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AbstractIn this paper, we are interested in a stochastic di�erential equation which is nonlinear inthe following sense : both the di�usion and the drift coe�cients depend locally on the densityof the time marginal of the solution. When the law of the initial data has a smooth densitywith respect to Lebesgue measure, we prove existence and uniqueness for this equation.Under more restrictive assumptions on the density, we approximate the solution by a systemof moderately interacting di�usion processes and obtain a trajectorial propagation of chaosresult. Finally, we study the �uctuations associated with the convergence of the empiricalmeasure of the system to the law of the solution of the nonlinear equation. In this situation,the convergence rate is di�erent from pn.The �rst part of this paper is dedicated to the nonlinear stochastic di�erential equation( �Xt = � + R t0 �(p(s; �Xs)):dBs + R t0 b(p(s; �Xs))dsp 2 C1;2b ([0; T ] � Rd) is such that the law of �Xt is p(t; x)dx (0.1)where �Xt 2 Rd , Bt is a d-dimensional Brownian motion, � and b are smooth and the density f0 ofthe law of � belongs to the spaceH2+� of C2b functions on Rd with second order derivatives Höldercontinuous with exponent � (0 < � < 1). To prove existence and uniqueness for this problem,we �rst study the linear stochastic di�erential equation similar to (0.1) where p is replaced by agiven smooth function q. Our study is based on results given by Ladyzhenskaya Solonnikov andUral'ceva in [6] for linear parabolic partial di�erential equations. Then we conclude thanks toresults also given in [6] for the quasilinear partial di�erential equation satis�ed by p.Considering the propagation of chaos proved by Oelschläger [13] and generalized by Méléard andRoelly [9] in the case of the identity di�usion matrix, it is sensible to try to approximate the�ENPC-CERMICS, 6-8 av Blaise Pascal, Cité Descartes, Champs sur Marne, 77455 Marne la Vallée Cedex 2,France - e-mail : jourdain@cermics.enpc.fryLaboratoire de Probabilités, Université Paris 6, 4 place Jussieu, 75231 Paris France (URA CNRS 224) etUniversité Paris 10, UFR SEGMI, 200 avenue de la République, 92000 Nanterre France1



solution of (0.1) by the following sequence of moderately interacting particle systems :Xi;nt = �i + Z t0 �(V n � �ns (Xi;ns )):dBis + Z t0 b(V n � �ns (Xi;ns ))ds; 1 � i � n (0.2)where Bi; i 2 N� is a sequence of independent Rd -valued Brownian motions, �i; i 2 N� isa sequence of random variables IID with law f0(x)dx independent of the Brownian motions,�n = 1nPni=1 �Xi;n denotes the empirical measure and V n(x) = 1�dnV ( x�n ) for V a Lipschitzcontinuous and bounded probability density on Rd and (�n)n a sequence of positive numbersconverging to 0. In the case of the identity di�usion matrix, Oelschläger [13] manages to controlV n � �n by direct computations concerning the particle system. But as our di�usion matrixdepends on V n � �n, we need other techniques to prove the propagation of chaos.Delocalizing the interaction to enter in the classical McKean-Vlasov framework (see McKean [8],Sznitman [14] or Léonard [7] for instance), we obtain existence and uniqueness for the followingmolli�ed versions of (0.1):( �Y i;nt = �i + R t0 �(V n � P ns ( �Y i;ns )):dBis + R t0 b(V n � P ns ( �Y i;ns ))dsP n is the law of �Y i;nMoreover the associated propagation of chaos results imply that if �n converges to zero slowlyenough, limn!+1 E (supt�T jXi;nt � �Y i;nt j2) = 0.That is why we study the convergence for n! +1 of �Y i;n to �Xi where �Xi denotes the solutionof (0.1) for the Brownian motion Bi and the initial condition �i. If the norm of f0 in thespace H2+� is small enough, according to results concerning linear parabolic partial di�erentialequations given in [6], for any t 2 [0; T ], P nt is absolutely continuous with density pn(t; :).Moreover the sequence pn is bounded in a Hölder space included in C1;2b ([0; T ] � Rd). Thisboundedness property allows to prove that limn!+1 E(supt�T j �Xit � �Y i;nt j2) = 0. We concludethat, for �n converging to zero slowly enough,limn!+1 E� supt�T j �Xit �Xi;nt j2� = 0which implies propagation of chaos for the moderately interacting particle system (0.2) andproves that the empirical measure �n provides a stochastic approximation of the solution of theCauchy problem@p@t = 12 dXi;j=1 @2@xi@xj (aij(p)p)� dXi=1 @@xi (bi(p)p) and p(0; x) = f0(x)where a denotes the square of �.Finally, we study the �uctuations associated with this convergence. For the sake of simplicity,we limit ourselves to the case d = 1. The rate of convergence is 1=�2n where �n is chosen tominimize the upper-bound obtained for E (supt�T j �Xis � Xi;ns j4). It is much smaller than pn,the rate obtained in the case of weak interaction. Let P denote the law of the solution of (0.1).We study the behaviour of �n = 1�2n (�n � P ) when n goes to in�nity. The leading term is dueto the convergence of V n to �0 whereas the martingale part of the decomposition of �n andthe �uctuations related to the initial conditions, which would have non-trivial limits at rate pn,converge to zero. We follow the approach developped by Fernandez and Méléard in [2]. We provethat if �; b and f0 are smooth enough, the laws of the processes �n are tight in C([0; T ];W�4;10 )2



(the weighted Sobolev space W�4;10 is de�ned further on) and that these processes converge inL1 to a deterministic process characterized by a deterministic evolution equation.Our results are obtained under restrictive assumptions on f0. But, to our knowledge, the propa-gation of chaos result is the �rst one in the case of moderate interaction in the di�usion coe�cient.The �uctuation result is the �rst one for moderately interacting systems and provides an exampleof a non-gaussian limit (since deterministic) with a rate di�erent from pn.NotationsWe set T > 0, d 2 N� . Let C1;2b be the space of functions on [0; T ]�Rd continuous and boundedtogether with their �rst derivative with respect to the time variable (the �rst one) and their �rstand second derivatives with respect to the space variables. We introduce a few other functionalspaces.Hölder spacesLet � 2 (0; 1). For any integer j, Hj+� is the space of real functions f on Rd which are continuoustogether with their partial derivatives up to order j and admit a �nite normkfkj+� =Xk�j supRd jDkf j+Xk=j supx;x02Rdjx�x0j�1 jDkf(x)�Dkf(x0)jjx� x0j�(where for k = (k1; : : : ; kd) 2 Nd , k =Pdi=1 ki and Dkf = @kf@xk11 :::@xkdd )For any integer j, H j+�2 ;j+� is the space of real functions f on [0; T ]� Rd which are continuoustogether with their derivatives DrtDkxf = @r+kf@rt @k1x1 :::@kdxd for 2r + k � j and admit a �nite normkfk j+�2 ;j+� = X2r+k�j sup[0;T ]�Rd jDrtDkxf j+ Xj�1�2r+k�j x2Rdsupt;t02[0;T ]jt�t0j�1 jDrtDkxf(t; x)�DrtDkxf(t0; x)jjt� t0j j�2r�k+�2+ X2r+k=j t2[0;T ]supx;x02Rdjx�x0j�1 jDrtDkxf(t; x)�DrtDkxf(t; x0)jjx� x0j�Weighted Sobolev spacesFor every integer j, � 2 R+ , let us consider the space of all real functions g de�ned on R withderivatives up to order j such thatkgkj;� = �Xk�j ZR jg(k)(x)j21 + jxj2� dx�1=2 < +1where g(k) denotes the kth derivative of g. Let W j;�0 be the closure of the set of functions of classC1 with compact support for this norm. W j;�0 is a separable Hilbert space with norm k � kj;�.We will denote by W�j;�0 its dual space.Let Cj;� be the space of functions g with continuous derivatives up to order j and such thatlimjxj!1 jg(k)(x)j1+jxj� = 0; 8k � j. This space is normed withkgkCj;� =Xk�j supx2R jg(k)(x)j1 + jxj�3



