
Formal Elimination Theory.Applications to Control TheoryJ.F. Pommaret, A. QuadratC.E.R.M.I.C.S.Ecole Nationale des Ponts et Chaussées6 et 8 avenue Blaise Pascal,77455 Marne-La-Vallée Cedex 02, France.e-mail: {pommaret, quadrat}@cermics.enpc.frAbstractFollowing Douglas' ideas on the inverse problem of the calculus of variations, the pur-pose of this article is to show that we can use the formal integrability theory to developa theory of elimination for systems of partial di�erential equations. In particular, we con-sider linear systems of partial di�erential equations with variable coe�cients and we showthat we can organize the integrability conditions on the coe�cients to build an �intrinsictree�. Trees of integrability conditions naturally appear when we test the controllability,observability, invertibility, ... of linear control systems with some variable or unknowncoe�cients, or for linearized nonlinear systems. Many explicit examples will illustrate themain results.Keywords: Elimination, resultant, formal integrability, D-module, control theory, con-trollability, observability, invertibility.1 IntroductionExpansion into power series of analytic or formal solutions of a system of partial di�erentialequations (PDE) has early been a powerful tool in mathematics, physics and engineeringsciences. In particular, the wish to have a theory which computes the dimension of thespace of the analytic solutions of a system of PDE, without integrating it explicitly, is notnew, as Einstein explained it in 1952 in [8]: �... we need a method which gives a measureof the strength of an equation system. We do as follows: we expand the �eld variables inthe neighborhood of a point P , into Taylor series (which presupposes the analytic characterof the �eld), the coe�cients of these series, which are simply the derivatives of the �eldvariables at the point P , fall into sets according to the degree of di�erentiation. In everysuch degree there appears, for the �rst time, a set of coe�cients which would be free forarbitary choice if it were not that the �eld must satisfy a system of di�erential equations.Through this system of di�erential equations (and its derivatives with respect to the coor-dinates) the number of coe�cients is restricted, so that in each degree a smaller numberof coe�cients is left free for arbitrary choice. The set of numbers of �free� coe�cients forall degrees of di�erentiation is then directly a measure of the �weakness� of the system ofequations, and through this, indirectly, also of its �strength�.�1



This notion of �strength� or of �degree of generality� of a system of PDE was introducedby Ch. Riquier [27] and M. Janet [14] in the years 1910 - 1930. They developped e�ectivealgorithms in order to compute it without integrating the system explicitly. Their workshave inspired J.F. Ritt while he was creating di�erential algebra (see the last two chaptersof [28] for a exposition of Riquier and Janet works). More recently and indepently of theseprecursors, the formal integrability theory has been developped in a intrinsic way by D.C.Spencer, using �bered manifolds, jet, �-cohomology, diagram chasing, ... [21, 26]. In thebeginning of the eighties, the formal integrability theory of PDE with Lie pseudogroupsmethods has given new insight on mathematical physics (see [21]).In this paper, we are interested in elimination problems. We consider a system of PDEwith two sets of variables and our interest is to know under what conditions on the �rstset of variables the system admits a solution. The solution of this problem was foundby Seidenberg in 1956 (see [30]) using di�erential algebra approach. The purpose of thisarticle is to show that we can use the formal integrability theory to compute the resultantsof a system of PDE. This approach seems to be more intrinsic and permits to have a newpoint of view on the resultants. In particular, following the Spencer-Goldschmidt criterion,only three kinds of inequalities may appear in the resultants: the �rst ones appear for rankconditions (�bered manifold), the second for the surjectivity of the restricted prolongations,and the third ones when testing a more technical property, that is, the 2-acyclicity of thesymbol of the system. In case of linear system of PDE with variable coe�cients, theseinequalities on the coe�cients can be arranged in order to build an �intrinsic tree�. Each�nal leaf represents a formal solution of the system with its degree of generality. Hence,we can study the variation of the degree of generality of the formal solutions of a linearsystem of PDE with variable coe�cients. Surprisingly, such a point of view has �rstlybeen adopted by J. Douglas (1941) in his study of the inverse problem of the calculus ofvariations [7], using the ideas of M. Janet [14].Recently, the theory of di�erential module (D-module) has given a new insight forstudying the structural properties of control systems. See for example [1, 3, 9, 10, 17,21, 22, 23, 24, 25]. Most of the intrinsic properties as controllability, observability andinvertibility of control systems have been reformulated in terms of an algebraic nature ofa di�erential module (as torsion, torsion-free, projective, free D-module, ...). Formal testshave been developped in [21, 22, 23, 25] to know whether a �nitely generated di�erentialmodule is respectively a torsion, torsion-free, projective and free D-module. Thus, if weconsider control systems with variable coe�cients or linearized nonlinear ones, certain treesof integrability conditions will naturally appear when testing these properties. Eliminationproblems in control theory have been introduced by S. Diop in [4, 5, 6], using e�ectivemethods of di�erential algebra. These methods are in general more e�ective than thoseof the formal integrability theory, but less intrinsic (dependence of coordinate systemthrough the ranking, choice of di�erential polynomials in characteristic set) (see [20]).Roughly speaking, we can say that the e�ective character always competes with intrinsicone.2 Formal Integrability Theory2.1 IntroductionWe now introduce the main ideas of the formal integrability theory, before exposing them,using more technical tools.Roughly speaking, if we want to compute the �degree of generality� of a formal solutionof a system of PDE, we have to know the number of �arbitrary� (�free�, �parametric�, ...depending on the author) derivatives at each order.Let us consider a system of PDE �� (x; @�yk(x)) = 0 of order q, where � = 1; :::; l; k =1; :::;m and � = (�1; :::; �n) is a multi-index with length j�j = �1 + ::: + �n (we shall2



frequently use the notation @i1 :::@imyk = yki1:::im). We substitute the derivative of theunknowns yk by jet coordinates with the same indice (@�yk(x) ! yk�)), that is to say,we regard any derivative of the yk as new unknowns. We shall say that a jet coordinatewith an indice of length lower or equal to q is at the order q, and at the order strictlyq if the length of its indice is equal to q. Thus, �� (x; @�yk(x)) = 0 is transformed intoa pure equation relating the jet coordinates: �� (x; yk�) = 0. Let us suppose that theseequations de�ne a �bered manifold Rq (no relation among the x only) in the space of jetcoordinates of order q. Using implicit function theorem, we can locally determine somejet coordinates in function of dimRq (the �bre dimension) other jet coordinates (we tryto write the greatest number of jet coordinates of order strictly equal to q in function ofjet coordinates of lower order). We call the �rst ones �principal � jet coordinates and thesecond �parametric� jet coordinates. Thus, we have made a partition on the jet of order qinto two sets, principal and parametric, where the �rst one can be expressed in terms ofthe second.Now, we remark that if we di�erentiate once the equations of �� (x; @�yk(x)) = 0,with respect to each xi (prolongation �1), and substitute again the derivatives by the jetcoordinates, we obtain: di�� = @�@xi + Xj�j=q @��@yk� yk�+1i = 0; (1)where i = 1; :::; n. Thus, the terms of order q+1 appear linearly with coe�cients de�ned onRq, that is with jets satisfying �� (x; yk�) = 0 (something well known in di�erential algebra).This simple remark will allow us to use linear algebra. Let us de�ne Rq+1 = �1(Rq) by� di�� = 0;0 + �� = 0; (2)i = 1; :::; n; � = 1; :::; l. Now, let us call Mq+1 the vector space de�ned byXj�j=q @��@yk� vk�+1i = 0; i = 1; :::; n; � = 1; :::; l; (3)in the jet coordinates of order strictly equal to q+1. There are m(q+n)!(q+1)!(n�1)! jet coordinatesof order strictly equal to q + 1 and if we denote by �1(�) the left member of (3), thenwe have dimMq+1 = (q+n)!(q+1)! (n�1)! � rk�1(�) parametric jet coordinates at the order striclyq + 1. Indeed, we can �nd in (3), rk�1(�) lineary independent equations and by linearalgebra in the upper part of (2) and substitution of the principal jet coordinates of order qby the parametric ones, we obtain rk�1(�) principal jet coordinates of order stricly q + 1which can be expressed with dimMq+1 parametric jet coordinates of order stricly q + 1and with dimRq ones of order q.Now, the trouble begins if rk �1(�) < ln: we have certain equations of (3) whichare linear combinations of rk�1(�) others. Eliminating the jets of order q + 1 in thecorresponding equations of (2), we obtain equations of order q. Only two di�erent casesmay happen:� Substituting the principal jet of order q in these new equations, we are led to 0, thenwe have no new equations relating the parametric jet coordinates up to the order q.Thus, we have determined for the moment the number of parametric jet coordinatesof strict order q+1. If we put a second member z� in the equations �� = 0 and beginagain the same operations, we obtain: Aip� (x; yk�)diz� +Bp� (x; yk�)z� = 0; j�j � q. Wenotice that it leads to compatibility conditions in the linear case.� Substituting the principal jet of order q in these new equations, we are led to somenon identically zero equations 	�(x; yk�) = 0; j�j � q, relating the parametric jetcoordinates up to order q. This contradicts the fact that they are parametric jet3



