)g. Thiscan be proved by using the projection nets on two dimensions, which are thesame thanks to Theorem 2.1.Now, we give an application to two-dimensional Sobol' sequences whichis a (0; 2)-sequence in base 2. Recall its de�nition. Let n � 0 be an integerwith n =P1j=0 nj2j , then the Sobol' sequence is de�ned by(�(n);  (n))n�0 = ( 1Xj=0 nj2j+1 ; 1Xj=0 hj2j+1 );where hj = P1i=j  ij !ni(mod 2). Using the fact that the 2m �rst termsof Sobol' sequence is a normalized (0;m; 2) net in base 2, and Theorem 2.1,we can prove the following proposition.Proposition 2.5 Let S0 = f(0; 0)g be a (0; 0; 2)-net in base 2. For m �1, let Sm denote the normalized (0;m; 2)-net in base 2 generated by thenormalized (0;m� 1; 2)-net Sm�1 in base 2. Then Sm is the set of 2m �rstterms of the Sobol' sequence.This proposition showes that the Sobol's sequence is a nature result ofthe characteristic of the (0; 2-sequence in base 2 and the initial point (0; 0).3 Number of (0;m; 2)-net in base b and some ques-tionsIn the following, we compute the number of all di�erent (0;m; 2)-nets inbase b in equivalent sense.Theorem 3.1 Let m � 0 be an integer, then the number of the (0;m; 2)-nets in base b is b!mbm�1 .Proof . We proceed by induction on m. Denote N(b;m) = b!mbm�1 .The result is trivial for m = 0; 1. 6



Suppose that the theorem is true until m� 1.For m, all (0;m; 2)-nets in base b can be constructed as follows. Given b2normalized (0;m�2; 2)-net in base b, Qi1;i2 with i1; i2 = 0; : : : ; b�1, denoteRi1;i2 = T�1i1;i2Qi1;i2 :Then in every elementary intervals of volume 1bm of the form[ ubm�1 ; u+ 1bm�1 )� [vb ; v + 1b ) or [vb ; v + 1b )� [ ubm�1 ; u+ 1bm�1 )with u = 0; : : : ; bm�1 and v = 0; : : : ; b�1, there is one and only one point ofthe set R = [b�1i1;i2=0Ri1;i2 . By Lemma 1.7, in order that R is a (0;m; 2)-netin base b, it su�ces that 1) Ti1;i2(R) ' Qi1;i2 , and 2) only one point of Rbelongs to the elementary intervals of volume 1bm of the form[ ubm ; u+ 1bm )� [0; 1) or [0; 1) � [ vbm ; v + 1bm )with u; v = 0; 1; : : : ; bm � 1. Under the condition of 1), there are b! possibil-ities to satisfy the condition 2) in each elementary interval of the form[ ubm�1 ; u+ 1bm�1 )� [0; 1) or [ vbm�1 ; v + 1bm�1 )with u; v = 0; 1; : : : ; bm�1 � 1. In addition that for each i1; i2 = 0; : : : ; b� 1there are Nb;m�2 possibilities to choose Qi1;i2 , so the number of all di�erentR is b!2bm�1N b2b;m�2 = Nb;m;and the result follows. 2Remark 3.2 1. In the proof, we give indeed a formal method to con-struct all of (0;m; 2)-nets in base b.2. Note that b!mbm�1 is a very large number. For example, in the caseb = 2 and m = 4, we have 232 (0; 4; 2)-nets in base 2. The usual dis-crepancy estimation is valid for all (0;m; 2)-net in base b apart fromthe Roth sequence and the Zaremba sequence (see below). Thus it isinteresting to �nd the (0;m; 2)-net in base b with the lowest discrep-ancy. 7



