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Abstract

In this paper, we are interested in a stochastic differential equation which is nonlinear in
the following sense : both the diffusion and the drift coefficients depend locally on the density
of the time marginal of the solution. When the law of the initial data has a smooth density
with respect to Lebesgue measure, we prove existence and uniqueness for this equation.
Under more restrictive assumptions on the density, we approximate the solution by a system
of moderately interacting diffusion processes and obtain a trajectorial propagation of chaos
result. Finally, we study the fluctuations associated with the convergence of the empirical
measure of the system to the law of the solution of the nonlinear equation. In this situation,
the convergence rate is different from /n.

The first part of this paper is dedicated to the nonlinear stochastic differential equation

Ko =+ [y olols, X))dBy + [3 blp(s, X,)ds o)
pE Cbl’Q([O,T] x R%) is such that the law of X; is p(t, z)dx '
where X; € R, B is a d-dimensional Brownian motion, o and b are smooth and the density fo of
the law of ¢ belongs to the space H2+2 of C’g functions on R? with second order derivatives Holder
continuous with exponent a (0 < a < 1). To prove existence and uniqueness for this problem,
we first study the linear stochastic differential equation similar to (0.1) where p is replaced by a
given smooth function ¢. Our study is based on results given by Ladyzhenskaya Solonnikov and
Ural’ceva in [6] for linear parabolic partial differential equations. Then we conclude thanks to
results also given in [6] for the quasilinear partial differential equation satisfied by p.

Considering the propagation of chaos proved by Oelschlager [13] and generalized by Méléard and
Roelly [9] in the case of the identity diffusion matrix, it is sensible to try to approximate the
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solution of (0.1) by the following sequence of moderately interacting particle systems :

- t - . t -
"=+ / o(V"x puy(X2")).dB: +/ b(V™ x puy(Xg"))ds, 1 <i<n (0.2)
0 0

where B?, i € N* is a sequence of independent R¢-valued Brownian motions, ¢, i € N* is
a sequence of random variables IID with law fy(z)dz independent of the Brownian motions,
pt = L35 Sxin denotes the empirical measure and V" (z) = éV(%) for V' a Lipschitz
continuous and bounded probability density on R? and (e,), a sequence of positive numbers
converging to 0. In the case of the identity diffusion matrix, Oelschlager [13| manages to control
V™ % u, by direct computations concerning the particle system. But as our diffusion matrix
depends on V" x u,, we need other techniques to prove the propagation of chaos.

Delocalizing the interaction to enter in the classical McKean-Vlasov framework (see McKean [§],
Sznitman [14] or Léonard |7| for instance), we obtain existence and uniqueness for the following
mollified versions of (0.1):

V)" = [ o (Vs PRYS™).dBE+ [3b(V™ % PPY™))ds
P” is the law of Yon

Moreover the associated propagation of chaos results imply that if €, converges to zero slowly
enough, limy, , 4 o E(sup ;< [ X" Yz "?) = 0.

That is why we study the convergence for n — +o0o of Y" to X* where X* denotes the solution
of (0.1) for the Brownian motion B’ and the initial condition ¢*. If the norm of fy in the
space H?*® is small enough, according to results concerning linear parabolic partial differential
equations given in [6], for any ¢ € [0,7], P/ is absolutely continuous with density py(¢,.).
Moreover the sequence p, is bounded in a Holder space included in Cb1 ’2([0,T] x R?). This
boundedness property allows to prove that limy, o E(sup<y | X} — Yti’"|2) = 0. We conclude
that, for €, converging to zero slowly enough, -

lim ]E< sup | X} — XZ’"|2> =0
n—-+0o0o t<T

which implies propagation of chaos for the moderately interacting particle system (0.2) and
proves that the empirical measure u, provides a stochastic approximation of the solution of the
Cauchy problem

1 0
=3 2 Gage, 00~ 2 g i) and p(0,2) = fola)
Gg=1 """ =1
where a denotes the square of o.

Finally, we study the fluctuations associated with this convergence. For the sake of simplicity,
we limit ourselves to the case d = 1. The rate of convergence is 1/ €2 where €, is chosen to
minimize the upper-bound obtained for E(sup,«; | X! — X¢"|*). It is much smaller than v/n,
the rate obtained in the case of weak interaction. Let P denote the law of the solution of (0.1).
We study the behaviour of 5™ 1 5 (4" — P) when n goes to infinity. The leading term is due
to the convergence of V" to 50 whereas the martingale part of the decomposition of " and
the fluctuations related to the initial conditions, which would have non-trivial limits at rate \/n,
converge to zero. We follow the approach developped by Fernandez and Méléard in [2]. We prove
that if o, b and fp are smooth enough, the laws of the processes n" are tight in C([0,77], W0_4’1)



(the weighted Sobolev space W0_4’1 is defined further on) and that these processes converge in
L' to a deterministic process characterized by a deterministic evolution equation.

Our results are obtained under restrictive assumptions on fy. But, to our knowledge, the propa-
gation of chaos result is the first one in the case of moderate interaction in the diffusion coefficient.
The fluctuation result is the first one for moderately interacting systems and provides an example
of a non-gaussian limit (since deterministic) with a rate different from /n.

Notations

Weset T' > 0, d € N*. Let Cb1’2 be the space of functions on [0, T] x R? continuous and bounded
together with their first derivative with respect to the time variable (the first one) and their first
and second derivatives with respect to the space variables. We introduce a few other functional
spaces.

Hoélder spaces
Let « € (0,1). For any integer j, H/T® is the space of real functions f on R? which are continuous
together with their partial derivatives up to order j and admit a finite norm

k _ Nk ’
“f“y+a—Zsup|Dkf|+Z sup |D*f(z) — D" f(2')]

o
. x,x' €RY |LE - |
k< k=j |lz—z'|<1

(where for k = (k1,...,kq) €N k= Ezdzl ki and D*f = %)

For any integer j, H 550t g the space of real functions f on [0,7] x R? which are continuous

together with their derivatives D} DFf = % for 2r + k < j and admit a finite norm
HES N,
xeRd DIDEf(t,z) — DiDEf(H, x)
I llise = > supd|D§D’;f|+ 3 RS |D; D3 (¢, I )|
or 1F<j TR j—1<2r 1< O i t,[?gi] |t —#|
OT |DyDEf(t,x) — DiDEf(t,2")|
+ Z | _ I|o¢
o e .wwERd r—x
rt ]|a: z'|<1

Weighted Sobolev spaces
For every integer j, 8 € R4, let us consider the space of all real functions g defined on R with
derivatives up to order j such that

o g®) (@))>  \?
ol = (2 [ Mohar) <o

k<j

where g(*) denotes the kth derivative of g. Let Wg ¥ be the closure of the set of functions of class
C* with compact support for this norm. Wg”g is a separable Hilbert space with norm || - [|;3.
We will denote by Wofj B its dual space.

Let C9# be the space of functions ¢ with continuous derivatives up to order j and such that

k
limy 4|00 % =0, Vk <j. This space is normed with

||g“CJB = Zsup 1+ |$|B
k<j®



and C7Y is denoted by Cg. Let C 9 be the dual space of C%8 and for 8 =0, C7 is the dual
space of CZ .

We have the following embeddings (See Adams 1], in particular the proofs of Theorem 5-4 and
Theorem 6-53 can be adapted without difficulty for weighted Sobolev spaces):

Wt ¢ for m>1,j>0and B> 0, and ||gllcis < Kllgllms,s
G = WP, for f>1/2,5 >0, and glljs < Kllgll - (0.3)

We have also 1
W s WP m2 1,520, 20, 9>,

where H.S. means that the embedding is of Hilbert-Schmidt type, and

911,84+ < Kllgllm+j,- (0.4)
We deduce the following dual embeddings:
CT o Wy e, >0, B>,
Wy o B>1/2, 520,

i _ i 1
WO 73,8+ s WO (m'i']):ﬂ’ m Z 1, ] Z 0, ﬁ Z 0’ v > 5

The following lemma, proved in [2], gives estimates of the norm of some elementary linear oper-
ators in a well-chosen weighted Sobolev space.