coordinates. Then, we have to add these new equations to the system �� = 0 andstart anew with the following system:R(1)q � �� (x; yk�) = 0;	�(x; yk�) = 0: (4)We have just shown how to compute the number of parametric jet coordinates of order q+1.Similary, it can be done for each order. We have seen that the feedback of informationson the lower order derivatives (new equations 	�(x; yk�) = 0) modi�es the calculus of thenumber of parametric jet coordinates and thus the calculus of the dimension of the spaceof solutions (the parametric jet coordinates determine the initial conditions that we haveto give to compute the power series of the solutions). Hence, certain systems of PDE seemto be �nicer� than some others, that is, those in which no feedback of informations onthe lower order derivatives appears when di�erentiating the equations of the system andprojecting them on lower order jets space. Hence, we shall call a system of PDE formallyintegrable whenever the formal power series of its solutions can be determined step bystep by successive derivations without obtaining backward new informations on lower-order derivatives. We may wonder how to recognize when a system of PDE is formallyintegrable, as we have to verify that no new lower order informations appear at each order,that is, for a in�nity of orders. So, we can ask: does it exist a �nite algorithm testingwhether a system of PDE is formally integrable or not? In the case where the systemis not formally integrable, we have seen that we have to add new equations. So, does itexist a procedure which adds enough equations to the system, in order to transform itinto a formal integrable system, with the same solutions? D.C. spencer and coworkershave given positive answers [26] in the years 1960-1975. Their algorithms turn around thetwo following crucial points: �rst of all, we have seen that in (1), the jet coordinates oforder strict q + 1 appeared linearly, a fact permitting to use linear algebra. Thus, we fellthat everything that we have done precedingly can be reformulated into a more intrinsicway, using homological algebra(ker-coker exact sequences) in place of Cramer rules. D.C.Spencer has introduced the �-sequence and its cohomology to deal with this problem.Secondly, backward informations on derivatives of order q have appeared after we hadprojected Rq+1 on the space of jet coordinates of order q: we have found more equationsin (4) than in �� = 0 and thus the projection R(1)q of Rq+1 on the space of jet coordinatesof order q, is a stricly subset of Rq (not always a submanifold). These remarks will lead(at best) to a prolongation-projection procedure that we sketch.2.2 Main Results of the Formal Integrability TheoryWe now expose the main results of the formal integrability theory (see [26, 20] for moredetails). These results will be illustrated in the examples of the next sections.Let us denote by X a manifold of dimension n with local coordinates (x1; :::; xn), byT (X) and T ?(X), its tangent and cotangent bundles. Let E be a �bered manifold over Xwith �ber dimension m and local coordinates (xi; yk). We de�ne the q-jet bundle Jq(E)as a �bered manifold with local coordinates (x; yk�), � = (�1; :::; �n), 0 � j�j � q anda nonlinear system of PDE of order q as a �bered submanifold Rq of Jq(E), determinedlocally by �� (x; yk�) = 0. The r prolongation of Rq is Rq+r = �r(Rq) = Jr(Rq) \ Jr+q(E),and is obtained by substituting the jet coordinates by the derivatives, di�erentiating rtimes and substituting again the derivatives by jet coordinates. The projection �q+r+sq+r :Jq+r+s(E) ! Jq+r(E) induces a projection of Rq+r+s on Rq+r. We denote the image ofthis projection by R(s)q+r. Notice that Rq+r and R(s)q+r are not in general �bered manifoldsfor any r; s � 0. The linearized system Rq of Rq is de�ned locally as: @��@yk� Y k� = 0. Its isa linear system in Y k� , with variable coe�cients satisfying �� = 0. We de�ne the symbol4



Mq of Rq, as the family of vector space over Rq, byXj�j=q @��@yk� vk� = 0; � = 1; :::; l; (5)and denote by �(�) the corresponding matrix. Then the symbol Mq+r of Rq+r de�ned byXj�j=q;j�j=r @��@yk� vk�+� = 0; (6)only depends on Mq. We call �r(�) = �(�r(�)) the left member of (6). Let us de�ne the�-sequence by �s T ? 
Mq+r+1 ��! �s+1 T ? 
Mq+r;with (�(!))k� = dxi ^ !k�+1i where ! = vk�;I dxI 2 �s T ? 
Mq+r+1, dxI = dxi1 ^ :::^ dxis ; i1 < ::: < is and j�j = q + r. We easily veri�ed that � � � = 0. The cohomology at�s T ? 
 Mq+r of the sequence�s�1 T ? 
 Mq+r+1 ��! �s T ? 
 Mq+r ��! �s+1 T ? 
 Mq+r�1;is denoted by Hsq+r(Mq).De�nition 1 The symbol Mq of Rq is said to be s-acyclic if 8 r � 0 : H1q+r = ::: =Hsq+r = 0. Mq is involutive if it is n-acyclic. In particular, every system Rq of ordinarydi�erential equations (ODE) has an involutive symbol. A symbol Mq is of �nite type if9 r � 0 such that Mq+r = 0.Theorem 1 Let Mq be the symbol of the system Rq then there exists an integer r largeenough such that Mq+r is involutive.A test checking the 2-acyclicity of the symbol is still lacking. Indeed, we have to verifyH2q+r = 0 for any r � 0 and thus for an in�nity of orders. Only the case of �nite typesymbol can be checked as we only have to verify H2q = ::: = H2q+r�1 = 0 where Mq+r = 0and Mq+r�1 6= 0. But, we can test whether a symbol is involutive or not. However, itmust be done only on �su�cently generic coordinates�: the �-regular coordinates. Roughlyspeaking, the �-regular coordinates are not the most generic coordinates but �genericenough� to give the right dimension of Mq+r.Let x = (x1; :::; xn) be a system of local coordinates of X and let us order the multi-index � of length q: � < �0 if there exists l such that �i = �0i for i = n; :::; l+1 and �l < �0l.The order on the multi-index � implies a preorder on the vk� of Mq: � < �0 ) vk� < vk0�0 .We say that vk� is of class i > 1 if �1 = ::: = �i�1 = 0 and �i > 0 and of class 1 if �1 > 0.Now, using the equations de�ning Mq, we try to express the maximum number of vk� ofclass n, in function of the others vl� . Next, we substitute these vk� in the other equationsto make disappear the vk� of class n. We respectively do the same for the vk� of class n� 1,..., 1. We usually say that Mq is in the solved form. We associate a system of �dots� tothese equations, as follows:equations of class nequations of class n� 1::::equations of class i:::equations of class 1
1 ... ... ... n1 ... ... n� 1 �1 ... i � �1 � ... ... �Though this classi�cation looks like the original one of M. Janet, it is in fact quite di�erent.For a detailed study, we refer the reader to the reference [12, 13]. Moreover, let M iq be the5



