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Abstract

Numerical simulations of unsteady flows past a flexible structure require the simultaneous solu-
tion of structural dynamics and of fluid dynamics on deformable dynamic meshes. We present
here an evaluation method of staggered partitioned procedures for time-integrating these focus
coupled problems. This method is based on an estimation of the energy that is numerically cre-
ated at the fluid/structure interface because of staggering. Simplifying assumptions make this
estimation easy for a wide family of mixed explicit/implicit or implicit/implicit, synchronous
or asynchronous procedures. Insights gained from this evaluation method are confirmed with
the analysis of numerical results for the flutter of a flat panel in supersonic airstreams in two
and three dimensions and for the transient aeroelastic response of an AGARD 445.6 wing in
the transonic regime.

CONSTRUCTION ET EVALUATION DE PROCEDURES DECALEES
POUR LA SIMULATION D’INTERACTIONS FLUIDE-STRUCTURE

Résumé

La simulation numérique d’écoulements intationnaires autour de structures souples nécessite la
résolution simultanée de problémes de dynamique des structures et de dynamique des fluides en
domaine déformable. Nous présentons ici une méthode d’évaluation d’algorithmes modulaires
décalés utilisés pour l'intégration en temps de ce type de probléme. Cette méthode repose
sur une estimation de lenergie créée numériquement a linterface fluide-structure a cause du
décalage. Des hypothéses simplificatrices permettent d’évaluer simplement cette energie pour
une grande famille d’algorithmes. Les prédictions obtenues par cette méthode ont été confirmées
par I'analyse des résultats de simulations aéroélastiques du flottement d’'un panneau soumis a
un écoulement supersonique en deux et trois dimensions, et de la réponse instationnaire d’une
aile AGARD 445.6 en régime transsonique.



1 Introduction

The numerical simulation of fluid/structure interaction phenomena arises in many aerospace
engineering applications such as airfoil oscillations, flutter predictions, fighter tail buffeting,
and a large class of other aeroelastic instability problems. Although closed-form solutions are
available for aeroelastic computations when flows are not in the transonic regime, computational
methods for complex nonlinear flows have been under development for almost twenty years [1].
These methods should be as efficient as possible (maximal time step for transient analysis).
However, they should also predict accurately systems instabilities (the numerical diffusion -
and then the time step - should be small), such that aircraft designer can rely on numerical
simulations. Partitioned procedures for the transient analysis of fluid /structure interaction have
become very popular and, more precisely, staggered procedures, for which Fluid Dynamics and
Structural Dynamics are time integrated separately and successively. This kind of strategy
allows modularity and computational efficiency through possible interfield parallelism |[2].

In the past years, physical accuracy of transient numerical simulations was achieved by
reducing the time step and as a side-effect the computational efficiency. The increase of machine
performances was a partial solution to this problem. At the same time, some progress has been
done towards the construction of accurate and efficient methods [3]. The role of energy and
momentum exchanges through the fluid /structure interface has been emphasized. For example,
the inconditional stability of some particular linear coupled system as well as true staggered
procedure for these systems has been established, when some energy conservation property was
assumed [4]. Furthermore, these ideas were translated to non-linear configurations, like the
inviscid flow past a flexible structure, to improve the accuracy and stability properties of some
partitioned procedures [5].

The aim of this paper is to construct a criterion for partitioned procedures giving an evalu-
ation of the energy that is artificially created at the interface because of staggering. In order to
make this evaluation easy, this energy is estimated under simplifying assumptions that might
be dropped in further developements. An evaluation parameter is proposed for a wide family
of staggered partitioned procedures (Section 2). These a priori estimations are then compared
with numerical results of aeroelastic simulations in two- and three-dimensional configurations
(Section 3).

2 Principles and description of the evaluation

In this section, we present the evaluation method for staggered partitioned procedures. These
methods have been introduced to perform in a simple way numerical simulations of coupled
problems. They computationally couple numerical methods for the interacting subsystems.
However, the stability and accuracy of simple coupling algorithms are very different from those
of numerical methods used in each decoupled field. In general, a much stronger condition on
the time step is required. This explains why such computations can be very expensive.

It has been shown that the loss in accuracy and stability is due to staggering, because the
forces and energies exchanged at the fluid/structure interface are not balanced |5]. Furthermore,
a gain in accuracy and stability can be obtained if the differences between exchanged energies is
controlled [5]. We propose here to construct an evaluation of the energy that is actually created
at the interface because of staggering. We first compare the accumulated energies exchanged
between the fluid and the structure for synchronous and asynchronous staggered procedures.
Thereafter, we discuss the relative merits of each family of procedures as predicted by the



energetic evaluation.

