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Abstract

Following Douglas’ ideas on the inverse problem of the calculus of variations, the pur-
pose of this article is to show that we can use the formal integrability theory to develop
a theory of elimination for systems of partial differential equations. In particular, we con-
sider linear systems of partial differential equations with variable coefficients and we show
that we can organize the integrability conditions on the coefficients to build an “intrinsic
tree”. Trees of integrability conditions naturally appear when we test the controllability,
observability, invertibility, ... of linear control systems with some variable or unknown
coefficients, or for linearized nonlinear systems. Many explicit examples will illustrate the
main results.
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1 Introduction

Expansion into power series of analytic or formal solutions of a system of partial differential
equations (PDE) has early been a powerful tool in mathematics, physics and engineering
sciences. In particular, the wish to have a theory which computes the dimension of the
space of the analytic solutions of a system of PDE, without integrating it explicitly, is not
new, as Einstein explained it in 1952 in [8]: “... we need a method which gives a measure
of the strength of an equation system. We do as follows: we expand the field variables in
the neighborhood of a point P, into Taylor series (which presupposes the analytic character
of the field), the coefficients of these series, which are simply the derivatives of the field
variables at the point P, fall into sets according to the degree of differentiation. In every
such degree there appears, for the first time, a set of coefficients which would be free for
arbitary choice if it were not that the field must satisfy a system of differential equations.
Through this system of differential equations (and its derivatives with respect to the coor-
dinates) the number of coefficients is restricted, so that in each degree a smaller number
of coefficients is left free for arbitrary choice. The set of numbers of “free” coefficients for
all degrees of differentiation is then directly a measure of the “weakness” of the system of
equations, and through this, indirectly, also of its “strength”.”



This notion of “strength” or of “degree of generality” of a system of PDE was introduced
by Ch. Riquier [27] and M. Janet [14] in the years 1910 - 1930. They developped effective
algorithms in order to compute it without integrating the system explicitly. Their works
have inspired J.F. Ritt while he was creating differential algebra (see the last two chapters
of [28] for a exposition of Riquier and Janet works). More recently and indepently of these
precursors, the formal integrability theory has been developped in a intrinsic way by D.C.
Spencer, using fibered manifolds, jet, d-cohomology, diagram chasing, ... [21, 26]. In the
beginning of the eighties, the formal integrability theory of PDE with Lie pseudogroups
methods has given new insight on mathematical physics (see [21]).

In this paper, we are interested in elimination problems. We consider a system of PDE
with two sets of variables and our interest is to know under what conditions on the first
set of variables the system admits a solution. The solution of this problem was found
by Seidenberg in 1956 (see [30]) using differential algebra approach. The purpose of this
article is to show that we can use the formal integrability theory to compute the resultants
of a system of PDE. This approach seems to be more intrinsic and permits to have a new
point of view on the resultants. In particular, following the Spencer-Goldschmidt criterion,
only three kinds of inequalities may appear in the resultants: the first ones appear for rank
conditions (fibered manifold), the second for the surjectivity of the restricted prolongations,
and the third ones when testing a more technical property, that is, the 2-acyclicity of the
symbol of the system. In case of linear system of PDE with variable coefficients, these
inequalities on the coefficients can be arranged in order to build an “intrinsic tree”. Each
final leaf represents a formal solution of the system with its degree of generality. Hence,
we can study the variation of the degree of generality of the formal solutions of a linear
system of PDE with variable coefficients. Surprisingly, such a point of view has firstly
been adopted by J. Douglas (1941) in his study of the inverse problem of the calculus of
variations [7], using the ideas of M. Janet [14].

Recently, the theory of differential module (D-module) has given a new insight for
studying the structural properties of control systems. See for example [1, 3, 9, 10, 17,
21, 22, 23, 24, 25|. Most of the intrinsic properties as controllability, observability and
invertibility of control systems have been reformulated in terms of an algebraic nature of
a differential module (as torsion, torsion-free, projective, free D-module, ...). Formal tests
have been developped in [21, 22, 23, 25| to know whether a finitely generated differential
module is respectively a torsion, torsion-free, projective and free D-module. Thus, if we
consider control systems with variable coefficients or linearized nonlinear ones, certain trees
of integrability conditions will naturally appear when testing these properties. Elimination
problems in control theory have been introduced by S. Diop in [4, 5, 6], using effective
methods of differential algebra. These methods are in general more effective than those
of the formal integrability theory, but less intrinsic (dependence of coordinate system
through the ranking, choice of differential polynomials in characteristic set) (see [20]).
Roughly speaking, we can say that the effective character always competes with intrinsic
one.

2 Formal Integrability Theory

2.1 Introduction

We now introduce the main ideas of the formal integrability theory, before exposing them,
using more technical tools.

Roughly speaking, if we want to compute the “degree of generality” of a formal solution
of a system of PDE, we have to know the number of “arbitrary” (“free”, “parametric”; ...
depending on the author) derivatives at each order.

Let us consider a system of PDE &7 (z, 8uyk(5c)) =0 of order ¢, where 7 =1, ...,1, k =

1,....m and g = (41,..., 4p) is a multi-index with length |u| = p1 + ... + pn (we shall



frequently use the notation 9;,...0;, y* = yflmim). We substitute the derivative of the
unknowns y* by jet coordinates with the same indice (9,y*(z) — yﬁ)), that is to say,
we regard any derivative of the y* as new unknowns. We shall say that a jet coordinate
with an indice of length lower or equal to ¢ is at the order ¢, and at the order strictly
q if the length of its indice is equal to ¢. Thus, @T(x,auyk(x)) = 0 is transformed into
a pure equation relating the jet coordinates: @T(x,yﬁ) = 0. Let us suppose that these
equations define a fibered manifold R, (no relation among the z only) in the space of jet
coordinates of order ¢q. Using implicit function theorem, we can locally determine some
jet coordinates in function of dim R, (the fibre dimension) other jet coordinates (we try
to write the greatest number of jet coordinates of order strictly equal to ¢ in function of
jet coordinates of lower order). We call the first ones “principal” jet coordinates and the
second “parametric’ jet coordinates. Thus, we have made a partition on the jet of order ¢
into two sets, principal and parametric, where the first one can be expressed in terms of
the second.

Now, we remark that if we differentiate once the equations of ®(z,d,y"(z)) = 0,
with respect to each x! (prolongation p;), and substitute again the derivatives by the jet
coordinates, we obtain:

d; @7 3xz Z Ay kyZJrl 0, (1)

lul=q

where ¢ = 1,...,n. Thus, the terms of order g+ 1 appear linearly with coefficients defined on
Ry, that is with jets satisfying 7 (z, yﬁ) = 0 (something well known in differential algebra).
This simple remark will allow us to use linear algebra. Let us define Ry11 = p1(Ry) by

;7 = 0,
{ 0 + o = 0 2)

t=1,..,n, 7=1,...,1. Now, let us call My, the vector space defined by

o0d" ,
> B v =0i=1.,n7=1..,1, (3)
lil=q
in the jet coordinates of order strictly equal to ¢+ 1. There are % jet coordinates
of order strictly equal to ¢ + 1 and if we denote by o1(®) the left member of (3), then
we have dim M, = % —rk o1 (®) parametric jet coordinates at the order stricly

g+ 1. Indeed, we can find in (3), rk oy (®) lineary independent equations and by linear
algebra in the upper part of (2) and substitution of the principal jet coordinates of order ¢
by the parametric ones, we obtain rk o1 (®) principal jet coordinates of order stricly g + 1
which can be expressed with dim M, parametric jet coordinates of order stricly g + 1
and with dim R, ones of order q.