Lemma 0.1 For every fived z,y € R? the linear mappings Dy, Dy, Hy : I/VOQ’2 — R defined by
Duy(9) = 9(@) = 0() 5 Dalp) = () 3 Hulg) = ¢/ (x) are continuous and

IDayll-22 < Kilz —yl(L+ |z* +[y[?) (0.5)
IDall-22 < Ka(l+ |zf) (0.6)
|Hell 22 < Ks(1+ |zf) (0.7)

Hypotheses

If £ is a Borel set, let P(E) denote the set of probability measures on E.

Let Q = C([0,7],R?) endowed with the topology of uniform convergence, X be the canonical
process on . If P € P(Q), (Pt)ico,;r] is the set of time marginals of P.

P(Q) = {P € P(Q); Vt € [0,T], P, is absolutely continuous with respect to Lebesgue measure}

If P € P(Q), there is a measurable function p(s,z) on [0,T] x R? such that for any s € [0, 7],
p(s,.) is a density of Py with respect to Lebesgue measure. See for example Meyer [10] pages
193-194. Such a function is called a measurable version of the densities.

In all the following, we assume that o is a Lipschitz continuous mapping on R with values in the
space of symmetric non-negative d x d matrices such that :

Img >0, Vo € R4 Vy € R, z*0(y)z > my|z|? (0.8)



and that b is a Lipschitz continuous R?-valued mapping on R. The matrix oo* is denoted by a.
Let V be a Lipschitz continuous (constant K,) and bounded (constant M,) probability density
on R? such that [y, |#]*V (z)dz < +00 and [, 2V (z)dz = 0.

Let fo be a probability density on R?, B; and ¢ be a d-dimensional Brownian motion and a
random variable on R? independent of the Brownian motion with law fo(z)dz.

For any integer j > 2, [Hyp;] denotes the following hypothesis : o is CI+1 (continuously differ-
entiable up to order 5 + 1), b is C7 and fy belongs to H/ %,

1 The nonlinear stochastic differential equation (0.1)

1.1 A linear stochastic differential equation

Let g € HY 32t With q, we associate the second order operator

2 d

d
1 0°. 9.
Ly=5 2 wijla(s,9)) 5 ——+ ) bilals, 1.1
! QiJZZI il y))ayiayj ; (q( y))ayi (1.1)
The adjoint of this operator is
1 d 52 d P
L= =S q : B O |
g 2Z.JZ:1am(q(t,x))aw(%j+i1 i(1,0) 5 (t,2) + Ot 2)

where
Bi(t,x) = Yo7_, ai(a(t x)) i (t, 2) — bila(t,z)

2
Clta) = 152450, (a;;-(q(t, )28 20 4 (gt ) i (1 x>) — S bt ) 22 (1, )

Proposition 1.1 If [Hypz] holds, the law of the unique strong solution of the stochastic differ-
ential equation

X =+ [ olate X008+ [ blats, X)) (1:2)

belongs to 75(9) and admits a measurable version of the densities p € HY™22% which is the
unique solution of the partial differential equation

% = LZp on [0,T] x R and p(0,z) = fo(z) (1.3)

1,2
in Cp". Moreover,

[Plli+2 240 < Fo(T,0,b, [lqlli+2 240 | foll2+a (1.4)



with F» nondecreasing in its last variable. _
If [hyp;] holds for some j > 2 and q € H%J‘Fa’ then p € HSS0+e gng

Il s2 o < F5(To0b, gl e s )l foll (15)

with Fj nondecreasing in its last variable.

Proof : The proof consists in bringing together results of Friedman [3] and Ladyzenskaya
Solonnikov and Ural’ceva [6]. It would be possible to obtain that the law of X belongs to P(Q)
by the Malliavin calculus (see for instance Nualart [12] Theorem 2.3.1 p.110). But for the sake
of consistency, we do not insist on this approach.

We first suppose the [Hypz] holds. The operator Lj is uniformly parabolic and its coefficients
belong to H2®. By Friedman [3] Chap.6, there exists a fundamental solution I'}(z,t,y,s), 0 <
s<t<Tof L;— % and for any ¢ € [0, 7], the law of X; has a density with respect to Lebesgue
measure given by p(t,z) = [pa It (2,t,y,0) fo(y)dy.

In [6] Chap.IV, Ladyzenskaya, Solonnikov and Ural’ceva deal with uniformly parabolic operators
of the second order with coefficients in H2'®. We apply their results to L. As fy belongs to
H?%% by equations (14.3) p.389 and (14.5) p.390 we conclude that p belongs to HM™ 22+ and
solves (1.3). Inequality (5.9) p.320 then implies that ||p|[14+2 2140 < C||foll24+a. The proof of (5.9)
shows that the constant C' depends only on T', on m, and on the norm of the coefficients of Ly
in H2® and increases with this norm. Hence (1.4) holds.

Uniqueness for equation (1.3) in C; 2 is an easy consequence of the maximum principle.

If, for j > 2, [hyp;] holds and ¢ € HHTQ’J'““, then the coefficients of Ly belong to H =5 -2t
and fo € Hi*® By Theorem 5.1 p.320 [6], (1.3) admits a solution in H™2 7t ¢ C1? As

uniqueness holds for (1.3) in C’bl’2, we deduce that this solution is equal to p. Hence p € 5 it
Inequality (1.5) is like (1.4) a consequence of equation (5.9) p.320. |

1.2 Existence and Uniqueness for the nonlinear stochastic differential equa-
tion (0.1)

This section is dedicated to the nonlinear stochastic differential equation (0.1) :

Xe=C+ [y olpls, Xo)-dBs + fy blp(s, Xs))ds
pE 02’2([0,T] x R?) is a measurable version of the densities for the law of X

Let us assume that [Hypsz| holds. We are going to prove existence of a unique strong solution
(X, p) for this equation under a new hypothesis on o.
If (X,p) is a solution of (0.1), applying Itd’s formula and taking expectations, we obtain that p
is a weak solution of the quasilinear partial differential equation :

dp

5 = Lip on [0,7] xR and p(0,2) = fo(z) (1.6)



Asp € Cb1 ’2([0,T] x R%), it is in fact a classical solution. Our existence and uniqueness result
for (0.1) is based on results concerning (1.6) given by Ladyzenskaya, Solonnikov and Ural’ceva
in [6]. As these authors deal with equations in divergence form, we put (1.6) in divergence form
and obtain :

d d

5=z >+ o) 5 - b(plp) on .T]x B and p(0.0) = folo

(1.7)

Like in [6] p.494, it is possible to express the difference of two classical solutions of (1.7) as the
solution of a linear Cauchy problem (with coefficients depending on both the solutions). If we
assume that the leading matrix a;;(p)p + a;;(p) is nonnegative i.e.

Ve e RY, Yy € R, z*(d' (y)y + a(y))z > 0, (1.8)

then the maximum principle (Theorem 2.5 p.18 [6]) implies that the difference is equal to zero
and that uniqueness holds for (1.7). We deduce uniqueness for (0.1):

Proposition 1.2 Under the assumptions [Hypz2| and (1.8), the nonlinear stochastic differential
equation (0.1) has no more than one solution.

Proof : We suppose that (X?,p) and (X9, q) are two solutions of (0.1). Applying Itd’s formula
and taking expectations, we obtain that p and ¢ solve the nonlinear equation (1.6) in the sense of
distributions. As p and ¢ belong to Cb1 ’2([0, T],R%), these functions are in fact classical solutions.
Since the equations (1.6) and (1.7) are equivalent as far as they are considered in the classical
sense, p and ¢ solve (1.7). By the uniqueness result for this equation, we deduce that p = ¢. It
follows immediately that XP = X49. [ |

Under a stronger assumption on the leading matrix
Jpe >0, Yo € RY, Vy € R, 2*(d'(y)y + a(y))z > pala]?, (1.9)

applying Theorem 8.1 p.495 [6] to our particular framework, we obtain existence in H 1+3.2+a

for the Cauchy problem (1.7). We are now ready to state the main result of the section.