We first fix some notation. In the following, U denotes structural displacements and a
dotted symbol stands for the time-derivative of a quantity. We consider a generic point at
the fluid /structure interface, and the corresponding boundary element. We omit the length or
surface of this small element and the symbol P (for pressure) stands for a force as well (in the
case of a viscous flow, the fluid force is not limited to the pressure force). Finally, superscripts
are always related to the time, and the time step At is the structural time step.

2.1 Evaluation for a class of synchronous staggered schemes

We first consider the conventional serial staggered procedure (CSS) as introduced by Farhat
et al [6]. This procedure is synchronous, i.e. the fluid and the structure are computed at the
same times. In the following, we shall also consider the leap-frog type improved serial staggered
procedure (ISS) of [6], which is clearly asynchronous. To make the description a little shorter,
we now give the details of a generic staggered algorithm. For the staggered integration from ¢"
to "1 =" + At, the CSS prodecure reads

1. make a prediction X"*! for the structural displacement at time ¢"*!'. In many studies,
this prediction is completely outdated and reads X"*T! = U™. We consider the more
general prediction in function of parameters o and «q,

X" = U™ 4 qpAtU™ + ag At (U" - U’H) (1)

2. compute a new fluid grid at time #**! matching this predicted displacement, and advance
the fluid of At, possibly in a subcycled way (with as many fluid time steps as necessary).
For subcycling, we have limited our investigations to algorithms for which the mesh speed
is constant during a coupled time step. It is then given by w"t'/2 = (X! — X™)/At.
This is the case for all procedures considered in [6], in which this choice was actually
advocated.

3. compute a distribution of transferred fluid pressure forces Pg“ applied to the structure
(with the time-averaging or time scheme of your choice). This force can be seen as the
pressure force exerted by the fluid on the structure at time ¢"*1.

4. advance the structure of At with the previously computed force.

The prediction (1) is first-order accurate if ag = 1 and second-order accurate under the addi-
tional condition that «; = 1/2. The fluid time-integration of step 2. can be done with explicit
or implicit, first- or second-order accurate time schemes. In all cases, we can give an estimate
for the transferred energy through an element of the fluid/structure interface. This estimate
has the general form

ABy = — (Xt —IX) pp, (2)

where X denote successive displacements of the fluid grid boundary (coinciding with the pre-
diction of the structural displacements) and P} is the fluid pressure involved in the boundary
flux for the current time-step. This formula is exact in one-dimension. P can take one of the



following values:

pPp =PpP" (3a)
Pp = pntl (3b)
" pPn +Pn—|—1
P~ ———— (30)
I
Py~ Kt/tnp(t)dt (3d)

For example, for a first-order forward-Euler scheme, the energy flux through the fluid is com-
puted using fluid values at time ¢”. We then have AEp = —At hw"+1/2p, = (TX”‘Irl - TX") P,.
Then P} is given by (3a). For an implicit backward-Euler scheme, Pj is given by (3b). This
equation is only exact for true un-linearized implicit versions of the backward-Euler scheme.
For second-order time schemes, a good approximation of Pj is given by (3c). Finally, we have
considered the possibility of fluid subcycling. We assume the fluid grid is constant during all
fluid subcycles of a coupled time-step. When the fluid time-step is sufficiently small compared
to the structural time-step At, a second-order estimate of P} is given by (3d).

Finally, in step 4., we assume the structure is linear and discretized using a finite element
model yielding mass, damping and stiffness matrices My, Dy, and K (all three are symmetric
positive, M, and K, being definite positive). It is time-advanced using the implicit trapezoidal
rule, written in function of structural displacements U, velocities V' = U and accelerations
A=U, as

Untl = Un g APV

Vol = g ApATEAT (4)
- _ pn+l

M, A" 4 D, VUL K, Ut = P

One fundamental property of the preceding trapezoidal rule concerns the energy received by
the structure during one time step. We consider the structural energy

1 1
Eg = §TVMSV + §TUKSU, (5)

then the structural energy variation during a time step is

n +1
Eg+1 _ Eg — (Un+1 _ Un) PS + Pg

_ At.Tvn+1/2stn+1/2
where V12 = (V7 4 Y7+ /2. We can make a distinction between the energy lost by internal
damping (negative term —At. TV "t1/2D V" +1/2 ) and the energy transferred by the fluid

pr 4 prtl
AES — (TUTZ+1 _ TUn) S 5 S . (6)

Clearly, the exchanged energies (6) and (2) with P} given by (3) cannot compensate exactly
because the prediction (1) is not exact. Thus, energy is artificially created or dissipated at
the fluide/structure interface. This could pollute numerical results of flutter simulations for
example, and yield a poor accuracy in the determination of flutter limits.