Now, the trouble begins if rk o;(®) < In: we have certain equations of (3) which
are linear combinations of rk oy(®) others. Eliminating the jets of order ¢ + 1 in the
corresponding equations of (2), we obtain equations of order ¢g. Only two different cases
may happen:

e Substituting the principal jet of order ¢ in these new equations, we are led to 0, then
we have no new equations relating the parametric jet coordinates up to the order gq.
Thus, we have determined for the moment the number of parametric jet coordinates
of strict order ¢+ 1. If we put a second member 27 in the equations ®” = 0 and begin
again the same operations, we obtain: AY(z, yﬁ)dizT + B¥(x, yﬁ)zT =0,|ul <q We
notice that it leads to compatibility conditions in the linear case.

e Substituting the principal jet of order ¢ in these new equations, we are led to some

non identically zero equations \Ila(gc,yﬁ) =0, |u| < g, relating the parametric jet
coordinates up to order ¢q. This contradicts the fact that they are parametric jet



coordinates. Then, we have to add these new equations to the system &7 = 0 and
start anew with the following system:

T k
(1) ¢ (xayu) =0,
" { w2 W

We have just shown how to compute the number of parametric jet coordinates of order g+1.
Similary, it can be done for each order. We have seen that the feedback of informations
on the lower order derivatives (new equations W% (x, yﬁ) = 0) modifies the calculus of the
number of parametric jet coordinates and thus the calculus of the dimension of the space
of solutions (the parametric jet coordinates determine the initial conditions that we have
to give to compute the power series of the solutions). Hence, certain systems of PDE seem
to be “nicer” than some others, that is, those in which no feedback of informations on
the lower order derivatives appears when differentiating the equations of the system and
projecting them on lower order jets space. Hence, we shall call a system of PDE formally
integrable whenever the formal power series of its solutions can be determined step by
step by successive derivations without obtaining backward new informations on lower-
order derivatives. We may wonder how to recognize when a system of PDE is formally
integrable, as we have to verify that no new lower order informations appear at each order,
that is, for a infinity of orders. So, we can ask: does it exist a finite algorithm testing
whether a system of PDE is formally integrable or not? In the case where the system
is not formally integrable, we have seen that we have to add new equations. So, does it
exist a procedure which adds enough equations to the system, in order to transform it
into a formal integrable system, with the same solutions? D.C. spencer and coworkers
have given positive answers [26] in the years 1960-1975. Their algorithms turn around the
two following crucial points: first of all, we have seen that in (1), the jet coordinates of
order strict ¢ + 1 appeared linearly, a fact permitting to use linear algebra. Thus, we fell
that everything that we have done precedingly can be reformulated into a more intrinsic
way, using homological algebra(ker-coker exact sequences) in place of Cramer rules. D.C.
Spencer has introduced the J-sequence and its cohomology to deal with this problem.
Secondly, backward informations on derivatives of order ¢ have appeared after we had
projected R441 on the space of jet coordinates of order ¢: we have found more equations

in (4) than in ®” = 0 and thus the projection 7?,,(11) of Ry41 on the space of jet coordinates
of order g, is a stricly subset of R, (not always a submanifold). These remarks will lead
(at best) to a prolongation-projection procedure that we sketch.

2.2 Main Results of the Formal Integrability Theory

We now expose the main results of the formal integrability theory (see [26, 20] for more
details). These results will be illustrated in the examples of the next sections.

Let us denote by X a manifold of dimension n with local coordinates (z',...,z"), by
T(X) and T*(X), its tangent and cotangent bundles. Let £ be a fibered manifold over X
with fiber dimension m and local coordinates (z!,y*). We define the g-jet bundle J,(£)
as a fibered manifold with local coordinates (x,yﬁ), o= (1 s pin), 0 < Ju] < ¢ and
a nonlinear system of PDE of order ¢ as a fibered submanifold R, of J,(£), determined
locally by @7 (z, yﬁ) = 0. The r prolongation of Ry is Rytr = pr(Rq) = Jr(Rg) N Jr44(E),
and is obtained by substituting the jet coordinates by the derivatives, differentiating r
times and substituting again the derivatives by jet coordinates. The projection WZI:—i—S :
Jgtr+s(E) = Jg4r(€) induces a projection of Ryirys o Ryyr. We denote the image of

this projection by RE;RT. Notice that Ry, and Rgsﬁr are not in general fibered manifolds

T

O .
3yf,f Yu =0. Itsis

a linear system in Ylf, with variable coefficients satisfying ®” = 0. We define the symbol

for any r,s > 0. The linearized system R, of Ry is defined locally as:



M, of Ry, as the family of vector space over R, by

oODT
Y k=0, 7=1,..1, (5)

o0d7
Z WUZ‘H/ = 07 (6)

|pul=g,lv|=r

only depends on M,. We call 0,(®) = o(p,(®)) the left member of (6). Let us define the
d-sequence by

0
A8 T* X Mq+7-+1 — As+1 T* ® Mq+r,

with (5(w))Z =dx' A "‘)Z-l-li where w = ’UZJ dz! € A*T* @ Myiri1, dz! = dz™t A ...
Adz's iy < ... < ig and |u| = g + 7. We easily verified that 6 o § = 0. The cohomology at
A*T* ® Mgy, of the sequence

AL ™ ® Mq+r+1 i) AT ® Mq+r i> ASTL* ® Mq+r—1,
is denoted by Hy,,(M,).

Definition 1 The symbol M, of R, is said to be s-acyclic if Vr > 0 : H;_H = .. =
Hy., =0. M, is involutive if it is n-acyclic. In particular, every system R, of ordinary
differential equations (ODE) has an involutive symbol. A symbol M, is of finite type if
dr > 0 such that My, = 0.

Theorem 1 Let M, be the symbol of the system Ry then there exists an integer v large
enough such that My, is involutive.

A test checking the 2-acyclicity of the symbol is still lacking. Indeed, we have to verify
Hq2 . = 0 for any 7 > 0 and thus for an infinity of orders. Only the case of finite type
symbol can be checked as we only have to verify Hq2 =..= Hq2+r_1 = 0 where My, =0
and Myy,—1 # 0. But, we can test whether a symbol is involutive or not. However, it
must be done only on “sufficently generic coordinates”: the d-reqular coordinates. Roughly
speaking, the d-regular coordinates are not the most generic coordinates but “generic
enough” to give the right dimension of Mgy,.