and Cj;0 is denoted by Cjb . Let C�j;� be the dual space of Cj;� and for � = 0, C�j is the dualspace of Cjb .We have the following embeddings (See Adams [1], in particular the proofs of Theorem 5-4 andTheorem 6-53 can be adapted without di�culty for weighted Sobolev spaces):Wm+j;�0 ,! Cj;� for m � 1; j � 0 and � � 0; and kgkCj;� � Kkgkm+j;�Cjb ,! W j;�0 ; for � > 1=2; j � 0; and kgkj;� � KkgkCjb : (0.3)We have also Wm+j;�0 ,!H:S: W j;�+
0 m � 1; j � 0; � � 0; 
 > 12 ;where H:S: means that the embedding is of Hilbert-Schmidt type, andkgkj;�+
 � Kkgkm+j;� : (0.4)We deduce the following dual embeddings:C�j;� ,! W�(m+j);�0 ; m � 1; j � 0; � � 0;W�j;�0 ,! C�j; � > 1=2; j � 0;W�j;�+
0 ,!H:S: W�(m+j);�0 ; m � 1; j � 0; � � 0; 
 > 12 :The following lemma, proved in [2], gives estimates of the norm of some elementary linear oper-ators in a well-chosen weighted Sobolev space.Lemma 0.1 For every �xed x; y 2 Rd the linear mappings Dxy; Dx; Hx : W 2;20 ! R de�ned byDxy(') = '(x) � '(y) ; Dx(') = '(x) ; Hx(') = '0(x) are continuous andkDxyk�2;2 � K1jx� yj(1 + jxj2 + jyj2) (0.5)kDxk�2;2 � K2(1 + jxj2) (0.6)kHxk�2;2 � K3(1 + jxj2) (0.7)HypothesesIf E is a Borel set, let P(E) denote the set of probability measures on E.Let 
 = C([0; T ];Rd ) endowed with the topology of uniform convergence, X be the canonicalprocess on 
. If P 2 P(
), (Pt)t2[0;T ] is the set of time marginals of P .~P(
) = fP 2 P(
); 8t 2 [0; T ]; Pt is absolutely continuous with respect to Lebesgue measuregIf P 2 ~P(
), there is a measurable function p(s; x) on [0; T ] � Rd such that for any s 2 [0; T ],p(s; :) is a density of Ps with respect to Lebesgue measure. See for example Meyer [10] pages193-194. Such a function is called a measurable version of the densities.In all the following, we assume that � is a Lipschitz continuous mapping on R with values in thespace of symmetric non-negative d� d matrices such that :9m� > 0; 8x 2 Rd ;8y 2 R; x��(y)x � m�jxj2 (0.8)4



and that b is a Lipschitz continuous Rd -valued mapping on R. The matrix ��� is denoted by a.Let V be a Lipschitz continuous (constant Kv) and bounded (constant Mv) probability densityon Rd such that RRd jxj3V (x)dx < +1 and RRd xV (x)dx = 0.Let f0 be a probability density on Rd , Bt and � be a d-dimensional Brownian motion and arandom variable on Rd independent of the Brownian motion with law f0(x)dx.For any integer j � 2, [Hypj] denotes the following hypothesis : � is Cj+1 (continuously di�er-entiable up to order j + 1), b is Cj and f0 belongs to Hj+�.1 The nonlinear stochastic di�erential equation (0.1)1.1 A linear stochastic di�erential equationLet q 2 H1+�2 ;2+�. With q, we associate the second order operatorLq = 12 dXi;j=1aij(q(s; y)) @2:@yi@yj + dXi=1 bi(q(s; y)) @:@yi (1.1)The adjoint of this operator isL�q = 12 dXi;j=1 aij(q(t; x)) @2:@xi@xj + dXi=1 Bi(t; x) @:@xi (t; x) + C(t; x):where8><>:Bi(t; x) =Pdj=1 a0ij(q(t; x)) @q@xj (t; x)� bi(q(t; x))C(t; x) = 12Pdi;j=1�a00ij(q(t; x)) @q@xi @q@xj + a0ij(q(t; x)) @2q@xi@xj (t; x)��Pdi=1 b0i(q(t; x)) @q@xi (t; x)Proposition 1.1 If [Hyp2] holds, the law of the unique strong solution of the stochastic di�er-ential equation Xt = � + Z t0 �(q(s;Xs)):dBs + Z t0 b(q(s;Xs))ds (1.2)belongs to ~P(
) and admits a measurable version of the densities p 2 H1+�2 ;2+� which is theunique solution of the partial di�erential equation@p@t = L�qp on [0; T ]� Rd and p(0; x) = f0(x) (1.3)in C1;2b . Moreover, kpk1+�2 ;2+� � F2(T; �; b; kqk1+�2 ;2+�)kf0k2+� (1.4)5



with F2 nondecreasing in its last variable.If [hypj] holds for some j > 2 and q 2 H j+�2 ;j+�, then p 2 H j+�2 ;j+� andkpk j+�2 ;j+� � Fj(T; �; b; kqk j+�2 ;j+�)kf0kj+� (1.5)with Fj nondecreasing in its last variable.Proof : The proof consists in bringing together results of Friedman [3] and LadyzenskayaSolonnikov and Ural'ceva [6]. It would be possible to obtain that the law of X belongs to ~P(
)by the Malliavin calculus (see for instance Nualart [12] Theorem 2.3.1 p.110). But for the sakeof consistency, we do not insist on this approach.We �rst suppose the [Hyp2] holds. The operator L�q is uniformly parabolic and its coe�cientsbelong to H �2 ;�. By Friedman [3] Chap.6, there exists a fundamental solution ��q(x; t; y; s); 0 �s < t � T of L�q � @:@t and for any t 2 [0; T ], the law of Xt has a density with respect to Lebesguemeasure given by p(t; x) = RRd ��q(x; t; y; 0)f0(y)dy.In [6] Chap.IV, Ladyzenskaya, Solonnikov and Ural'ceva deal with uniformly parabolic operatorsof the second order with coe�cients in H �2 ;�. We apply their results to L�q. As f0 belongs toH2+�, by equations (14.3) p.389 and (14.5) p.390 we conclude that p belongs to H1+�2 ;2+� andsolves (1.3). Inequality (5.9) p.320 then implies that kpk1+�2 ;2+� � Ckf0k2+�. The proof of (5.9)shows that the constant C depends only on T , on m� and on the norm of the coe�cients of L�qin H �2 ;� and increases with this norm. Hence (1.4) holds.Uniqueness for equation (1.3) in C1;2b is an easy consequence of the maximum principle.If, for j > 2, [hypj] holds and q 2 H j+�2 ;j+�, then the coe�cients of L�q belong to H j�2+�2 ;j�2+�and f0 2 Hj+�. By Theorem 5.1 p.320 [6], (1.3) admits a solution in H j+�2 ;j+� � C1;2b . Asuniqueness holds for (1.3) in C1;2b , we deduce that this solution is equal to p. Hence p 2 H j+�2 ;j+�.Inequality (1.5) is like (1.4) a consequence of equation (5.9) p.320.
1.2 Existence and Uniqueness for the nonlinear stochastic di�erential equa-tion (0.1)This section is dedicated to the nonlinear stochastic di�erential equation (0.1) :( �Xt = � + R t0 �(p(s; �Xs)):dBs + R t0 b(p(s; �Xs))dsp 2 C1;2b ([0; T ] � Rd ) is a measurable version of the densities for the law of �XLet us assume that [Hyp2] holds. We are going to prove existence of a unique strong solution( �X; p) for this equation under a new hypothesis on �.If ( �X; p) is a solution of (0.1), applying Itô's formula and taking expectations, we obtain that pis a weak solution of the quasilinear partial di�erential equation :@p@t = L�pp on [0; T ]� Rd and p(0; x) = f0(x) (1.6)6



As p 2 C1;2b ([0; T ] � Rd), it is in fact a classical solution. Our existence and uniqueness resultfor (0.1) is based on results concerning (1.6) given by Ladyzenskaya, Solonnikov and Ural'cevain [6]. As these authors deal with equations in divergence form, we put (1.6) in divergence formand obtain :@p@t = dXi=1 @@xi�12 dXj=1(a0ij(p)p+ aij(p)) @p@xj � bi(p)p� on [0; T ]� Rd and p(0; x) = f0(x)(1.7)Like in [6] p.494, it is possible to express the di�erence of two classical solutions of (1.7) as thesolution of a linear Cauchy problem (with coe�cients depending on both the solutions). If weassume that the leading matrix a0ij(p)p+ aij(p) is nonnegative i.e.8x 2 Rd ; 8y 2 R; x�(a0(y)y + a(y))x � 0; (1.8)then the maximum principle (Theorem 2.5 p.18 [6]) implies that the di�erence is equal to zeroand that uniqueness holds for (1.7). We deduce uniqueness for (0.1):Proposition 1.2 Under the assumptions [Hyp2] and (1.8), the nonlinear stochastic di�erentialequation (0.1) has no more than one solution.Proof : We suppose that ( �Xp; p) and ( �Xq; q) are two solutions of (0.1). Applying Itô's formulaand taking expectations, we obtain that p and q solve the nonlinear equation (1.6) in the sense ofdistributions. As p and q belong to C1;2b ([0; T ];Rd ), these functions are in fact classical solutions.Since the equations (1.6) and (1.7) are equivalent as far as they are considered in the classicalsense, p and q solve (1.7). By the uniqueness result for this equation, we deduce that p = q. Itfollows immediately that �Xp = �Xq.Under a stronger assumption on the leading matrix9�a > 0; 8x 2 Rd ; 8y 2 R; x�(a0(y)y + a(y))x � �ajxj2; (1.9)applying Theorem 8.1 p.495 [6] to our particular framework, we obtain existence in H1+�2 ;2+�for the Cauchy problem (1.7). We are now ready to state the main result of the section.Proposition 1.3 Under the assumptions [Hyp2] and (1.9), the nonlinear stochastic di�erentialequation (0.1) admits a unique strong solution ( �X; p)Proof : Uniqueness is a consequence of the previous proposition. To prove existence, weremark that the solution q of (1.7) solves (1.6). According to Proposition 1.1, the law of theunique strong solution of the linear stochastic di�erential equationXt = � + Z t0 �(q(s;Xs)):dBs + Z t0 b(q(s;Xs))ds7