Proposition 1.3 Under the assumptions [Hypz] and (1.9), the nonlinear stochastic differential

equation (0.1) admits a unique strong solution (X, p)

Proof : Uniqueness is a consequence of the previous proposition. To prove existence, we
remark that the solution ¢ of (1.7) solves (1.6). According to Proposition 1.1, the law of the
unique strong solution of the linear stochastic differential equation

t t
X, =(+ /0 o(a(s, X,)).dBs + /0 b(q(s, Xs))ds



belongs to 75(9) and admits the unique solution of the partial differential equation

dp

5 = Lap on [0, T)xRY and  p(0,2) = fo(z)

in Cbl’Q([O,T] x R?) as a measurable version for its densities. As ¢ solves this equation, ¢ is a
measurable version of the densities for the law of X. Hence the couple (X, q) solves (0.1). ||

2 The propagation of chaos result

For j > 2, let [Hyp;] mean that [Hyp;] and [/ follj+o < 1/Fj(T,0,b,1) hold. (F} is defined in
(1.4) and for j > 2, F} is defined in (1.5)).

Remark 2.1 There exists probability densities on RY belonging to HIT*(R?) with an arbitrary
small norm in this space. Indeed ]|k%f0(z)||j+a < k_lct“f0||j+a-

2.1 A McKean-Vlasov model

In this section, we deal with a mollified version of the nonlinear stochastic differential equation
(0.1) :

. - (2.1)
P is the law of Z

{Zt =+ [Lo(W % Py(Z,)).dBy + [Lb(W * Py(Z,))ds
were W is a probability density on R? bounded by M,, and Lipschitz continuous with constant
K. Although the coefficients are not linear in the measure, this equation can be treated like in
the classical McKean-Vlasov framework (McKean (8], Sznitman [14] or Léonard [7]).

Proposition 2.2 There is existence and uniqueness, trajectorial a_nd n law for ~(2 1). Moreover,
if for some j > 2, [Hypg] holds, then the law P of the solution Z belongs to P(2) and admits

: o : : : .
a function p € H= 7% with ||p|| j+e < 1 as a measurable version for its densities. The
2

Jta
function p is a solution of the Cauchy problem
O _ s 0,7) x R and p(0,z) = 2.2
2L = Liyap on 0,7 xR and p(0,2) = fo(z) 22)
Proof of Proposition 2.2 : The proof for existence and uniqueness is just a generalization

of the one given by Sznitman [14] Theorem 1.1 p.172 and is based on a fixed point theorem for



the mapping 1 : P(2) — P(Q) which associates with m the law of the unique strong solution of
the stochastic differential equation

t t
" :C—i-/o o(W xmg(Z")).dBs —i—/o b(W x«mg(Z"))ds

and the topology of weak convergence on P(2) which is metrisable for the Kantorovitch-Rubinstein

or Vaserstein metric. The fixed-point of ¢ is denoted by P.

Let us suppose that [Hypg] holds for some 5 > 2. To obtain the regularity properties of P,

we study a sequence of fixed-point iterations (¢"(m)), where m is a probability measure in

P(£2) with time-independent densities p°(s,z) = h(z) such that ||h[|j+o < 1. Clearly, the map-

ping ¢ : H'3 e 5 gitite which associates with g the function ¢(g)(t,z) = W x g(¢t,.)(x)

is nonexpansive. Hence [|¢(p°)||isa jta S 1 As 1(m) is the law of the solution of the lin-
2 9,

ear stochastic differential equation (1.2) for the particular choice ¢ = ¢(p°), by Proposition

1.1, we conclude that (m) belongs to P(f2) and admits a measurable version of the densities

pt € H=59te([0, T] x R?) with Ip it 5 < 1.

By induction, for any n € N, ¢™(m) belongs to P() and admits a measurable version of the

densities p” € H 2 7T with Hpnﬂ%yﬂa <1.

Combining Ascoli’s theorem and a diagonal extraction process, we obtain a subsequence (p”’)nf

such that p"' converges uniformly on compact sets together with its derivatives to a function p

and its derivatives. Clearly, p € H5% 0% and Hp||ﬂj o <1 As Y™ (m) converges weakly to
2 i

+
P, p is a measurable version of the densities for P.

Applying It6’s formula and taking expectations, we obtain that p is a weak solution of (2.2). As
pE H]J‘rTa’j"'o‘, this function is actually a classical solution of (2.2). |

Like in the classical McKean-Vlasov framework, it is possible to construct a sequence of weakly
interacting particle systems that approximate the solution of (2.1). Let B?, i € N* be a sequence
of independent R¢-valued Brownian motions and (?, i € N* be a sequence of random variables
IID with law fy(x)dz independent of the Brownian motions. The particle system of order n is
the unique strong solution of

) . b1 ) . ) t 1 & ) .
Zin = l+/ a(— WZﬁ’"—Zﬁ’”)-dBﬁJr/ b(— W(zg" —z3" )ds, l<sisn
e [o(am ) (e )ds, 1< <

On the same probability space we define Z* to be the solution of the nonlinear equation

Zi =1+ [y o (W« Py(Z2)).dB + [{ bW « Py(Z}))ds
P is the law of Z¢

given by Proposition 2.2.

Proposition 2.3 For any i € N*, for any n > 1,

- iy CM? : _ cM?
E Zvm 712 ) < w CK?%);, E 7V 7 ) < w CKY) (2.3
(suplzi - ziP ) < St epioriy (s |z - Zi1) < SR e(CRl) (23

where C' is a real constant independent of W'



Remark 2.4 These bounds obviously imply propagation of chaos : for any k € N*, the law of
the susbsystem (Z“™, ..., Z%") converges weakly to P¥ where P is the law of the solution of

(2.1).

Proof of Proposition 2.3 : Our proof is an easy adaptation of the one given by Sznitman [14]
Theorem 1.4 p.174 but as we need to precise the dependence on W, we present the calculations.
In the following, K and K’ are real constants which may change from line to line. Using
Burkholder inequality, we get that for any ¢t < T,

. . tr1 . . . 2

]E( sup | 25" — Z;|2> < K]E(/ (— S w(z" -z - W(Z - Zﬂ”’)) dr
5<t 0o\

tr1 & . . . \?

— Zi— 7" —W(ZE - Z1) ) d

[ (EXwa-an-wa-z) @

i=1
t 1 n . . . 2
+ /0 (ﬁ N W(Zi—Z]) - W P,(z;)> dr)
j=1
By exchangeability of the couples (Z%", Z%), 1 < i < n, we get

. —_ t . —_
]E( sup | Zb" — Z;|2> < KKg,/ ]E<|Zf:” — Z;|2> dr
s<t 0

+K’/0t zn: ]E((W(Z}; —7ZI) — W*PT(Z};)> (W(Z}; — 7k - W*Pr(Zﬁ)>>dr

k=1

When j # k, either j # i or k # . Suppose that j # ¢. As the law of 7! is P, and this variable
is independent of the couple (Z, Z¥),

IE( <W(Z}; — ZI) — W « Pr(Zfl)> <W(Zf; —Z7) =W+ P’“(Z’é)» N

E(]E(W(Z}; — 7)) =W x P.(Z})|ZL, Zf) (W(Z}L —ZF — W « PT(Z};)>> =0

Hence

K'M2t

t
E( sup |[Z1" — Z;|2> < KKE,/ E<|Zf:” - Z;|2> dr +
s<t 0

If ¢(t) = ]E( SUp,<; |Z§’n - Z§|2> + 51’(]\1@ , we have

KIMQ t
VE<T, o(t) < v 4+ KK? d
ST 9l1) < o + KK [ gryar

By Gronwall’s lemma, we conclude

K'M? )
p(t) < nKK“g’) exp(KK,T)

The second inequality in (2.3) is obtained by similar calculations. | |

10



2.2 Approximation of the nonlinear stochastic differential equation (0.1) for
regular initial data

In this section, we suppose that [Hypg] holds for some 5 > 2. We need this restrictive assumption
which implies compactness (as seen in the proof of Proposition 2.2) to prove the propagation of
chaos result. But it also enables us to obtain a new existence result for (0.1) without hypothesis
(1.9).