Let = (z!,...,2") be a system of local coordinates of X and let us order the multi-
index p of length ¢: 1 < p' if there exists [ such that y; = p! fori =n,...,l+1 and y; < ,ué.
The order on the multi-index p implies a preorder on the UZ of My: p < i/ = vﬁ < vﬁ,.
We say that vﬁ isof class¢ > 1 if 1 = ... = ;1 = 0 and p; > 0 and of class 1 if p; > 0.
Now, using the equations defining M, we try to express the maximum number of vfj of
class n, in function of the others vly. Next, we substitute these v"j in the other equations
to make disappear the vﬁ of class n. We respectively do the same for the vﬁ of class n — 1,
..., 1. We usually say that M, is in the solved form. We associate a system of “dots” to
these equations, as follows:

equations of class n 1 ... .. n
equations of classn — 1 1 ... ... n—1 e
equations of classi 1 ... 4 . .
equations of class 1 1 e .. °

Though this classification looks like the original one of M. Janet, it is in fact quite different.
For a detailed study, we refer the reader to the reference [12, 13]. Moreover, let M, be the

5



vector space defined locally by o(®) where we have equal to zero the vﬁ of class strictly
lower than 7. We call o(®)’ the left member of the defining equations of Mg. We have

dim Mé = % — 1k o(®)’. Let us call afl = dim Mé’l — dim Mg fori=1,...,n.

Theorem 2 The symbol M is involutive if there exists a system of coordinates, called
d-reqular coordiates, in which one of the following properties is satisfied:

1. dimMgq = a; + 2043 + ... + nay.
2. Prolongation with respect to the dots does not bring new equations.

Then¥r >0 :dimMg, = 1y (7:"(_;__11))!! ol

We have seen that a “good system” R, of PDE was a system in which no lower order
informations appeared when projecting its prolongations Ryi,+s = pr4s(Rq) on lower
order jet space Jy,(£). Using the previous notation, it leads to the following definition.

Definition 2 A system R, is said to be formally integrable if Vr,s > 0, Rq4r is a fibered

manifold and the projection ng:ﬂ : Rgtr+s — Ry4r is surjective (or equivalently Rgs_gr =

Rl]-i—r)'

A system R is said to be involutive if R, is formally integrable with an involutive symbol.
We now give two key theorems. See [21] for the non trivial demonstrations.

Theorem 3 If M, is 2-acyclic and My is a vector bundle over Ry then Vr > 1: My,
is a vector bundle over R,.

Theorem 4 IfR,(Il) is a fibered manifold and My is 2-acyclic then Vr > 0 : pr(R,(Il)) = Rl(#r.

These theorems lead to the following criterion.

Spencer-Goldschmidt criterion If M, is 2-acyclic and R4 is a fibered manifold such
that 7?,,(11) = R, then R, is formally integrable.

The reader have to keep in mind that the previous criterion gives only sufficient con-
ditions in order to have a formally integrable system.

Example 1 The symbol of the system 0;¢;+0;&; = 0 is neither 2-acyclic nor involutive but
the first prolongation gives 0;;¢ = 0 and the system is formally integrable. More generally,
any homogeneous system is formally integrable even if the criterion is not satisfied.

We have the following corollary.

Corollary 1 Let Ry be an involutive system and let us denote by Rqy_1 the projection of
Ry on Jy_1(E) then

N
(T_H)'af].

n
dim Ry r = dimRq_1 +» =
i=1 o

See [21] for the proof. In particular, if we want to determine the analytic solutions of the
system R4, we have to fix aé functions in z!, ag functions in (z!,z?), ..., and ay functions
in (z',...,2").

Definition 3 A system R, is called sufficiently reqular if:
1. Vr,s >0, R\, is a fibered manifold.

2. Vr,s > 0 the symbol Mq(i)r is induced from a vector bundle over X.

6



In the case where the system R is not formally integrable, the following theorem shows
that there is a finite procedure which adds enough equations to the system, in order to
obtain a formaly integrable system, with the same solutions.

Theorem 5 If R, is sufficiently reqular system, we can find two integers, r, s > 0, such

that Rl(ls_gr is formally integrable (involutive) with the same solutions as Ry.

Thus, we are led to the following algorithm [13].

Algorithm We start with R,. Find r > 0 such that Ry, is 2-acyclic (involutive). Test

whether 7?,512, = Rg4r- If it is the case, then the algorithm stops, else, starts anew with
(s)

Rl(#r. Hence, we finally find two integers r,s such that R [, is a formally integrable
system (involutive) with the same solutions as Ry.

Now, we illustrate the spirit of these results by showing how the ideas of the previous
introduction are transformed in a more “intrinsic way”. For the simplicity, we only use a
linear system of PDE, which will be denoted by R, and determined locally by ®7(z, yﬁ) =
0. Rq is a subvector bundle of J,(F) and let us denote by Fy the vector bundle J,(E)/R,.
We have the following short exact sequence:

0— Ry — J(E) S Fy —0.

Prolongating R, once with respect to each z*, we obtain the following exact sequence

®
0= Rg1 = Jgy1(E) ) J1(Fy),

where p1(®) is the left member of (2).

We can consider Sy11T* ® E as a subset of J,(F), where S, 1T* denote the ¢ + 1
covariant symetric tensor. S;11 7™ ® E is nothing else than the space of jet coordinates
of order stricly equal to ¢ + 1 and we easily verify that dim Sq 1 T* ® E = %.
Hence, we have

0= Mgy — Sen T" 0 E™S 17 g Ry,
and we denote by F) the cokernel of o (®). Thus, we have the following exact sequences
0—= Myi1 — Sqp1 T*® E — imo(®) — 0,

and
0—>im01((1>) —)T*®F0—>F1 —0
which give:
dim Mq+1 = dim Sq+1 T*® F —rk 0’1(‘1)),
dim F} = dimT* ® Fy — rk oy (®),

where rk o1 (®) denotes the rank of oy (®). This is nothing else than the Cramer rules. We
recognize that we have dim Sy41 T*® FE —rk o1 (®) new parametric jet coordinates of order
strictly equal to ¢+ 1 and dim T* ® Fy —rk o1 (®) equations which are linear combination
of rk o (®) ones in the symbol My, ;. Hence by linear elimination of the jet coordinates
of order strictly equal to g+ 1, we can find dim F; new equations of order g. Substituting
in those equations the principal by parametric jet coordinates of order ¢, it leads to R((II),
that is, to the image of the projection 7rg+1. We have:

a+1
Tiq 1
0= My1 — Rgp1 = Ry — cokermd™ — 0.

and
0= Myi1 = Rgyy — ima?™ = R — 0,

which leads to dim My41 = dim R4 — dim Rél). Hence, we have Rgl) = R, if we does no
have new equations of order ¢ and we have dim My 1—=dim Rg;-dim R,.

