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➁ CAS, University of Colorado at Boulder, 80305 CO, USA.AbstractNumerical simulations of unsteady �ows past a �exible structure require the simultaneous solu-tion of structural dynamics and of �uid dynamics on deformable dynamic meshes. We presenthere an evaluation method of staggered partitioned procedures for time-integrating these focuscoupled problems. This method is based on an estimation of the energy that is numerically cre-ated at the �uid/structure interface because of staggering. Simplifying assumptions make thisestimation easy for a wide family of mixed explicit/implicit or implicit/implicit, synchronousor asynchronous procedures. Insights gained from this evaluation method are con�rmed withthe analysis of numerical results for the �utter of a �at panel in supersonic airstreams in twoand three dimensions and for the transient aeroelastic response of an AGARD 445.6 wing inthe transonic regime.CONSTRUCTION ET EVALUATION DE PROCÉDURES DÉCALÉESPOUR LA SIMULATION D'INTERACTIONS FLUIDE-STRUCTURERésuméLa simulation numérique d'écoulements intationnaires autour de structures souples nécessite larésolution simultanée de problèmes de dynamique des structures et de dynamique des �uides endomaine déformable. Nous présentons ici une méthode d'évaluation d'algorithmes modulairesdécalés utilisés pour l'intégration en temps de ce type de problème. Cette méthode reposesur une estimation de l'energie créée numériquement à l'interface �uide-structure à cause dudécalage. Des hypothèses simpli�catrices permettent d'évaluer simplement cette energie pourune grande famille d'algorithmes. Les prédictions obtenues par cette méthode ont été con�rméespar l'analyse des résultats de simulations aéroélastiques du �ottement d'un panneau soumis àun écoulement supersonique en deux et trois dimensions, et de la réponse instationnaire d'uneaile AGARD 445.6 en régime transsonique.



1 IntroductionThe numerical simulation of �uid/structure interaction phenomena arises in many aerospaceengineering applications such as airfoil oscillations, �utter predictions, �ghter tail bu�eting,and a large class of other aeroelastic instability problems. Although closed-form solutions areavailable for aeroelastic computations when �ows are not in the transonic regime, computationalmethods for complex nonlinear �ows have been under development for almost twenty years [1].These methods should be as e�cient as possible (maximal time step for transient analysis).However, they should also predict accurately systems instabilities (the numerical di�usion -and then the time step - should be small), such that aircraft designer can rely on numericalsimulations. Partitioned procedures for the transient analysis of �uid/structure interaction havebecome very popular and, more precisely, staggered procedures, for which Fluid Dynamics andStructural Dynamics are time integrated separately and successively. This kind of strategyallows modularity and computational e�ciency through possible inter�eld parallelism [2].In the past years, physical accuracy of transient numerical simulations was achieved byreducing the time step and as a side-e�ect the computational e�ciency. The increase of machineperformances was a partial solution to this problem. At the same time, some progress has beendone towards the construction of accurate and e�cient methods [3]. The role of energy andmomentum exchanges through the �uid/structure interface has been emphasized. For example,the inconditional stability of some particular linear coupled system as well as true staggeredprocedure for these systems has been established, when some energy conservation property wasassumed [4]. Furthermore, these ideas were translated to non-linear con�gurations, like theinviscid �ow past a �exible structure, to improve the accuracy and stability properties of somepartitioned procedures [5].The aim of this paper is to construct a criterion for partitioned procedures giving an evalu-ation of the energy that is arti�cially created at the interface because of staggering. In order tomake this evaluation easy, this energy is estimated under simplifying assumptions that mightbe dropped in further developements. An evaluation parameter is proposed for a wide familyof staggered partitioned procedures (Section 2). These a priori estimations are then