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Abstract

Gaussian processes that are multifractional are studied in this paper. By multifractional
processes we mean that they behave locally like a fractional Brownian motion, but the
fractional index is no more a constant: it is a function. We introduce estimators of this
multifractional function based on discrete observations of one sample path of the process
and we study their asymptotical behaviour as the mesh decreases to zero.
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1 Introduction

The fractional Brownian motion introduced in Mandelbrot and Van Ness (1968) provides a
very powerful model in applied mathematics. The fractional (or Hélder) index « measures the
smoothness of the sample paths of the fractional Brownian motion and the problem of identifying
this scalar index has been widely investigated by many authors: Istas and Lang (1997), Benassi
et al. (1997b), Benassi et al. (1996), Hall et al. (1994), Hall and Wood (1993). However
fractional Brownian motion satisfies a strong stationarity condition on the increments that is
too restrictive for some applications. Then the natural idea is to replace the fractional index
a by a so-called multifractional function a(t) that depends on the time. These multifractional
models have been used since a while in turbulence analysis (Frisch and Parisi (1985)) and more
recently for edges detection in image analysis (Levy-Vehel and Mignot (1994), Canus and Levy-
Vehel (1996), Levy-Vehel (1996)). Two generalizations of the fractional Brownian motion have
been proposed independently by Benassi et al. (1997a) and Peltier and Levy-Vehel (1996) to
conveniently model these phenomenons. They are both called multifractional Brownian motions.

In this paper multifractional Gaussian processes that are generalizations of multifractional
Brownian motions are introduced. Our aim is to identify the multifractional function of multi-
fractional Gaussian processes from the observations of the process X at /N sampling instants.
Peltier and Levy-Vehel (1996) describes a method to estimate the multifractional function of a
multifractional Brownian motion. As far as we know the convergence of their estimator has not
been studied. Their estimator is based on the average variation of the sampled process. Using
the method of Benassi et al. (1996) for filtered white noises we introduce generalized quadratic
variations because they allow Gaussian limiting distribution with v/N-rate of convergence. To
estimate the multifractional function generalized quadratic variations are now considered in a
neighborhood of point ¢ where identification of function a(t) is performed. We therefore have
to choose a convenient neighborhood in terms of the number N of sampling points to build an
estimator a(t). This estimator is strongly consistent and we study asymptotically the mean
square error. Since the method of Benassi et al. (1996) are used to show the convergence of
this new estimator we focus on the localization problem in this paper. A major advantage of
this technique is that it can be applied to a generalization of multifractional Brownian motion
that we call multifractional Gaussian processes (mGp). Let o(t,s) = E(X(t) — X(s))? be the
variance of the increments of X. The mGp X satisfies a quadratic mean Holder condition of
index a(t) at point t, i.e. there exists a limit to o(t,t + h)|[h|~2%® as h — 0. In this framework
the limit which is called the normalized variance depends both on the multifractional function
a(t) and on another functional parameter a,(t) which was already introduced for filtered white
noises.

The paper is organized as follows : in section 2 multifractional Gaussian processes are
introduced. They are shown to behave locally around a point ¢ as a fractional Brownian motion
with index «(t). Section 3 is devoted to the definition of the estimator and the proof of the
convergence.



2 Multifractional Gaussian processes and local scaling

Let us first derive from the definition of multifractional Brownian motion and of filtered white
noises in Benassi et al. (1996) the definition of multifractional Gaussian processes (mGp).

Definition 1 Multifractional Gaussian processes (mGp) (X¢)ieo) are real Gaussian processes
whose covariance X are of the form

S(t,s) — /Rf(t,A)f(s,A)dA,

where

e — 1Da(t, A
ft,A) = ( |)\|1/2-?—agt) ) : (1)

Moreover it is assumed
A 1 Smoothness of the process.
Function o is Ct with 0 < a(t) <1 Vt € [0,1].
A 2 Modulation.

Function a(t, \) is defined from [0,1] x R to R and satisfies:

(l(t, )‘> = aoo(t> + R(ta )‘> ) (2)
where ax is C1 on [0,1] with, Vt € [0,1] , as0(t) # 0 and R € CH2([0,1] x R) is negligible at
high frequency i.e. An > 0 such that Vi =0to 1, j =0 to?2
gt C
—F—R(t, A < .
OtON (¢, )‘ - At

To motivate this definition recall that multifractional Brownian motion is presented in Be-
nassi et al. (1997a) as

eit)\ -1

X = & |/\|1/2+a(t)

W (dA)

where W(d)\) is a Brownian measure on L*(R), hence it corresponds to

eit)\ -1

f(t7A):W'

Filtered white noises are other instances of mGp which are associated to a function

A itA 1
F(t,2) = “(t’| ;ﬁfua :




We refer to Benassi et al. (1996) where filtered white noises are introduced to understand
the meaning of the function a(¢, \). Although filtered white noises have no stationary increments
as multifractional Brownian motion they have still a constant index «. The most appealing fact
is that identification techniques close to those of Benassi et al. (1996) used for filtered white
noises are applied to mGp.