Let (es)n be a sequence of positive numbers converging to 0. We set V"(.) = 6idV(;). By
Proposition 2.2, there is existence and uniqueness for the nonlinear stochastic differential equa-
tions

{’_?” = C+ [y o (Vs PRYD).ABy + [y bV PR(Y))ds (2.4)

P" is the law of Y™

and Vn, P" admits a measurable version of the densities p™ in H FE0te with 1™ || fe j+a <1
2
We set ¢"(t,z) = V"™ xp"(¢,.)(x).

Proposition 2.5 Under [Hypg] for some j > 2, there is existence for the nonlinear stochastic
differential equation (0.1). When (1.8) also holds, the solution is unique and if it is denoted by
X,

]E( sup |Y," — Xt|4> < Keiﬁ with 8= a,1,2 respectively for j =2,3,> 3 (2.5)
t<T

where K is a real constant independent of n.

The proof of the proposition is based on the following lemma which states existence for the
Cauchy problem (1.6) under [Hypg] and compares the solution with p"” under the additional
assumption (1.8).

Lemma 2.6 If [Hyp}] holds for some j > 2, then the Cauchy problem (1.6) admits a solution
pE HES 0t i, Hp||ﬂ] o < 1. If moreover (1.8) holds, then
PEE

+
sup [p—p"| <Ce;  sup |p—q"| < Ce
[0,T]xR4 [0,T]xRd
where = «,1,2 respectively for 7 =2,3,> 3 (2.6)

Proof of Lemma 2.6 : First, under different asumptions on f : [0,7] x R — R, we upper-
bound the rate of convergence of fi(t,z) = V¥ f(t,.)(x) to f(t,x).

11



I fllire2ta <1, a8 [rayV(y)dy =0,

|fk(t’x) - f(t,.’l))| =

[t = vl

d 1 82]"
= ‘ /Rd ( —ery.Vof () + 6 Y yiyj /0 (1-9) Iz, (t,z — Heky)d9> V(y)dy‘

1,j=1
< CO(V)er
I 7 ey <1, then

(e, 2) — f(6,2)] = / 62 =)~ FEDV Gy < sup [Taf(ta)] [ alulV ()

[0,T]xRd
(V)ek

I || flls o < 1, then
filtz) — tx|—/|f & — ey) — F(t,2)|V (y)dy

<Iflls .0 / SV )y +2 sup |f] 2ly[2V (y)dy
leryl<1 [0,T] xR lery|>1

< C(V)eg

As sup,, ||p”||j%,j+a < 1, we deduce

Vn, sup [p"—q"| <Cé;

[0,T]xRd
op"™  Oq"
Vi, sup 8p 8(] <C¢! with y=1ory=2 resp. for j =2o0rj>2
[0,T]xRd | OTi Ly
82pn 82qn
Vi,7 su — <Cé® with B=a,1,2 resp. for j =2,3,>3 (2.7
J [O,T}fRd 8:1318.%] 8:1318.’13] - " IB p J ( )

Combining Ascoli’s theorem and a diagonal extraction process it is possible to obtain from (p™),, a
subsequence (p*);. such that p* converges uniformly on compact sets together with its derivatives
(the first order time derivative and the first and second order space derivatives) to a function
p and its derlvatlves The norm of this function in H’> ¥+ is smaller than 1. By (2.7), w
deduce that ¢* and its first and second order space derivatives converge to p and its derlvatlves
uniformly on compact sets. As by (2.2), p*¥ solves the Cauchy problem

apr
ot
taking the limit & — +oo we obtain that p solves (1.6).

L*kp on [0,7] x RY and p*(0,z) = fo(x),

To prove (2.6) we are going to express the difference p — p™ as the solution of a linear partial
differential equation (with coefficients depending on p, p" and ¢").

d d

op—p") 1 & o O (p =" N Ap—p"
%e-pn) 2 (ot + oo TG+ (;aij@)a—; - b)) 22

1
1< Op Op d dp
- I P Ny
+(2Z: )5 5 izzll(max)(p o)

12



82pn 82qn
n - (T
*3 Z @i (p) = ai(g Bxl(?x] Z ( 8% ai;(d")p &m@acj)

i,j=1 i,j=1
d
ny 94" nyy | 9P
Z (Z (a a;j(q )8—%> - (bi(P) - bi(q ))) Oz
i=1 N j=1 '
d d
1 @@ R/ 8(] 8(1 / 8p / 8q T
* <2ZJZI< 8xl 0w aij (4 )Bxl 0w ; bilp )Bacl bild )830Z P

(2.8)

Let us modify the four last terms of the right-hand-side in such a way that the differences (p—p™),
Op—p™ O(p™ —ag™ 82 n__ n
(PTf)7 (p" — g, (pamiq ) and a(giaag ) appear.

. 2 n 02 (pn —gn
For instance, we set G(0) = a;;(¢" + 6(p —gn)) (p" + 0(p — p")) (821'%113]' +6 é’;iaé_ )> and make
the following computation for the fifth term :

82pn 82 n
I A | n n !
ij (p)paxiaxj @i (" )p 0z; 0z / G0
82 n 82(pn _ qn)>d0

=((p—p">+(p"—q>>/0 (g + 0(p — q))(p"+e(p—p")>( Ly

Baciaxj 81‘18@7
1 ann 82(;0" —q")
—_p (g™ P
+®-p )/0 a;i(q" +6(p—q ))<8xz~8xj+9 D105, >d0
N . .
# CH ) [ ta 0l = )0+ 00— )i

The coefficients behind (p™ — ¢"), (p — p") and 62(9(3];?76;1:) in the right-hand-side are bounded on
[0,T] x R? uniformly in n.

Treating the fourth, the sixth and the seventh term of the right-hand-side of (2.8) in the same
way, we obtain

op—p") 1 P(p—p") P =P . .
5% = 2”2:1(%( p) + aj;(p)p) Di0z, ZB o, +C"p—p")+f
where
ij=1 Y 81‘181‘] = ¢ Bacl P 4

and the coefficients A?j, B!, B", C™ and C™ are bounded on [0,7] x R? uniformly in n.
If (1.8) holds, it is possible to apply Theorem 2.5 p.18 [6], to obtain

sup |p—p"| < C(T,0,b) sup |[f"|
[0,T]xRd [0,T]xR4

y (2.7), suppo gyxre [ [ < C(T, 0,0, V)eg with 8 = a, 1,2 respectively for 7 = 2,3,> 3. Hence
(2.6) holds. ||

Proof of Proposition 2.5 : We suppose that [Hyp;] holds for some j > 2. By Lemma 2.6
the Cauchy problem (1.6) admits a solution p in H%v‘”o‘([o,T] x R?). Existence of a solution

13



for the nonlinear equation (0.1) is deduced like in the proof of Proposition 1.3.

Now, we also assume that (1.8) holds. By Proposition 1.2, we deduce that (0.1) admits a
unique solution. If this solution is denoted by X, using Burkholder inequality, we get that
E(sup,«; | Y — X,|?) is less than

t
K/ E(IU(q”(s,f’s”)) —a(p(s, )" +1o(p(s, Y") — o(p(s, Xo))|*
0

+1b(q" (s, ¥")) = blp(s, Y)|* + [b(p(s, ¥.")) — blp(s, Xs))|4>d5

As o and b are Lipschitz continuous, for any ¢ < T,

t
E( sup |V — Xs|4> < K(T sup |¢" —p|4 + sup |pr|4/ E(|Y,” — Xs|4)ds>
s<t [0,T]xRd [0,7xR4 0

By (2.6) and Gronwall’s lemma, we obtain (2.5). ||

We are going to approximate the solution of (0.1) by the moderately interacting particle systems
(0.2) :

. . t 1 & . . . t /1 . .
xim — C“r/o U(;ZV"(X;:" _Xg,n)>.dB; +/0 b(ﬁZV"(Xﬁ’" _Xg,n)>ds, 1<i<n
p j=1

We suppose that (1.8) holds and define X* to be the solution of the nonlinear equation

Xj =+ fy olp(s, X9))-dBi + [y blp(s, X1))ds
pE C;’Q([O,T] x R%) is a measurable version of the densities for the law of X*

given by Proposition 2.5.