comparedwith numerical results of aeroelastic simulations in two- and three-dimensional con�gurations(Section 3).2 Principles and description of the evaluationIn this section, we present the evaluation method for staggered partitioned procedures. Thesemethods have been introduced to perform in a simple way numerical simulations of coupledproblems. They computationally couple numerical methods for the interacting subsystems.However, the stability and accuracy of simple coupling algorithms are very di�erent from thoseof numerical methods used in each decoupled �eld. In general, a much stronger condition onthe time step is required. This explains why such computations can be very expensive.It has been shown that the loss in accuracy and stability is due to staggering, because theforces and energies exchanged at the �uid/structure interface are not balanced [5]. Furthermore,a gain in accuracy and stability can be obtained if the di�erences between exchanged energies iscontrolled [5]. We propose here to construct an evaluation of the energy that is actually createdat the interface because of staggering. We �rst compare the accumulated energies exchangedbetween the �uid and the structure for synchronous and asynchronous staggered procedures.Thereafter, we discuss the relative merits of each family of procedures as predicted by the1



energetic evaluation.We �rst �x some notation. In the following, U denotes structural displacements and adotted symbol stands for the time-derivative of a quantity. We consider a generic point atthe �uid/structure interface, and the corresponding boundary element. We omit the length orsurface of this small element and the symbol P (for pressure) stands for a force as well (in thecase of a viscous �ow, the �uid force is not limited to the pressure force). Finally, superscriptsare always related to the time, and the time step �t is the structural time step.2.1 Evaluation for a class of synchronous staggered schemesWe �rst consider the conventional serial staggered procedure (CSS) as introduced by Farhatet al [6]. This procedure is synchronous, i.e. the �uid and the structure are computed at thesame times. In the following, we shall also consider the leap-frog type improved serial staggeredprocedure (ISS) of [6], which is clearly asynchronous. To make the description a little shorter,we now give the details of a generic staggered algorithm. For the staggered integration from tnto tn+1 = tn +�t, the CSS prodecure reads1. make a prediction Xn+1 for the structural displacement at time tn+1. In many studies,this prediction is completely outdated and reads Xn+1 = Un. We consider the moregeneral prediction in function of parameters �0 and �1,Xn+1 = Un + �0�t _Un + �1�t� _Un � _Un�1� (1)2. compute a new �uid grid at time tn+1 matching this predicted displacement, and advancethe �uid of �t, possibly in a subcycled way (with as many �uid time steps as necessary).For subcycling, we have limited our investigations to algorithms for which the mesh speedis constant during a coupled time step. It is then given by wn+1=2 = (Xn+1 �Xn)=�t.This is the case for all procedures considered in [6], in which this choice was actuallyadvocated.3. compute a distribution of transferred �uid pressure forces P n+1S applied to the structure(with the time-averaging or time scheme of your choice). This force can be seen as thepressure force exerted by the �uid on the structure at time tn+1.4. advance the structure of �t with the previously computed force.The prediction (1) is �rst-order accurate if �0 = 1 and second-order accurate under the addi-tional condition that �1 = 1=2. The �uid time-integration of step 2. can be done with explicitor implicit, �rst- or second-order accurate time schemes. In all cases, we can give an estimatefor the transferred energy through an element of the �uid/structure interface. This estimatehas the general form �EF = � �TXn+1 � TXn�P nF ; (2)where X denote successive displacements of the �uid grid boundary (coinciding with the pre-diction of the structural displacements) and P nF is the �uid pressure involved in the boundary�ux for the current time-step. This formula is exact in one-dimension. P nF can take one of the