In the sequel, we intend to give an evaluation of the artificial energy creation AEp + AFg in
the particular case where the structure is oscillating with a constant amplitude and pulsation



w. We also assume that the fluid pressure on the structure oscillates with the same pulsation.
For example, the two following coupled harmonic evolutions are possible :

{ U(t) = U cos(wt) { U(t) = U cos(wt) 7)
P(t) = P cos(wt + ¢) P(t)=MU(t) + DU(t) + KU(t)

In (7), the first set of equations represents a simple phase shift between the fluid and the
structure. In the second set of equations, aerodynamic loads on the structure have the effect of
added mass, damping and stiffness matrices (respectively denoted by M, D and K). Both sets
are equivalent if P cosyp = (K — w2M) U and Psinp = wDU. Let us define two parameters
k and d by

k=" (K -w*M)U =UPcosp, d="U(Dw)U ="UPsing. (8)

We assume systems are advanced in time using a constant time step At and successives values
for U™ and P" are then approximations of U(t") and P(t") with T™ = nAt. Let us introduce
the discretization parameter h = wAt. Because of staggering, exchanged energies through the
interface are not exactly opposite anymore. The error in energy exchanges depends on the global
coupling algorithm. For example, let us assume we use the prediction (1) with oy = a3 = 0
and an explicit forward-Euler scheme for the fluid with no subcycling, yielding a fluid energy
variation given by (2) and (3a). Then for each time step,

AEF - _ (TUn _ TUnfl) pn
= [kcos(wt™) — dsin(wt")] (cos(wt" ) — cos(wt™))

The preceding formula is summed up over N coupled periods T, = 27/w of oscillation. Using
the lemmas,
Yo, cos(wt™ + ¢) cos(wt™)  ~ % cos(c)
>, sin(wt™ + ¢) sin(wt™)  ~ LE cos(e) 9)
Yont, Sin(wt" + ¢) cos(wt™)  ~ LX sin(c)

the energy transferred to the fluid sums up to

Z AEp ~ N7 6B with 6Ep =
NT,

[k (cos(h) — 1) — dsin(h)] .

=)=

This term can be developped assuming h = wAt < 1 and takes the form

ho B3 h? A
6EF_—k(§—ﬂ>—d(l—E>+O(h ).

Similar elementary calculations can be done with the energy variation AEg of (6) for any
kind of scheme. For example, if we actually advance the structure before the fluid, i.e. with
Pg“ = P", then we find that the energy transferred by the fluid to the structure sums up to

) L. h? 4
> AEg~ N7 6By with 0Es = dsin(h) =d (1- ) +O(h").
NT.,

Thus, for this particular coupling algorithm, the total energy artificially created through the
fluide/structure interface sums up to

> (AEp+ AEs) ~ N7 6E  with 6E~—I<;g.

NT,



The parameter 0F = 0Er + éEg gives an evaluation of the accuracy of the coupling algorithm.
Depending on the sign of £ (and also the order of magnitude of k, which depends on the form
of aerodynamic loads on the structure), this parameter can help predicting the behaviour of the
scheme (artificial positive or negative damping) for small time steps (h = wAt < 1).

Let us emphasize the fact that evaluation parameters éFp and 6Eg can be computed sepa-
rately for different fluid and structural parts of the coupling algorithms. In the following, we
give the computed parameters for different schemes and discuss the merits of possible coupling
algorithms in light of the parameter 6F. In the sequel, we shall say that a coupling algorithm
is n'"-order energy-accurate if 8£ ~ C' h™ when h — 0 (and C is a constant).

2.2 Evaluation of 6F for different fluid time schemes

We now give the values of 0E for the general prediction (1) and different fluid time schemes,
including those considered above and yielding fluid energy variation (2) with Pj given by (3).
These values are given by

B 0E] =k [(0— 30+ (5~ 5+

+d _—1 + (é - % + al)hQ} +O(h*) (10a)
R e R e

+d :—1 + (g - % + al)iﬂ] + O(h*) (10b)
EelE] =k (oo - i+ (- 2004 2009

+d _—1 + (g —ap+ al)hQ} +O(h*) (10c)
B ED] =k [0 —Dh+ (- T 2t

+d = + (% — ap + al)iﬂ] +O(h*) (10d)

2.3 Evaluation of 0Fs for different transferred forces Pg“

We now give evaluations of the coefficient 6Es deriving from (6) and corresponding to different
choices for the input forces Pg“ in the trapezoidal rule (4). We consider the four following
choices:

pitt=pr (11a)
pitt = prtl (11b)
P Pn+1
prtt = % (11c)
1 tn+1
pitl = x tnP(t)dt (11d)



For each choice of the form P*, we can compute a different input pressure force by determining

P+ pytt

the transferred force Pg“ verifying = P*. This kind of algorithm gives an exact

control of the momentum transferred by the fluid to the structure and partial control for the
energy through (6). These additional choices correspond to