7



2.3 Formal Elimination Theory
Let us take a system of PDE defined by the equations
@T($7yﬁ7zll/) :07 T = ]‘7"'7k7 |/"l‘| Sq7|y| §p7 (7)

where y = (y',...,4™) and z = (2!, ..., 2°) are two sets of unknowns. We would like to know
what conditions z has to satisfy in order to have solutions of the system (7). Regarding
the system (7) as a system in the set of unknowns y only, with coefficients in z,

\IJT(x,ylkj) :07 T = ]‘7"'7k7 |/‘1’| §q7 (8)

we can study the formal integrability of (8). Roughly speaking, suppose that z is given,
we can try to find locally the formal solutions of (8) in bringing this system to formal
integrability. However, in bringing it to formal integrability, we have to compute certain
determinants (testing fibered manifold conditions, computing the dimension of the sym-
bols, projections, ...) which may depend on z. So, we are led to define family of resultants
that z has to satisfy in order to have formal solutions of the system (7). We have to notice
that there are three kind of inequalities which can appear when we bring a system of PDE
to formal integrability:

1. inequalities which appear when testing fibered manifold conditions,

2. inequalities appearing when projecting prolongations of the system on lower order
space jet,

3. inequalities appearing when testing the 2-acyclicity (or involutivity) of the symbol.

However, the third kind of inequalities is a “technical one”. Indeed, the definition of
formal integrability does no use 2-acyclicity but only fibered manifolds and projections.
However, most of the time, we have to use the Spencer-Goldschmidt criterion in which the
2-acyclicity (or involutivity) has to be tested.

We now give an example, in which the first and the second kinds of inequalities appear
when computing the resultants. This example is taken from [5] where the resultants were
computed using differential algebra techniques.

Example 2 Let us consider the system defined by:

2t —uz? =0,
R, 22—l —wuz2=0.

2l —y =0.

In the control framework, u is the input, z the state, y the ouput and we look for input-
output relations by eliminating z, called input-output behaviour. The system R; is not
formally integrable in z = (z',2%). As this system is a system of ordinary differential
equations, we know that the symbol M; = 0 is trivially involutive and we have only to

saturate the system by lower order equations. We have:

s —wuz? =0,

) 1 2

(1) 24—z —uz® =0,

Rl zl—y:[),
uz? —1 =0,

and RV is a fibered manifold iff u # 0.
1. If u = 0 then R" is defined by

2t —wuz? =0,

z'2—z1—uz2:0,
2zb—y =0,
y =0,



and Ril) is a fibered manifold iff ¥ = 0. In this case, we have R§2) = Rgl) and Rgl) is
an involutive system. Moreover, dim Rgl) = dim Ml(l) + dim R(()l) =0+(2-1)=1,

where R(()l) is the projection of Rgl) on Jo(E) (i.e., the zero order equations of the

system Rgl)).
2. If u # 0 then RE2) G REI) where Rgz) is defined by:

2 —wuz? =0,
22—l —uz? =0,
RE2) zl—y:0,
uz? —1 =0,
(i +u?)z? —jj +uy = 0.

Now, as u # 0, the last two equations lead to:

b —wuz? =0,
22—zl —uz? =0,
R?) 2b—y =0,
uz? —1 =0,
uij — (4 + u?)y — uy = 0.

R§2) is a fibered manifold iff u # 0 and ufj— (4 +u?)y—u?y = 0 and, in this case, R§2)

is an involutive system. Moreover, dim R&Q) = dim M1(2) +dim R(()Q) =0+(2-2)=0.
We can notice that the dimension of the fibre is generically equal to 0 and the dimension
jumps to 1 in the differentialy algebraic set {u = 0,y = 0}. Finally, the input-output
behaviour is the disjunction of the two following systems:

u =0, u # 0,
y =0, uij — (4 + u?)y — u?y = 0.
2.3.1 Trees of Integrability Conditions

It is well known that the “degree of generality” of the formal solutions of a system of linear
PDE with certain variable coefficients, highly depends on certain relations that these
coefficients may verify or not. These relations are nothing else than the resultants on the
coefficients that the system has to verified in order to have a solution. These resultants
naturally appear as formal integrability conditions when we study the formal integrability
of the system. We can organize those integrability conditions in order to build a tree and
each final leaf represents a formal solution of the system with its degree of generality.

Example 3 Let us consider the following system (we recall that 0;,...0;,, ¥ = ¥i,. i, ):

{ Y22 —a(z)y1 =0,
y12 = 0.

First of all, the symbol of the system, defined by
Voo = 0, 1 2
M.
2 { V12 = 0, 1 [ ]

is involutive (differentiating with respect to the dot does not bring new equation) and so,

we only have to test if we have Rél) = Ry. We have:

R a(z)y1 =0,
R; y12 =0,
a(x)yi1 + Ora(z) y1 = 0.



1. If a = 0 then Rél) = Ry and Ry is an involutive system. We easily see that o = 1 and
a2 = 0 which implies that V7 > 0: dim Rpy, = dim My, + dim R;=1+3=4.
The solution of the system depends on one function of #! and certain constants.
Indeed, we easily integrate the system and we find y = cz? + d(z!).

2. If a # 0 then
yo2 — a(z) y1 = 0,
Rél) Y12 = 07
y11 +b(z) y1 =0,

where b(z) = 01a(x)/a(x). MQ(I) = 0 is trivially involutive and we have to compute

R§2):
yo2 — a(z) y1 = 0,
Y12 = 07
y11 + b(z) y1 = 0,
ng(x)yl =0.

a) If Oub(xz) = 0 then R(z) = R(I) and R(l) is an involutive system. We have Vr > 0
2 2 2
dimMz(Br = 0 and the solution of the system depends only on constants.

(b) If Oab(x) # 0O then Ré3) = Rgz) and thus Ré2) is an involutive system:

y22 = 0,
Y12 = 07
y11 =0,
Yy = 0.

The solution of the system depends only on dim Rgz) =3 — 1 = 2 constants.

Indeed, we easily integrate it and find y = cz? + d.

We obtain the following intrinsic tree of integrability conditions.

ia ia

Oo(—) =0 Oa(

a a

)#0

We now give an example in which the third kind of inequalities appears when bring-
ing the system to formal integrability. In particular, we are interested in knowing how
the compatiblity conditions vary (number and order) with the variable coefficients of the
system.

Example 4 Let us define the following system

yss —a yi1 =0,
y23 =0,
Ry Y22 — by =0, (9)
y13 =0,
Y12 = 07

where a and b € R. We have the following multiplicative variables:

10



V33 —avV11 = 0, 1 2 3
V23 = 0, 1 2 o
M2 V29 — b’l)11 == 0, 1 2 ® (10)
13 = 0, 1 o o
v12 = 0. 1 o e

If we prolong with respect to the dots, we find two new equations: awvi;; = 0 and bvyy; = 0.
Thus Ms is involutive if a = b = 0. Else, if we prolong once the symbol Ms, we obtain
Ms = 0, i.e., My is finite type and M3 is a trivial involutive symbol. In that case, we
can easily check whether the symbol M is 2-acyclic or not: we have to compute the
cohomology H2(Mz) of the following sequence

0 — A2T* @ My 25 A3T* @ T*.
Thus, we only have to check under what conditions on a and b, § is injective:
Vw= vuk’ijdaci ANdz) € N>°T* @ M, S(w)y = (vu3,12 + V123 + Uu2,31)dac1 Adz? A dad.