vector space de�ned locally by �(�) where we have equal to zero the vk� of class strictlylower than i. We call �(�)i the left member of the de�ning equations of M iq. We havedimM iq = m(q+n�i�1)!(q�1)! (n�i)! � rk�(�)i. Let us call �iq = dimM i�1q � dimM iq for i = 1; :::; n.Theorem 2 The symbol Mq is involutive if there exists a system of coordinates, called�-regular coordiates, in which one of the following properties is satis�ed:1. dimMq+1 = �1q + 2�2q + :::+ n�nq :2. Prolongation with respect to the dots does not bring new equations.Then 8 r � 0 : dimMq+r =Pni=1 (r+i�1)!r! (i�1)! �iq:We have seen that a �good system� Rq of PDE was a system in which no lower orderinformations appeared when projecting its prolongations Rq+r+s = �r+s(Rq) on lowerorder jet space Jq+r(E). Using the previous notation, it leads to the following de�nition.De�nition 2 A system Rq is said to be formally integrable if 8 r; s � 0, Rq+r is a �beredmanifold and the projection �q+r+sq+r : Rq+r+s !Rq+r is surjective (or equivalently R(s)q+r =Rq+r).A system Rq is said to be involutive if Rq is formally integrable with an involutive symbol.We now give two key theorems. See [21] for the non trivial demonstrations.Theorem 3 If Mq is 2-acyclic and Mq+1 is a vector bundle over Rq then 8r � 1 : Mq+ris a vector bundle over Rq.Theorem 4 IfR(1)q is a �bered manifold andMq is 2-acyclic then 8r � 0 : �r(R(1)q ) = R(1)q+r.These theorems lead to the following criterion.Spencer-Goldschmidt criterion If Mq is 2-acyclic and Rq+1 is a �bered manifold suchthat R(1)q = Rq then Rq is formally integrable.The reader have to keep in mind that the previous criterion gives only su�cient con-ditions in order to have a formally integrable system.Example 1 The symbol of the system @i�j+@j�i = 0 is neither 2-acyclic nor involutive butthe �rst prolongation gives @ij� = 0 and the system is formally integrable. More generally,any homogeneous system is formally integrable even if the criterion is not satis�ed.We have the following corollary.Corollary 1 Let Rq be an involutive system and let us denote by Rq�1 the projection ofRq on Jq�1(E) then dimRq+r = dimRq�1 + nXi=1 (r + i)!r! i! �iq:See [21] for the proof. In particular, if we want to determine the analytic solutions of thesystem Rq, we have to �x �1q functions in x1, �2q functions in (x1; x2), ..., and �nq functionsin (x1; :::; xn).De�nition 3 A system Rq is called su�ciently regular if:1. 8 r; s � 0; R(s)q+r is a �bered manifold.2. 8 r; s � 0 the symbolM (s)q+r is induced from a vector bundle over X.6



In the case where the systemRq is not formally integrable, the following theorem showsthat there is a �nite procedure which adds enough equations to the system, in order toobtain a formaly integrable system, with the same solutions.Theorem 5 If Rq is su�ciently regular system, we can �nd two integers, r, s � 0, suchthat R(s)q+r is formally integrable (involutive) with the same solutions as Rq.Thus, we are led to the following algorithm [13].Algorithm We start with Rq. Find r � 0 such that Rq+r is 2-acyclic (involutive). Testwhether R(1)q+r = Rq+r. If it is the case, then the algorithm stops, else, starts anew withR(1)q+r. Hence, we �nally �nd two integers r; s such that R(s)q+r is a formally integrablesystem (involutive) with the same solutions as Rq.Now, we illustrate the spirit of these results by showing how the ideas of the previousintroduction are transformed in a more �intrinsic way�. For the simplicity, we only use alinear system of PDE, which will be denoted by Rq and determined locally by �� (x; yk�) =0. Rq is a subvector bundle of Jq(E) and let us denote by F0 the vector bundle Jq(E)=Rq .We have the following short exact sequence:0! Rq ! Jq(E) �! F0 ! 0:Prolongating Rq once with respect to each xi, we obtain the following exact sequence0! Rq+1 ! Jq+1(E) �1(�)�! J1(F0);where �1(�) is the left member of (2).We can consider Sq+1 T ? 
 E as a subset of Jq(E), where Sq+1T ? denote the q + 1covariant symetric tensor. Sq+1 T ? 
 E is nothing else than the space of jet coordinatesof order stricly equal to q + 1 and we easily verify that dimSq+1 T ? 
 E = m (q+n)!(q+1)! (n�1)! .Hence, we have 0!Mq+1 ! Sq+1 T ? 
E �1(�)�! T ? 
 F0;and we denote by F1 the cokernel of �1(�). Thus, we have the following exact sequences0!Mq+1 ! Sq+1 T ? 
E ! im �1(�)! 0;and 0! im�1(�)! T ? 
 F0 ! F1 ! 0which give: � dimMq+1 = dimSq+1 T ? 
E � rk�1(�);dimF1 = dim T ? 
 F0 � rk�1(�);where rk�1(�) denotes the rank of �1(�). This is nothing else than the Cramer rules. Werecognize that we have dimSq+1 T ?
E� rk�1(�) new parametric jet coordinates of orderstrictly equal to q+1 and dim T ?
F0 � rk�1(�) equations which are linear combinationof rk�1(�) ones in the symbol Mq+1. Hence by linear elimination of the jet coordinatesof order strictly equal to q+1, we can �nd dimF1 new equations of order q. Substitutingin those equations the principal by parametric jet coordinates of order q, it leads to R(1)q ,that is, to the image of the projection �q+1q . We have:0!Mq+1 ! Rq+1 �q+1q! Rq ! coker �q+1q ! 0:and 0!Mq+1 ! Rq+1 ! im �q+1q = R(1)q ! 0;which leads to dimMq+1 = dimRq+1 � dimR(1)q : Hence, we have R(1)q = Rq if we does nohave new equations of order q and we have dim Mq+1=dim Rq+1-dim Rq.7