Pyt =2 p" - P (12a)
pitt =2 prtl _ pg (12b)
Pg-i—l — Pn+1 (120)

2 tn+1
pPitl = —/ P(t)dt — P (124d)

The reader can notice that choices (11b) and (12c¢) are strictly equivalent. We give developments
of the parameter 6Es in function of h for these eight (actually seven) force inputs. Tedious
calculations yield

6Es[(11a)] = k —g + %3} +d [1 — Zgﬁ] + O(h%) (13a)
8Es [(110/12¢)] = d |1 — %2] +O(h*) (13b)
6Bs[(1lc)] = k —% + %3 +d :1 — %] + O(h%) (13c)
Es[(11d)] = k _—g + %3 +d _1 - %2} +O(h*) (13d)
6Bs[(12a)] = k _—g + g +d _1 - %2} + O(h*) (13e)
0Es [(120)] = k g — Z—z] +d {1 — %2] + O(h%) (13f)
Es[(12d)] = d|1— %] + O(h*) (13g)

2.4 Discussion on ¢F for synchronous partitioned procedures

We first consider algorithms with oy = 0 and a; = 0 in the structural prediction (1). In that
case, the prediction is only consistant. This kind of algorithm is first-order energy-accurate for
all pair of schemes, excepted for the first-order explicit not-subcycled fluid scheme giving (3a)
coupled with (12c). In that case, the error is almost zero since AEp(t"~1 — ") = ~AEg(t" —
t"t1). But this scheme is obviously not general.

We now consider first order predictions (1) with oy = 1 and «; = 0. Several algorithms
in this class are second-order energy-accurate. Generally, the smallest error is obtained when
exact exchange of momentum through the fluid/structure interface is achieved , i.e. when the
force term in (12) corresponding to the fluid scheme is chosen. We get

_ h?
B [(1)2Z] — (3i) — (12d) :—d7+0(h3), i=1,...,4. (14)

However, the optimal scheme seems to be given by (3c) and 12d) for which the energy error is
slightly smaller (6E = —d 5h%/12 + O(h?)).



Finally, the second order prediction (1) with ap = 1 and «; = 1/2 yields a third-order energy-
accurate algorithm if and only if exact exchange of momentum through the fluid/structure
interface is achieved. We get

ar=1/2 5h3

6E |(1) — (31) — (124) k—+0(h4) i=1,...,4. (15)

ap=1

For the second-order prediction, the energy artificially created because of staggering is opti-
mally reduced when the forces exchanged between the fluid and the structure at their interface
are exactly opposed, and conservation of momentum is achieved. This happens when P and
P! respectively involved in (2) and (6) verify

pr 4+ patt

Pt =
E 2

(16)

2.5 Evaluation for an asynchronous partitioned procedure

Farhat et al. [6] have advocated the use of the ISS asynchronous procedure. It is built as a
leap-frog scheme (fluid values are computed at times t"t1/2 and structural states at times t").
The algorithm reads

1. compute the prediction X"*+1/2 = Un + &¢ U™ (structural displacement at time #"+1/2)

2. compute a new fluid grid at time gntl/2 matching this predicted displacement, and advance
the fluid of At, possibly in a subcycled way.

3. compute a transferred fluid pressure distribution Pg“ applied to the structure.
4. advance the structure of At with the trapezoidal rule (4).

This procedure satisfies the Geometric Conservation Law (GCL) [7] without violating the in-
terface continuity condition on velocities. This property is due to the trapezoidal rule, since
W' = (X2 X U2) AL = (UM —U" 1) /At4+ (U —U""1)/2 = U". The energy transferred
to the fluid can again be written as AEp = — (TX"“/2 — TX"_I/Q) Py, where

pPr=P (17)

and P takes one of the following values

p=pr1/2 (18a)
P = prti/2 (18b)
_ Pn71/2 pntl/2
P~ (18c)
tn+1/2
P~ — - 1/2 (18d)

corresponding respectively to a forward-Euler, a backward-Euler, a second-order implicit and a



highly-subcycled fluid scheme. For these choices, the parameter 6FF is then given by

SEp [(17/18a)] = k g - Z—;] +d {—1 + % +O(h?) (19a)

SEp [(17/18D)] = k _—g - If—;} +d [—1 + Z—i] + O(h%) (19b)
E h?

SEp((17/18¢)] = k —ﬂ] +d {—1 + ﬂ] +O(h?) (19¢)
E h?