Thus 5(&)) = 0 with Upuk S M2 = V11,23 = V2231 = V33,12 = 0= avil 2 = 0, b’U11731 =0
and 0 is injective iff @ # 0 and b # 0. In this case, My is 2-acyclic but not involutive
otherwise we would have the exact sequence ... — A2T* ® M; O, ABT* ® My — 0 and
thus M3 = 0 = My = 0, which is obviously not true.

We obtain the following tree of integrability conditions:

{ a =0, { max (|al, [b[) # 0, { a#0,

b=0. min(|al, |b]) = 0. b # 0.
My involutive  Ms not 2-acyclic My 2-acyclic
Ms #0 M3 = 0 involutive ~ M> not involutive

M3 = 0 involutive

1. In case a = 0, b = 0, My is involutive and we easily see that Rgl) = Ry. Thus,

Ry is an involutive system. Moreover, dim MY=1, dim M;=0, dim M2=0 = o} =
1, a2 =0, a3 = 0. Thus dim My, ,=dim Ry, ,=1, ¥r > 0. We find the compatibility
conditions of

ys3 = 2", 1 2 3
Y23 = 22, 1 2 e
Yoy = 25, 1 2 o (11)
yi3 = 2%, 1 o o
Y1z = 2°, 1 o o

by derivating the equations with respect to the dots and projecting on the system
Ry. We find 6 homogeneous first order compatibility conditions:

(23— 2 =0,
z3— 22 =0,
5,2

¢ 23 — 21 =Y,

Jo S
i_2_g
R S

(25 — 27 =0.

11



We let the reader check that this system is involutive (it is a general property of
involutive systems [20]). Now, if we want to know the compatibility conditions of

(23— 2 =+t 1 2 3
zg—zgzz, 1 2 3
12
] 2 sl =t 1 2 3 (12)
25 — 22 =15, 1 2 o
25 — 23 =15, 1 2 o

we still differentiate the equations with respect to the dots and project the results
on the system, we obtain 2 compatibility conditions:

th—t3+t} =0, 1 2 3
tS— 13 +12=0. 1 2 3

(13)

This system does not have compatibility conditions. We have just build the Janet
sequence of the operator D : y — z defined by (11). We have:

050-E 2 m2pm2pm o,

where © is the kernel of D and the operators D; : z — ¢t and Ds : t — s are defined
by (12) and (13) in which s is the second member.

. In case a # 0, b # 0 (for example a = b = 1) then Ms is 2-acyclic and Rgl) =
Ry. Hence, the system is formally integrable. In this case, we can compute the
compatibility conditions of

_ 1
Ysz —ayil =z,

Y23 = 227
Y22 — byl = z3 (14)
Y13 = 247
Y12 = Z57

by computing Rél) = Rs. We find only 5 homogeneous first order compatibility
conditions, defined by:

2 _ 1 5_
23 — 2y —az] =0,

75— 2% +b25 =0,
z3— 22 =0,

bz —azy —bzi +az} =0,
7y — 23 = 0.

. Finally, in case max(|a|, |b|])7# 0 and min(|a |b])= 0, My is not 2 acyclic and we

have to prolong the system and see whether or not R31 = Rj3, as we already know
that M3 = 0 is a trivial involutive symbol. We let the reader check that it is
the case and Rj3 is an involutive system. Let us suppose that ¢ # 0 and b = 0.
Computing the compatibility conditions by differentiating with respect to the dots of
M3 and projecting on Rj3, we find 6 homogeneous first and second order compatibility
conditions:

(253 — 2l3 —azi; =0,
z3 — 28 =0,
25— 23 =0,

) z3— 23 =0,

23—z —az) =0,

[ 22— 22 =0.

We have to remark that Ry is formally integrable (Vr,s > 0 : Rojr4s is a fibered
manifold and Ro4,4s — Rao4r is surjective) even if the Spencer-Goldschmidt criterion
is not satisfied (see example 1).

12



Notice that a simple change of the parameters a and b has totally changed the com-
patibility conditions of the system Ry (the number and the orders). Moreover, in that
example, the 2-acyclicity of Ms is a generic property. Obviously, we can find examples
combining the three kinds of inequations.

3 Applications to Control Systems Theory

Recently, the structural properties of control systems have received a new insight with the
use of differential algebra, formal integrability theory and differential module (D-module)
theory. See for example [3, 9, 10, 11, 17, 21, 22, 23, 25]. Certain intrinsic properties of the
control systems have been reformulated in terms of the algebraic nature of its underlying
differential module (as torsion, torsion-free, projective or free module). Formal tests have
been found in |21, 22, 23, 25| to test whether a finitly generated D = A [dy, ..., d,]-module
(A a differential ring containing R) satisfies one of the above properties. These tests
only use formal integrability theory and thus, most of the structural properties of control
systems can be tested by bringing a system of ODE or PDE to formal integrability (testing
the surjectivity or the injectivity of an operator, computing the compatibility conditions,
...). We are able to use the preceding results for control systems with variable coefficients
or for linearized nonlinear ones. It will lead to trees of integrability conditions.

We first recall a few statments and results on D-module and linear operators. For more
details, see [21, 23, 25]. In particular, the idea is to study how the algebraic nature of a
differential module, determined by a system of PDE, changes with the variable coefficients
of the system.

3.1 D-module and Linear Operator

Let Dy : E — Fj be a linear operator, where £ and F{ are vector bundles over X and
dim £ = m. The operator Dy is injective if Dgn = 0 = n = 0 and it is surjective if the
equations Dyn = 0 are linearly differential independent or if Dyn = ( has no compatibility
conditions, i.e., if it does not exist an operator D such that Dyn = ¢ = D; ( =0 [21].

Let A be a differential ring with n commuting derivatives 0y, ..., d, containing R. We
denote by D = Aldy, ...,d,] the ring of differential operators with coefficients in A where
the d; satisfies:

Va,be A:adi(bdg) = abd;dy + a(0; b)dy.

D is an integral domain which is commutative ring only when A is a ring of constants
(with respect to the derivatives 0;, i = 1, ...,n). However, it possesses the left and right Ore
properties: V (p,q) € D?, 3(r,s), (u,v) € D? : rp=sqand pu = quv. Let n = {n*,...,n™}
be some differential indeterminates and let us form the free left D-module generated by 7
and denote it by [n]. Every element of [5] has the following form: Y g .. al d,n*, where
= ({41, ..., i) is @ multi-index. For all the algebraic concepts, see [29].
A fundamental idea is to associate with any operator D the left D-module M = [n]/[D 7).

We will say, in the rest of the text, that the operator D determines the D-module M.

Definition 4 e An element 7 of M is called a torsion element if there exists a non
zero element of D which kills 7, i.e., 3a € D, a # 0, aT = 0. We note by t(M) the
submodule formed by the torsion elements of M.

e A D-module M is torsion-free if (M) = 0. The D-module M/t(M) is a torsion-free
D-module.