Since there are so many (0;m; 2)-nets, to �nd the best one, we want �rstlimit our research by introducing so called (0;m; 2)-sequence.The following is given in dimensition s.De�nition 3.3 A �nite sequence x1;x2; : : : ;xbm of bm points in Is is calleda (t;m; s)-sequence in base b if for all integers m � m0 � t and bm�m0 >k � 0 the point set consisting of the xn with kbm0 < n � (k + 1)bm0 is a(t;m0; s)-net in base b. A (t;m; s)-net in base b is called (t;m; s)-sequencein base b if it coincide with a point set consisting of a (t;m; s)-sequence inbase b.We have immediately the following proposition.Proposition 3.4 Let m � t + 2. A �nite sequence x1;x2; : : : ;xbm of bmpoints in Is is a (t;m; s)-sequence in base b if and only if1. The point set fxn j 1 � n � bmg is a (t;m; s)-net in base b.2. For all 0 � k � b � 1, the �nie sequences, ykn = xn+kbm�1 , 1 � n �bm�1 are (t;m� 1; s)-sequences in base b.For s = 2, we have a result on the a�ne transformations of (0;m; 2)-sequence in base b.Proposition 3.5 Let m � 2 be an integer and Rm be a (0;m; 2)- sequencein base b. Then for all i1; i2 2 f0; 1; � � � ; b� 1g, Ti1;i2(Rm) is a (0;m� 2; 2)-sequence in base b.Proof . We show it by induction on m.If m = 2 and m = 3, it is obvious that the proposition is true.Suppose that the proposition is hold until m� 1.In the case of m, by Proposition 3.4, there exist two (0;m � 1; 2)-sequence in base b, R1m�1 and R2m�1 such that Rm = R1m�1 \ R2m�1. Forall i1; i2 2 f0; 1; � � � ; b� 1g, by the hypothesis of the induction. Ti1;i2(R1m�1)and Ti1;i2(R2m�1) are two (0;m � 3; 2)-sequences in base b. HoweverTi1;i2(Rm) = Ti1;i2(R1m�1) [ Ti1;i2(R1m�1)is a (0;m� 2; 2)-net in base b. Applying once Proposition 3.4, we have thatTi1;i2(Rm) is a (0;m� 2; 2)-sequence in base b. 28



The examples of (t;m; s)-sequences in base b can be obtained by takingthe �rst bm terms in a (t; s)-sequence in base b. In one dimension, every(0;m; 1)-net in base b is a copy (in equivalent sense) of the �rst bm termsof the Van der Corput sequence in base b, so it is a (0;m; 1)-sequence inbase b. But if the dimension s � 2, whether all (t;m; s)-nets in base b are(t;m; s)-sequences in base b ?It is easy to see that this is true for (0;m; 2)-nets in base 2 in the casem � 2. However, in the case of m = 3, we give the following negativeexample, which implies that for m � 3 there exists a (0;m; 2)-net but not a(0;m; 2)-sequence in base 2.Example 3.6 Let R3 be the set of x1 = (0; 0), x2 = (0:125; 0:75), x3 =(0:25; 0:5), x4 = (0:375; 0:375), x5 = (0:5; 0:625), x6 = (0:625; 0:125), x7 =(0:75; 0:875) and x8 = (0:875; 0:25) as in the �gure bellow:
rx1

rx2 rx3 rx4 rx5 rx6
rx7

rx8It is easy to see that R3 is a (0; 3; 2)-net in base 2. If R3 is a (0; 3; 2)-sequence, then there are two disjoint (0; 2; 2)-nets noted by R12 and R22 suchthat R12 [R22 = R3. We can suppose that x1 belongs to R12, then x3 belongsto R12. But in this case neither x5 nor x6 can be in R12, it is impossiblebecause there is not point of R12 in the elementary interval [0:5; 0:75)� [0; 1)of volume 14 .Finally, for the Roth sequence and the Zaremba sequences, we do notknow whether they are (0;m; 2)-sequences.Thus, we want ask the following questions: 1) Whether (t;m; s)-sequencesare more uniformly distributed than (t;m; s)-nets in base b which are notthe sequences? 2) Can we generate a (t;m+1; s)-sequence in base b, as wellas a (t; s)-sequence in base b from any (t;m; s)-sequence in base b? 3) In theequivalent sense of (0;m; s)-nets in base b, how many (0;m; s)-sequences arethere in base b? 9



4 Some symmetry properties of the Sobol' sequenceand the Roth-Zaremba sequenceWe �rst present a symmetric property of the 2m �rst terms of the Sobol'sequence Sm.Proposition 4.1 For m � 1, we haveT0;0(Sm) ' T1;1(Sm) and T0;1(Sm) ' T1;0(Sm):This proposition can be shown using the following lemma on the succes-sion symmetric property of a (0;m; 2)-net in base 2.Lemma 4.2 Let Rm be a normalized (0;m; 2)-net in base 2 and let Rm+1be the unique normalized (0;m+ 1; 2)-net in base 2 generated by Rm. IfT0;0(Rm) ' T1;1(Rm) and T0;1(Rm) ' T1;0(Rm);then T0;0(Rm+1) ' T1;1(Rm+1) and T0;1(Rm+1) ' T1;0(Rm+1):Proof . For any i1; i2 2 f0; 1g, let Qm�1(i1; i2) be the normalized (0;m�1; 2)-net in base 2 generated by the (0;m � 2; 2)-net in base 2, Ti1;i2(Rm).Since Ti1;i2(Rm) 2 F2;2m�1, using the hypothesis of the lemma and Corollary2.3, we haveQm�1(0; 0) = Qm�1(1; 1) and Qm�1(0; 1) = Qm�1(1; 0) (1)Let Pm�1(i1; i2) = T�1i1;i2(Qm�1(i1; i2)nTi1;i2(Rm)). Since Qm�1(i1; i2) 2F2;2m�1, we have Pm�1(i1; i2) 2 F2;2m . Because Rm is a normalized (0;m; 2)-net, for each point (x; y) 2 Pm�1(i1; i2), there exist a point of Rm withabscissa x and an anthor point of Rm with ordinate y. To construct a(0;m + 1; 2)-net in base 2, we transform (x; y) into (x + 12m+1 ; y + 12m+1 ).Denote the new points set byPm = f(x+ 12m+1 ; y + 12m+1 ) j (x; y) 2 [i1;i2=0;1Pm�1(i1; i2)g;we have T0;0(Pm) ' T1;1(Pm) and T0;1(Pm) ' T1;0(Pm);10