belongs to ~P(
) and admits the unique solution of the partial di�erential equation@p@t = L�qp on [0; T ]� Rd and p(0; x) = f0(x)in C1;2b ([0; T ] � Rd ) as a measurable version for its densities. As q solves this equation, q is ameasurable version of the densities for the law of X. Hence the couple (X; q) solves (0.1).
2 The propagation of chaos resultFor j � 2, let [Hyp0j] mean that [Hypj] and kf0kj+� � 1=Fj(T; �; b; 1) hold. (F2 is de�ned in(1.4) and for j > 2, Fj is de�ned in (1.5)).Remark 2.1 There exists probability densities on Rd belonging to Hj+�(Rd ) with an arbitrarysmall norm in this space. Indeed k 1kd f0( :k )kj+� � 1kd kf0kj+�.2.1 A McKean-Vlasov modelIn this section, we deal with a molli�ed version of the nonlinear stochastic di�erential equation(0.1) : ( �Zt = � + R t0 �(W � Ps( �Zs)):dBs + R t0 b(W � Ps( �Zs))dsP is the law of �Z (2.1)were W is a probability density on Rd bounded by Mw and Lipschitz continuous with constantKw. Although the coe�cients are not linear in the measure, this equation can be treated like inthe classical McKean-Vlasov framework (McKean [8], Sznitman [14] or Léonard [7]).Proposition 2.2 There is existence and uniqueness, trajectorial and in law for (2.1). Moreover,if for some j � 2, [Hyp0j] holds, then the law P of the solution �Z belongs to ~P(
) and admitsa function p 2 H j+�2 ;j+� with kpk j+�2 ;j+� � 1 as a measurable version for its densities. Thefunction p is a solution of the Cauchy problem@p@t = L�W�pp on [0; T ]� Rd and p(0; x) = f0(x) (2.2)
Proof of Proposition 2.2 : The proof for existence and uniqueness is just a generalizationof the one given by Sznitman [14] Theorem 1.1 p.172 and is based on a �xed point theorem for8



the mapping  : P(
) ! P(
) which associates with m the law of the unique strong solution ofthe stochastic di�erential equationZmt = � + Z t0 �(W �ms(Zms )):dBs + Z t0 b(W �ms(Zms ))dsand the topology of weak convergence on P(
) which is metrisable for the Kantorovitch-Rubinsteinor Vaserstein metric. The �xed-point of  is denoted by P .Let us suppose that [Hyp0j] holds for some j � 2. To obtain the regularity properties of P ,we study a sequence of �xed-point iterations ( n(m))n where m is a probability measure in~P(
) with time-independent densities p0(s; x) = h(x) such that khkj+� � 1. Clearly, the map-ping � : H j+�2 ;j+� ! H j+�2 ;j+� which associates with g the function �(g)(t; x) = W � g(t; :)(x)is nonexpansive. Hence k�(p0)k j+�2 ;j+� � 1. As  (m) is the law of the solution of the lin-ear stochastic di�erential equation (1.2) for the particular choice q = �(p0), by Proposition1.1, we conclude that  (m) belongs to ~P(
) and admits a measurable version of the densitiesp1 2 H j+�2 ;j+�([0; T ] � Rd ) with kp1k j+�2 ;j+� � 1.By induction, for any n 2 N,  n(m) belongs to ~P(
) and admits a measurable version of thedensities pn 2 H j+�2 ;j+� with kpnk j+�2 ;j+� � 1.Combining Ascoli's theorem and a diagonal extraction process, we obtain a subsequence (pn0)n0such that pn0 converges uniformly on compact sets together with its derivatives to a function pand its derivatives. Clearly, p 2 H j+�2 ;j+� and kpk j+�2 ;j+� � 1. As  n0(m) converges weakly toP , p is a measurable version of the densities for P .Applying Itô's formula and taking expectations, we obtain that p is a weak solution of (2.2). Asp 2 H j+�2 ;j+�, this function is actually a classical solution of (2.2).Like in the classical McKean-Vlasov framework, it is possible to construct a sequence of weaklyinteracting particle systems that approximate the solution of (2.1). Let Bi; i 2 N� be a sequenceof independent Rd -valued Brownian motions and �i; i 2 N� be a sequence of random variablesIID with law f0(x)dx independent of the Brownian motions. The particle system of order n isthe unique strong solution ofZi;nt = �i + Z t0 �� 1n nXj=1W (Zi;ns � Zj;ns )�:dBis + Z t0 b� 1n nXj=1W (Zi;ns � Zj;ns )�ds; 1 � i � nOn the same probability space we de�ne �Zi to be the solution of the nonlinear equation( �Zit = �i + R t0 �(W � Ps( �Zis)):dBis + R t0 b(W � Ps( �Zis))dsP is the law of �Zigiven by Proposition 2.2.Proposition 2.3 For any i 2 N� , for any n � i,E� supt�T jZi;nt � �Zit j2� � CM2wnK2w exp(CK2w); E� supt�T jZi;nt � �Zit j4� � CM4wn2K4w exp(CK4w) (2.3)where C is a real constant independent of W . 9



Remark 2.4 These bounds obviously imply propagation of chaos : for any k 2 N� , the law ofthe susbsystem (Z1;n; : : : ; Zk;n) converges weakly to P
k where P is the law of the solution of(2.1).Proof of Proposition 2.3 : Our proof is an easy adaptation of the one given by Sznitman [14]Theorem 1.4 p.174 but as we need to precise the dependence on W , we present the calculations.In the following, K and K 0 are real constants which may change from line to line. UsingBurkholder inequality, we get that for any t � T ,E� sups�t jZi;ns � �Zisj2� � KE� Z t0 � 1n nXj=1W (Zi;nr � Zj;nr )�W ( �Zir � Zj;nr )�2dr+ Z t0 � 1n nXj=1W ( �Zir � Zj;nr )�W ( �Zir � �Zjr )�2dr+ Z t0 � 1n nXj=1W ( �Zir � �Zjr )�W � Pr( �Zir)�2dr�By exchangeability of the couples (Zi;n; �Zi); 1 � i � n, we getE� sups�t jZi;ns � �Zisj2� � KK2w Z t0 E�jZi;nr � �Zirj2�dr+K 0 Z t0 nXj;k=1 E��W ( �Zir � �Zjr )�W � Pr( �Zir)��W ( �Zir � �Zkr )�W � Pr( �Zir)��drWhen j 6= k, either j 6= i or k 6= i. Suppose that j 6= i. As the law of �Zjr is Pr and this variableis independent of the couple ( �Zir; �Zkr ),E��W ( �Zir � �Zjr )�W � Pr( �Zir)��W ( �Zir � �Zkr )�W � Pr( �Zir)�� =E�E�W ( �Zir � �Zjr )�W � Pr( �Zir)���� �Zir; �Zkr��W ( �Zir � �Zkr )�W � Pr( �Zir)�� = 0Hence E� sups�t jZi;ns � �Zisj2� � KK2w Z t0 E�jZi;nr � �Zirj2�dr + K 0M2wtnIf �(t) = E� sups�t jZi;ns � �Zisj2�+ K0M2wnKK2w , we have8t � T; �(t) � K 0M2wnKK2w +KK2w Z t0 �(r)drBy Gronwall's lemma, we conclude�(t) � K 0M2wnKK2w exp(KK2wT )The second inequality in (2.3) is obtained by similar calculations.10