2.3 Formal Elimination TheoryLet us take a system of PDE de�ned by the equations�� (x; yk�; zl�) = 0; � = 1; :::; k; j�j � q; j�j � p; (7)where y = (y1; :::; ym) and z = (z1; :::; zs) are two sets of unknowns. We would like to knowwhat conditions z has to satisfy in order to have solutions of the system (7). Regardingthe system (7) as a system in the set of unknowns y only, with coe�cients in z,	� (x; yk�) = 0; � = 1; :::; k; j�j � q; (8)we can study the formal integrability of (8). Roughly speaking, suppose that z is given,we can try to �nd locally the formal solutions of (8) in bringing this system to formalintegrability. However, in bringing it to formal integrability, we have to compute certaindeterminants (testing �bered manifold conditions, computing the dimension of the sym-bols, projections, ...) which may depend on z. So, we are led to de�ne family of resultantsthat z has to satisfy in order to have formal solutions of the system (7). We have to noticethat there are three kind of inequalities which can appear when we bring a system of PDEto formal integrability:1. inequalities which appear when testing �bered manifold conditions,2. inequalities appearing when projecting prolongations of the system on lower orderspace jet,3. inequalities appearing when testing the 2-acyclicity (or involutivity) of the symbol.However, the third kind of inequalities is a �technical one�. Indeed, the de�nition offormal integrability does no use 2-acyclicity but only �bered manifolds and projections.However, most of the time, we have to use the Spencer-Goldschmidt criterion in which the2-acyclicity (or involutivity) has to be tested.We now give an example, in which the �rst and the second kinds of inequalities appearwhen computing the resultants. This example is taken from [5] where the resultants werecomputed using di�erential algebra techniques.Example 2 Let us consider the system de�ned by:R1 8<: _z1 � uz2 = 0;_z2 � z1 � uz2 = 0:z1 � y = 0:In the control framework, u is the input, z the state, y the ouput and we look for input-output relations by eliminating z, called input-output behaviour. The system R1 is notformally integrable in z = (z1; z2). As this system is a system of ordinary di�erentialequations, we know that the symbol M1 = 0 is trivially involutive and we have only tosaturate the system by lower order equations. We have:R(1)1 8>><>>: _z1 � uz2 = 0;_z2 � z1 � uz2 = 0;z1 � y = 0;u z2 � _y = 0;and R(1)1 is a �bered manifold i� u 6= 0.1. If u = 0 then R(1)1 is de�ned by8>><>>: _z1 � uz2 = 0;_z2 � z1 � uz2 = 0;z1 � y = 0;_y = 0;8



and R(1)1 is a �bered manifold i� _y = 0. In this case, we have R(2)1 = R(1)1 and R(1)1 isan involutive system. Moreover, dimR(1)1 = dimM (1)1 + dimR(1)0 = 0 + (2 � 1) = 1,where R(1)0 is the projection of R(1)1 on J0(E) (i.e., the zero order equations of thesystem R(1)1 ).2. If u 6= 0 then R(2)1  R(1)1 where R(2)1 is de�ned by:R(2)1 8>>>><>>>>: _z1 � uz2 = 0;_z2 � z1 � uz2 = 0;z1 � y = 0;u z2 � _y = 0;( _u+ u2)z2 � �y + uy = 0:Now, as u 6= 0, the last two equations lead to:R(2)1 8>>>><>>>>: _z1 � uz2 = 0;_z2 � z1 � uz2 = 0;z1 � y = 0;u z2 � _y = 0;u�y � ( _u+ u2) _y � u2y = 0:R(2)1 is a �bered manifold i� u 6= 0 and u�y�( _u+u2) _y�u2y = 0 and, in this case, R(2)1is an involutive system. Moreover, dimR(2)1 = dimM (2)1 +dimR(2)0 = 0+(2�2) = 0.We can notice that the dimension of the �bre is generically equal to 0 and the dimensionjumps to 1 in the di�erentialy algebraic set fu = 0; _y = 0g. Finally, the input-outputbehaviour is the disjunction of the two following systems:� u = 0;_y = 0; � u 6= 0;u�y � ( _u+ u2) _y � u2y = 0:2.3.1 Trees of Integrability ConditionsIt is well known that the �degree of generality� of the formal solutions of a system of linearPDE with certain variable coe�cients, highly depends on certain relations that thesecoe�cients may verify or not. These relations are nothing else than the resultants on thecoe�cients that the system has to veri�ed in order to have a solution. These resultantsnaturally appear as formal integrability conditions when we study the formal integrabilityof the system. We can organize those integrability conditions in order to build a tree andeach �nal leaf represents a formal solution of the system with its degree of generality.Example 3 Let us consider the following system (we recall that @i1 :::@im y = yi1:::im):R2 � y22 � a(x) y1 = 0;y12 = 0:First of all, the symbol of the system, de�ned byM2 � v22 = 0; 1 2v12 = 0; 1 �is involutive (di�erentiating with respect to the dot does not bring new equation) and so,we only have to test if we have R(1)2 = R2. We have:R(1)2 8<: y22 � a(x) y1 = 0;y12 = 0;a(x) y11 + @1a(x) y1 = 0:9



1. If a = 0 then R(1)2 = R2 and R2 is an involutive system. We easily see that �12 = 1 and�22 = 0 which implies that 8 r � 0 : dim R2+r = dim M2+r+ dim R1=1+3=4.The solution of the system depends on one function of x1 and certain constants.Indeed, we easily integrate the system and we �nd y = c x2 + d(x1).2. If a 6= 0 then R(1)2 8<: y22 � a(x) y1 = 0;y12 = 0;y11 + b(x) y1 = 0;where b(x) = @1a(x)=a(x). M (1)2 = 0 is trivially involutive and we have to computeR(2)2 : 8>><>>: y22 � a(x) y1 = 0;y12 = 0;y11 + b(x) y1 = 0;@2b(x)y1 = 0:(a) If @2b(x) = 0 then R(2)2 = R(1)2 and R(1)2 is an involutive system. We have 8r � 0dimM (1)2+r = 0 and the solution of the system depends only on constants.(b) If @2b(x) 6= 0 then R(3)2 = R(2)2 and thus R(2)2 is an involutive system:8>><>>: y22 = 0;y12 = 0;y11 = 0;y1 = 0:The solution of the system depends only on dim R(2)1 = 3 � 1 = 2 constants.Indeed, we easily integrate it and �nd y = c x2 + d.We obtain the following intrinsic tree of integrability conditions.
a = 0 a 6= 0




@2(@1aa ) = 0 JJJJJ@2(@1aa ) 6= 0
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We now give an example in which the third kind of inequalities appears when bring-ing the system to formal integrability. In particular, we are interested in knowing howthe compatiblity conditions vary (number and order) with the variable coe�cients of thesystem.Example 4 Let us de�ne the following systemR2 8>>>><>>>>: y33 � a y11 = 0;y23 = 0;y22 � b y11 = 0;y13 = 0;y12 = 0; (9)where a and b 2 R. We have the following multiplicative variables:10



M2 8>>>><>>>>: v33 � a v11 = 0; 1 2 3v23 = 0; 1 2 �v22 � b v11 = 0; 1 2 �v13 = 0; 1 � �v12 = 0: 1 � � (10)If we prolong with respect to the dots, we �nd two new equations: a v111 = 0 and b v111 = 0.Thus M2 is involutive if a = b = 0. Else, if we prolong once the symbol M2, we obtainM3 = 0, i.e., M2 is �nite type and M3 is a trivial involutive symbol. In that case, wecan easily check whether the symbol M2 is 2-acyclic or not: we have to compute thecohomology H22 (M2) of the following sequence0 �! �2T ? 
M2 ��! �3T ? 
 T ?:Thus, we only have to check under what conditions on a and b, � is injective:8 ! = v�k;ijdxi ^ dxj 2 �2T ? 
M2 : �(!)� = (v�3;12 + v�1;23 + v�2;31)dx1 ^ dx2 ^ dx3:Thus �(!) = 0 with v�k 2 M2 ) v11;23 = v22;31 = v33;12 = 0 ) a v11;12 = 0; b v11;31 = 0and � is injective i� a 6= 0 and b 6= 0. In this case, M2 is 2-acyclic but not involutiveotherwise we would have the exact sequence ::: �! �2T ?
M3 ��! �3T ?
M2 �! 0 andthus M3 = 0)M2 = 0, which is obviously not true.We obtain the following tree of integrability conditions:
� a = 0;b = 0:M2 involutiveM3 6= 0 � max(jaj; jbj) 6= 0;min(jaj; jbj) = 0:M2 not 2-acyclicM3 = 0 involutive � a 6= 0;b 6= 0:M2 2-acyclicM2 not involutiveM3 = 0 involutive