Example 5 Let us consider the system Drn = 0 defined by

{ i+t =0’ +an® =0,
i’ +n?—nt —n® =0,

13



where a € R and the D-module M = [n]/[Dn] determined by the operator D.
e For = —1, 2if we substract the first equation from the second, we find 7! = ! —n?
satisfying (% +2)7t = 0. The element 7! is a torsion element of M.
e For « = 1, if we add the first equation to the second, we find a torsion element
2
72 =yl + y? satisfying (5?7)72 =0.

It is quite difficult to see that, except these two values of the parameter «, the D-module
M is torsion-free.

We now recall the duality of differential operators to give a formal test checking whether
a finitely generated D-module M is torsion-free or not. If M is not a torsion-free D-
module, the test gives the generators of ¢(M) and the operators killing them. We denote
E* the dual bundle of E and E = \" T* ® E* its adjoint bundle. If D: E— F is a linear
differential operator, its formal adjoint D : F' — E is defined by the following rules:

e the adjoint of a matrix (zero order operator) is the transposed matrix,
e the adjoint of d; is —d;,
e for two linear PD operators P, () that can be composed: ]736 =QoP.
We have the relation
Do & = (Do p)'é + d(-),

with d the exterior derivative. We can directly compute the adjoint of an operator by
multiplying it by test functions on the left and integrating the result by part.

Example 6 Let us compute the adjoint of the operator D : n — ( defined by:

{7]22_0( )n; +nt = ¢,
7]12 7711—C-

Multiplying the system by (A1, A2) on the left and integrating the result by part, we find
the operator D : A — u:

doo A1 — di1 A2 + A1 = p,
d12>\2 + a(x)dl)\l + dla(x))\l =

Definition 5 We call an operator Dy parametrizable if there exists a set of arbitrary func-
tions & = (£1,...,&") or “potentials” and a linear operator Dy such that all the compati-
bility conditions of the inhomogenous system Dy £ = 7 are exactly generated by Din = 0.

In that case, we will say that the sequence FE Do, Fy RN F is formally exact.

We describe a formal test checking if the operator D; determines a torsion-free D-
module M or not (see [21] and compare with [16]):

1. Start with D;.

2. Construct its adjoint D;.

3. Find the compatibility conditions of Dj A = p and denote this operator by Dy.
4. Construct its adjoint Dy.

5. Find the compatibility conditions of Dy & = n and call this operator by Dj.

We are led to two different cases. If D] = D; then the system D; determines a torsion-
free D-module M and Dy is a parametrization of Dy. Otherwise, the operator D; is
among, but not exactly, the compatibility conditions of Dy. The torsion elements of M
are all the new compatibility conditions modulo the equations Din = 0.

14



We can represent the test by the following differential sequences where the number
indicates the different stages:

5
— F]
E2ym Py R
4 1
EE B 2 Ry
3 9

Hence, summerizing the above results, we obtain the following useful theorem.

Theorem 6 A system Dy determines a torsion-free D-module M iff the operator Dy is
parametrizable. Hence, for systems of PDE with variable coefficients, we have to construct
two trees of integrability conditions (one for Dy and the other for Dy ) to know whether Dy
determines a torsion-free D-module or not.

Such examples with two trees of integrability conditions are very rare. We take an
example of [24].

Example 7 Let us consider the finite transformation y = f(z) satisfying the Pfaffian
system:

dy® —a(y*)dy' = p()(dz® — a(z?)dz").

Linearizing such a transformation around the identity by setting y = x + t£(z) + ... and
making ¢ — 0, after eliminating p(z), we discover that infinitesimal transformations are
defined, trough the use of a correct geometric object, by the kernel of the differential
system Dyé = 7 as following (see p. 237 of [21]):

—a(z)E] + & + a(a?) (€] + & + &) — E£dhala?) = b,
—a(z)& + & n?,
—a(z?)&3 + &8 — (1 + 5 + &) = 7

From the theory of Lie pseudogroups [21], we can prove that the PD system Dyé = 0 is
formally integrable if and only if 82a(x2) = ¢ = cst, the “classical case” of contact trans-
formations corresponding to a(z?) = 2 (= ¢ = 1). It follows that the only compatibility
condition Din =0 is

—a(z?)(n3 —n3) +ni —n3 + Saa(z®)n® =0,

and the operator D; is surjective. The adjoint operator D, is defined by:

)\2 = WM,
—a(z)Xs =M = po,
a(z®)Xa +2cA = 3.

As p3 — a(z?) 1 = 2c), the operator D, is injective if and only if ¢ # 0. In that case, the
two independent compatibility conditions can be written:

{ dops — a(z?)dapn — 3ep = 2,
—a(z®)d3(p3 — a(z?)m) — di(p3 — a(@®)u1) — 2cp2 = —2(n1 + aa®)v3),

after introducting the adjoint Dy of Dy as follows:

30 ( )dlm + d1M3 + a( )d3M3 + a(@?)daps + Ooa(a®)pa = v,
—3a(z?)dap + sdops — 3 Ora(z?) i = v,
—dlm — ta(z )d3u1 d2M2 — Sdsps = 3.
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Now, let us start with the operator Dy depending on the arbitrary function a(z?) and let
us question about the algebraic nature of M = [u]/[Dop]. According to the general test,
we must construct the adjoint of Dy which is Dy and look for its compatibility conditions
Dy, a result bringing out the condition dya(x?) = ¢, where c is an arbitary constant. When
¢ = 0, we should find the zero order compatibility condition p3—a(z?)u; = 0 which is not a
consequence of 250 and thus 250 determines a D-module M with torsion elements. Indeed,
we call easy verify that the element non zero element 7 = pg — a(z?)u; € M satisfies
dom =0 . When ¢ # 0, the adjoint D; admits the compatibility condition expressed by Dy
because we have in that case:

a(w2)d31/3 + dsv — dovg — a(x2)d11/2 +v3 =0,
which gives v3 = (dg + a(z?)d1)ve — d3(v1 + a(z?)r3) and M is a torsion-free D-module.
We recall the definition of a free D-module.

Definition 6 A D-module M is a free D-module if there exists a basis of M, i.e., elements
of M which are independent on D and which generate M.

Theorem 7 An operator Dy determines a free D-module iff it admits an injective parametriza-

tion Dy, i.e., if the sequence 0 — E Po, Fy 2N Fy is formally exact.

We turn now to an important class of D-module: projective module. We only give
some basic results. See [23, 25| for more general ones, and in particular, how to use of
projective D-module and formal duality in order to split certain differential sequences of
operators. See |18] for more deeper results.

Definition 7 A D-module M is a projective D-module if there exists a D-module N and
a free D-module F such that F = M & N, i.e., M is a summand of a free D-module.
Remark that A is a projective D-module too.

We have the following theorem, which allows us to test if M is a projective D-module.