The aim is to obtain a process that behaves locally at point ¢ like an a(t)—{fractional process.
The next proposition shows that mGps satisfy a multifractional framework as defined in the
introduction.

Proposition 1 Let us assume X is a mGp and o(t,s) = E(X(t) — X(s))? then

sin’u/2

R [ul1+20(0) w.

Ain}) o(t,t + h)|h|720 = 442 ()

Proof of Proposition 1 '
Let T = a(t + b, YA 1) —at, (e~ APCH

T .
so that o(t,t + h) = /R |)\|2a(t)|+2|a(t+h)+1 dX . By Taylor expansions
IAPE = A 4 hLog| Ao/ (¢) A1)

a(t+h,\) = a(t,\)+hd(0,)),

where ¢, 0 €]t,t + h[ and o'(¢, \) stands for %a(t, A) . Let T =T, + T, + T3 with

T o= a(t, )|A*DeA (Mt — 1),
Ty = —a(t, )|\ (c)(e® — 1)hLog|A|,
Ts = ha' (0, )M — 1)|A]20)
TT; . - :
Define I; ; = . TAPA 28T d\,i,7 =1,2,3,so that o(t,t + h) = Z I; j . First con-

,j=1
(hA/2)a”(t, A
sider 1 = 4/ sin )\|2a{t+)h)+(1 )d)\ . By the change of variable u = hA,

B 2a(t+h sin? (u/2)a (t u/h)
4|h| )/ |u|2a(t+h)+1 d

u . By Lebesgue Theorem, as h — 0,

Iy ~ 4a?(t)|h[?*® A %du .
Let us now consider Iy = 4h%a’?(c) /R L|0/{q|1?&2?32?423?;&1)\) d)\ . By the change of vari-
able u = hA,
Ly = Qe e | ij;'ofﬂiﬁ(zi_@ SUL/LOP 3)
—402() B2 200202 L g2 / |u|32172t2+(h +)2a(g Zé (}z )) Sdu.(4)
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The computations for (3) and (4) are similar. Therefore, we only consider (3) and split the
integral by integrating first on |u| < h and then on |u| > h :

du

)

by = [ Lerldsinlcl
»2 [u|<|h] |u|2a(t+h)+20¢(t)72a(c)+1

/ L092|u|sin2(%)a2(t,u/h)d
u
[ul>|h|

|u|20(t+h)+20(t)—20(c)+1

Using assumption A2

Log? in2(L)a2(t,u/h 2 oo )
/ og”|ulsin® (g5)a’(t, u/h) . < 2 sl og?lulu .
uslal - [ufretrhyza) et 4h% "y rul<p) a2 2000 2a(e) 11
< CLog?|h||h|~Galt+h)+2a(t)~2a(c)

where C is a constant that may change from an occurrence to another. The second integral

/ Log*|u|sin®(£%)a®(t, u/h) < / Log?|ul "
ful> || u[2etHh)F2a(h)=2a(c) ful> || |u[?e(tHR)+2a(h)—2a(e)+1

IN

CL092|h| |h|f(2a(t+h)+2a(t)72a(c)) )

To sum up Iz < C’Logz|h|h2 . With closely related arguments, one proves that I33 < O(h?).
We now counsider I; j, 1,5 = 1,2,3 ¢ # j. By Cauchy-Schwarz, one has |IZ~7j|2 < I;; 1;; . Hence
I, ;1 is preponderant and Proposition 1 is proved.O

Besides the Proposition 1 that states a quadratic mean Holder condition for mGp there
is another theoretical reason to consider mGp as a natural multifractional generalization of
fractional Brownian motion. The distributions of mGp satisfy a local scaling property which is
similar to the one satisfied by the multifractional Brownian motion. If mGp is localized around
t by a scaling factor € and if a convenient renormalization is applied to the increments of this
process then it asymptotically converges in distribution to a fractional Brownian motion with
index «(t) when the scaling factor goes to zero. Let us write

2
9 42 sinu/2
o*(t) = 4a2(0) | ey

which is called the normalized variance, the following proposition expresses the local scaling
property.