SEp[(17/18d)] = k —ﬂ] +d {—1 - ﬂ] + O(h%) (19d)

Reciprocally, for each possibility for P in (18), the input force Pg“ for the trapezoidal rule
(4) can be chosen according to one of the two following choices

pitt = p (20)
pitt = 2p-pY (21)

We now give the corresponding parameter 6FE¢ for all these pressure choices. They read

8Es[(20/18a)] = k ——% + 1223} +d [1 - %] +0(h%) (22a)
&Fs[(20/18D)] = k _—g + %] +d {1 - 72—22] +0(h%) (22b)
8B [(20/18¢)] = k ——h+ %’ﬂ +d {1 - 1222] +O(h*) (22c)
6B [(20/18d)] = k :—h - %] +d {1 - 1;22} +O(n*) (22d)
SEs [(21/180)] = k| —h+ g] +d {1 _ 1222] + oY (232)
6B [(21/18b)] = d . Z—i] + O(h%) (23b)
6B [(21/18¢)] = k _—g + i—’?] +d {1 - 72—’12} O(h%) (23c)
0B [(21/18d)] = k —g + f—;] +d {1 - %] + O(h%) (23d)

Amongst all possible combinations, very few give second- or third-order energy accuracy. A
second-order energy-accurate algorithm is obtained for the fluid force (17/18a) with one of
the input forces (20/18b), or (21/18c), or (21/18d); another possibility is the joint use of
a highly subcycled fluid yielding (17/18d) and the input force (21/18b). In that last case,
6E = —d h%/12 + O(h3). The only third-order energy-accurate combination is defined by
(17/18c) and (21/18b); it does not allow subcycling at all.

2.6 General comparison of partitioned procedures

The class of synchronous staggered schemes of section 2.1 seem to be very accurate when a
second-order prediction for the structural displacements is used (agp = 1 and a3 = 1/2 in



(1)). The fundamental result of the evaluation of these methods is that, for any fluid time
scheme, there is a way to achieve high energy accuracy. More precisely, provided the forces
exchanged between the fluid and the structure at their interface are exactly opposed (16), the
coupling algorithm is at least third-order energy-accurate. This is valid for any time scheme
(explicit /implicit, first- or second-order time-accurate, subcycled or not).

On the contrary, the proposed asynchronous staggered method described in section 2.5 can
lead to a third-order energy error, but for some particular scheme combination. It is also difficult
to find a general principle as above, explaining why some scheme combinations should yield less
artificial energy production. However, this asynchronous procedure conserves velocity continuity
at the interface, a property that was not taken into account by the evaluation introduced in
this paper.

In the sequel, we discuss on two- and three-dimensional results the validity of the above
evaluations. We compare, for most energy-accurate coupling schemes, the actual behaviour of
coupling algorithms with the behaviour predicted using our evaluation method.

3 Numerical Results

3.1 Supersonic panel flutter (two-dimensional)

We counsider the aeroelastic response of a flat panel with infinite aspect ratio in a supersonic
airstream |8, 2|. The physical problem is only two-dimensional. The panel (Fig. 1) has one side
exposed to an airstream and the other side to still air. The panel considered here has a length
L = 0.5 m, a uniform thickness h = 1.35 1073 m, a Young modulus E = 7.728 10'° N/m?, a
Poisson ratio v = 0.33 and a density pg = 2710 Kg/m3. It is clamped at both ends (z = 0 and
x = L). The pressure of the still air under the panel is Py, (fluid pressure at infinity).

The fluid is inviscid. The boundary condition at the fluid/structure interface is a slip
condition, while at infinity, the fluid is assumed constant (pressure P,, = 25714 Pa, density
poo = 0.4 Kg m 3, user-set Mach number M,,). The simplified analytical study on the linear
instability of the panel [8] is based upon the shallow shell theory and a first-order approximation
of the aerodynamic theory where the influence of three-dimensional aerodynamic effects is ne-
glected (this approximation is valid for M,, > 1.6). When the structural vertical displacement
U is small, the fluid pressure forces on the panel can be approximated as a function of U and
its derivatives. The global aeroelastic equation then reads

h82U N En*/120'U B NS TES ou Poolioo (M2 —2) ou
PS5 1—v2 9zt M2 —1 Ox (M2, — 1)3/2 ot

(24)

where 4o, denotes the gas velocity at infinity. The boundary conditions for U at clamped ends
write U(0) = U(L) = %—g(()) = %—g(L) = 0. Frequencies for coupled modes are computed, and
the limit Mach number where an unstable coupled mode appear can be estimated with a method
of resolution from Houbolt |9]. For the present data, an instability appears at My, = 2.27 with
a pulsation w = 462rad/s.

Aerodynamic loads can be rewritten as added mass, damping and stiffness matrices M, D
and K in the formalism of (7). They are given by

solloo (M2 — 2 ot 9
M=0, D=-Px" ( 0032)1, Ko __Pxlsc 9
(M2, —1)% M2 —1 oz




Fixed wall
Still uniform air (P=P,,)

Clamped flat panel
with infinite aspect ratio

Figure 1: The flat panel with infinite aspect ratio.