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following values: P nF = P n (3a)P nF = P n+1 (3b)P nF � P n + P n+12 (3c)P nF � 1�tZ tn+1tnP (t)dt (3d)For example, for a �rst-order forward-Euler scheme, the energy �ux through the �uid is com-puted using �uid values at time tn. We then have �EF = ��t Twn+1=2Pn = �TXn+1 � TXn�Pn.Then P nF is given by (3a). For an implicit backward-Euler scheme, P nF is given by (3b). Thisequation is only exact for true un-linearized implicit versions of the backward-Euler scheme.For second-order time schemes, a good approximation of P nF is given by (3c). Finally, we haveconsidered the possibility of �uid subcycling. We assume the �uid grid is constant during all�uid subcycles of a coupled time-step. When the �uid time-step is su�ciently small comparedto the structural time-step �t, a second-order estimate of P nF is given by (3d).Finally, in step 4., we assume the structure is linear and discretized using a �nite elementmodel yielding mass, damping and sti�ness matrices Ms, Ds, and Ks (all three are symmetricpositive, Ms and Ks being de�nite positive). It is time-advanced using the implicit trapezoidalrule, written in function of structural displacements U , velocities V = _U and accelerationsA = �U , as 8><>: Un+1 = Un +�tV n+V n+12V n+1 = V n +�tAn+An+12Ms An+1 +Ds V n+1 +Ks Un+1 = P n+1S (4)One fundamental property of the preceding trapezoidal rule concerns the energy received bythe structure during one time step. We consider the structural energyES = 12TVMsV + 12TUKsU; (5)then the structural energy variation during a time step isEn+1S �EnS = �Un+1 � Un� P nS + P n+1S2 ��t:TV n+1=2DsV n+1=2;where V n+1=2 = (V n+V n+1)=2. We can make a distinction between the energy lost by internaldamping (negative term ��t:TV n+1=2DsV n+1=2 ) and the energy transferred by the �uid�ES = �TUn+1 � TUn� P nS + P n+1S2 : (6)Clearly, the exchanged energies (6) and (2) with P nF given by (3) cannot compensate exactlybecause the prediction (1) is not exact. Thus, energy is arti�cially created or dissipated atthe �uide/structure interface. This could pollute numerical results of �utter simulations forexample, and yield a poor accuracy in the determination of �utter limits.In the sequel, we intend to give an evaluation of the arti�cial energy creation �EF +�ES inthe particular case where the structure is oscillating with a constant amplitude and pulsation3



!. We also assume that the �uid pressure on the structure oscillates with the same pulsation.For example, the two following coupled harmonic evolutions are possible :� U(t) = U cos(!t)P (t) = P cos(!t+ ') � U(t) = U cos(!t)P (t) = M �U(t) +D _U(t) +KU(t) (7)In (7), the �rst set of equations represents a simple phase shift between the �uid and thestructure. In the second set of equations, aerodynamic loads on the structure have the e�ect ofadded mass, damping and sti�ness matrices (respectively denoted by M , D and K). Both setsare equivalent if P cos' � �K � !2M�U and P sin' � !DU . Let us de�ne two parametersk and d by k = TU �K � !2M�U � TUP cos'; d = TU (D!)U � TUP sin': (8)We assume systems are advanced in time using a constant time step �t and successives valuesfor Un and P n are then approximations of U(tn) and P (tn) with T n = n�t. Let us introducethe discretization parameter h = !�t. Because of staggering, exchanged energies through theinterface are not exactly opposite anymore. The error in energy exchanges depends on the globalcoupling algorithm. For example, let us assume we use the prediction (1) with �0 = �1 = 0and an explicit forward-Euler scheme for the �uid with no subcycling, yielding a �uid energyvariation given by (2) and (3a). Then for each time step,�EF = � �TUn � TUn�1�P n= [k cos(!tn)� d sin(!tn)] �cos(!tn�1)� cos(!tn)�The preceding formula is summed up over N coupled periods T! = 2�=! of oscillation. Usingthe lemmas, 8<: PNT! cos(!tn + c) cos(!tn) � N�h cos(c)PNT! sin(!tn + c) sin(!tn) � N�h cos(c)PNT! sin(!tn + c) cos(!tn) � N�h sin(c) ; (9)the energy transferred to the �uid sums up toXNT! �EF � N� �EF with �EF = 1h [k (cos(h) � 1)� d sin(h)] :This term can be developped assuming h � !�t� 1 and takes the form�EF = �k�h2 � h324�� d�1� h26 �+O(h4):Similar elementary calculations can be done with the energy variation �ES of (6) for anykind of scheme. For example, if we actually advance the structure before the �uid, i.e. withP n+1S = P n, then we �nd that the energy transferred by the �uid to the structure sums up toXNT! �ES � N� �ES with �ES = 1hd sin(h) = d�1� h26 �+O(h4):Thus, for this particular coupling algorithm, the total energy arti�cially created through the�uide/structure interface sums up toXNT! (�EF +�ES) � N� �E with �E � �kh2 :4