2.2 Approximation of the nonlinear stochastic di�erential equation (0.1) forregular initial dataIn this section, we suppose that [Hyp0j] holds for some j � 2. We need this restrictive assumptionwhich implies compactness (as seen in the proof of Proposition 2.2) to prove the propagation ofchaos result. But it also enables us to obtain a new existence result for (0.1) without hypothesis(1.9).Let (�n)n be a sequence of positive numbers converging to 0. We set V n(:) = 1�dnV ( :�n ). ByProposition 2.2, there is existence and uniqueness for the nonlinear stochastic di�erential equa-tions ( �Y nt = � + R t0 �(V n � P ns ( �Y ns )):dBs + R t0 b(V n � P ns ( �Y ns ))dsP n is the law of �Y n (2.4)and 8n, P n admits a measurable version of the densities pn in H j+�2 ;j+� with kpnk j+�2 ;j+� � 1.We set qn(t; x) = V n � pn(t; :)(x).Proposition 2.5 Under [Hyp0j] for some j � 2, there is existence for the nonlinear stochasticdi�erential equation (0.1). When (1.8) also holds, the solution is unique and if it is denoted by�X, E� supt�T j �Y nt � �Xtj4� � K�4�n with � = �; 1; 2 respectively for j = 2; 3; > 3 (2.5)where K is a real constant independent of n.The proof of the proposition is based on the following lemma which states existence for theCauchy problem (1.6) under [Hyp0j] and compares the solution with pn under the additionalassumption (1.8).Lemma 2.6 If [Hyp0j] holds for some j � 2, then the Cauchy problem (1.6) admits a solutionp 2 H j+�2 ;j+� with kpk j+�2 ;j+� � 1. If moreover (1.8) holds, thensup[0;T ]�Rd jp� pnj � C��n; sup[0;T ]�Rd jp� qnj � C��nwhere � = �; 1; 2 respectively for j = 2; 3; > 3 (2.6)
Proof of Lemma 2.6 : First, under di�erent asumptions on f : [0; T ] � Rd ! R, we upper-bound the rate of convergence of fk(t; x) = V k � f(t; :)(x) to f(t; x).
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If kfk1+�2 ;2+� � 1, as RRd yV (y)dy = 0,jfk(t; x)� f(t; x)j = ���� ZRd(f(t; x� �ky)� f(t; x))V (y)dy����= ���� ZRd �� �ky:rxf(t; x) + �2k dXi;j=1 yiyj Z 10 (1� �) @2f@xi@xj (t; x� ��ky)d��V (y)dy����� C(V )�2kIf kfk 1+�2 ;1+� � 1, thenjfk(t; x)� f(t; x)j = ZRd jf(t; x� �ky)� f(t; x)jV (y)dy � sup[0;T ]�Rd jrxf(t; x)jZRd �kjyjV (y)dy� C(V )�kIf kfk�2 ;� � 1, thenjfk(t; x)� f(t; x)j = ZRd jf(t; x� �ky)� f(t; x)jV (y)dy� kfk�2 ;� Zj�kyj�1 ��k jyj�V (y)dy + 2 sup[0;T ]�Rd jf jZj�kyj>1 ��k jyj�V (y)dy� C(V )��kAs supn kpnk j+�2 ;j+� � 1, we deduce8n; sup[0;T ]�Rd jpn � qnj � C�2n8i; sup[0;T ]�Rd ����@pn@xi � @qn@xi ���� � C�
n with 
 = 1 or 
 = 2 resp. for j = 2 or j > 28i; j sup[0;T ]�Rd ���� @2pn@xi@xj � @2qn@xi@xj ���� � C��n with � = �; 1; 2 resp. for j = 2; 3; > 3 (2.7)Combining Ascoli's theorem and a diagonal extraction process it is possible to obtain from (pn)n asubsequence (pk)k such that pk converges uniformly on compact sets together with its derivatives(the �rst order time derivative and the �rst and second order space derivatives) to a functionp and its derivatives. The norm of this function in H j+�2 ;j+� is smaller than 1. By (2.7), wededuce that qk and its �rst and second order space derivatives converge to p and its derivativesuniformly on compact sets. As by (2.2), pk solves the Cauchy problem@pk@t = L�qkpk on [0; T ]� Rd and pk(0; x) = f0(x);taking the limit k ! +1 we obtain that p solves (1.6).To prove (2.6) we are going to express the di�erence p � pn as the solution of a linear partialdi�erential equation (with coe�cients depending on p, pn and qn).@(p� pn)@t = 12 dXi;j=1(aij(p) + a0ij(p)p)@2(p� pn)@xi@xj + dXi=1 � dXj=1 a0ij(p) @p@xj � bi(p)�@(p� pn)@xi+�12 dXi;j=1 a00ij(p) @p@xi @p@xj � dXi=1 b0i(p) @p@xi�(p� pn)12



+ 12 dXi;j=1(aij(p)� aij(qn)) @2pn@xi@xj + 12 dXi;j=1�a0ij(p)p @2pn@xi@xj � a0ij(qn)pn @2qn@xi@xj�+ dXi=1 � dXj=1�a0ij(p) @p@xj � a0ij(qn)@qn@xj�� (bi(p)� bi(qn))�@pn@xi+�12 dXi;j=1�a00ij(p) @p@xi @p@xj � a00ij(qn)@qn@xi @qn@xj�� dXi=1 �b0i(p) @p@xi � b0i(qn)@qn@xi��pn(2.8)Let us modify the four last terms of the right-hand-side in such a way that the di�erences (p�pn),@(p�pn)@xi , (pn � qn), @(pn�qn)@xi and @2(pn�qn)@xi@xj appear.For instance, we set G(�) = a0ij(qn+ �(p� qn)) (pn + �(p� pn))� @2qn@xi@xj + � @2(pn�qn)@xi@xj � and makethe following computation for the �fth term :a0ij(p)p @2pn@xi@xj � a0ij(qn)pn @2qn@xi@xj = Z 10 G0(�)d�= ((p� pn) + (pn � qn)) Z 10 a00ij(qn + �(p� qn))(pn + �(p� pn))� @2qn@xi@xj + �@2(pn � qn)@xi@xj �d�+ (p� pn)Z 10 a0ij(qn + �(p� qn))� @2qn@xi@xj + �@2(pn � qn)@xi@xj �d�+ @2(pn � qn)@xi@xj Z 10 a0ij(qn + �(p� qn))(pn + �(p� pn))d�The coe�cients behind (pn � qn), (p� pn) and @2(pn�qn)@xi@xj in the right-hand-side are bounded on[0; T ]� Rd uniformly in n.Treating the fourth, the sixth and the seventh term of the right-hand-side of (2.8) in the sameway, we obtain@(p� pn)@t = 12 dXi;j=1(aij(p) + a0ij(p)p)@2(p� pn)@xi@xj + dXi=1 Bni @(p� pn)@xi + Cn(p� pn) + fnwhere fn = dXi;j=1 �Anij @2(pn � qn)@xi@xj + dXj=1 �Bni @(pn � qn)@xi + �Cn(pn � qn)and the coe�cients �Anij, Bni , �Bni , Cn and �Cn are bounded on [0; T ] � Rd uniformly in n.If (1.8) holds, it is possible to apply Theorem 2.5 p.18 [6], to obtainsup[0;T ]�Rd jp� pnj � C(T; �; b) sup[0;T ]�Rd jfnjBy (2.7), sup[0;T ]�Rd jfnj � C(T; �; b; V )��n with � = �; 1; 2 respectively for j = 2; 3; > 3. Hence(2.6) holds.Proof of Proposition 2.5 : We suppose that [Hyp0j] holds for some j � 2. By Lemma 2.6the Cauchy problem (1.6) admits a solution p in H j+�2 ;j+�([0; T ] � Rd). Existence of a solution13



for the nonlinear equation (0.1) is deduced like in the proof of Proposition 1.3.Now, we also assume that (1.8) holds. By Proposition 1.2, we deduce that (0.1) admits aunique solution. If this solution is denoted by �X , using Burkholder inequality, we get thatE(sups�t j �Y ns � �Xsj4) is less thanK Z t0 E�j�(qn(s; �Y ns ))� �(p(s; �Y ns ))j4 + j�(p(s; �Y ns ))� �(p(s; �Xs))j4+ jb(qn(s; �Y ns ))� b(p(s; �Y ns ))j4 + jb(p(s; �Y ns ))� b(p(s; �Xs))j4�dsAs � and b are Lipschitz continuous, for any t � T ,E� sups�t j �Y ns � �Xsj4� � K�T sup[0;T ]�Rd jqn � pj4 + sup[0;T ]�Rd jrxpj4 Z t0 E (j �Y ns � �Xsj4)ds�By (2.6) and Gronwall's lemma, we obtain (2.5).We are going to approximate the solution of (0.1) by the moderately interacting particle systems(0.2) :Xi;nt = �i + Z t0 �� 1n nXj=1 V n(Xi;ns �Xj;ns )�:dBis + Z t0 b� 1n nXj=1 V n(Xi;ns �Xj;ns )�ds; 1 � i � nWe suppose that (1.8) holds and de�ne �Xi to be the solution of the nonlinear equation( �Xit = �i + R t0 �(p(s; �Xis)):dBis + R t0 b(p(s; �Xis))dsp 2 C1;2b ([0; T ] � Rd ) is a measurable version of the densities for the law of �Xigiven by Proposition 2.5.Theorem 2.7 Assume that for some j � 2, [hyp0j] and (1.8) hold. If �n converges to zero slowlyenough to ensure that limn �2nn exp�CK2v�2d+2n � = 0where the constant C is given by (2.3), thenlimn!+1 E� supt�T jXi;nt � �Xit j2� = 0;which implies the propagation of chaos and the convergence in law of the empirical measures�n = 1nPni=1 �Xi;n to P , the law of �Xi.Proof : The probability density V n is bounded by Mv=�dn and admits Kv=�d+1n as a Lipschitzcontinuity constant. Once this remark is made, it is enough to associate Proposition 2.3 andProposition 2.5 to obtainE� supt�T jXi;nt � �Xit j2� � K��2�n + �2nn exp�CK2v�2d+2n �� with � = �; 1; 2 resp. for j = 2; 3; > 3The conclusion follows obviously. 14