which implyT0;0(Pm [Rm) ' T1;1(Pm [Rm) and T0;1(Pm [Rm) ' T1;0(Pm [Rm):It is clear that Pm[Rm 2 F2;2m+1 satis�es the conditions of the Lemma 1.7, soit is a (0;m+ 1; 2)-net in base 2. Moreover, by Corollary 2.2 and Corollary2.3, Pm [Rm = Rm+1 2Now, we give the de�nition of the Roth-Zaremba sequence (see [3], [4],[10] and [2]). For n = P1i=0 ai(n)bi 2 N, let ��b (n) = P1i=0 �i(ai(n))b�i�1be the generalized van der Corput sequences in base b where � = (�i)i�0being an in�nite sequence of permutations of the set f0; 1; : : : ; b�1g. Then,for each positive integer m, the Roth-Zaremba sequence is de�ned byZb;m = ( nbm ; ��b (n))0�n�bm�1:In the case of �i = I with I the identity permutations of the set f0; 1; : : : ; b�1g for all i � 0, we have the original Roth sequenceRb;m = ( nbm ; �b(n))0�n�bm�1.In the case of b = 2, and �i = (01) for i even, �i = I for i odd, we get theoriginal Zaremba sequence.Proposition 4.3 For the Roth-Zaremba sequence Zb;m, we have, for alli; j 2 f0; 1; : : : ; b� 1g, Ti;j(Zb;m) ' T0;0(Zb;m):For the original Roth sequence Rb;m,Ti;j(Rb;m) ' Rb;m�2:Proof . For 0 � n � bm � 1, write n = n0 + n1b + : : : + nm�1bm�1 withn0; n1; : : : ; nm�1 = 0; 1; : : : ; b� 1. We havenbm = n0bm + : : : + nm�1b and ��b (n) = �0(n0)b + : : :+ �m�1(nm�1)bm :11



Thus ( nbm ; ��b (n)) 2 Pi;j = [ ib ; i+1b ) � [ jb ; j+1b ) if and only if nm�1 = i and�0(n0) = j, andTi;j(Zb;m) = f(b( nbm � ib); b(��b (n)� jb ))g0�n�bm�1;nm�1=i;�0(n0)=j= f( n0bm�1 + : : :+ nm�2b ; �1(n1)b + : : :+ �m�1(nm�1)bm�1 )g0�n�bm�1nm�1=i;�0(n0)=j' f( n1bm�2 + : : :+ nm�2b ; �1(n1)b + : : :+ �m�2(nm�2)bm�2 )gn1;:::;nm�2=0;1;:::;b�1:In the case of the Roth sequence, �i = I andRb;m�2 = f( n1bm�2 + : : : + nm�2b ; n1b + : : :+ nm�2bm�2 )gn1;:::;nm�2=0;1;:::;b�1;therefore, the result follows. 2Applying Lemma 1.7, we can construct directly some \symmetrie" (0;m; 2)-nets in base 2.Proposition 4.4 Let Rm be a normalized (0;m; 2)-net in base 2, then wecan construct a \symmetrie" (0;m+2; 2)-net Rm+2 in base 2 in the followingmeaning: T0;0(Rm+2) ' T1;1(Rm+2) ' Rmand T0;1(Rm+2) ' T1;0(Rm+2) ' T 12m+1 (Rm):where T 12m+1 (x; y) = (fx+ 12m+1 g; fy + 12m+1 g) with f�g the fraction part ofa real.Example 4.5 Let R2 = F2 as in the following �gure.
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Then the �gure of the R4 symmetric (0; 4; 2)-net in base 2 is as follows.
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