Theorem 8 A surjective operator Dy : Fy — Fy determines a projective D-module if
there exists an operator Py : F1 — Fy such that Dy o Py = idF,, where idp, s the identity
operator of Fy, i.e., if its dual D is wnjective. In particular, if the system has variable
coefficients, only one tree of integrability conditions has to be built in order to decide
whether the operator determines a projective D-module or not.

Let us describe a formal test for checking whether a D-module M is projective or not:
1. Start with D; and check its surjectivity.

2. Construct its adjoint D;.

3. Check whether D; is an injective operator or not.

We are led to two different cases. If 151 is an injective operator then D; determines a
projective D-module. If we want to compute its right-inverse, we have to bring the system
DiA = i to formal integrability. We have to find A = P;u. Dualize this operator, we find
the operator P; which satisfies P; o D; = Idp,. In the case when the adjoint of D; is not
injective, then D; does not determine a projective D-module.

Example 8 Let us show that the operator D : n — ( defined by

ny —a’n+nt =
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determines a projective D-module M. We first dualize D and we find the D : A — pu:
{ 732)‘1 +A= M1,
—A2 = 2.
We now study the formal integrability of the preceding system in A and we find a new
equation A\ = —x?(dapu1 + x?dypo + po) + p1. Thus DA = 0 = X\ = 0 and thus M is a

projective D-module with a right-inverse P given by the dual of the operator —z?(dgp; +
x?dypio + p2) + p1 = v. We obtain P : ( — 1 defined by

$2C2 + 2C = 7713
(2%)%CL — 2°¢C =17,
and we let the reader verify that Do P = Id.
For non surjective operator, see [25]. It is quite easy to see that every free D-module is

projective and every projective D-module is a torsion-free, which can be summed up by
the following module inclusions:

free C projective C torsion-free.

For a principal ideal ring D (for example D = k[%] with £ a field), every torsion-free
D-module is a free D-module. Thus, we have the following useful corollary:

Corollary 2 A surjective OD operator determines a free D-module iff its dual is injec-
tive. In particular, if the operator has some variable coefficients, we only need one tree of
integrability conditions to know whether it determines a free D-module or not.

Quillen and Suslin have demonstrated independently in 1976 the Serre conjecture of
1950 claiming that every projective module over a polynomial ring k[x1, ..., Xn], where & is
a field, is free (see [29]). It is typically the case where D = k[0, ..., 0] and k is a constant
field (i.e., Vi=1,...,n,Ya € k: 0;(a) = 0). Thus, we have the following corollary:

Corollary 3 A surjective operator with constant coefficients determines a free D-module

iff its formal adjoint is injective.

Now, we give an example showing that the algebraic nature of a D-module, determined
by a linear PD system with variable or unknown coefficients, depends on some integrability
conditions on the coefficients.

Example 9 Let D; : 7 — ( be the operator defined by:

ny —an; —ns +a(z)n® = ¢, (15)

with @ € R and let M be the D-module determined by D;. We would like to know how the
algebraic nature of the D-module M (torsion, torsion—freq, projective and free) depends
on the coefficients. Dualizing D;, we obtain the operator D; : A — u defined by:

=2+ al = p1,
Ao + a(x) X = pa,

which can be rearrange under the following form:

Ao +ad =,
a + a(z)\ = py + po.

We put py = po = 0 and we call R; the corresponding system:

R { =2+ aX; =0,

ad; +a(z)A =0. (16)

We now study the formal integrability of the system R;. First of all, M; is an involutive
symbol V a but its dimension depends on whether « is equal to zero or not.
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1. If « = 0 then dim M;=2-1=1 and M, is involutive. Now, the dimension of R;
depends whether ¢ = 0 or not.

(a) If @ = 0 then dim Ry=1-0=1 and R; is formally integrable and we easily find
that M is a torsion D-module generated by 7 = n' — n? satisfying 0y 7 = 0.

(b) If @ # 0 then D, is an injective operator. Thus D; determined a projective
D-module and we have P; : 4 — X defined by (u1 + po)/a(z) = A. Dualizing,
we obtain the right-inverse P; : { — n of D; with

S g
a(Cx) o

_ 2
a(x) T

We let the reader check that a parametrization D : & — n of Dy is defined by

{ —a(2)&2 + (a(2)? — 202a(2))¢ = 7',
—a(z)é — 2dza(x) & = 1.
n' —n’
It is an injective parametrization as we easily see that { = a@)? and M = [¢].
a(x
2. If a # 0 then dim M;=2-2=0 and M; = 0 is a trivial involutive symbol. We only
have to study the projection 7% : Ry — Ry, i.e., Rgl). We have:

X+ ar =0,
REI) a i +a(z)\ =0,
(02a(z) — adia(z)) A = 0.

The dimension of R(()l) depends on whether dya(x) —a 01a(x) is equal to zero or not.

(a) If dra(x) — adia(xz) = 0 then Dy does not determined a projective D-module
M. But we easily find a parametrisation D : £ — 1 defined by:

{ 52_0‘(‘%)5 :nla
fo —al =17

Thus D; determines a torsion-free but not projective D-module M.

(b) If dpa(x) — adya(z) # 0 then Dy is an injective operator and D; determines a
projective D-module M. We let the reader check that

_ dap +dopy —adipn + a(z)p

A ha(x) — ada(x)

¢
Ora(z) — adra(x)

{ —¢2 + a(z)p = ',
—¢o + a1 = 1?,

If we pose ¢ =

then Py : ( — n defined by:

is a right-inverse of Dj.

We can sum up the previous study by the following intrinsic tree of integrability conditions:
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a=0 a#0

a=0 a#0 Ja—ada=0 a—adia#0
M torsion M free M torsion-free M projective
D-module D-module D-module D-module

3.2 Structural Properties of Linear Control Systems
We now give a mathematical definition of a control system (see [15, 9, 21| for more details).

Definition 8 A control system is a system R, C J, (€ xx F xx G), where E xx F xx G
denotes the fibered product, that is the fibered manifold over X consiting of all elements
(u,y,2) in € x F x G having the same projection into X. If R, is defined by a differential
prime ideal Z of k{U,Y, Z} (k a differential field) then a control system is the extension
k(u,y,z) = Q(k{U,Y,Z}/I) over k. We call u the input, y the output and z the latent
variable. In the linear case, a control system is the D-module M determined by an operator
Dy : Fy — Fy, where a section of Fy is n = (u,y, 2).

3.2.1 Controllability

Controllability is one of the key concepts of the control systems theory. Its definition and
test for time-varying linear systems go back to Kalman’s pioneering work [15]. We recall
some recent improvements. See [3, 9, 10, 11, 17, 21, 23, 25| for more details.

We call observable any element of M, i.e., any linear combination of the system vari-
ables (input and outputs together) and their derivatives. Only two possibilities may hap-
pen for an observable: it may or may not verify a PD equation by itself. An observable
which does not satisfy any PD equation is called free. In [21], we can find the following
definition:

Definition 9 A control system is controllable iff every observable is free.

A characterization of the controllability in terms of differential closure is shown in [21].
In [9, 11], the definition has been reformulated in the differential module framework:

Definition 10 A linear control system is controllable iff it determines a torsion-free D-
module.