Remark 2.8 In a similar way, if we assume that [hyp04] and (1.8) hold and d = 1, we obtainE� supt�T jXi;nt � �Xit j4� � K��8n + �4nn2 exp�CK4v�8n ��We want to have the best convergence rate as possible for the left-hand-side. So we choose �n tobe the unique solution of exp�CK4v�8n � = n2�4n (2.9)Then we obtain E� sups�T jXi;ns � �Xisj4� � K�8n (2.10)3 The �uctuation resultIn this part we consider the case of the dimension one (for simplicity). We assume that (1.8)and [hyp04] hold, that � and b are bounded together with their partial derivatives up to order 4and that RR jxj8f0(x)dx < +1 i.e. � admits an eighth order moment.We are interested in the behaviour of the �uctuations associated with the convergence in law ofthe empirical measures �n of the system (Xi;n) to the law P of �Xi. We suppose that �n solves(2.9). By (2.10), it appears that the presumed rate of convergence is �2n. Let us denote by anthe number 1�2n . We now study the process �n de�ned for every t and every function � by< �nt ; � >= an(< �nt ; � > � < pt; � >):For each Brownian motion Bi; i 2 N� , we consider a nonlinear process similar to (2.4)( �Y i;nt = �i + R t0 �(V n � P ns ( �Y i;ns )):dBis + R t0 b(V n � P ns ( �Y i;ns ))dsP n is the law of �Y i;nUnder our assumptions, 8n, P n admits a measurable version of the densities pn in H 4+�2 ;4+�with kpnk 4+�2 ;4+� � 1.3.1 A few pathwise estimationsLemma 3.1 Let � : [0; T ]�R ! R be a function continuous and bounded together with its �rstorder spatial derivative. We have8� > 0; sup[0;T ]�R E�(V n � (�s(�ns � pns ))(x))2� � K1;� ��n (3.1)8� > 0; 8s 2 [0; T ]; E� < �ns ; (V n � (�s(�ns � pns ))(:))2 > � � K2;� ��n (3.2)sup[0;T ]�R E�(V n � �ns (x)� ps(x))2� � K1�4n (3.3)8s 2 [0; T ]; E� < �ns ; (V n � �ns (:)� ps(:))2 > � � K2�4n (3.4)15



where the real constants K1;�, K2;�, K1 and K2 do not depend on n.Proof : We only prove the second and the forth inequalities. The �rst and the third areobtained in a similar way but the calculations are easier.We recall that V n is bounded by Mv�n and Lipschitz continuous with constant Kv�2n .E� < �ns ; (V n � (�s(�ns � pns ))(:))2 > �= 1n nXi=1 E�� 1n nXj=1(V n(Xi;ns �Xj;ns )�s(Xj;ns )� < pns ;�s(:)V n(Xi;ns � :) >)�2�� 3n nXi=1 E�� 1n nXj=1(V n(Xi;ns �Xj;ns )�s(Xj;ns )� V n( �Y i;ns � �Y j;ns )�s( �Y j;ns ))�2+� 1n nXj=1(V n( �Y i;ns � �Y j;ns )�s( �Y j;ns )� < pns ;�s(:)V n( �Y i;ns � :) >)�2+ < pns ;�s(:)V n( �Y i;ns � :)� �s(:)V n(Xi;ns � :) >2 �� Kn nXi=1 � 1n nXj=1�sup j�j2�4n E (jXi;ns � �Y i;ns j2 + jXj;ns � �Y j;ns j2) + sup j@�@x j2�2n E (jXj;ns � �Y j;ns j2)�+ sup j�j2n�2n + sup j�j2�4n E(jX i;ns � �Y i;ns j2)�as the variables �Y i;ns are independent and their common law has a density equal to pns . ByProposition 2.3, replacing Mw and Kw by Mv=�n and Kv=�2n in (2.3), we deduceE� < �ns ; (V n � (�s(�ns � pns ))(:))2 > � � K� 1�4n + 1�2n��2nn exp�CK2v�4n �+ Kn�2nTaking into account the de�nition of �n (2.9), we conclude8� > 0; 8s 2 [0; T ]; E� < �ns ; (V n � (�s(�ns � pns ))(:))2 > � � K2;� ��nBy this inequality in the case � := 1 and � = 4 and the results given in Lemma 2.6, we obtainsups2[0;T ] E� < �ns ; (V n � �ns (:)� ps(:))2 > � � 2 sups2[0;T ] E� < �ns ; (V n � �ns (:)� V n � pns (:))2 > �+ 2 sup[0;T ]�R jV n � pn � pj2� K2�4nwhich puts an end to the proof.Let us now prove that uniformly in t and n, E (k�nt k2�2;2) is �nite.16



Proposition 3.2 supn supt2[0;T ] E�k�nt k2�2;2� < +1:
Proof : Let us �rst remark that, as � and b are bounded and E(j�j8) < +1,supn sup1�i�n E� sups�T jXi;ns j8� < +1; supi E� sups�T j �Xisj8� < +1 (3.5)
For every function � in W 2;20 , we write < �nt ; � >= Snt (�) + T nt (�), whereSnt (�) = ann nXi=1(�(Xi;nt )� �( �Xit )) ; T nt (�) = ann nXi=1(�( �Xit )� < pt; � >):Let us consider a complete orthonormal system (�k) in W 2;2. Since the variables (Xi;nt ; �Xit ) areexchangeable,E�Xk�1Snt (�k)2� � E� a2nn nXi=1Xk�1(�k(Xi;nt )� �k( �Xit ))2� � a2nE�kDX1;nt �X1t k2�2;2�� Ka2nE�jX1;nt � �X1t j4�1=2E�1 + jX1;nt j8 + j �X1t j8�1=2 by (0.5)By (2.10) and (3.5), we deduce that supn supt2[0;T ] E(Pk�1 Snt (�k)2) < +1. Moreover, sincethe variables �Xit are independent with law pt(x)dx,E�Xk�1 T nt (�k)2� = a2nn2nXk�1 E�(�k( �X1t )� < pt; �k >)2� � a2nn E�Xk�1D2�X1t (�k)�� Ka2nn E�1 + j �X1t j4� by (0.6)and supn supt2[0;T ] E(Pk�1 T nt (�k)2) < +1. As k�nt k2�2;2 � 2Pk�1(Snt (�k)2 + T nt (�k)2), theconclusion holds.
3.2 The tightness resultIn order to prove the tightness of the laws of the �uctuation processes �n, we study the semi-martingale representation of these processes. Applying Itô's formula, we obtain that �n satis�esthe following martingale property: for every � 2 C2b (R),Mnt (�) = h�nt ; �i � h�n0 ; �i � Z t0 Ans�ds;17



is a real continuous martingale with quadratic variation process< Mn(�) >t= a2nn Z t0 < �ns ; �02(:)�2(V n � �ns (:)) > dswhere Ans� = an� < �ns ; b(V n � �ns (:))�0(:) > � < ps; b(ps(:))�0(:) >+ 12 < �ns ; �2(V n � �ns (:))�00(:) > �12 < ps; �2(ps(:))�00(:) > �Proposition 3.3 For every integer n, the process (Mnt ) is a strongly continuous martingale inW�2;20 , and for f�kgk�1 a complete orthonormal system in W 2;20 ,supn na2nXk�1 E� supt�T (Mnt (�k))2� < +1 (3.6)which implies that supn na2n E (supt�T kMnt k2�2;2) < +1 and that the C([0; T ];W�2;20 )-valued vari-ables Mn converge to 0 in L2.Proof : Let f�kgk�1 be a complete orthonormal system in W 2;20 of C1 functions with compactsupport. By Doob's inequality, Pk�1 E (supt�T (Mnt (�k))2) is bounded byKXk�1 E ((MnT (�k))2) = Ka2nn Xk�1 E� Z T0 < �ns ; �0k2(:)�2(V n � �ns (�)) > ds�� Ka2nn Xk�1 Z T0 E� < �ns ; �0k2(:) > �ds = Ka2nn E� Z T0 kHX1;ns k2�2;2ds�� Ka2nn E� sups�T(1 + jX1;ns j4)� by (0.7)By (3.5), we conclude that (3.6) holds.We still have to prove the continuity of Mn. Let � > 0. By (3.6), there exists a positive numberN0 (depending on !) such that Pk>N0 supt�T (Mnt (�k))2 < "6 a.s.: Let ftmgm�1 be a sequencein [0; T ] such that (tm) tends to t when m tends to in�nity.kMntm �Mnt k2�2;2 =Xk�1(Mntm(�k)�Mnt (�k))2� N0Xk=1(Mntm(�k)�Mnt (�k))2 + 2 Xk>N0f(Mntm (�k))2 + (Mnt (�k))2g� N0Xp=1 "3N0 + 4"6 = ":The majoration of the �rst term if m is su�ciently large is due to the continuity of the processMnt (�k), for every k � 1. Thus the mapping t 7!Mnt is continuous in W�2;20 .18