Theorem 2.7 Assume that for some j > 2, [hypg] and (1.8) hold. If €, converges to zero slowly
enough to ensure that

2 2
. €n CK;\
hrllnzexp (€%d+2> =0
where the constant C' is given by (2.3), then
lim E Xt —-XiPF) =0
oJm (f;‘;" t tl )

which implies the propagation of chaos and the convergence in law of the empirical measures
fin, =230 Gxim to P, the law of X'.

Proof : The probability density V" is bounded by M, /e and admits K, /e?*! as a Lipschitz
continuity constant. Once this remark is made, it is enough to associate Proposition 2.3 and
Proposition 2.5 to obtain

; iy 2 CK?
E( sup | X" — th|2> < K(e?f + tn exp <T+g>> with B=a,1,2 resp. for j =2,3,>3
t<T n €n

The conclusion follows obviously. |
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Remark 2.8 In a similar way, if we assume that [hyp)]| and (1.8) hold and d = 1, we obtain

4 4
', —'4 6 CK
s sup i - i) < (G B (T

We want to have the best convergence rate as possible for the left-hand-side. So we choose €, to
be the unique solution of

CK}
exp ( S U) =n?e (2.9)
en
Then we obtain
E( sup | Xo" — X§|4> <K (2.10)
s<T

3 The fluctuation result

In this part we consider the case of the dimension one (for simplicity). We assume that (1.8)
and [hyp/] hold, that o and b are bounded together with their partial derivatives up to order 4
and that [, |2[®fo(z)dz < +oo i.e. ¢ admits an eighth order moment.

We are interested in the behaviour of the fluctuations associated with the convergence in law of
the empirical measures ™ of the system (X") to the law P of Xi. We suppose that €, solves
(2.9). By (2.10), it appears that the presumed rate of convergence is 2. Let us denote by ay,
the number é We now study the process " defined for every t and every function ¢ by

<nis ¢ >=an(< pis ¢ > = <pud >).
For each Brownian motion B?, i € N*, we consider a nonlinear process similar to (2.4)
V" = [ o (Vs PRY™)dBE+ [3b(V™ % PPY™))ds
P" is the law of YY"

. . . o . dta
Under our assumptions, Vn, P" admits a measurable version of the densities p” in H = *t¢

with [pallae 4yq < 1.
2

A4

3.1 A few pathwise estimations

Lemma 3.1 Let ®:[0,7] x R — R be a function continuous and bounded together with its first
order spatial derivative. We have

VB> 0, sup E((vn* (@ (4" —p?))(x)>2) <Ky (3.1)
0,7]xR
VB >0, Vs € [0,T], E( < (V™ (@, (2 — p)())? > ) <Ky (32)

sup E((V+ u2e) ~ (o)) < Kach (33)

[0,T]xR

Vs € (0,77, E( < (VP u™() = ps())? > | < Koelr (3.4)
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where the real constants Ky g, Ko 5, K1 and Ko do not depend on n.

Proof : We only prove the second and the forth inequalities. The first and the third are
obtained in a similar way but the calculations are easier.
We recall that V" is bounded by ]g:’ and Lipschitz continuous with constant %

n

B < (V7 (100 P > )
(€ g(vn(xi’" X8 < g OV ) >) )
n 2
+(5

L <l B (VT ) — By (VX ) >2]

D (VX" = XTI @ (XE") - VT~ ﬁj’")Qs(Ysj’”))>
j=1

IA
S

(VP = YIM)@ (Y= <pll, @s(JV (V" — ) >)>2

S

M:

j=1

K Z Z sup |® _ , _ sup 2 _
< E |: ( up| | (|in Ysz,n|2 + |Xg,n o Y'sj,n|2) + 5 | (|Xjn ek 2)>
i=1 — ’I'L n

sup |®|2  sup|® _
+ P| | + P| | (|in s’ 2):|
n

2
ne;, er

as the variables Y™ are independent and their common law has a density equal to p7?. By

Proposition 2.3, replacing M, and K,, by M, /e, and K, /€2 in (2.3), we deduce

1 1\é CK? K
B <l (V@ - p)OP > ) < K () Do () 4 5

€n n n ne

Taking into account the definition of €, (2.9), we conclude

VA >0, Vs € 0,11, E( < (VP (B — ) ()2 > ) < Ky el

By this inequality in the case ® := 1 and [ = 4 and the results given in Lemma 2.6, we obtain

sup E( <, (V75 () = ps()? >) <2 sup E( < L (V5 () = VP ()2 >)

s€[0,T] s€[0,T]
+2 sup |[V"xp" —pl?
[0,T]xR
< Kse,,
which puts an end to the proof. [ |

Let us now prove that uniformly in ¢ and n, E(||n; ||%22) is finite.
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Proposition 3.2

sup sup E(nn?u%,z) < +oo.
n tel0,T]

Proof : Let us first remark that, as o and b are bounded and E(|¢|®) < 400,

sup sup E(

8) < +o00; supIE(sup |XZ|8> < +00 (3.5)
n 1<i<n

s<T s<T

For every function ¢ in W02’2, we write < ny, ¢ >= SP*(¢) + T]*(¢), where

n n

SHP) = DG = ¢ED) T = (KD <pid ).

=1 =1

Let us consider a complete orthonormal system (¢) in W22, Since the variables (XZ’", X}) are
exchangeable,

B X st0?)

k>1

IN

( S () - m(xz'))?)SaiE<lle3*"X3“22:2>

i=1 k>1
- 1/2 - 1/2
< Kai]E<|th’” — X,}|4> 1E<1 + |th’”|8 + |th|8> by (0.5)

By (2.10) and (3.5), we deduce that sup,, supyejory E(3 451 ST (#r)?) < 4o0. Moreover, since
the variables X/ are independent with law p;(z)dz,

E(ZTtn(¢k)2> = Z—%NZE<(¢1¢(X15) < pt, br >) > _% (ZDXl Pk )

E>1 E>1 k>1

2
< Kan—"]E<1 + |Xt1|4> by (0.6)

and sup,, Supeo 77 (Zk>1 TP (#r)%) < +oo. As ||ﬁf||%2,2 < 221931(5?(%)2 + 17 (¢r)?), the
conclusion holds [ |

3.2 The tightness result

In order to prove the tightness of the laws of the fluctuation processes 7", we study the semi-
martingale representation of these processes. Applying Itd’s formula, we obtain that 1™ satisfies
the following martingale property: for every ¢ € CZ(R),

t
MP () = (s &) — (s ) — /0 APds,

17



is a real continuous martingale with quadratic variation process

M _ a’l2'L ! n 12 2(yn n d
<M@) 2= [ PO () > ds
where

426 = an (< UV 4 EOIIO) > = < pesblp D) >

5 <HLATT O ) > —5 < ()0 > )

Proposition 3.3 For every integer n, the process (M]") is a strongly continuous martingale in
W072’2, and for {¢y}r>1 a complete orthonormal system in W02’2,

sup — ZE(sup(Mt (o1)) ) < 400 (3.6)

no G =y \i<T

which implies that sup,, B E(sup,<r [|Mf*||? 5 5) < 400 and that the C([0,T], Wy %?)-valued vari-

ables M™ converge to 0 in L?.

Proof : Let {¢y}r>1 be a complete orthonormal system in W02 2 of C™ functions with compact
support. By Doob’s inequality, >+, ]E(suptST(M{z(gbk)F) is bounded by

]gZ>1/ ( < /-1‘57 ,j () > >d8 = nn </ ||'b Xsl’ L”Z’jzdS)

K
< —a”]E< sup(l + |Xsl’"|4)> by (0.7)
n s<T

By (3.5), we conclude that (3.6) holds.

We still have to prove the continuity of M™. Let € > 0. By (3.6), there exists a positive number
No (depending on w) such that D, n suptST(Mt”(gbk))2 < ¢ as.. Let {t;}m>1 be a sequence
in [0, 7] such that (¢,,) tends to ¢ when m tends to infinity.