QQQQQQQQ��������
1. In case a = 0; b = 0, M2 is involutive and we easily see that R(1)2 = R2. Thus,R2 is an involutive system. Moreover, dimM02=1, dimM12=0, dimM22=0 ) �12 =1; �22 = 0; �32 = 0. Thus dimM2+r=dimR2+r=1, 8r � 0. We �nd the compatibilityconditions of 8>>>><>>>>: y33 = z1; 1 2 3y23 = z2; 1 2 �y22 = z3; 1 2 �y13 = z4; 1 � �y12 = z5; 1 � � (11)by derivating the equations with respect to the dots and projecting on the systemR2. We �nd 6 homogeneous �rst order compatibility conditions:8>>>>>><>>>>>>:

z23 � z12 = 0;z33 � z22 = 0;z53 � z21 = 0;z43 � z11 = 0;z42 � z21 = 0;z52 � z31 = 0:11



We let the reader check that this system is involutive (it is a general property ofinvolutive systems [20]). Now, if we want to know the compatibility conditions of8>>>>>><>>>>>>:
z23 � z12 = t1; 1 2 3z33 � z22 = t2; 1 2 3z53 � z21 = t3; 1 2 3z43 � z11 = t4; 1 2 3z42 � z21 = t5; 1 2 �z52 � z31 = t6; 1 2 � (12)we still di�erentiate the equations with respect to the dots and project the resultson the system, we obtain 2 compatibility conditions:� t53 � t42 + t11 = 0; 1 2 3t63 � t22 + t21 = 0: 1 2 3 (13)This system does not have compatibility conditions. We have just build the Janetsequence of the operator D : y ! z de�ned by (11). We have:0! �! E D�! F1 D1�! F2 D2�! F3 �! 0;where � is the kernel of D and the operators D1 : z ! t and D2 : t! s are de�nedby (12) and (13) in which s is the second member.2. In case a 6= 0; b 6= 0 (for example a = b = 1) then M2 is 2-acyclic and R(1)2 =R2. Hence, the system is formally integrable. In this case, we can compute thecompatibility conditions of 8>>>><>>>>: y33 � a y11 = z1;y23 = z2;y22 � b y11 = z3y13 = z4;y12 = z5; (14)by computing R(1)2 = R2. We �nd only 5 homogeneous �rst order compatibilityconditions, de�ned by: 8>>>><>>>>: z23 � z12 � a z51 = 0;z33 � z22 + b z43 = 0;z53 � z21 = 0;b z43 � az52 � b z11 + a z31 = 0;z42 � z21 = 0:3. Finally, in case max(jaj; jbj)6= 0 and min(ja jbj)= 0, M2 is not 2 acyclic and wehave to prolong the system and see whether or not R(1)3 = R3, as we already knowthat M3 = 0 is a trivial involutive symbol. We let the reader check that it isthe case and R3 is an involutive system. Let us suppose that a 6= 0 and b = 0.Computing the compatibility conditions by di�erentiating with respect to the dots ofM3 and projecting on R3, we �nd 6 homogeneous �rst and second order compatibilityconditions: 8>>>>>><>>>>>>:

z433 � z113 � a z411 = 0;z53 � z21 = 0;z52 � z31 = 0;z33 � z22 = 0;z23 � z12 � a z51 = 0;z24 � z21 = 0:We have to remark that R2 is formally integrable (8r; s � 0 : R2+r+s is a �beredmanifold andR2+r+s !R2+r is surjective) even if the Spencer-Goldschmidt criterionis not satis�ed (see example 1). 12



Notice that a simple change of the parameters a and b has totally changed the com-patibility conditions of the system R2 (the number and the orders). Moreover, in thatexample, the 2-acyclicity of M2 is a generic property. Obviously, we can �nd examplescombining the three kinds of inequations.3 Applications to Control Systems TheoryRecently, the structural properties of control systems have received a new insight with theuse of di�erential algebra, formal integrability theory and di�erential module (D-module)theory. See for example [3, 9, 10, 11, 17, 21, 22, 23, 25]. Certain intrinsic properties of thecontrol systems have been reformulated in terms of the algebraic nature of its underlyingdi�erential module (as torsion, torsion-free, projective or free module). Formal tests havebeen found in [21, 22, 23, 25] to test whether a �nitly generated D = A [d1; :::; dn]-module(A a di�erential ring containing R) satis�es one of the above properties. These testsonly use formal integrability theory and thus, most of the structural properties of controlsystems can be tested by bringing a system of ODE or PDE to formal integrability (testingthe surjectivity or the injectivity of an operator, computing the compatibility conditions,...). We are able to use the preceding results for control systems with variable coe�cientsor for linearized nonlinear ones. It will lead to trees of integrability conditions.We �rst recall a few statments and results on D-module and linear operators. For moredetails, see [21, 23, 25]. In particular, the idea is to study how the algebraic nature of adi�erential module, determined by a system of PDE, changes with the variable coe�cientsof the system.3.1 D-module and Linear OperatorLet D0 : E ! F0 be a linear operator, where E and F0 are vector bundles over X anddimE = m. The operator D0 is injective if D0 � = 0 ) � = 0 and it is surjective if theequations D0� = 0 are linearly di�erential independent or if D0 � = � has no compatibilityconditions, i.e., if it does not exist an operator D1 such that D0 � = � ) D1 � = 0 [21].Let A be a di�erential ring with n commuting derivatives @1; :::; @n, containing R. Wedenote by D = A [d1; :::; dn] the ring of di�erential operators with coe�cients in A wherethe di satis�es: 8 a; b 2 A : a di(b dk) = ab di dk + a(@i b)dk:D is an integral domain which is commutative ring only when A is a ring of constants(with respect to the derivatives @i; i = 1; :::; n). However, it possesses the left and right Oreproperties: 8 (p; q) 2 D2; 9 (r; s); (u; v) 2 D2 : r p = s q and p u = q v: Let � = f�1; :::; �mgbe some di�erential indeterminates and let us form the free left D-module generated by �and denote it by [�]. Every element of [�] has the following form: P �nite a�k d� �k; where� = (�1; :::; �n) is a multi-index. For all the algebraic concepts, see [29].A fundamental idea is to associate with any operatorD the leftD-moduleM = [�]=[D �].We will say, in the rest of the text, that the operator D determines the D-moduleM.De�nition 4 � An element � of M is called a torsion element if there exists a nonzero element of D which kills � , i.e., 9 a 2 D; a 6= 0 ; a � = 0. We note by t(M) thesubmodule formed by the torsion elements ofM.� A D-moduleM is torsion-free if t(M) = 0. The D-moduleM=t(M) is a torsion-freeD-module.Example 5 Let us consider the system D� = 0 de�ned by� ��1 + �1 � �2 + ��3 = 0;��2 + �2 � �1 � �3 = 0;13