To study the drift term we transform Ans� where � 2 C2b (R).Ans� = an� < �ns � ps; b(ps(�))�0(:) > + < �ns ; (b(V n � �ns (�))� b(ps(�)))�0(:) >+ 12 < �ns � ps; �2(ps(�))�00(:) > +12 < �ns ; (�2(V n � �ns (�))� �2(ps(�)))�00(:) > �=< �ns ; b(ps(�))�0(:) > + < �ns ; �22 (ps(�))�00(:) >+ an < �ns ; �0(�)(V n � �ns (�)� ps(�))Z 10 b0(�V n � �ns (�) + (1� �)ps(�))d� >+ an < �ns ; �00(�)2 (V n � �ns (�)� ps(�))Z 10 (�2)0(�V n � �ns (�)) + (1� �)ps(�))d� >=< �ns ; Ls� > + < Zns ; � > :withLs�(x) = b(ps(x))�0(x) + �22 (ps(x))�00(x); (3.7)< Zns ; � > = an < �ns ; (V n � �ns (�)� ps(�))��0(�)Z 10 b0(�V n � �ns (�) + (1� �)ps(�))d�+ �00(�)2 Z 10 (�2)0(�V n � �ns (�)) + (1� �)ps(�))d�� >(3.8)Proposition 3.4 For every s, the operator Ls is a linear continuous mapping from W 4;10 intoW 2;20 , and for all � 2W 4;10 , kLs�k22;2 � K1k�k24;1: (3.9)For every n, s and !, the operator Zns is a linear continuous operator from W 4;10 into R, andE (kZns k2�4;1) � K2 < +1: (3.10)The constants K1 and K2 are independent of n and s � T .Proof : The upperbound is clear for Ls�, since p belongs to H 4+�2 ;4+�([0; T ]�R), and then toC2b ([0; T ] � R).For Zns , we observe that as k�kC2;1 � Kk�k4;1 (by (0.3)),E(< Zns ; � >2) � a2nk�k24;1Kb;�E� Z (1 + jyj2)�ns (dy)�E� Z (V n � �ns (y)� ps(y))2�ns (dy)�:By (3.4) and (3.5), we conclude that (3.10) holds.To prove the tightness of �n in C([0; T ];W�4;10 ), we use the Hilbert semimartingale decompositionof �n in W�4;10 �nt = �n0 + Z t0 (Ls)��ns ds+ Z t0 Zns ds+Mnt : (3.11)where (Ls)� is the adjoint of the operator Ls. 19



Lemma 3.5 The integrals R t0 (Ls)��ns ds and R t0 Zns ds are de�ned as Bochner integrals in W�4;10 .Proof : As W�4;10 is separable, following Yoshida [15] p.132, it is enough to check that :1) 8� 2W 4;10 , the mappings s!< (Ls)��ns ; � >=< �ns ; Ls� > and s!< Zns ; � > are measurable2)a.s., R t0 k(Ls)��ns k�4;1ds < +1 and R t0 kZns k�4;1ds < +1.Condition 1) is obviously satis�ed.By (3.9) we obtain Z T0 k(Ls)��ns k�4;1ds � K1 Z T0 k�ns k�2;2dsBy Proposition 3.2, E� R T0 k�ns k2�2;2ds� < +1 which implies that a.s., R T0 k�ns k�2;2ds < +1.Hence condition 2) holds for the �rst integral. For the second integral, we remark that, a.s.R T0 kZns k�4;1ds < +1, as by (3.10), E� R T0 kZns k2�4;1ds� < +1.Proposition 3.6 supn E� supt�T k�nt k2�4;1� < +1 (3.12)The trajectories of �n are a.s. strongly continuous in W�4;10 .Proof : By the semimartingale decomposition of �n (3.11),k�nt k2�4;1 � 4�k�n0 k2�4;1 + tZ t0 (k(Ls)��ns k2�4;1 + kZns k2�4;1)ds+ kMnt k2�4;1�Taking (3.9) and (3.10) into account, we deduceE� supt�T k�nt k2�4;1� � 4E�k�n0 k2�4;1 + T Z T0 (k(Ls)��ns k2�4;1 + kZns k2�4;1)ds+ supt�T kMnt k2�4;1�� 4�E (k�n0 k2�4;1) +K1T 2 sups�T E(k�ns k2�2;2) +K2T 2 + E� supt�T kMnt k2�4;1��Propositions 3.2 and 3.3 and the continuous embedding of W�2;20 into W�4;10 imply that (3.12)holds.The Bochner integrals R t0 (Ls)��ns ds and R t0 Zsds are strongly continuous in W�4;10 ([15] Corollary1 p.133). Moreover, by Proposition 3.3 and the continuous embedding from W�2;20 into W�4;10 ,the process Mn is a.s. strongly continuous in W�4;10 . The decomposition (3.11) of �n allows toconclude that this process is a.s. strongly continuous.We are now able to prove 20



Theorem 3.7 The sequence of the laws of (�n)n�1 is tight in C([0; T ];W�4;10 ).Proof : By Proposition 3.3 and the continuous embedding from W�2;20 into W�4;10 , we knowthat the processes Mn considered as C([0; T ];W�4;10 ) valued variables converge to 0 in L2. AsC([0; T ];W�4;10 ) endowed with the sup norm is a Polish space, we deduce that the sequence ofthe laws of (Mn)n�1 is tight in C([0; T ];W�4;10 ). Therefore it is enough to prove the tightness ofthe laws of the drift terms Dnt = �n0 + R t0 (Ls)��ns ds+ R t0 Zns ds to conclude. Let us now recall thecriterion that we will use :A sequence of (
n; F nt )-adapted processes (Y n)n�1 with paths in C([0; T ];H) where H is a Hilbertspace is tight if both of the following conditions hold:I: There exists a Hilbert space H0 such that H0 ,!H:S: H and such that for all t � T ,supn E(kY nt k2H0) < +1:II: (Aldous condition) For every 
1; 
2 > 0 there exists � > 0 and an integer n0 such that forevery (F nt )-stopping time �n � T ,supn�n0 sup��� P (kY n�n � Y n�n+�kH � 
1) � 
2:AsW�2;20 ,!H:S: W�4;10 and kDnt k2�2;2 � 2(k�nt k2�2;2+kMnt k2�2;2), Propositions 3.2 and 3.3 implythat condition I holds for (Dn)n�1.Let 
1 > 0, 0 � � � � and �n � T be a stopping time. By Chebychev inequality,P�kDn�n+� �Dn�nk�4;1 � 
1� � 1
21 E  



Z �n+��n ((Ls)��ns + Zns )ds



2�4;1!By Proposition 3.4 and 3.2 � 1
21�2�2�K1 supn supt2[0;T ] E�k�ns k2�2;2�+K2�� � K�2
21The right-hand-side is arbitrarily small uniformly in n for � small and condition II holds whichputs an end to the proof.
3.3 Characterization of the limit valuesIf we consider equation �nt = �n0 + Z t0 (Ls)��ns ds+ Z t0 Zns ds+Mntit appears that as n! +1, it is not possible to close the equation at the limit in W�4;10 becauseof the unboundedness of the operator Ls in W 4;10 . But this operator is bounded from W 6;10 toW 4;10 . Therefore, we are going to obtain a limit equation in W�6;10 .Let As�(x) = ps(x)��0(x)b0(ps(x)) + �00(x)2 (�2)0(ps(x))� and Ls = Ls +As.Since p 2 H 4+�2 ;4+�([0; T ]� R), we easily prove that :21



Lemma 3.8 If � and b belong to C6b , then for each s, the operator Ls is continuous from W 6;10into W 4;10 and its norm is bounded uniformly in s 2 [0; T ]. Moreover,8� 2W 6;10 ; 8s; s0 2 [0; T ]; kLs��Ls0�k4;1 � Kjs� s0j�2 k�k6;1:
We are now ready to obtain the limit equation :Theorem 3.9 Let us assume that �; b 2 C6b . Then every limit value of the laws of (�n)n�1 (inP(C([0; T ];W�4;10 ))) is concentrated on the solutions of the deterministic a�ne equation8t 2 [0; T ]; �t = Z t0 (Ls)��sds+ Z t0 Gsds in W�6;10 (3.13)where Gs is de�ned, for every � in W 6;10 by< Gs; � >=< ps; 12�Z z2V (z)dz�p00s(:)(�0(:)b0(ps(:)) + �00(:)2 (�2)0(ps(:))) > :
Remark 3.10 Let � 2 C([0; T ];W�4;10 ), � 2W 6;10 and s; s0 2 [0; T ]. By Lemma 3.8, we obtainj < �s;Ls� > � < �s0 ;Ls0� > j � j < �s � �s0 ;Ls� > j+ j < �s0 ; (Ls0 �Ls)� > j� K(k�s � �s0k�4;1 + supt2[0;T ] k�tk�4;1js� s0j�2 )k�k6;1Hence the mapping s ! (Ls)��s is continuous in W�6;10 and the integral R t0 (Ls)��sds is de�nedas a Riemann integral.By Schwarz inequality, (3.5) and the continuous embedding of W 6;10 into C2;1,< Gs; � >2� K < ps; (1 + jxj2) > k�k2C2;1 � Kk�k26;1:Hence R t0 Gsds makes sense as a Bochner integral in W�6;10 .Proof : We consider a subsequence of �n converging in law and that we still index by n forsimplicity. Let t 2 [0; T ], � be a variable in C([0; T ];W�4;10 ) distributed according to the limitlaw and � be a C1 function with compact support in R.By Lemma 3.8, the function F� : � 2 C([0; T ];W�4;10 ) !< �t; � > � R t0 < �s;Ls� > ds 2 R iscontinuous. Hence the sequence F�(�n) converges in law to F�(�).We have already seen that the martingale part tends to zero. Hence Mn(�) converges in law tozero. By the same way, the initial sequence < �n0 ; � > tends to zero, since the �uctuations ofinitial independent conditions converge at rate pn.If we prove that R t0 < Zns ; � > ds � R t0 < �ns ; As� > ds converges in law to the deterministicvariable R t0 < Gs; � > ds, by the decompositionF�(�n) =< �n0 ; � > +Z t0 < Zns ; � > ds� Z t0 < �ns ; As� > ds+Mnt (�)22