1M = MP(|Zg5 = (ME (dr) — M (¢1))”
E>1

No
sZ(Mt’;(sbk = M ()" +2 ) {(ME (1)) + (M ()}

k>No
Z 3N0

The majoration of the first term if m is sufficiently large is due to the continuity of the process
M} (¢r), for every k > 1. Thus the mapping ¢ — M]" is continuous in W0_2’2. |
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To study the drift term we transform A%¢ where ¢ € CZ(R).
A = an( < g = s, bps () () > + < g, (V™ g () — blps (1)) 4/ () >

b3 <P D0 > 4y < () — )0 > )
0_2

()" >

=<7, b(ps ()¢ () > + <nf,

1
+oan < pg, ()" pg() —Ps(-))/0 V(rV" s pg () + (1= 7)ps())dr >

2
=<y, Lep >+ < Z} P>

" 1
Fan <t T n )~ pa) [ @) + (= nptar >

with

0.2

Lsp(x) = blps(2))¢' () + = (ps())¢" (), (3.7)

1
<ZP > =an < pl, (V" p2(-) — ps()) <¢'(-)/0 B (rV™ s () + (1 = 7)ps(-))dr

", 1
+ 4’2( ) /0 (@) (rV" 5 () + (1 = T)ps(-))d7> >
(3.8)

Proposition 3.4 For every s, the operator Lg is a linear continuous mapping from Wél’l into

W02’2, and for all ¢ € W(;l’l,

2 2
[Ls@llz2 < Killdllg:- (3.9)
For every n, s and w, the operator Z3' is a linear continuous operator from Wg’l mto R, and
E(|1Z}? 1) < Ko< +oo. (3.10)

The constants K1 and Ko are independent of n and s <T.

Proof : The upperbound is clear for Ly, since p belongs to HHTQ"HC“([O,T] x R), and then to
C%([0,T] x R).
For Z}, we observe that as ||¢]|c2: < K||¢]la1 (by (0.3)),

B< 200> < alollaKaoB( [0 Pt )E( [0 et - pat)uian))
By (3.4) and (3.5), we conclude that (3.10) holds. ||
To prove the tightness of n™ in C([0, T, W074’1), we use the Hilbert semimartingale decomposition
of n™ in WO_4’1

t t
ne =1y +/ (Ls)*ngds + / Z'ds + M. (3.11)
0 0
where (Lg)* is the adjoint of the operator L.
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Lemma 3.5 The integrals fOt(Ls)*nst and f(f Z}ds are defined as Bochner integrals in W0_4’1.

Proof : As W0_4’1 is separable, following Yoshida [15] p.132, it is enough to check that :

1) Vo € W(;l’l, the mappings s =< (Lg)*n?, ¢ >=<n?, Ls¢ > and s -< Z!', ¢ > are measurable
2)as., [ |(Ls) n?ll—a,1ds < +oo and [} |Z2||—4,1ds < +00.

Condition 1) is obviously satisfied.

By (3.9) we obtain

T T
/ 1Ly | aads < Ky / 12 —2.2ds
0 0

By Proposition 3.2, ]E< fOT ||17?||2_2,2d3> < 400 which implies that a.s., fOT 1n2 ]| —2,2ds < +00.
Hence condition 2) holds for the first integral. For the second integral, we remark that, a.s.

JINZ2 | —a,1ds < +00, as by (3.10), ]E( I ||Z§‘||2_471ds> < +o0. |

Proposition 3.6

sup B sup a2, ) < +50 (3.12)
n t<T

The trajectories of ™ are a.s. strongly continuous in W074’1.

Proof : By the semimartingale decomposition of n™ (3.11),

2 2 t 2 2 2
P4 < 4(|I776’||4,1 e / T N2 0+ 1221 40)ds + ||Mt"||4,1)
Taking (3.9) and (3.10) into account, we deduce
2 2 r 2 2 2
E( sup ||nm|_4,1) < 41E<H773||_4,1 T [ 2+ 1222 )ds + sup r|M?||_4,1)
t<T 0 t<T
< 4(1E(||773H24,1) KT sup B | 5) + KoT? +E( sup IIM[”H24,1>>

s<T t<T

Propositions 3.2 and 3.3 and the continuous embedding of W0_2’2 into 1/1/0_4’1 imply that (3.12)
holds.

The Bochner integrals f(f (Ls)*nyds and f(f Zsds are strongly continuous in 1/1/0_4’1 ([15] Corollary
1 p.133). Moreover, by Proposition 3.3 and the continuous embedding from W(fz’2 into W074’1,
the process M" is a.s. strongly continuous in W0_4’1. The decomposition (3.11) of ™ allows to
conclude that this process is a.s. strongly continuous. |

We are now able to prove
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Theorem 3.7 The sequence of the laws of (n™)n>1 is tight in C([0,T], W0_4’1).

Proof : By Proposition 3.3 and the continuous embedding from WJZ’2 into W074’1, we know
that the processes M™ considered as C([0, 77, W0_4’1) valued variables converge to 0 in L?. As
c([o, 1], W0_4’1) endowed with the sup norm is a Polish space, we deduce that the sequence of
the laws of (M"™),>1 is tight in C([0,T], W074’1). Therefore it is enough to prove the tightness of

the laws of the drift terms D = ng + fg(Ls)*n?ds + f[f Zds to conclude. Let us now recall the
criterion that we will use :

A sequence of (2", F*)-adapted processes (Y™ )n>1 with paths in C([0,T], H) where H is a Hilbert
space is tight if both of the following conditions hold:
I: There exists a Hilbert space Hy such that Hy — .. H and such that for all t < T,

sup E(||Y," |Z,) < +oo.
n

II: (Aldous condition) For every yi,v2 > 0 there exists 0 > 0 and an integer ng such that for
every (F[')-stopping time 1, < T,

sup sup P([|Y7D = Y7 ollr = 71) < 7o

n>ng <4
As Wy 2% s Wy o and [|[DP)12 55 < 2(l0P]|2 5.5 + 1M1 5.2), Propositions 3.2 and 3.3 imply
that condition I holds for (D");>1.
Let v1 > 0,0 <0 <§ and 7, < T be a stopping time. By Chebychev inequality,

2
4,1)

Tn+0
/ ((Ly)'nl + Z)ds

1
P(HDZN D | > 71) <LE (\
1

1 K 52
By Proposition 3.4 and 3.2 <— <202 (K1 sup sup E(||77?||22 2) + Kg)) < —
71 n te[0,T) ’ Y1
The right-hand-side is arbitrarily small uniformly in n for § small and condition II holds which
puts an end to the proof. [ |

3.3 Characterization of the limit values

If we consider equation

t t
s =n3+/ (Ls)*nst+/ Z"ds + M}
0 0

it appears that as n — +o0, it is not possible to close the equation at the limit in W[;4’1 because
of the unboundedness of the operator L in WS1 L. But this operator is bounded from Wg 1 to
W(;l L Therefore, we are going to obtain a limit equation in WO_G’I.

Let Ayg(x) = pa(2) (¢'(w>b'(ps(x>> n %(a?)’(ps(x») and Lo = Ly + A,

Since p € HHTO‘A"'O‘([O, T] x R), we easily prove that :
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Lemma 3.8 If o and b belong to C,?, then for each s, the operator Lg is continuous from Wg’l
mto W(;l’l and its norm is bounded uniformly in s € [0,T]. Moreover,

Vo e W', Vs, s' € [0,T), ||Lsp — Lodllag < Kls — |7 [|pl6,1-

We are now ready to obtain the limit equation :

Theorem 3.9 Let us assume that 0,b € Cf. Then every limit value of the laws of (")p>1 (in
P(C([0,T], 0_4’1))) is concentrated on the solutions of the deterministic affine equation

t t
vt € [0,T], gt:/ (ﬁs)*gsds+/ Gyds in Wy ™' (3.13)
0 0

where G is defined, for every ¢ in Wg’l by

¢"()

22 (02 (0s() >

<G o=<pug ([ #VEE )OO 0.0) +

Remark 3.10 Let € € C([O,T],WOA’I), ¢ € Wg’l and s,s' € [0,T). By Lemma 3.8, we obtain

|<€sa£s¢>_<€s’a£s’¢> | < | <§s_§s’7£s¢> |+| <€s’a(£s’_£s)¢>|

< K(6s = Esrll a1+ sup [l -anls —s'2)]¢
te[0,7T7

l6,1

Hence the mapping s — (Ls)*Es is continuous in WO_G’1 and the integral fot(ﬁs)*é’sds is defined
as a Riemann integral.
By Schwarz inequality, (3.5) and the continuous embedding of W(?’l into C%!,

< Gy >°< K < pg, (1 + [2]*) > [|4l1221 < K@l 1

¢ . . —6,1
Hence fo Gsds makes sense as a Bochner integral in W), 6.1,

Proof : We consider a subsequence of n™ converging in law and that we still index by n for
simplicity. Let ¢t € [0,T], n be a variable in C([0,T], W074’1) distributed according to the limit
law and ¢ be a C* function with compact support in R.