The parameter �E � �EF + �ES gives an evaluation of the accuracy of the coupling algorithm.Depending on the sign of k (and also the order of magnitude of k, which depends on the formof aerodynamic loads on the structure), this parameter can help predicting the behaviour of thescheme (arti�cial positive or negative damping) for small time steps (h � !�t� 1).Let us emphasize the fact that evaluation parameters �EF and �ES can be computed sepa-rately for di�erent �uid and structural parts of the coupling algorithms. In the following, wegive the computed parameters for di�erent schemes and discuss the merits of possible couplingalgorithms in light of the parameter �E. In the sequel, we shall say that a coupling algorithmis nth-order energy-accurate if �E � C hn when h! 0 (and C is a constant).2.2 Evaluation of �EF for di�erent �uid time schemesWe now give the values of �EF for the general prediction (1) and di�erent �uid time schemes,including those considered above and yielding �uid energy variation (2) with P nF given by (3).These values are given by�EF [(1)(3a)] = k �(�0 � 12)h+ ( 124 � �06 + �1)h3�+d ��1 + (16 � �02 + �1)h2�+O(h4) (10a)�EF [(1)(3b)] = k �(�0 � 32)h+ (58 � 7�06 + 2�1)h3�+d ��1 + (76 � 3�02 + �1)h2�+O(h4) (10b)�EF [(1)(3c)] = k �(�0 � 1)h + (13 � 2�03 + 3�12 )h3�+d ��1 + (23 � �0 + �1)h2�+O(h4) (10c)�EF [(1)(3d)] = k �(�0 � 1)h + (14 � 7�012 + 3�12 )h3�+d ��1 + ( 712 � �0 + �1)h2�+O(h4) (10d)2.3 Evaluation of �ES for di�erent transferred forces P n+1SWe now give evaluations of the coe�cient �ES deriving from (6) and corresponding to di�erentchoices for the input forces P n+1S in the trapezoidal rule (4). We consider the four followingchoices: P n+1S = P n (11a)P n+1S = P n+1 (11b)P n+1S = P n + P n+12 (11c)P n+1S = 1�tZ tn+1tnP (t)dt (11d)5



For each choice of the form P ?, we can compute a di�erent input pressure force by determiningthe transferred force P n+1S verifying P nS + P n+1S2 = P ?. This kind of algorithm gives an exactcontrol of the momentum transferred by the �uid to the structure and partial control for theenergy through (6). These additional choices correspond toP n+1S = 2 P n � P nS (12a)P n+1S = 2 P n+1 � P nS (12b)P n+1S = P n+1 (12c)P n+1S = 2�tZ tn+1tnP (t)dt� P nS (12d)The reader can notice that choices (11b) and (12c) are strictly equivalent. We give developmentsof the parameter �ES in function of h for these eight (actually seven) force inputs. Tediouscalculations yield �ES [(11a)] = k ��h2 + h33 �+ d �1� 2h23 �+O(h4) (13a)�ES [(11b=12c)] = d �1� h26 �+O(h4) (13b)�ES [(11c)] = k ��h4 + h36 �+ d �1� 5h212 �+O(h4) (13c)�ES [(11d)] = k ��h2 + h38 �+ d �1� h23 �+O(h4) (13d)�ES [(12a)] = k ��h2 + h324�+ d �1� h26 �+O(h4) (13e)�ES [(12b)] = k �h2 � h324�+ d �1� h26 �+O(h4) (13f)�ES [(12d)] = d �1� h212�+O(h4) (13g)2.4 Discussion on �E for synchronous partitioned proceduresWe �rst consider algorithms with �0 = 0 and �1 = 0 in the structural prediction (1). In thatcase, the prediction is only consistant. This kind of algorithm is �rst-order energy-accurate forall pair of schemes, excepted for the �rst-order explicit not-subcycled �uid scheme giving (3a)coupled with (12c). In that case, the error is almost zero since �EF (tn�1 ! tn) = ��ES(tn !tn+1). But this scheme is obviously not general.We now consider �rst order predictions (1) with �0 = 1 and �1 = 0. Several algorithmsin this class are second-order energy-accurate. Generally, the smallest error is obtained whenexact exchange of momentum through the �uid/structure interface is achieved , i.e. when theforce term in (12) corresponding to the �uid scheme is chosen. We get�E h(1)�1=1�0=1 � (3i) � (12i)i = �dh22 +O(h3); i = 1; : : : ; 4: (14)However, the optimal scheme seems to be given by (3c) and 12d) for which the energy error isslightly smaller (�E = �d 5h2=12 +O(h3)). 6