where � 2 R and the D-moduleM = [�]=[D�] determined by the operator D.� For � = �1, if we substract the �rst equation from the second, we �nd �1 = �1 � �2satisfying ( d2dt2 + 2)�1 = 0. The element �1 is a torsion element ofM.� For � = 1, if we add the �rst equation to the second, we �nd a torsion element�2 = y1 + y2 satisfying ( d2dt2 )�2 = 0.It is quite di�cult to see that, except these two values of the parameter �, the D-moduleM is torsion-free.We now recall the duality of di�erential operators to give a formal test checking whethera �nitely generated D-module M is torsion-free or not. If M is not a torsion-free D-module, the test gives the generators of t(M) and the operators killing them. We denoteE? the dual bundle of E and ~E = Vn T ?
E? its adjoint bundle. If D : E ! F is a lineardi�erential operator, its formal adjoint ~D : ~F ! ~E is de�ned by the following rules:� the adjoint of a matrix (zero order operator) is the transposed matrix,� the adjoint of di is �di,� for two linear PD operators P;Q that can be composed: P̂ �Q = ~Q � ~P .We have the relation �tD0 � = ( ~D0 �)t� + d(�);with d the exterior derivative. We can directly compute the adjoint of an operator bymultiplying it by test functions on the left and integrating the result by part.Example 6 Let us compute the adjoint of the operator D : � ! � de�ned by:� �122 � a(x)�21 + �1 = �1;�212 � �111 = �2:Multiplying the system by (�1; �2) on the left and integrating the result by part, we �ndthe operator ~D : �! �: � d22�1 � d11�2 + �1 = �1;d12�2 + a(x)d1�1 + d1a(x)�1 = �2:De�nition 5 We call an operator D1 parametrizable if there exists a set of arbitrary func-tions � = (�1; : : : ; �r) or �potentials� and a linear operator D0 such that all the compati-bility conditions of the inhomogenous system D0 � = � are exactly generated by D1� = 0.In that case, we will say that the sequence E D0�! F0 D1�! F1 is formally exact.We describe a formal test checking if the operator D1 determines a torsion-free D-moduleM or not (see [21] and compare with [16]):1. Start with D1.2. Construct its adjoint ~D1.3. Find the compatibility conditions of ~D1� = � and denote this operator by ~D0.4. Construct its adjoint D0.5. Find the compatibility conditions of D0 � = � and call this operator by D01.We are led to two di�erent cases. If D01 = D1 then the system D1 determines a torsion-free D-module M and D0 is a parametrization of D1. Otherwise, the operator D1 isamong, but not exactly, the compatibility conditions of D0. The torsion elements of Mare all the new compatibility conditions modulo the equations D1� = 0.14



We can represent the test by the following di�erential sequences where the numberindicates the di�erent stages: 5D01�! F 01E D0�! F0 D1�! F14 1~E ~D0 � ~F0 ~D1 � ~F13 2Hence, summerizing the above results, we obtain the following useful theorem.Theorem 6 A system D1 determines a torsion-free D-module M i� the operator D1 isparametrizable. Hence, for systems of PDE with variable coe�cients, we have to constructtwo trees of integrability conditions (one for ~D1 and the other for D0) to know whether D1determines a torsion-free D-module or not.Such examples with two trees of integrability conditions are very rare. We take anexample of [24].Example 7 Let us consider the �nite transformation y = f(x) satisfying the Pfa�ansystem: dy3 � a(y2)dy1 = �(x)(dx3 � a(x2)dx1):Linearizing such a transformation around the identity by setting y = x+ t�(x) + : : : andmaking t ! 0, after eliminating �(x), we discover that in�nitesimal transformations arede�ned, trough the use of a correct geometric object, by the kernel of the di�erentialsystem D0� = � as following (see p. 237 of [21]):8<: �a(x2)�11 + �31 + 12a(x2)(�11 + �22 + �33)� �2@2a(x2) = �1;�a(x2)�12 + �32 = �2;�a(x2)�13 + �33 � 12(�11 + �22 + �33) = �3:From the theory of Lie pseudogroups [21], we can prove that the PD system D0� = 0 isformally integrable if and only if @2a(x2) = c = cst, the �classical case� of contact trans-formations corresponding to a(x2) = x2 () c = 1). It follows that the only compatibilitycondition D1� = 0 is �a(x2)(�32 � �23) + �21 � �12 + @2a(x2)�3 = 0;and the operator D1 is surjective. The adjoint operator ~D1 is de�ned by:8<: �2 = �1;�a(x2)�3 � �1 = �2;a(x2)�2 + 2c� = �3:As �3 � a(x2)�1 = 2c�, the operator ~D1 is injective if and only if c 6= 0. In that case, thetwo independent compatibility conditions can be written:� d2�3 � a(x2)d2�1 � 3c�1 = 2�2;�a(x2)d3(�3 � a(x2)�1)� d1(�3 � a(x2)�1)� 2c�2 = �2(�1 + a(x2)�3);after introducting the adjoint ~D0 of D0 as follows:8<: 12a(x2)d1�1 + 12d1�3 + a(x2)d3�3 + a(x2)d2�2 + @2a(x2)�2 = �1;�12a(x2)d2�1 + 12d2�3 � 32 @2a(x2)�1 = �2;�d1�1 � 12a(x2)d3�1 � d2�2 � 12d3�3 = �3:15



Now, let us start with the operator ~D0 depending on the arbitrary function a(x2) and letus question about the algebraic nature ofM = [�]=[ ~D0�]. According to the general test,we must construct the adjoint of ~D0 which is D0 and look for its compatibility conditionsD1, a result bringing out the condition @2a(x2) = c, where c is an arbitary constant. Whenc = 0, we should �nd the zero order compatibility condition �3�a(x2)�1 = 0 which is not aconsequence of ~D0 and thus ~D0 determines a D-moduleM with torsion elements. Indeed,we call easy verify that the element non zero element � = �3 � a(x2)�1 2 M satis�esd2� = 0 . When c 6= 0, the adjoint ~D1 admits the compatibility condition expressed by ~D0because we have in that case:a(x2)d3�3 + d3�1 � d2�2 � a(x2)d1�2 + �3 = 0;which gives �3 = (d2 + a(x2)d1)�2 � d3(�1 + a(x2)�3) andM is a torsion-free D-module.We recall the de�nition of a free D-module.De�nition 6 AD-moduleM is a freeD-module if there exists a basis ofM, i.e., elementsofM which are independent on D and which generateM.Theorem 7 An operator D1 determines a free D-module i� it admits an injective parametriza-tion D0, i.e., if the sequence 0 �! E D0�! F0 D1�! F1 is formally exact.We turn now to an important class of D-module: projective module. We only givesome basic results. See [23, 25] for more general ones, and in particular, how to use ofprojective D-module and formal duality in order to split certain di�erential sequences ofoperators. See [18] for more deeper results.De�nition 7 A D-moduleM is a projective D-module if there exists a D-module N anda free D-module F such that F = M�N , i.e., M is a summand of a free D-module.Remark that N is a projective D-module too.We have the following theorem, which allows us to test ifM is a projective D-module.Theorem 8 A surjective operator D1 : F0 ! F1 determines a projective D-module ifthere exists an operator P1 : F1 ! F0 such that D1 � P1 = idF1 , where idF1 is the identityoperator of F1, i.e., if its dual ~D1 is injective. In particular, if the system has variablecoe�cients, only one tree of integrability conditions has to be built in order to decidewhether the operator determines a projective D-module or not.Let us describe a formal test for checking whether a D-moduleM is projective or not:1. Start with D1 and check its surjectivity.2. Construct its adjoint ~D1.3. Check whether ~D1 is an injective operator or not.We are led to two di�erent cases. If ~D1 is an injective operator then D1 determines aprojective D-module. If we want to compute its right-inverse, we have to bring the system~D1� = � to formal integrability. We have to �nd � = ~P1�. Dualize this operator, we �ndthe operator P1 which satis�es P1 � D1 = IdF1 . In the case when the adjoint of D1 is notinjective, then D1 does not determine a projective D-module.Example 8 Let us show that the operator D : � ! � de�ned by�22 � x2 �11 + �1 = �16