Hence, using the results of the previous section, we obtain:

Corollary 4 A linear control system D1 is controllable iff it is parametrizable by an oper-
ator Dy. Hence, the controllability depends at most on two problems of formal integrability
and thus at most on two trees of integrability conditions.

We know that a nonlinear control system is controllable if its generic linearization is
controllable [23]. However, the linearized control system has variable coefficients, satisfying
the nonlinear control system. Hence, we have to build trees of integrability conditions to
know whether a nonlinear control system is controllable or not.
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Example 10 Let us consider the system defined by the operator Dy of the example 7 and
let us question about its controllability. We have seen that the module determined by Dy
was a torsion-free D-module, i.e., controllable, if dya(z?) = c and ¢ # 0. The first condition
is a particular branch of a first tree of integrability conditions (formal integrability of Dy)
and the second is another branch of a second tree (formal integrability of ﬁl) depending
of the first tree. Hence, the study of the controllability of that system depends on two
trees of formal obstructions (see [24]). Examples of a double tree of formal obstructions
to the controllability are very rare.

It is quite often supposed that the inputs are linearly differentially independent, a fact
that leads to the surjectivity of the corresponding operator. Then, we have the useful
corollary:

Corollary 5 A surjective OD control system Dy is controllable iff it adjoint Dy is injective.
In this case, the controllability depends only on one tree of integrability conditions.

Example 11 We study the controllability of the system

it +yt -y +au=0,
Pyt -yt —u=0,

where o € R. Dualizing the surjective operator D;, we obtain D defined by:

5\1+>\1—>\2=M17
A2 + A2 — A1 = pg,
—>\2+Oé)\1:u3.

We put 1 = po = p3 = 0 and bring this system to formal integrability, we obtain the new
equation
(a+1)(a—1)A =0

and D; is injective and thus controllable iff @ # —1 and « # 1.

We notice that these results show that the controllability is a “built-in” property of a
control system that does not depend on the separation of the variables between inputs and
outputs, a fact very far from engineering intuition.

Recently, the important class of flat nonlinear control systems has been found in [11].
This class of systems is particulary useful for the motion planning.

Definition 11 A linear control system D; is a flat system if D; determines a free D-
module.

For linear control systems, we prefer to call this notion differential freedom than flatness.
Indeed, we do not have to confuse flat control systems with the algebraic notion of flat
D-module, which in that case, is equivalent to the notion of projective D-module (M is
finitely presented). For more details, see the nice reference [29].

Theorem 9 A control system Dy determines a free control system iff Dy is parametrized
by an injective operator Dy. If Dy is a surjective operator with constant coefficients, it
determines a free control system iff its adjoint is injective.

The basis of the D-module M of a free control system are called the flat output or
linearizing outputs. If Dy is parametrized by an injective operator Dy then the basis £ is
obtained by bringing the operator Dy to formal integrability. Indeed, we find an operator
Po such that Py o Dy = Idg and thus & = Pyn.
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Example 12 In the example 9, only one tree of integrability conditions has to been built
in order to conclude about the algebraic nature of the D-module determined by D;. In
the example 7, the module M determined by Dy is a free D-module if Osa(z?) = ¢ and
¢ # 0. Indeed in that case, Dy is parametrized by the injective operator D;, and we have
M = [us — a(z?)p1]. In this example, the freedom of the control system Dy depends on
two sucessive trees of integrability conditions.

3.2.2 Observability

Another key concept in control theory is the concept of observability. It has been refor-
mulated recently in the D-module framework in [3, 9, 10, 21] as follows:

Definition 12 A system of control M = [/, 7] is said to be observable with respect to
n" iff [n'] = M, that is, iff every component of n" can be expressed as a linear combination
of the components of 7 and their derivatives.

We can reformulate the above definition, saying that the system M is observable with
respect to 7' ifft M/[n'] =0 or equivalently, in the language of operator theory:

Theorem 10 Let Dy : Fy — Fy be an operator determining the D-module M and Fé
be the subbundle of Fy with sections (0,1') then M is observable with respect to 1’ if the
operator induced D} : F§ — Fy is injective.

Example 13 Let us study the observability of the following system

2

{ Z%Q‘i‘Z%Q‘*‘Z;_U:O,
zig =21 +2° —y =0,

with respect to w and y. Bringing the above system to formal integrability in z = (2!, 22),
we find that the symbol Mj is involutive (differentiating with respect to the dot does not
bring new equation) and we let the reader check by himself that we obtain:

2+ 21 — 22 =y,
Rg) Z% + Z% =Uu; — Y2,
2l =g — Y12 + Y,

2% =y —up — u,
and the system is observable.

From the above theorem, we have only to study the formal integrability of one system
of ODE or PDE and thus we have the following corrolary.

Corollary 6 The observability of a control system with variable or unknown coefficients
only depends on one tree of integrability conditions.

Example 14 Let us consider the following control system

#t ol — 2?2 —ul =0,

#2422 —z! —u? =0,

—y—z?+azt =0,
where z = (z', 22) is the state, u = (u',u?) the input, y the output and o € R. This system
is observable with respect to (y,u) iff [z,y,u] = [y, u], i.e., if the operator D] : z — (
defined by

i‘1+$1—$2:C1,

B2ya? gl =2

—z? +azt = (3,
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is injective. We recognize that this operator is nothing else than the dual of the operator
D; in the preceding example and thus the system is observable iff @ # —1 and « # 1. If
a# —1 and a # 1, we have:

7 = m(yvl-(lvl-a)y-ﬂﬂ — aul),
7" = m(y+(l+a)y+u2_au1)_y'

Many others properties of the control systems have been reformulated using formal
integrability theory |21]. Look also at [6] to have a general view of certain properties of
control systems theory that can be tested by effective differential algebraic methods. For
example:

e computation of differential transcendence degree: we bring the system to be involutive
and compute the last character ay = computation of output rank = invertibility [6].

e state elimination: we bring the system in (z,y,u) to formal integrability in the state z
and obtain resultants in 4 and y which define the input-output behaviour (see example 2).
e structure at infinity: we bring the system in (y, ) to formal integrability in u [19], ...
Thus these properties depend on trees of integrability conditions if the system has variable
coefficients.

4 Conclusion

In this article, we have begun to develop a theory of formal elimination for system of PDE,
using the formal integrability theory. We hope that we have convince the reader that this
approach seems to be natural in many problems and in particular for linear systems of
PDE with variable coefficients. In his paper [30], Seidenberg has given a general solution
for this problem based on differential algebraic approach. But, as we have already noticed,
the effective character always competes with the intrinsic character. Thus, we think that
the formal theory of elimination will give more intrinsic results than the purely differential
algebra methods. We have mainly studied the linear case with variable coefficients for its
simplicity and also because it gave some nice results in control theory. We shall develop
the nonlinear case later on in future papers. We think that an interesting problem sould
be to revisit the Douglas’ classification of the inverse problem of the calculus of variations
(see [7]) in this modern framework.
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