Proposition 2 Let X be a mGp with multifractional function o and normalized variance o,

(X(t—i—eu)—X(t)) (d)
u€R

lim
e—0t

=0 o) (Ba®),_,
where By 15 a fractional Brownian motion with index a(t). The convergence is a convergence
i distribution on the space of continuous functions endowed with the topology of the uniform
convergence on compact sets.



Proof
Proposition 1 yields the convergence of the finite dimensional distribution of the process

(W)%R to those of (Ba(t) (u))ueR. To have the convergence in distribution for the

topology of the uniform convergence on compact sets a tightness result is required. Because of
Proposition 1 for integer p = 2 and for every compact K there exists a finite constant C(¢,p)
such that

P
Yu,ve K E < C(t,p)|u — v]*OP,

I X (t+ eu) — X(t+ ev)
| )

Since the processes are Gaussian this inequality can extended to p large enough to get «(t)p > 1.
X(t+eu)—X(t)

Hence one can classically deduce that the sequence of the laws of ( (D

) is relatively
e>0
compact.

3 Identification result

First the estimator is introduced then the convergence is proved in Theorem 1. The Process
X is observed at sampling points %,p =0,...,N . For convenience, one assumes N even. The

localized generalized quadratic variations are now precisely described. For any t €]0,1[, ¢ > 0
and N > 0, we define an (g, N)-neighborhood of ¢ by

%—t‘ga}.

As pointed out in Istas and Lang (1997) the generalized variations have to be the sum of
discrete second derivatives (i.e. X(p—xfl) —2X(§) + X(p—;,l)) to have v/ N—rate of convergence
for our estimator. Hence the localized generalized variation is defined by

Von(t) = {pEZ,

_ 2
V) = ¥ (xEH —2x+xE) (5)

There is an edge problem in the definition of (5): V. n(t) is defined for ¢ such that ¢ <t <
1—¢—-K/N. As N — oo, ¢ will decrease to 0. Therefore, for any t €]0,1[, V. n(t) is defined
for N large enough.

An estimator of the multifractional function «(t) is defined by

~ 1 VE,N (t>
O[€7N(t> = 5 (10g2 Vil\/[?t) + 1 .
&,

Theorem 1 Assume Al and A2. Take e = N~P with 0 < 3 < 1/2. Then, as N — oo,

a.n(t) — oft) (as.).

Take e = N5 with 3 =1/3



o ifn>1/3
E(@. n(t) —a)? < O(Log?(N)N~2/3).

o ifn<1/3

E(a. n(t) —a)? < O(N 2.

In the previous result the case 7 > 1/3 can be understood as the case where the error coming
from the localization on V. n(t) is preponderant whereas the case n < 1/3 corresponds to the
case where the rest term R(¢, \) is preponderant.

Since the proof of Theorem 1 is mainly based on technical lemmas that are proved in Be-
nassi et al. (1996) some notations are recalled . Then we remark that when the generalized
quadratic variations are localized on an open interval non depending on N the infimum of the
multifractional function on this open interval is estimated. This remark explains why localized
generalized variations work for smooth multifractional functions. At last we have stressed in
Lemma 1, 2 and Proposition 3 the arguments concerning the localization.

Classically the study of V. y(t) requires estimates of its expectation and variance. For each
p, p' € Z and functions A, B the following integral is introduced

I(A B) _/ i dud ( i(k-l—p)u_l)( i(k"i'P')U_l)A(m N )B(k’-l-p/ N )Nd
) p.p’ — R 57, NG € N u N u
when they are defined. Let
t R(t, A
S = et HEA
|/\|a(t)+§ |)\|a(t)+§
if dy = dy =1 and dy = —2 then X(ZH) — 2X(2) + X (&1) = Y7o dp X (2EE) and
K /
k+ k' +
E(Von(®) = Y E Y dedpX(—H)X () (6)
pEVe,n () K,k'=0
= Z I(S,S)p,p (7)
pGVE,N(t)
Since X is a Gaussian process
K
k+ kl+ /
ar(Ven(®) = 2 Y [E Y ddeX(— D)X ()P 8)

pp'EVen(t) k,k'=0

=2 3 (IS5 8)) 9)

p,p'€Ve N (t)

Let us recall assumption A 4 of Benassi et al. (1996) which is used to get the asymptotic of
I(A,B),y as N — oo.