determines a projective D-moduleM. We �rst dualize D and we �nd the ~D : �! �:� x2�1 + � = �1;��2 = �2:We now study the formal integrability of the preceding system in � and we �nd a newequation � = �x2(d2�1 + x2d1�2 + �2) + �1. Thus ~D� = 0 ) � = 0 and thus M is aprojective D-module with a right-inverse P given by the dual of the operator �x2(d2�1 +x2d1�2 + �2) + �1 = �. We obtain P : � ! � de�ned by� x2�2 + 2� = �1;(x2)2�1 � x2� = �2;and we let the reader verify that D � P = Id.For non surjective operator, see [25]. It is quite easy to see that every free D-module isprojective and every projective D-module is a torsion-free, which can be summed up bythe following module inclusions:free � projective � torsion-free:For a principal ideal ring D (for example D = k[ ddt ] with k a �eld), every torsion-freeD-module is a free D-module. Thus, we have the following useful corollary:Corollary 2 A surjective OD operator determines a free D-module i� its dual is injec-tive. In particular, if the operator has some variable coe�cients, we only need one tree ofintegrability conditions to know whether it determines a free D-module or not.Quillen and Suslin have demonstrated independently in 1976 the Serre conjecture of1950 claiming that every projective module over a polynomial ring k[�1; :::; �n], where k isa �eld, is free (see [29]). It is typically the case where D = k[@1; :::; @n] and k is a constant�eld (i.e., 8 i = 1; :::; n;8 a 2 k : @i(a) = 0). Thus, we have the following corollary:Corollary 3 A surjective operator with constant coe�cients determines a free D-modulei� its formal adjoint is injective.Now, we give an example showing that the algebraic nature of a D-module, determinedby a linear PD system with variable or unknown coe�cients, depends on some integrabilityconditions on the coe�cients.Example 9 Let D1 : � ! � be the operator de�ned by:�12 � ��11 � �22 + a(x)�2 = �; (15)with � 2 R and letM be the D-module determined by D1. We would like to know how thealgebraic nature of the D-module M (torsion, torsion-free, projective and free) dependson the coe�cients. Dualizing D1, we obtain the operator ~D1 : �! � de�ned by:� ��2 + ��1 = �1;�2 + a(x)� = �2;which can be rearrange under the following form:� ��2 + ��1 = �1;� �1 + a(x)� = �1 + �2:We put �1 = �2 = 0 and we call R1 the corresponding system:R1 � ��2 + ��1 = 0;� �1 + a(x)� = 0: (16)We now study the formal integrability of the system R1. First of all, M1 is an involutivesymbol 8� but its dimension depends on whether � is equal to zero or not.17



1. If � = 0 then dimM1=2-1=1 and M1 is involutive. Now, the dimension of R1depends whether a = 0 or not.(a) If a = 0 then dimR0=1-0=1 and R1 is formally integrable and we easily �ndthatM is a torsion D-module generated by � = �1 � �2 satisfying @2 � = 0.(b) If a 6= 0 then ~D1 is an injective operator. Thus D1 determined a projectiveD-module and we have ~P1 : � ! � de�ned by (�1 + �2)=a(x) = �. Dualizing,we obtain the right-inverse P1 : � ! � of D1 with8><>: �a(x) = �1;�a(x) = �2:We let the reader check that a parametrization D : � ! � of D1 is de�ned by� �a(x)�2 + (a(x)2 � 2 @2a(x))� = �1;�a(x)�2 � 2 @2a(x) � = �2:It is an injective parametrization as we easily see that � = �1 � �2a(x)2 andM = [�].2. If � 6= 0 then dimM1=2-2=0 and M1 = 0 is a trivial involutive symbol. We onlyhave to study the projection �21 : R2 ! R1, i.e., R(1)1 . We have:R(1)1 8<: ��2 + ��1 = 0;� �1 + a(x)� = 0;(@2a(x)� � @1a(x))� = 0:The dimension of R(1)0 depends on whether @2a(x)��@1a(x) is equal to zero or not.(a) If @2a(x) � � @1a(x) = 0 then D1 does not determined a projective D-moduleM. But we easily �nd a parametrisation D : � ! � de�ned by:� �2 � a(x) � = �1;�2 � � � = �2:Thus D1 determines a torsion-free but not projective D-moduleM.(b) If @2a(x) � � @1a(x) 6= 0 then ~D1 is an injective operator and D1 determines aprojective D-moduleM. We let the reader check that� = d2�1 + d2�2 � � d1�1 + a(x)�1@2a(x)� � @1a(x) :If we pose � = �@2a(x)� � @1a(x) then P1 : � ! � de�ned by:� ��2 + a(x)� = �1;��2 + ��1 = �2;is a right-inverse of D1.We can sum up the previous study by the following intrinsic tree of integrability conditions:
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a = 0M torsionD-module
JJJJJa 6= 0M freeD-module
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@2a� � @1a = 0M torsion-freeD-module
JJJJJ@2a� � @1a 6= 0M projectiveD-module
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3.2 Structural Properties of Linear Control SystemsWe now give a mathematical de�nition of a control system (see [15, 9, 21] for more details).De�nition 8 A control system is a system Rq � Jq (E �X F �X G), where E �X F �X Gdenotes the �bered product, that is the �bered manifold over X consiting of all elements(u; y; z) in E �F �G having the same projection into X. If Rq is de�ned by a di�erentialprime ideal I of kfU; Y; Zg (k a di�erential �eld) then a control system is the extensionkhu; y; zi = Q(kfU; Y; Zg=I) over k. We call u the input, y the output and z the latentvariable. In the linear case, a control system is theD-moduleM determined by an operatorD1 : F0 ! F1, where a section of F0 is � = (u; y; z).3.2.1 ControllabilityControllability is one of the key concepts of the control systems theory. Its de�nition andtest for time-varying linear systems go back to Kalman's pioneering work [15]. We recallsome recent improvements. See [3, 9, 10, 11, 17, 21, 23, 25] for more details.We call observable any element ofM, i.e., any linear combination of the system vari-ables (input and outputs together) and their derivatives. Only two possibilities may hap-pen for an observable: it may or may not verify a PD equation by itself. An observablewhich does not satisfy any PD equation is called free. In [21], we can �nd the followingde�nition:De�nition 9 A control system is controllable i� every observable is free.A characterization of the controllability in terms of di�erential closure is shown in [21].In [9, 11], the de�nition has been reformulated in the di�erential module framework:De�nition 10 A linear control system is controllable i� it determines a torsion-free D-module.Hence, using the results of the previous section, we obtain:Corollary 4 A linear control system D1 is controllable i� it is parametrizable by an oper-ator D0. Hence, the controllability depends at most on two problems of formal integrabilityand thus at most on two trees of integrability conditions.We know that a nonlinear control system is controllable if its generic linearization iscontrollable [23]. However, the linearized control system has variable coe�cients, satisfyingthe nonlinear control system. Hence, we have to build trees of integrability conditions toknow whether a nonlinear control system is controllable or not.19