Finally, the second order prediction (1) with �0 = 1 and �1 = 1=2 yields a third-order energy-accurate algorithm if and only if exact exchange of momentum through the �uid/structureinterface is achieved. We get�E h(1)�1=1=2�0=1 � (3i) � (12i)i = k5h312 +O(h4); i = 1; : : : ; 4: (15)For the second-order prediction, the energy arti�cially created because of staggering is opti-mally reduced when the forces exchanged between the �uid and the structure at their interfaceare exactly opposed, and conservation of momentum is achieved. This happens when P nF andP n+1S respectively involved in (2) and (6) verifyP nF = P nS + P n+1S2 : (16)2.5 Evaluation for an asynchronous partitioned procedureFarhat et al. [6] have advocated the use of the ISS asynchronous procedure. It is built as aleap-frog scheme (�uid values are computed at times tn+1=2 and structural states at times tn).The algorithm reads1. compute the prediction Xn+1=2 = Un + �t2 _Un (structural displacement at time tn+1=2)2. compute a new �uid grid at time tn+1=2 matching this predicted displacement, and advancethe �uid of �t, possibly in a subcycled way.3. compute a transferred �uid pressure distribution P n+1S applied to the structure.4. advance the structure of �t with the trapezoidal rule (4).This procedure satis�es the Geometric Conservation Law (GCL) [7] without violating the in-terface continuity condition on velocities. This property is due to the trapezoidal rule, since_wn � (Xn+1=2�Xn�1=2)=�t = (Un�Un�1)=�t+( _Un� _Un�1)=2 � _Un. The energy transferredto the �uid can again be written as �EF = � �TXn+1=2 � TXn�1=2�P nF ; whereP nF = �P (17)and �P takes one of the following values �P = P n�1=2 (18a)�P = P n+1=2 (18b)�P � P n�1=2 + P n+1=22 (18c)�P � 1�tZ tn+1=2tn�1=2P (t)dt (18d)corresponding respectively to a forward-Euler, a backward-Euler, a second-order implicit and a
7



highly-subcycled �uid scheme. For these choices, the parameter �EF is then given by�EF [(17=18a)] = k �h2 � h348�+ d ��1 + h224�+O(h4) (19a)�EF [(17=18b)] = k ��h2 � h316�+ d ��1 + h224�+O(h4) (19b)�EF [(17=18c)] = k ��h324�+ d ��1 + h224�+O(h4) (19c)�EF [(17=18d)] = k ��h324�+ d ��1� h224�+O(h4) (19d)Reciprocally, for each possibility for �P in (18), the input force P n+1S for the trapezoidal rule(4) can be chosen according to one of the two following choicesP n+1S = �P (20)P n+1S = 2 �P � P nS (21)We now give the corresponding parameter �ES for all these pressure choices. They read�ES [(20=18a)] = k ��3h2 + 13h316 �+ d �1� 31h224 �+O(h4) (22a)�ES [(20=18b)] = k ��h2 + 5h348 �+ d �1� 7h224 �+O(h4) (22b)�ES [(20=18c)] = k ��h+ 11h324 �+ d �1� 19h224 �+O(h4) (22c)�ES [(20=18d)] = k ��h� 3h38 �+ d �1� 17h224 �+O(h4) (22d)�ES [(21=18a)] = k ��h+ 5h324 �+ d �1� 13h224 �+O(h4) (23a)�ES [(21=18b)] = d �1� h224�+O(h4) (23b)�ES [(21=18c)] = k ��h2 + 5h348 �+ d �1� 7h224 �+O(h4) (23c)�ES [(21=18d)] = k ��h2 + h316�+ d �1� 5h224 �+O(h4) (23d)Amongst all possible combinations, very few give second- or third-order energy accuracy. Asecond-order energy-accurate algorithm is obtained for the �uid force (17/18a) with one ofthe input forces (20/18b), or (21/18c), or (21/18d); another possibility is the joint use ofa highly subcycled �uid yielding (17/18d) and the input force (21/18b). In that last case,�E = �d h2=12 + O(h3). The only third-order energy-accurate combination is de�ned by(17/18c) and (21/18b); it does not allow subcycling at all.2.6 General comparison of partitioned proceduresThe class of synchronous staggered schemes of section 2.1 seem to be very accurate when asecond-order prediction for the structural displacements is used (�0 = 1 and �1 = 1=2 in8



(1)). The fundamental result of the evaluation of these methods is that, for any �uid timescheme, there is a way to achieve high energy accuracy. More precisely, provided the forcesexchanged between the �uid and the structure at their interface are exactly opposed (16), thecoupling algorithm is at least third-order energy-accurate. This is valid for any time scheme(explicit/implicit, �rst- or second-order time-accurate, subcycled or not).On the contrary, the proposed asynchronous staggered method described in section 2.5 canlead to a third-order energy error, but for some particular scheme combination. It is also di�cultto �nd a general principle as above, explaining why some scheme combinations should yield lessarti�cial energy production. However, this asynchronous procedure conserves velocity continuityat the interface, a property that was not taken into account by the evaluation introduced inthis paper.In the sequel, we discuss on two- and three-dimensional results the validity of the aboveevaluations. We compare, for most energy-accurate coupling schemes, the actual