A 4 A(t,)) € CH2([0,1] x R*)  is a function such that,

ar C
— AN < ———m—
Ot ON g )‘ B NERCAE A
fort=0to1 and j =0 to2 with1>6 > 0.
Let us define (s)
ool
So(s,A) = —=—~_ 10
0(57 ) |)\|o¢(s)+% ( )
and R(s.\)
S,
S1(s,A) = Wa (11)

these two functions satisfy A 4 when |A\| — 400 with § < inf(a(s),s € [0,1]) for Sy, and
6 < inf(a(s),s € [0,1]) + n for S;. Hence we can upperbound I, ,(S5;,Sj) as in Lemma 1
of Benassi et al. (1996).

Remark 1 Consider

Vinya(to, 1)
NP T 4
Vi (to,t1) )

- 1
a(to,t1) = 3 (log2
where 0 < ty < t1 < 1 and where
p+1

2
Vi(to ) = xPHh ax( 2y x )
A {PEZ,t0§%§t1}< N N N >

Omne can prove that

Nl—i>r-Il—100 a(to, t1) = inf(a(s), s € (to,t1)) (a.s.).

Besides the fact that inf(a(s), s € (to,t1)) is an important quantity to understand a mGp on a
given interval (to,t1)(See Proposition 8 in Peltier and Levy-Vehel (1996) for a related result) we
prefer a direct estimation of the function «(t).

Let us give localized versions of two Lemmas of Benassi et al. (1996)

Lemma 1 For each 6 such that a(t) > 6 there exists a neighborhood V; of t and Ny such that
for N > Ny and p/N, p'/N € V;
C

[1(Si, Sj)p,p’| < N26+(i+j)77(1 T (p—p)2) fori, j =0, 1.

Proof of Lemma 1
Since « is continuous there exists a neighborhood V; of ¢ such that inf(a(s),s € V;) > 6.

Moreover I(S;,S;)p, depends only on S;, S; in a neighborhood of £ and &. Hence Lemma 1
of Benassi et al. (1996) can be applied.
Indeed we get a finer estimate for 1(Sp, So)p.p'-



Lemma 2 For each ¢ such that o(t) > 6 > max(a(t) — 3,0) there exists a neighborhood V; of t
such that sup(a(s),s € V) < 6+ 1/2 and Ny such that for N > Ny p/N, p'/N € V;

aoo(p/N)aoo(p'/N) 1
1(S0,50)pp = Nea(p/N)+a(p' /N) Fap/Ny+ap /NP = P+ O(N25+1(1 T (p—p)?2) );
where 2 (h—k')
Lsin? ()

See Lemma 2 of Benassi et al. (1996) for a closely related proof.

Then one can get the asymptotic of expectation, variance and a law of the large number for
Ve n(t).

Proposition 3 Ife = N% with 0 < 8 < 1/2

E(Ven(t) = al(t )N1*2C“<'f>*ﬁF2 (0) + O(In(N)N'1-20()=26) L (125
var( Ve n(t)) = Z an (4 Q)N 4O-8(1 4 o(1))
. V57N(t)
Nl_l)r_li_loom 1 (a.s.).

Proof of Proposition 3
Using Lemmas 1 and 2 the asymptotic of E(V y(t)) are estimated as in the proof of Propo-
sition 1 in Benassi et al. (1996),

E(Von(1) = eado(t)N' 20 Fy (0) + O( In(N) N2
+ O(eN't2al)-m)

where a(e) = min{a(t); t € Vo n(t)}. To compute the asymptotic of var(V. n(t)) @Qn is
introduced to truncate the sums that appear in the study of the asymptotic of var(ngN(t)) as
in the proof of Proposition 1 in Benassi et al. (1996). Then :

var(Vew () = 4eN'"0q Z Fy (@) + 0(Qne* N 0)

g=—00

+ O(€2N174a(t) ln(N)) + O(QI—\[3N174Q(E)) + O(€N174g(5)7277)

where Qn — +oo with Qn = o(Ne). Since ¢ = N~7 and N ) o N o) a5 N — o, the
first two asymptotics are easily deduced. Slight modifications of Proposition 2 in Benassi et al.
(1996) leads to

E(Ven(t) = E(Ven (1)) = O(var* (Ve (1)),



and

var?(V. _
(—:N(ti) = O(N26-1),

]E(VE,N(t))

Since < 1/2 Borel Cantelli’s Lemma applied to ]EVE’N(t)

(Ven(®)
Proof of Theorem 1
The results on V. y(t) are then applied to &, y(t) as in Istas and Lang (1997) The rate of
convergence of E(@, v (t) — a(t))? follows directly from Proposition 3. The choice 8 = 1/3 is the
optimal choice to balance between the variance and the bias terms.

proves the almost sure convergence.
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