we will deduce that8t 2 [0; T ]; a:s:; < �t; � >= Z t0 < �s;Ls� > ds+ Z t0 < Gs; � > dsBy continuity, the above equality will hold almost surely for any t 2 [0; T ]. Moreover, choosing� in a sequence dense in W 6;10 , and taking limits, we will geta:s:;8t 2 [0; T ]; 8� 2W 6;10 ; < �t; � >= Z t0 < �s;Ls� > ds+ Z t0 < Gs; � > dswhich is the conclusion of the theorem.By an easy computation, < Zns ; � > � < �ns ; As� > � < Gs; � > is equal to T n1 (s)+T n2 (s)+T n3 (s)withT 1n(s) = an < �ns ; (V n � �ns (�)� ps(�))��0(�)�Z 10 b0(�V n � �ns (�) + (1� �)ps(�))d� � b0(ps(:))�+ �00(�)2 �Z 10 (�2)0(�V n � �ns (�) + (1� �)ps(�))d� � (�2)0(ps(:))�� >T 2n(s) =< �ns ; an(V n � ps(�)� ps(�))��0(:)b0(ps(:)) + �00(:)2 (�2)0(ps(:))� >� < ps; 12�Z z2V (z)dz�p00s(:)��0(:)b0(ps(:)) + �00(:)2 (�2)0(ps(:))� >T 3n(s) =< �ns ; an(V n � �ns (�)� V n � ps(�))��0(:)b0(ps(:)) + �00(:)2 (�2)0(ps(:))� >� < �ns ; ps(:)��0(:)b0(ps(:)) + �00(:)2 (�2)0(ps(:))� >If we show that limn R T0 E jT 1n (s)jds = limn R T0 E jT 2n (s)jds = limn R T0 E jT 3n (s)jds = 0, then theproof will be �nished since these limits imply that R t0 < Zns ; � > ds � R t0 < �ns ; As� > dsconverges in L1 to the deterministic variable R t0 < Gs; � > ds for any t 2 [0; T ].Proof of limn R T0 E jT 1n (s)jds = 0T 1n(s) = an < �ns ; (V n � �ns (�)� ps(�))��0(�)�Z 10 b0(�V n � �ns (�) + (1� �)ps(�))d� � b0(ps(:))�+ �00(�)2 �Z 10 (�2)0(�V n � �ns (�) + (1� �)ps(�))d� � (�2)0(ps(:))�� >As b0 and (�2)0 are Lipschitz continuous and �0 and �00 are boundedjT 1n(s)j � Kan < �ns ; (V n � �ns (:)� ps(:))2 >By (3.4), we deduce R T0 E jT 1n (s)j � KT�2n. Hence the conclusion holds.23



Proof of limn R T0 E jT 2n (s)jds = 0T 2n(s) =< �ns ;�an(V n � ps(�)� ps(�)) � 12�Z z2V (z)dz�p00s(:)���0(:)b0(ps(:)) + �00(:)2 (�2)0(ps(:))� >+ < �ns � ps; 12�Z z2V (z)dz�p00s(:)��0(:)b0(ps(:)) + �00(:)2 (�2)0(ps(:))� >Let T 21n (s) and T 22n (s) denote the terms in the right hand side.Since ps is in C3b uniformly in s and RR zV (z)dz = 0,����V n � ps(x)� ps(x)� �2n2 �Z z2V (z)dz�p00s(x)���� � K�3n Z jzj3V (z)dzThe functions b0, (�2)0, �0 and �00 being bounded, we deduce R T0 E(jT 21n (s)j)ds � K�n whichtends to 0 as n tends to in�nity.The function y ! p00s(y)��0(y)b0(ps(y))+ �00(y)2 (�2)0(ps(y))� is Lipschitz continuous and bounded.Since, by the propagation of chaos result, the sequence (�ns (dx)) converges to ps(x)dx in proba-bility, E jT 22n (s)j tends to zero as n tends to in�nity. By Lebesgue Theorem, the same is true forR T0 E jT 22n (s)jds. Hence limn R T0 E jT 2n (s)jds = 0.Proof of limn R T0 E jT 3n (s)jds = 0For simplicity, let us denote s(x) = �0(x)b0(ps(x)) + �00(x)2 (�2)0(ps(x))T 3n(s) = Z Z V n(x� y) s(x)�ns (dx)�ns (dy)� Z ps(y) s(y)�ns (dy)= Z Z V n(x� y) s(x)(�ns (dx)� pns (x)dx)�ns (dy)+ Z Z V n(x� y) s(x)(pns (x)� ps(x))dx�ns (dy)+�Z Z V n(x� y) s(x)ps(x)dx�ns (dy)� Z ps(y) s(y)�ns (dy)�= T 31n (s) + T 32n (s) + T 33n (s)We set �V n(x) = V n(�x).E jT 31n (s)j � anE� < �ns + ps; j �V n � ( s(�ns � pns ))(:)j > �� an�E� < �ns ; j �V n � ( s(�ns � pns ))(:)j > �+ sup[0;T ]�R E j �V n � ( s(�ns � pns ))(x)j�The function  is continuous and bounded together with its �rst spatial partial derivative andsatis�es the hypothesis made on � in Lemma 3.1. Moreover, as �V n is bounded and Lipschitz24



continuous with the same constants as V n, the proof of Lemma 3.1 shows that (3.1) and (3.2)still hold when V n is replaced by �V n. Hence we obtain 8� > 0,Z T0 E jT 31n (s)jds � K���2�2nBy choosing � greater than 4, we obtain the convergence to zero of R T0 E jT 31n (s)jds.As  s is equal to 0 outside a compact set which does not depend on s 2 [0; T ],Z T0 E jT 32n (s)jds = an Z T0 E�jZ  s(x)V n � (�ns � ps)(x)(pns (x)� ps(x))dxj�ds� K an sup[0;T ]�R jpns (x)� ps(x)j� sup[0;T ]�R E jV n � (�ns � pns )(x)j + sup[0;T ]�R jV n � (pns � ps)(x)j�� K an sup[0;T ]�R jpns (x)� ps(x)j� sup[0;T ]�R E jV n � (�ns � pns )(x)j + sup[0;T ]�R jpns (x)� ps(x)j�By Lemma 2.6 and (3.1) written for � := 1 and � = 4, we obtain, R T0 E jT 32n (s)jds � K�2n whichgoes to 0 as n! +1.For the third term, an easy computation (using Taylor expansion) gives thatZ V n(x�y) s(x)ps(x)dx� s(y)ps(y)� �2n2 Z z2V (z)dz(ps(y) 00s (y)+2p0s(y) 0s(y)+ s(y)p00s(y))is smaller than K�3n RR jzj3V (z)dz. HencejT 33n (s)j � �����2n2 Z z2V (z)dz Z (ps(y) 00s (y) + 2p0s(y) 0s(y) +  s(y)p00s(y))�ns (dy)����+K�n= K���� < �ns � ps; ps(:) 00s (:) + 2p0s(:) 0s(:) +  s(:)p00s(:) > ����+K�nAs the function y 7! ps(y) 00s (y)+2p0s(y) 0s(y)+ s(y)p00s(y) is Lipschitz continuous and bounded,the convergence in probability of �ns to ps implies thatE ���� < �ns � ps; ps(:) 00s (:) + 2p0s(:) 0s(:) +  s(:)p00s(:) > ����converges to zero. Hence E(R T0 jT 33n (s)jds) tends to zero as n tends to in�nity.The proof of Theorem 3.9 is then complete.The next step consists in proving uniqueness for (3.13). Let �1 and �2 be two solutions inC([0; T ];W�4;10 ). The di�erence ~� = �1 � �2 is a solution of~�t = Z t0 (Ls)� ~�sdsin W�6;10 . But the operator (Ls)� is not bounded in W�6;10 and Gronwall's arguments do notwork to prove ~�t = 0; 8t 2 [0; T ]. The trick is to use the semi-group associated with the second25