behaviour ofcoupling algorithms with the behaviour predicted using our evaluation method.3 Numerical Results3.1 Supersonic panel �utter (two-dimensional)We consider the aeroelastic response of a �at panel with in�nite aspect ratio in a supersonicairstream [8, 2]. The physical problem is only two-dimensional. The panel (Fig. 1) has one sideexposed to an airstream and the other side to still air. The panel considered here has a lengthL = 0:5 m, a uniform thickness h = 1:35 10�3 m, a Young modulus E = 7:728 1010 N=m2, aPoisson ratio � = 0:33 and a density �S = 2710 Kg=m3. It is clamped at both ends (x = 0 andx = L). The pressure of the still air under the panel is P1 (�uid pressure at in�nity).The �uid is inviscid. The boundary condition at the �uid/structure interface is a slipcondition, while at in�nity, the �uid is assumed constant (pressure P1 = 25714 Pa, density�1 = 0:4 Kg m�3, user-set Mach number M1). The simpli�ed analytical study on the linearinstability of the panel [8] is based upon the shallow shell theory and a �rst-order approximationof the aerodynamic theory where the in�uence of three-dimensional aerodynamic e�ects is ne-glected (this approximation is valid for M1 > 1:6). When the structural vertical displacementU is small, the �uid pressure forces on the panel can be approximated as a function of U andits derivatives. The global aeroelastic equation then reads�Sh@2U@t2 + Eh3=121� �2 @4U@x4 = � �1u21pM21 � 1 @U@x � �1u1(M21 � 2)(M21 � 1)3=2 @U@t (24)where u1 denotes the gas velocity at in�nity. The boundary conditions for U at clamped endswrite U(0) = U(L) = @U@x (0) = @U@x (L) = 0. Frequencies for coupled modes are computed, andthe limit Mach number where an unstable coupled mode appear can be estimated with a methodof resolution from Houbolt [9]. For the present data, an instability appears at M1 = 2:27 witha pulsation ! = 462rad=s.Aerodynamic loads can be rewritten as added mass, damping and sti�ness matrices M , Dand K in the formalism of (7). They are given byM = 0; D = ��1u1(M21 � 2)(M21 � 1)3=2 I; K = � �1u21pM21 � 1 @@x :9
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Figure 1: The �at panel with in�nite aspect ratio.We now assume the panel is not far from �utter. It oscillates with the pulsation ! = 462rad=sas in (7) and U is the �utter mode. Parameters k and d of (8) can be reduced to8>>><>>>: k = � �1u21pM21 � 1 Z Lx=0 @U@x U dx;d = �! �1u21pM21 � 1 Z Lx=0U 2 dx: (25)Note that k should equal zero since both panel ends are clamped. However, discretization errorsand approximations in the aerodynamic theory make it only small.For these computations a two-dimensional �nite-volume method is used to solve the ALE-formulated inviscid Euler equations on a unstructured triangular grid with 1654 vertices and2936 triangles. The convective �uxes are resolved by a MUSCL [10] second-order accurate Rie-mann solver on unstructured meshes [11, 12], for which an adapted version for ALE formulationswas derived [13] . An explicit second-order Runge-Kutta scheme is used. Stability limitationslead to massive subcycling of the �uid. The structural operators are simply discretized using�nite-di�erences with 299 vertices. The Mach number at in�nity has been set to M1 = 2:23,which seems to be the �utter limit obtained for a reference run with the space discretizationsused.We consider the class of synchronous staggered schemes of Section 2.1. Heavy subcyclingin the �uid and improved pressure forces (12d) transferred to the structure are used. Thereference computation with no subcycling and �t = 1:23�s is compared with computationswith �t = 200�s (which makes �t = T!=70 and h ' 0:09; the �uid is subcycled nS=F = 16110



times). We have chosen �0 = 1 in (1) and di�erent values for �1. We observe oscillations of thepanel. To make the comparison simpler, we consider the scalar x de�ned byx = �Sh TU2U;where U is the panel displacement �eld and U2 is the displacement �eld corresponding to thesecond structural eigenmode. The second modal coordinate x is shown on Figure 2 for thesecomputations. The resulting curves give many qualitative and quantitative informations. First,