By Lemma 3.8, the function Fy : ¢ € C([0,T), Wy ™) =< &,¢ > — [if < &,Lp > ds € Ris
continuous. Hence the sequence Fy(n") converges in law to Fy(n).

We have already seen that the martingale part tends to zero. Hence M,,(¢) converges in law to
zero. By the same way, the initial sequence < ng,¢ > tends to zero, since the fluctuations of
initial independent conditions converge at rate /n.

If we prove that f(f < ZP,¢p > ds — f(f < i, Asp > ds converges in law to the deterministic

variable f(f < Gg, ¢ > ds, by the decomposition
t t
Foln) =<1 >+ [ < 200> ds— [ <u Aip > ds+ M (@)
0 0
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we will deduce that
t t
Vit € [0,T], a.s., < ng, P >= / < Mg, Lsp > ds+/ < Gs,¢p>ds
0 0

By continuity, the above equality will hold almost surely for any ¢ € [0,7"]. Moreover, choosing
. . 6,1 . .. .
¢ in a sequence dense in W,>", and taking limits, we will get

t t
a.s.,Vt € [0,T], Vb € W, <y, ¢ >=/ <ns,£s¢>ds+/ < Gy, ¢ > ds
0 0

which is the conclusion of the theorem.

By an easy computation, < Z7', ¢ > — <, Agp > — < G4, ¢ > is equal to T7'(s)+T5 (s)+T5 (s)
with

1
T (s) = an < p2, (V™ ¢ 1) — pa(2) (¢'(->( [ vavm e+ @ - opar - b'(ps(.»)

20

1
32 ([ e+ 0= - @ ) ) ) >

0

¢"(.)
2

T2(s) =< 1, an(V™ % pa () — pa()) (¢'(.>b'(ps(.>) n (o2>'(ps(.>)) >

- <z [ 2V o (#0800 + @ 0 >
T3(6) =< (V" 120 = V7 5 D (FO ) + L2 0 ) ) >

= <O (O ) + L@ ) >

If we show that limy, [ E|T} (s)|ds = lim, [; B|T2(s)|ds = lim, [, E[T3(s)|ds = 0, then the
proof will be finished since these limits imply that f(f < Z' ¢ > ds — f(f < nt Asep > ds
converges in L' to the deterministic variable fot < Gs,¢ > ds for any t € [0,T].

Proof of lim,, fOT E|T} (s)|ds =0

1
THs) = an < 12 (V™ ¢ 1) — pa(2) (¢'(->( [ oo+ 0 - opar - b’(ps(»))

 EO ([ rav e+ 0= npnir - i) ) >

As b and (02)" are Lipschitz continuous and ¢’ and ¢” are bounded
T, ()] < Kap < i, (V75 g () = ps()* >

By (3.4), we deduce fOT E|T! (s)] < KTe2. Hence the conclusion holds.
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Proof of lim, [ E/T2(s)|ds = 0

13(6) =< i (anV" ) =) = 3 ([ 2V )0
(¢0re.0+ 20 0.0 >
w <t =g ([ #2r@a )0 (#08 o) + @) >

Let T2 (s) and T?2(s) denote the terms in the right hand side.
Since p; is in C} uniformly in s and Jg 2V (2)dz = 0,
< Ké / 2BV (2)dz

V(o) o) - 2 [ AV )i

The functions o', (02)', ¢’ and ¢” being bounded, we deduce fo (|72 (s)|)ds < Ke, which
tends to 0 as n tends to infinity.

The function y — p¥(y) (qﬁ’(y)b' (ps(y))+ w (02)(ps(y)) ) is Lipschitz continuous and bounded.

Since, by the propagation of chaos result, the sequence (4% (dz)) converges to ps(z)dz in proba-
bility, E|T}?2(s)| tends to zero as n tends to infinity. By Lebesgue Theorem, the same is true for
fOT E|T?2 (s)|ds. Hence lim, fOT E|T2(s)|ds = 0.

Proof of lim,, fOT E|T3(s)|ds =0
For simplicity, let us denote

¢"(x)

(0% (be()

Ps(z) = ¢,($)b,(ps($)) +

- / / V(@ — )by () (d ) (dy) — / Pa(y)ba () (dy)
- / / V(@ — y)epa () (4 (d) — p () ) (dy)
4 / / V™M@ — )b (@) (92 (@) — ps(a))da? (dy)

( [ [V - oot ) - ps(yws(y)n:(dy))
_T31 )+T32( )+T33( )

We set V(z) = V*(—x).
BT (s)] < E( < s |7 (s — ) ()] > )
< an (E( <V (s (= )] > ) # s BV (0 —pz>)(x)|)

The function 1 is continuous and bounded together with its first spatial partial derivative and
satisfies the hypothesis made on ® in Lemma 3.1. Moreover, as V" is bounded and Lipschitz
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continuous with the same constants as V", the proof of Lemma 3.1 shows that (3.1) and (3.2)
still hold when V™ is replaced by V™. Hence we obtain VG > 0,

g 31 £—2
/ E|T,)" (s)|ds < Kgep
0

By choosing [ greater than 4, we obtain the convergence to zero of fOT E|T3! (s)|ds.

As 15 is equal to 0 outside a compact set which does not depend on s € [0,7],

/OTE'TT‘?”WS =an /OTIE(| [ bV = p)@) 62 0) —Ps(x))dx|>ds

< Kyan sup Ip?(x)—ps(w)l( sup E[V™ « (ug —pi) ()] + sup IV"*(p?—ps)($)|>
[0,7)1xR [0,T]xR [0,7)1xR

< Kyan, sup Ip?(w)—ps(w)l( sup E[V" « (g —pi) ()| + sup Ip?(w)—ps(wﬂ)
[0,7)1xR [0,T]xR [0,7)1xR

By Lemma 2.6 and (3.1) written for ® := 1 and § = 4, we obtain, fOT E|T32(s)|ds < Ke2 which
goes to 0 as n — 4-o00.
For the third term, an easy computation (using Taylor expansion) gives that

2

[ Vo= pn@pia)de - b wp @)~ L [ 2V, ) + 20+ 500 0)

is smaller than Ke}, [, |2|*V (z)dz. Hence

7% (s)] <

62
> / 2V (2)dz / (ps(y)y (y) + 2p (y)y (y) +¢s(y)p’s'(y))n?(dy)‘ + Kep
_ K\ < 1 = Do pa B0 + 2L (B0 + s (Ip() > \ | Ke,

As the function y — ps(y)¥y (v) + 20 (y) ¢, (y) +vs(y)pY (y) is Lipschitz continuous and bounded,
the convergence in probability of ul to ps implies that

B < 2 = pepu V) + 2000 + 500 >
converges to zero. Hence E( [, OT |T33(s)|ds) tends to zero as n tends to infinity.

The proof of Theorem 3.9 is then complete. | |

The next step consists in proving uniqueness for (3.13). Let ¢! and €2 be two solutions in
c([o, 1], W0_4’1). The difference € = ¢! — £? is a solution of

~ t ~
- /0 (L) E,ds

in Wofﬁ’l. But the operator (L5)* is not bounded in Wofﬁ’1 and Gronwall’s arguments do not
work to prove & = 0, Vt € [0,T]. The trick is to use the semi-group associated with the second
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order operator L¢ to obtain uniqueness. Our approach is very similar to the one developped by
Mitoma in [11].