Example 10 Let us consider the system de�ned by the operator ~D0 of the example 7 andlet us question about its controllability. We have seen that the module determined by ~D0was a torsion-free D-module, i.e., controllable, if @2a(x2) = c and c 6= 0. The �rst conditionis a particular branch of a �rst tree of integrability conditions (formal integrability of D0)and the second is another branch of a second tree (formal integrability of ~D1) dependingof the �rst tree. Hence, the study of the controllability of that system depends on twotrees of formal obstructions (see [24]). Examples of a double tree of formal obstructionsto the controllability are very rare.It is quite often supposed that the inputs are linearly di�erentially independent, a factthat leads to the surjectivity of the corresponding operator. Then, we have the usefulcorollary:Corollary 5 A surjective OD control system D1 is controllable i� it adjoint ~D1 is injective.In this case, the controllability depends only on one tree of integrability conditions.Example 11 We study the controllability of the system� �y1 + y1 � y2 + �u = 0;�y2 + y2 � y1 � u = 0;where � 2 R. Dualizing the surjective operator D1, we obtain ~D1 de�ned by:8<: ��1 + �1 � �2 = �1;��2 + �2 � �1 = �2;��2 + ��1 = �3:We put �1 = �2 = �3 = 0 and bring this system to formal integrability, we obtain the newequation (�+ 1)(� � 1)�1 = 0and ~D1 is injective and thus controllable i� � 6= �1 and � 6= 1.We notice that these results show that the controllability is a �built-in� property of acontrol system that does not depend on the separation of the variables between inputs andoutputs, a fact very far from engineering intuition.Recently, the important class of �at nonlinear control systems has been found in [11].This class of systems is particulary useful for the motion planning.De�nition 11 A linear control system D1 is a �at system if D1 determines a free D-module.For linear control systems, we prefer to call this notion di�erential freedom than �atness.Indeed, we do not have to confuse �at control systems with the algebraic notion of �atD-module, which in that case, is equivalent to the notion of projective D-module (M is�nitely presented). For more details, see the nice reference [29].Theorem 9 A control system D1 determines a free control system i� D1 is parametrizedby an injective operator D0. If D1 is a surjective operator with constant coe�cients, itdetermines a free control system i� its adjoint is injective.The basis of the D-module M of a free control system are called the �at output orlinearizing outputs. If D1 is parametrized by an injective operator D0 then the basis � isobtained by bringing the operator D0 to formal integrability. Indeed, we �nd an operatorP0 such that P0 � D0 = IdE and thus � = P0�.20



Example 12 In the example 9, only one tree of integrability conditions has to been builtin order to conclude about the algebraic nature of the D-module determined by D1. Inthe example 7, the module M determined by ~D0 is a free D-module if @2a(x2) = c andc 6= 0. Indeed in that case, ~D0 is parametrized by the injective operator ~D1, and we haveM = [�3 � a(x2)�1]. In this example, the freedom of the control system ~D0 depends ontwo sucessive trees of integrability conditions.3.2.2 ObservabilityAnother key concept in control theory is the concept of observability. It has been refor-mulated recently in the D-module framework in [3, 9, 10, 21] as follows:De�nition 12 A system of control M = [�0; �00] is said to be observable with respect to�0 i� [�0] =M, that is, i� every component of �00 can be expressed as a linear combinationof the components of �0 and their derivatives.We can reformulate the above de�nition, saying that the systemM is observable withrespect to �0 i�M=[�0] = 0 or equivalently, in the language of operator theory:Theorem 10 Let D1 : F0 ! F1 be an operator determining the D-module M and F 00be the subbundle of F0 with sections (0; �00) then M is observable with respect to �0 if theoperator induced D01 : F 00 ! F1 is injective.Example 13 Let us study the observability of the following system� z222 + z112 + z1 � u = 0;z212 � z111 + z2 � y = 0;with respect to u and y. Bringing the above system to formal integrability in z = (z1; z2),we �nd that the symbol M2 is involutive (di�erentiating with respect to the dot does notbring new equation) and we let the reader check by himself that we obtain:R(2)2 8>>>><>>>>: z222 + z112 + z1 = u;z212 + z111 � z2 = y;z22 + z11 = u1 � y2;z1 = u22 � y12 + y;z2 = y11 � u12 � u;and the system is observable.From the above theorem, we have only to study the formal integrability of one systemof ODE or PDE and thus we have the following corrolary.Corollary 6 The observability of a control system with variable or unknown coe�cientsonly depends on one tree of integrability conditions.Example 14 Let us consider the following control system8<: �x1 + x1 � x2 � u1 = 0;�x2 + x2 � x1 � u2 = 0;�y � x2 + �x1 = 0;where x = (x1; x2) is the state, u = (u1; u2) the input, y the output and � 2 R. This systemis observable with respect to (y; u) i� [x; y; u] = [y; u], i.e., if the operator D01 : x ! �de�ned by 8<: �x1 + x1 � x2 = �1;�x2 + x2 � x1 � u2 = �2;�x2 + �x1 = �3;21



is injective. We recognize that this operator is nothing else than the dual of the operatorD1 in the preceding example and thus the system is observable i� � 6= �1 and � 6= 1. If� 6= �1 and � 6= 1, we have:( x1 = 1(�+1)(��1) (�y + (1 + �)y + u2 � �u1);x2 = �(�+1)(��1) (�y + (1 + �)y + u2 � �u1)� y:Many others properties of the control systems have been reformulated using formalintegrability theory [21]. Look also at [6] to have a general view of certain properties ofcontrol systems theory that can be tested by e�ective di�erential algebraic methods. Forexample:� computation of di�erential transcendence degree: we bring the system to be involutiveand compute the last character �nq ) computation of output rank ) invertibility [6].� state elimination: we bring the system in (z; y; u) to formal integrability in the state zand obtain resultants in u and y which de�ne the input-output behaviour (see example 2).� structure at in�nity: we bring the system in (y; u) to formal integrability in u [19], ...Thus these properties depend on trees of integrability conditions if the system has variablecoe�cients.4 ConclusionIn this article, we have begun to develop a theory of formal elimination for system of PDE,using the formal integrability theory. We hope that we have convince the reader that thisapproach seems to be natural in many problems and in particular for linear systems ofPDE with variable coe�cients. In his paper [30], Seidenberg has given a general solutionfor this problem based on di�erential algebraic approach. But, as we have already noticed,the e�ective character always competes with the intrinsic character. Thus, we think thatthe formal theory of elimination will give more intrinsic results than the purely di�erentialalgebra methods. We have mainly studied the linear case with variable coe�cients for itssimplicity and also because it gave some nice results in control theory. We shall developthe nonlinear case later on in future papers. We think that an interesting problem souldbe to revisit the Douglas' classi�cation of the inverse problem of the calculus of variations(see [7]) in this modern framework.References[1] H. Blomberg and R. Ylinen, Algebraic Theory for Multivariable Linear Sytems, Aca-demic Press, 1983.[2] N. Bourbaki, Algèbre Homologique, chap. X, Masson, Paris, 1980.[3] H. Bourlès and M. Fliess, Finite Poles and Zeros of Linear Systems: an IntrinsicApproach, H. Bourlès and M. Fliess, to appear in International Journal of Control.[4] S. Diop, Elimination in Control Theory, Math. Control Signals Systems, 4 (1991),17-32.[5] S. Diop, Closedness of morphisms of di�erential algebraic sets. Applications to systemtheory, Forum Math., 5 (1993), 33-47.[6] S. Diop, Di�erential algebraic decision methods and some applications to system the-ory, Theoret. Comput. Sci., 98 (1992), 137-161.[7] J. Douglas, Solution of the Inverse Problem of the Calculus of Variations, Trans.Amer. Math. Soc. 50 (1941), 71-128.[8] A. Einstein, The Meaning of Relativity, 4th edn. Princeton, Appendix II, 1953.22
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