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Figure 2: x computed with heavy subcycling (nS=F = 161).the qualitative (damped, stable, or undamped) behaviour of the panel di�ers from a run toanother! The reference curve (and the almost coinciding curve obtained for �1 = 1=2) predictsthe panel is exactly at �utter. Curves with �1 = �1=2 and �1 = 1 respectively predict that weare beyond and under the �utter limit.Quantitatively, these curves con�rm what could be deduced from (10d) and (13g). For ahighly subcycled �uid and transferred pressure forces computed using (12d), the parameter �Ecorresponding to the energy arti�cially produced by staggering is estimated by�E = ��1 � 12� d h2 + 32 ��1 � 29� k h3 +O(h4); (26)(since �0 = 1). We can notice that the curve with �1 = 1=2 is matching the reference curve.Also, the deviation from the �xed amplitude oscillations seems to depend linearly on �1 � 1=2.Finally, schemes with �1 > 1=2 give arti�cially damped oscillations, because d in (25) is clearlynegative. Reciprocally, schemes with �1 < 1=2 give arti�cially undamped oscillations.We have also tested the asynchronous procedure de�ned by (17/18d) and (21/18b). Theresult is almost coinciding with the result of the method above with �1 = 1=4 (error �E �11



�dh2=4). However, our analysis predicts something smaller (error �E � �dh2=12). This isprobably due to the use of the value P n+1=2 instead of a time integral (�uid high-frequenciesare not �ltered).For �1 = 1=2 and �t = 200�s, we have made an additional run with the transferredpressures (11d) instead of (12d). Values for the parameter x obtained with each choice ofpressures are shown in Figure 3. The advantage of forces computed using the fromula (12d)
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Figure 3: x computed with di�erent transferred pressures.instead of (11d) is clearly demonstrated. For this subcycling of nS=F = 161, the error in forceexchange at the interface produces negative arti�cial damping and phase shift. According to(10d) and (13d), the parameter �E for this algorithm is estimated by�E = �12 k h� 14 d h2 +O(h3): (27)This estimate is to be compared to �E � (5=12)k h3 given by (26), which is roughly 150 timesbigger!Finally, we have tested massive �uid subcycling to reach the stability and accuracy limitsof the coupling algorithm. We use the value �1 = 1=2. Values for x obtained for �t = 200�s(�t = T!=70, h ' 0:09, nS=F = 161), �t = 400�s (�t = T!=35, h ' 0:18, nS=F = 322) and�t = 600�s (�t = T!=23, h ' 0:28, nS=F = 482) are shown in Figure 4. The algorithm is quiterobust, since the curve with �t = T!=35 (nS=F = 322) also coincides with the reference curve.However, the last computed solution is a little undamped (nS=F = 482). We reach the limits ofthe proposed analysis, since h ' 0:28 is not really small. Altogether, the stability and accuracylimit of �t = T!=35 is quite reasonable for staggered partitioned procedures.12
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Figure 4: x computed with massive subcycling.3.2 Supersonic panel �utter (three-dimensional)In this section, we compare numerical results to qualitative predictions for the three-dimensionalsimulations of the supersonic �utter of a �at panel with in�nite aspect ratio. The case is nearlythe same as in the previous section and is detailed in [14]. The panel is now two-dimensional asshown on Figure 5. The panel is still clamped at both ends. The depth of the panel is �xed to
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Figure 5: Initial perturbation of the two-dimensional �at panel.L2 = 0:1. The �nite element structural model contains 100 triangular shell elements, 102 nodes,and 612 degrees of freedom. The �ow domain above this panel is discretized into 20250 vertices13



and 94080 unstructured tetrahedra. A slip condition is still imposed at the �uid/structureboundary. An implicit �uid solver is used in the sequel. The aeroelastic response of the coupledsystem is triggered by a displacement perturbation of the panel along its �rst bending mode(see Figure 5). However, we consider a time step equal to �t = 100�s, which gives a accuratesample for the three fundamental modes of the panel (�t � T3=60).In a �rst series of runs, the Courant number is set to 10 in the implicit �uid code, and severalpartitioned procedures are applied to compute the transient aeroelastic response of the panel.The time step used induces no subcycling and a additional reference computation is performedusing �t = 10�s. The obtained lift histories are depicted in Figure 6 for the �rst 0.1 physicalseconds.