Lip(w) = (b(ps(2)) + ps(@) (ps(2))¢ (2) + (07 (ps(2)) +ps(w)(02)'(ps($)))@

We set A(s,z) = b(ps(z)) + ps(z)V (ps(x)). By (1.8), it is possible to define

7(s,2) = Vo2 (ps(2)) + ps()(0?) (ps(x)).

In order to ensure that  is smooth, we have to assume that

3p >0, Ve €R, o?(z) 4+ z(6?) (z) > p

which is exactly property (1.9).
From now on, we suppose that o,b € C° and that [hypg] and (1.9) hold. The function p belongs

to H%TQ’QJFO‘([O,T] x R) and the functions v, and Ay belong to C} uniformly for s € [0,7T].
According to Kunita [5] p.227, the flow (X (2))o<s<t<r defines a C® diffeomorphism, where
(Xs¢(x)) is the unique solution of the Itd stochastic differential equation

t t
Xo(z) =2 +/ v(r, X (2))dB, +/ Ar, Xgp(2))dr, t>s
S S
Let DI X4 (z) denote the derivative of order j for 1 < j < 8. By [4] p.61,

Vr>0,V1<j5<8 sup sup ]E<|Dszt($)|r> < 400 (3.14)
z€R 0<s<t<T

Let ¢ € C?. 1to’s backward formula ([5] p.256) gives

t t
HX(w) = 30) = [ A0 X (@) DXt (), + [ £,(6X0)) o)
S S
By (3.14), the expectation of the above stochastic integral is equal to 0. If we define

(U(t,5)p)(x) = E(p(Xst(2))),

taking expectations in It6’s backward formula and using Fubini’s theorem, we get

t z 2(r, x 2 Wz
Ut 5))a) — ota) = [ A(r,x)E<8¢();Z( ))> + 20 )]E<8 e ))>dr (3.15)

For k = 1 or k = 2, the variables (;—;gb(X st(w))) depend continuously on z and are uniformly
Tz€ER
integrable by (3.14). Hence it is possible to exchange expectations and derivations in the right-

hand-side of (3.15) to obtain
e T WSS IST, Ve € B W)NEW) — 90 = [ LOEIH@Ir (319

We are now going to prove that under our assumptions, for ¢ € C,? , this equation holds in the
Banach space CE.
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Lemma 3.11 Assume that o,b € C° and that (1.9) and [hypy] hold. The operator L is a
linear operator from C’E mnto C’E such that
Vi€ 0.7), 1bllcs < Kldls (3.17)
Vs,t € 0,7), 16— Ladlles < Kldllcslt — s (3.18)

For any 1 < j <8, the operator U(t, s) is a linear operator on CZ such that
VO<s<t<T, UG58l < Kl (3.19)
VO<s < SEST, |Us)d—Ultys)dlley < Kl sn Vo' —s (3.20)
b b

Proof : Inequality (3.17) is obvious. As p € H%Ta’%a([O,T] x R), this function and its spatial
partial derivatives up to order seven admit a continuous and bounded first derivative with respect
to the time variable. Inequality (3.18) is easily deduced. .

To prove the second part of the Lemma, we set 1 < j <8, ¢ € Cg and 1 <k <j. We have

& k
T =Y Y L) X)) (DX @) (DKot (2)).(DF Ko ()

=1 l1+2l2+...+klk:k

with integer constants ¢(L) = ¢(l,1, ...,{x). Hence, by (3.14), the variables (%gb(Xst(x)))
z€ER
are uniformly integrable. Since they depend continuously on z, we deduce that U(t,s)¢ € Cg

with derivative of order k given by E(%(j)(Xst(x))). Moreover, %(U(t, $)p)(x)
than

is smaller

k
> sup O c(L)E‘ (DX ()" (D* X ()" ... (DF Xy ()
1=1 Y€ hi+...+kly=Fk

and then bounded by K||¢“C{;- As clearly ||U(t, s)¢||q? < ||¢“Cz?’ we deduce that (3.19) holds.

The proof of (3.20) is based on the following estimates given by Mitoma [11], Lemma 3

V0<s<s <t<T,VeeR EXy(r) - Xg(2)]* < K(s' —s)
V1<j<8 ED'Xy(z)— D' Xgi(z)? <K(s'—s)  (3.21)

and obtained by computations similar to the previous ones. [ |

If € C}, by the previous Lemma, s — L5(U (¢, s)¢) is continuous in C{. Hence fot Ls(U(t,s)p)ds
makes sense as a Riemann integral in Cf. Using (3.16), we deduce

(U(t,s)p) — ¢ = / LUt r)g)dr in CF (3.22)

This equation is the key point in the proof of uniqueness for (3.13).
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Proposition 3.12 Assume that 0,b € C}° and that (1.9) and [hypy)] hold. Then (3.13) has no
more than one solution in C([0,T], W074’1). Moreover, any such solution & is characterized by

t
vt € [0,T], gt:/ Ul(t,s)*Gsds in C 1 (3.23)
0

Remark 3.13 Let ¢ € C} and s,r € [0,T).

<G Gup> | < | <oy [PV EE (0O (#0800 + 220 0010
-0 (#0re.0)+ L ) )|
e w.0) > |

# ] <pemreg ([ 1RV )0 (#080.0) +

Since p € H%Ta’g"'o‘, the first term of the right-hand-side is smaller than K||¢>||Cg|7“ — s|. For

the second term, we remark that the function x — p(z)| ¢'(2)b (ps(z)) + %(02)'(;05(:5))) is
bounded by K||¢>||C§, and Lipschitz continuous with constant K||¢||C§. Hence

1< G =G> | < K (= sl + e (o) prw)a) ) o

where dpyr denotes the Fortet-Mourier metric on P(R). Hence the mapping s — Gy is contin-
wous in C~>. By Lemma 3.11, we deduce that s — U(t,s)*G is continuous in C~*. Hence
fot Ul(t,s)*Gsds makes sense as a Riemann integral in C—*.

Proof : Let & € C([0,T], W0_4’1) satisfy (3.13) and ¢ belong to C}). As Cf — Wg’l, by (3.22)
we get

t t
<td>= [ <@re vt - [ Lwens>ds
t t
+/ < GS,U(t,s)gb—/ L (U(t,r)p)dr > ds
0 s
t
= / (<G5, U(t,8)p >+ < (L), U(t, )¢ >)ds
Ot t
—/ / < (L)*s+ Gy, L (U(t,7)p) > drds
0 Js
t
= / (<G5, U(t,8)p >+ < (L), U(t, ) >)ds
0
t pr
—/ / < (L) + G, L (U(t,7)) > dsdr
0o Jo
As £ solves (3.13) and L, (U(t,r)¢) € Cp — W, we have
/’“ < (L) + G, L(U(t,r)p) > ds =< &, L (U(t,7)p) >
0
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Hence
t

<& >= /Ot <G, Ut 8)p >+ < (Ls)"Es,U(t, 8)p >)ds — /0 <&, Lr(U(t,r)p) > dr

t
=/ <G, U(t,5)¢ >
0

Since Cy is dense in Cp, we deduce that & = f[f U(t,s)*Gsds in C~% As C}f is dense in 1/1/074’1
we conclude that uniqueness holds for (3.13) in C([0,T7], W074’1). ||

We are now ready to conclude :

Theorem 3.14 Assume that 0,b € C)° and that (1.9) and [hypy) hold. Then the variables
n" € C([O,T],WO_4’1) converge in L' to the deterministic process n such that the image of n; by
the continuous embedding of WO_4’1 into C~* is given by fot Ul(t,s)*Gsds for any t € [0,T].

Proof : By Theorem 3.7 the laws of the processes n" € C([0,7], W074’1) are tight.

Let n be a variable distributed according to a limit point. By Theorem 3.9 and Proposition 3.12,
7 is the deterministic process such that V¢ € [0,7] the image of 7; by the continuous embedding
of Wy ! into C~4 is f(f Ul(t, s)*Gsds.

Since the unique limit point is a Dirac probability measure, the whole sequence 7™ converges
in probability to the process n. As by (3.12), the variables n™ are uniformly integrable, the
convergence takes place in L. | |
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