We now assume the panel is not far from flutter. It oscillates with the pulsation w = 462rad/s
as in (7) and U is the flutter mode. Parameters k and d of (8) can be reduced to

PoottZ, L ou
\/ MOQO -1 =0 0'1:

2 L
d= Ll / U? da.
x=0

JME —1

Note that k should equal zero since both panel ends are clamped. However, discretization errors
and approximations in the aerodynamic theory make it only small.

For these computations a two-dimensional finite-volume method is used to solve the ALE-
formulated inviscid Euler equations on a unstructured triangular grid with 1654 vertices and
2936 triangles. The convective fluxes are resolved by a MUSCL [10] second-order accurate Rie-
mann solver on unstructured meshes [11, 12|, for which an adapted version for ALE formulations
was derived [13] . An explicit second-order Runge-Kutta scheme is used. Stability limitations
lead to massive subcycling of the fluid. The structural operators are simply discretized using
finite-differences with 299 vertices. The Mach number at infinity has been set to M., = 2.23,
which seems to be the flutter limit obtained for a reference run with the space discretizations

k= U dx,

(25)

used.

We consider the class of synchronous staggered schemes of Section 2.1. Heavy subcycling
in the fluid and improved pressure forces (12d) transferred to the structure are used. The
reference computation with no subcycling and At = 1.23us is compared with computations
with At = 200us (which makes At = T,/70 and h =~ 0.09; the fluid is subcycled ng/p = 161

10



times). We have chosen oy = 1 in (1) and different values for a;. We observe oscillations of the
panel. To make the comparison simpler, we consider the scalar  defined by

x = psh ULU,

where U is the panel displacement field and U; is the displacement field corresponding to the
second structural eigenmode. The second modal coordinate « is shown on Figure 2 for these
computations. The resulting curves give many qualitative and quantitative informations. First,
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time t(s)

Figure 2: @ computed with heavy subcycling (ng/r = 161).

the qualitative (damped, stable, or undamped) behaviour of the panel differs from a run to
another! The reference curve (and the almost coinciding curve obtained for a; = 1/2) predicts
the panel is exactly at flutter. Curves with oy = —1/2 and «; = 1 respectively predict that we
are beyond and under the flutter limit.

Quantitatively, these curves confirm what could be deduced from (10d) and (13g). For a
highly subcycled fluid and transferred pressure forces computed using (12d), the parameter 6F
corresponding to the energy artificially produced by staggering is estimated by

1 3 2
OF = <a1 - 5) d h®+ B <041 - §> k b+ O(h4), (26)

(since ap = 1). We can notice that the curve with «; = 1/2 is matching the reference curve.
Also, the deviation from the fixed amplitude oscillations seems to depend linearly on a; — 1/2.
Finally, schemes with «; > 1/2 give artificially damped oscillations, because d in (25) is clearly
negative. Reciprocally, schemes with oy < 1/2 give artificially undamped oscillations.

We have also tested the asynchronous procedure defined by (17/18d) and (21/18b). The
result is almost coinciding with the result of the method above with ay = 1/4 (error ¢E ~

11



—dh%/4). However, our analysis predicts something smaller (error 6E ~ —dh?/12). This is
probably due to the use of the value P"*1/2 instead of a time integral (fluid high-frequencies
are not filtered).

For ay = 1/2 and At = 200us, we have made an additional run with the transferred
pressures (11d) instead of (12d). Values for the parameter x obtained with each choice of
pressures are shown in Figure 3. The advantage of forces computed using the fromula (12d)

10000 , , , g g '
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6000
4000

2000 |- A L 7 O e | Y e —

200L M AN WAy -

; ; ; | Corrected
-4000 L ? ? 1 ? | I . : GR,efefen,C

-6000

-8000

i i i i .
0 0.02 0.04 0.06 . 0.08 0.1 0.12
time t(s)

Figure 3: & computed with different transferred pressures.

instead of (11d) is clearly demonstrated. For this subcycling of ng /r = 161, the error in force
exchange at the interface produces negative artificial damping and phase shift. According to
(10d) and (13d), the parameter ¢F for this algorithm is estimated by

1 1
éE:—ikh—Zdﬁ+om%. (27)

This estimate is to be compared to éE ~ (5/12)k h? given by (26), which is roughly 150 times
bigger!