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Figure 6: Lift histories for several procedures.The most unstable curve (label 1) was obtained with the Conventional Parallel Staggeredprocedure (CPS, see [6]) : it is de�ned a synchronous procedure with �0 = �1 = 0 andexchanged forces are given by (3b) and (11b), respectively because the �uid time scheme isa �rst-order backward-Euler and because the structure could be integrated at the same time.For this algorithm, the energy parameter given by our evaluation is �E = �2 kh. It shouldbe compared with the Conventional Serial Staggered procedure (CSS) of [6], corresponding tothe synchronous procedure with �0 = �1 = 0 and pressures forces (11a) on the structure (thestructure is advanced after the �uid time step is completed). For the CSS procedure (label 2),we have �E = �1:5 kh, which is in a relatively good agreement with the form of both curves in14



Figure 6. We have also tested (label 3) the Improved Serial Staggered procedure (ISS) of [6],corresponding to the asynchronous method (17/18b) with force exchanges (21/18b). And �nally,we had a run (label 4) with the synchronous procedure with the �rst-order prediction (�0 = 1,�1 = 0) and forces exchanges (3b) and (11b). Both curves coincide on Figure 6. For both, ouranalysis predicts �E = �0:5 kh. The comparison of several partitioned procedures reveals thatour evaluations are qualitatively and quantitatively in good agreement with numerical results.In a second series of runs, we investigate the e�ects of subcycling. This analysis is performedon the ISS procedure. The evaluation parameter �E for (17) and exchange forces (21/18b) canbe estimated for any subcycling factor nS=F = N . We found �E = � 12N kh. This dependenceon nS=F is veri�ed on numerical results for varying subcycling factors. In Figure 7, the curvewith nS=F = 5 is almost coinciding with the reference curve.
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Figure 7: Dependence on the subcycling factor nS=F .Finally, we conduct a last series of run to compare the dependences on the coupled timestep �t and on the subcycling factor nS=F . We have chosen the ISS procedure described above.The computed lift histories corresponding to �t = 100�s and �t = 300�s (labels 2 and 3respectively) with no subcycling, and to �t = 300�s with nS=F = 3 (label 4) are plotted inFigure 8. The comparison of curves (2) and (3) shows the ampli�cation of oscillations as hwas increased. But the linear dependence on h of the created energy does not appear clearlyon the results. If the transmitted energy depends linearly on h, then the lift, pressure anddisplacements should vary like ph. However, the reference run itself is a bit far from the15
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Figure 8: Dependence on �t and nS=F .harmonic oscillation that is assumed in our evaluation. On the other hand, curves (2) and(4) are almost coinciding, and this was actually predicted by the evaluation (from (2) to (4),h! 3h and nS=F ! 3nS=F ).In conclusion, we have given an new interpretation to previously published numerical resultson panel �utter simulations. The evaluation method we have proposed is in good agreementwith numerical lift histories for several transient procedures. However, these procedures areonly �rst-order energy-accurate and additional simulations should be performed to validate theproposed evaluation method.3.3 Flutter analysis of the AGARD Wing 445.6We �nish this report with the analysis of numerical results obtained with some transient pro-cedures for the �utter analysis of the AGARD Wing 445.6. This wing is fully described andreferenced in [6]. The structure is discretized using a undamped �nite element model with 800triangular composite shell elements and 2646 degrees of freedom. It yields natural mode shapes(and frequencies) that are similar to those derived exprimentally. However, the �utter analysisis conducted using the true �nite element representation of the wing. Numerical results pre-sented here were obtained on a unstructured tetrahedral �uid mesh with 22014 vertices. Eventhough it is coarse, this CFD mesh has proved to be adequate for aeroelastic analysis. A partialview of this mesh is shown in Figure 9. The freestream conditions are set to M1 = 0:901,�1 = 1:117 10�7 slugs/in3, and p1 = 10 slugs/(sec2 � in). Fluid time-integration is carriedout by a second-order implicit backward di�erence scheme whose implementation satis�es the16



Figure 9: Partial view of the CFD mesh.geometric conservation laws [15]. The �uid time-step has been set to �tF = 0:5ms.The �nite element structural model is perturbed along its �rst bending mode, a steady statesolution is computed around the deformed con�guration of the wing and �nally the aeroelasticresponse is computed using some staggered partitioned procedure.This case is the most di�cult one. The �ow is absolutely three-dimensional and is not smoothbecause of the transonic regime considered. Structural and �uid schemes are not conforming atthe �uid/structure interface, and structural large displacements with possible rotations occur.Thus, we guess our evaluation method should give limited insights on the partitioned procedures.We also point out the fact that, in this case, the wing is far away from �utter, and the systemis naturally damped. Thus, our method based on harmonic oscillations could give inaccuratepredictions.Since a second-order implicit backward di�erence scheme is used for the �uid, the ISSprocedure has an increased accuracy (with no or light subcycling). Actually, our evaluationleads to ) �E = 1=16 dh2, which means that an order of accuracy in energy exchanges hasbeen gained. We perform two series of runs to compare the ISS procedure to the less accurateCSS and CPS procedures (which are basically �rst-order).Convergence of the lift history for the CSS procedure is plotted in Figure 10. In thesecomputations, the default time-step is�t = 1ms (which yields two �uid subcycles per iteration).17
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