order operator Ls to obtain uniqueness. Our approach is very similar to the one developped byMitoma in [11].Ls�(x) = (b(ps(x)) + ps(x)b0(ps(x)))�0(x) + (�2(ps(x)) + ps(x)(�2)0(ps(x)))�00(x)2We set �(s; x) = b(ps(x)) + ps(x)b0(ps(x)). By (1.8), it is possible to de�ne
(s; x) =p�2(ps(x)) + ps(x)(�2)0(ps(x)):In order to ensure that 
 is smooth, we have to assume that9� > 0; 8x 2 R; �2(x) + x(�2)0(x) � �which is exactly property (1.9).From now on, we suppose that �; b 2 C10b and that [hyp09] and (1.9) hold. The function p belongsto H 9+�2 ;9+�([0; T ] � R) and the functions 
s and �s belong to C9b uniformly for s 2 [0; T ].According to Kunita [5] p.227, the �ow (Xst(x))0�s�t�T de�nes a C8 di�eomorphism, where(Xst(x)) is the unique solution of the Itô stochastic di�erential equationXst(x) = x+ Z ts 
(r;Xsr(x))dBr + Z ts �(r;Xsr(x))dr; t � sLet DjXst(x) denote the derivative of order j for 1 � j � 8. By [4] p.61,8r > 0; 8 1 � j � 8; supx2R sup0�s�t�T E�jDjXst(x)jr� < +1 (3.14)Let � 2 C2b . Itô's backward formula ([5] p.256) gives�(Xst(x))� �(x) = Z ts 
(r;Xrt(x))�0(Xrt(x))DXrt(x)dBr + Z ts Lr(�(Xrt))(x)drBy (3.14), the expectation of the above stochastic integral is equal to 0. If we de�ne(U(t; s)�)(x) = E (�(Xst(x)));taking expectations in Itô's backward formula and using Fubini's theorem, we get(U(t; s)�)(x) � �(x) = Z ts �(r; x)E� @�(Xrt(x))@x �+ 
2(r; x)2 E� @2�(Xrt(x))@x2 �dr (3.15)For k = 1 or k = 2, the variables � @k@xk�(Xst(x))�x2R depend continuously on x and are uniformlyintegrable by (3.14). Hence it is possible to exchange expectations and derivations in the right-hand-side of (3.15) to obtain8� 2 C2b ; 80 � s � t � T; 8x 2 R; (U(t; s)�)(x) � �(x) = Z ts Lr(U(t; r)�)(x)dr (3.16)We are now going to prove that under our assumptions, for � 2 C9b , this equation holds in theBanach space C6b . 26



Lemma 3.11 Assume that �; b 2 C10b and that (1.9) and [hyp09] hold. The operator Lt is alinear operator from C8b into C6b such that8t 2 [0; T ]; kLt�kC6b � Kk�kC8b (3.17)8s; t 2 [0; T ]; kLs��Lt�kC6b � Kk�kC8b jt� sj (3.18)For any 1 � j � 8, the operator U(t; s) is a linear operator on Cjb such that80 � s � t � T; kU(t; s)�kCjb � Kk�kCjb (3.19)80 � s � s0 � t � T; kU(t; s)� � U(t; s0)�kCjb � Kk�kCj+1b ps0 � s (3.20)
Proof : Inequality (3.17) is obvious. As p 2 H 9+�2 ;9+�([0; T ]�R), this function and its spatialpartial derivatives up to order seven admit a continuous and bounded �rst derivative with respectto the time variable. Inequality (3.18) is easily deduced.To prove the second part of the Lemma, we set 1 � j � 8, � 2 Cjb and 1 � k � j. We have@k@xk�(Xst(x)) = kXl=1 Xl1+2l2+:::+klk=k c(L)�(l)(Xst(x))(DXst(x))l1(D2Xst(x))l2 :::(DkXst(x))lkwith integer constants c(L) = c(l; l1; :::; lk). Hence, by (3.14), the variables � @k@xk�(Xst(x))�x2Rare uniformly integrable. Since they depend continuously on x, we deduce that U(t; s)� 2 Cjbwith derivative of order k given by E� @k@xk�(Xst(x))�. Moreover,���� @k@xk (U(t; s)�)(x)���� is smallerthan kXl=1 supy2R j�(l)(y)j Xl1+:::+klk=k c(L)E ����(DXst(x))l1(D2Xst(x))l2 :::(DkXst(x))lk ����and then bounded by Kk�kCkb . As clearly kU(t; s)�kC0b � k�kC0b , we deduce that (3.19) holds.The proof of (3.20) is based on the following estimates given by Mitoma [11], Lemma 380 � s � s0 � t � T; 8x 2 R; E jXst(x)�Xs0t(x)j2 � K(s0 � s)81 � j � 8; E jDjXst(x)�DjXs0t(x)j2 � K(s0 � s) (3.21)and obtained by computations similar to the previous ones.If � 2 C9b , by the previous Lemma, s! Ls(U(t; s)�) is continuous in C6b . Hence R t0 Ls(U(t; s)�)dsmakes sense as a Riemann integral in C6b . Using (3.16), we deduce(U(t; s)�) � � = Z ts Lr(U(t; r)�)dr in C6b (3.22)This equation is the key point in the proof of uniqueness for (3.13).27



Proposition 3.12 Assume that �; b 2 C10b and that (1.9) and [hyp09] hold. Then (3.13) has nomore than one solution in C([0; T ];W�4;10 ). Moreover, any such solution � is characterized by8t 2 [0; T ]; �t = Z t0 U(t; s)�Gsds in C�4 (3.23)
Remark 3.13 Let � 2 C3b and s; r 2 [0; T ].j < Gr �Gs; � > j � ���� < pr; 12 Z jzj2V (z)dz�p00r(:)��0(:)b0(pr(:)) + �00(:)2 (�2)0(pr(:))�� p00s(:)��0(:)b0(ps(:)) + �00(:)2 (�2)0(ps(:))������+ ���� < ps � pr; 12�Z jzj2V (z)dz�p00s(:)��0(:)b0(ps(:)) + �00(:)2 (�2)0(ps(:))� > ����Since p 2 H 9+�2 ;9+�, the �rst term of the right-hand-side is smaller than Kk�kC3b jr � sj. Forthe second term, we remark that the function x ! p00s(x)��0(x)b0(ps(x)) + �00(x)2 (�2)0(ps(x))� isbounded by Kk�kC3b and Lipschitz continuous with constant Kk�kC3b . Hencej < Gr �Gs; � > j � K�jr � sj+ dFM (ps(x)dx; pr(x)dx)�k�kC3bwhere dFM denotes the Fortet-Mourier metric on P(R). Hence the mapping s ! Gs is contin-uous in C�3. By Lemma 3.11, we deduce that s ! U(t; s)�Gs is continuous in C�4. HenceR t0 U(t; s)�Gsds makes sense as a Riemann integral in C�4.Proof : Let � 2 C([0; T ];W�4;10 ) satisfy (3.13) and � belong to C9b . As C6b ,! W 6;10 , by (3.22)we get < �t; � > = Z t0 < (Ls)��s; U(t; s)� � Z ts Lr(U(t; r)�)dr > ds+ Z t0 < Gs; U(t; s)� � Z ts Lr(U(t; r)�)dr > ds= Z t0 (< Gs; U(t; s)� > + < (Ls)��s; U(t; s)� >)ds� Z t0 Z ts < (Ls)��s +Gs;Lr(U(t; r)�) > drds= Z t0 (< Gs; U(t; s)� > + < (Ls)��s; U(t; s)� >)ds� Z t0 Z r0 < (Ls)��s +Gs;Lr(U(t; r)�) > dsdrAs � solves (3.13) and Lr(U(t; r)�) 2 C6b ,!W 6;10 , we haveZ r0 < (Ls)��s +Gs;Lr(U(t; r)�) > ds =< �r;Lr(U(t; r)�) >28



Hence< �t; � > = Z t0 < Gs; U(t; s)� > + < (Ls)��s; U(t; s)� >)ds� Z t0 < �r;Lr(U(t; r)�) > dr= Z t0 < Gs; U(t; s)� >Since C9b is dense in C4b , we deduce that �t = R t0 U(t; s)�Gsds in C�4. As C4b is dense in W�4;10we conclude that uniqueness holds for (3.13) in C([0; T ];W�4;10 ).We are now ready to conclude :Theorem 3.14 Assume that �; b 2 C10b and that (1.9) and [hyp09] hold. Then the variables�n 2 C([0; T ];W�4;10 ) converge in L1 to the deterministic process � such that the image of �t bythe continuous embedding of W�4;10 into C�4 is given by R t0 U(t; s)�Gsds for any t 2 [0; T ].Proof : By Theorem 3.7 the laws of the processes �n 2 C([0; T ];W�4;10 ) are tight.Let � be a variable distributed according to a limit point. By Theorem 3.9 and Proposition 3.12,� is the deterministic process such that 8t 2 [0; T ] the image of �t by the continuous embeddingof W�4;10 into C�4 is R t0 U(t; s)�Gsds.Since the unique limit point is a Dirac probability measure, the whole sequence �n convergesin probability to the process �. As by (3.12), the variables �n are uniformly integrable, theconvergence takes place in L1.
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