Finally, we have tested massive fluid subcycling to reach the stability and accuracy limits
of the coupling algorithm. We use the value ay = 1/2. Values for « obtained for At = 200us
(At = T,/70, h = 0.09, ng/p = 161), At = 400us (At = T,,/35, h ~ 0.18, ng/p = 322) and
At = 600ps (At =1T,,/23, h ~0.28, ng/p = 482) are shown in Figure 4. The algorithm is quite
robust, since the curve with At =T,,/35 (ng/p = 322) also coincides with the reference curve.
However, the last computed solution is a little undamped (nS/F = 482). We reach the limits of
the proposed analysis, since h ~ 0.28 is not really small. Altogether, the stability and accuracy
limit of At =T,,/35 is quite reasonable for staggered partitioned procedures.
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Figure 4: « computed with massive subcycling.

3.2 Supersonic panel flutter (three-dimensional)

In this section, we compare numerical results to qualitative predictions for the three-dimensional
simulations of the supersonic flutter of a flat panel with infinite aspect ratio. The case is nearly
the same as in the previous section and is detailed in [14]. The panel is now two-dimensional as
shown on Figure 5. The panel is still clamped at both ends. The depth of the panel is fixed to

flow

Figure 5: Initial perturbation of the two-dimensional flat panel.

Lo = 0.1. The finite element structural model contains 100 triangular shell elements, 102 nodes,
and 612 degrees of freedom. The flow domain above this panel is discretized into 20250 vertices

13



and 94080 unstructured tetrahedra. A slip condition is still imposed at the fluid/structure
boundary. An implicit fluid solver is used in the sequel. The aeroelastic response of the coupled
system is triggered by a displacement perturbation of the panel along its first bending mode
(see Figure 5). However, we consider a time step equal to At = 100us, which gives a accurate
sample for the three fundamental modes of the panel (At ~ T3/60).

In a first series of runs, the Courant number is set to 10 in the implicit fluid code, and several
partitioned procedures are applied to compute the transient aeroelastic response of the panel.
The time step used induces no subcycling and a additional reference computation is performed
using At = 10us. The obtained lift histories are depicted in Figure 6 for the first 0.1 physical
seconds.

Lift history CFL=10 dt=1e-4

15 T T T T T T T T T
Reference
l ,,,,,
2 ,,,,,
3 - 1
4 ,,,,,
1 - —

-1 | | | | | | | | ’I

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (s)

Figure 6: Lift histories for several procedures.

The most unstable curve (label 1) was obtained with the Conventional Parallel Staggered
procedure (CPS, see [6]) : it is defined a synchronous procedure with ay = a3 = 0 and
exchanged forces are given by (3b) and (11b), respectively because the fluid time scheme is
a first-order backward-Euler and because the structure could be integrated at the same time.
For this algorithm, the energy parameter given by our evaluation is 6 = —2 kh. It should
be compared with the Conventional Serial Staggered procedure (CSS) of [6], corresponding to
the synchronous procedure with ap = a; = 0 and pressures forces (11a) on the structure (the
structure is advanced after the fluid time step is completed). For the CSS procedure (label 2),
we have F = —1.5 kh, which is in a relatively good agreement with the form of both curves in
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Figure 6. We have also tested (label 3) the Improved Serial Staggered procedure (ISS) of [6],
corresponding to the asynchronous method (17/18b) with force exchanges (21/18b). And finally,
we had a run (label 4) with the synchronous procedure with the first-order prediction (g = 1,
ay = 0) and forces exchanges (3b) and (11b). Both curves coincide on Figure 6. For both, our
analysis predicts 0F = —0.5 kh. The comparison of several partitioned procedures reveals that
our evaluations are qualitatively and quantitatively in good agreement with numerical results.

In a second series of runs, we investigate the effects of subcycling. This analysis is performed

on the ISS procedure. The evaluation parameter ¢F for (17) and exchange forces (21/18b) can
be estimated for any subcycling factor ng/p = N. We found 0F =

—ﬁ kh. This dependence
on ng/p is verified on numerical results for varying subcycling factors. In Figure 7, the curve

with ng/p =5 is almost coinciding with the reference curve.

Lift history dt=1e-4 - ISS and varying subcycling
04 T T T T T T T T T
Reference —
. Async. n=1 ----
£ Async. n=2 ----- i
03 p Al Async. n=5 -
02 “ -
i 1
[ "\\\\ / N
0.1 - AN S 20
N I3 \\
0.1+ , /! -
02 | .
0.3 .
_04 | | | | | | | | |
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Time (s)

Figure 7: Dependence on the subcycling factor ng,p.

Finally, we conduct a last series of run to compare the dependences on the coupled time
step At and on the subcycling factor ng,r. We have chosen the ISS procedure described above.
The computed lift histories corresponding to At = 100us and At = 300us (labels 2 and 3
respectively) with no subcycling, and to At = 300us with ng/p = 3 (label 4) are plotted in
Figure 8. The comparison of curves (2) and (3) shows the amplification of oscillations as h
was increased. But the linear dependence on h of the created energy does not appear clearly
on the results. If the transmitted energy depends linearly on h, then the lift, pressure and
displacements should vary like v/h. However, the reference run itself is a bit far from the
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Figure 8: Dependence on At and ng/p.

harmonic oscillation that is assumed in our evaluation. On the other hand, curves (2) and
(4) are almost coinciding, and this was actually predicted by the evaluation (from (2) to (4),
h — 3h and ng/p — 3ng/F)-

In conclusion, we have given an new interpretation to previously published numerical results
on panel flutter simulations. The evaluation method we have proposed is in good agreement
with numerical lift histories for several transient procedures. However, these procedures are
only first-order energy-accurate and additional simulations should be performed to validate the
proposed evaluation method.

3.3 Flutter analysis of the AGARD Wing 445.6

We finish this report with the analysis of numerical results obtained with some transient pro-
cedures for the flutter analysis of the AGARD Wing 445.6. This wing is fully described and
referenced in [6]. The structure is discretized using a undamped finite element model with 800
triangular composite shell elements and 2646 degrees of freedom. It yields natural mode shapes
(and frequencies) that are similar to those derived exprimentally. However, the flutter analysis
is conducted using the true finite element representation of the wing. Numerical results pre-
sented here were obtained on a unstructured tetrahedral fluid mesh with 22014 vertices. Even
though it is coarse, this CFD mesh has proved to be adequate for aeroelastic analysis. A partial
view of this mesh is shown in Figure 9. The freestream conditions are set to My, = 0.901,
poo = 1.117 1077 slugs/in®, and po, = 10 slugs/(sec? x in). Fluid time-integration is carried
out by a second-order implicit backward difference scheme whose implementation satisfies the
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Figure 9: Partial view of the CFD mesh.

geometric conservation laws [15]. The fluid time-step has been set to Atp = 0.5ms.

The finite element structural model is perturbed along its first bending mode, a steady state
solution is computed around the deformed configuration of the wing and finally the aeroelastic
response is computed using some staggered partitioned procedure.

This case is the most difficult one. The flow is absolutely three-dimensional and is not smooth
because of the transonic regime considered. Structural and fluid schemes are not conforming at
the fluid/structure interface, and structural large displacements with possible rotations occur.
Thus, we guess our evaluation method should give limited insights on the partitioned procedures.
We also point out the fact that, in this case, the wing is far away from flutter, and the system
is naturally damped. Thus, our method based on harmonic oscillations could give inaccurate
predictions.

Since a second-order implicit backward difference scheme is used for the fluid, the ISS
procedure has an increased accuracy (with no or light subcycling). Actually, our evaluation
leads to = 6E = 1/16 dh?, which means that an order of accuracy in energy exchanges has
been gained. We perform two series of runs to compare the ISS procedure to the less accurate
CSS and CPS procedures (which are basically first-order).

Convergence of the lift history for the CSS procedure is plotted in Figure 10. In these
computations, the default time-step is At = 1ms (which yields two fluid subcycles per iteration).
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Figure 10: Comparison of lift histories with ISS and CSS.

The CSS method yields an undamped result for this time step, but converges to a correct result
for At = 0.2ms (the curve coincides with the ISS curve). These curves confirm the difference in
order of energy accuracy between CSS and ISS. This difference can actually be converted into
a gain in numerical stability and computational efficiency.

Similar results are shown in Figure 11 for the even less accuracte CPS procedure. The
difference in order of energy accuracy between CSS and ISS is clearly verified. However, in the
long run, the CPS seems to be much more unstable and inaccurate than predicted. This could be
a consequence of the simplifying assumptions of the evaluation method, that could be not valid
in this particular case with a non-smooth flow (transonic regime) and real three-dimensional
effects (for both the flow and the discretizations).

4 Conclusion

In this report, we have proposed a new evaluation method for time schemes in partitioned
procedures for fluid/structure interactions. This method yields a measure of the default of
energy conservation through the fluid/structure interface. This measure is both qualitative
(different orders of accuracy in energy conservation can be reached) and quantitative (coupling
schemes with the same order of accuracy can be more precisely compared).

This method was validated on numerical results for aeroelastic responses of structures in both
two- and three-dimensional configurations. The damped or undamped response of the structure,
which results from numerical errors, has been reinterpreted in terms of energy accuracy and
was accurately predicted by our evaluation technique.

However, this technique has strong limitations, since it is based on rather simple assump-
tions. We intend to investigate in our future works the possibility of extending the validity of
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Figure 11: Comparison of lift histories with ISS and CPS.

this technique in some promising directions like non-matching interface discretizations, other
non-conservative formulations. At the same time, this technique will help us to build new accu-
rate and efficient coupling algorithms, since accuracy in boundary energy exchanges often goes
on a par with extended global accuracy and stability domains for the partitioned procedure.
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