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1 IntroductionThe fractional Brownian motion introduced in Mandelbrot and Van Ness (1968) provides avery powerful model in applied mathematics. The fractional (or H�older) index � measures thesmoothness of the sample paths of the fractional Brownian motion and the problem of identifyingthis scalar index has been widely investigated by many authors: Istas and Lang (1997), Benassiet al. (1997b), Benassi et al. (1996), Hall et al. (1994), Hall and Wood (1993). Howeverfractional Brownian motion satis�es a strong stationarity condition on the increments that istoo restrictive for some applications. Then the natural idea is to replace the fractional index� by a so-called multifractional function �(t) that depends on the time. These multifractionalmodels have been used since a while in turbulence analysis (Frisch and Parisi (1985)) and morerecently for edges detection in image analysis (Levy-Vehel and Mignot (1994), Canus and Levy-Vehel (1996), Levy-Vehel (1996)). Two generalizations of the fractional Brownian motion havebeen proposed independently by Benassi et al. (1997a) and Peltier and Levy-Vehel (1996) toconveniently model these phenomenons. They are both called multifractional Brownian motions.In this paper multifractional Gaussian processes that are generalizations of multifractionalBrownian motions are introduced. Our aim is to identify the multifractional function of multi-fractional Gaussian processes from the observations of the process X at N sampling instants.Peltier and Levy-Vehel (1996) describes a method to estimate the multifractional function of amultifractional Brownian motion. As far as we know the convergence of their estimator has notbeen studied. Their estimator is based on the average variation of the sampled process. Usingthe method of Benassi et al. (1996) for �ltered white noises we introduce generalized quadraticvariations because they allow Gaussian limiting distribution with pN -rate of convergence. Toestimate the multifractional function generalized quadratic variations are now considered in aneighborhood of point t where identi�cation of function �(t) is performed. We therefore haveto choose a convenient neighborhood in terms of the number N of sampling points to build anestimator b�(t). This estimator is strongly consistent and we study asymptotically the meansquare error. Since the method of Benassi et al. (1996) are used to show the convergence ofthis new estimator we focus on the localization problem in this paper. A major advantage ofthis technique is that it can be applied to a generalization of multifractional Brownian motionthat we call multifractional Gaussian processes (mGp). Let �(t; s) = E (X(t) � X(s))2 be thevariance of the increments of X. The mGp X satis�es a quadratic mean H�older condition ofindex �(t) at point t, i.e. there exists a limit to �(t; t+ h)jhj�2�(t) as h! 0. In this frameworkthe limit which is called the normalized variance depends both on the multifractional function�(t) and on another functional parameter a1(t) which was already introduced for �ltered whitenoises.The paper is organized as follows : in section 2 multifractional Gaussian processes areintroduced. They are shown to behave locally around a point t as a fractional Brownian motionwith index �(t): Section 3 is devoted to the de�nition of the estimator and the proof of theconvergence.
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2 Multifractional Gaussian processes and local scalingLet us �rst derive from the de�nition of multifractional Brownian motion and of �ltered whitenoises in Benassi et al. (1996) the de�nition of multifractional Gaussian processes (mGp).De�nition 1 Multifractional Gaussian processes (mGp) (Xt)t2[0;1] are real Gaussian processeswhose covariance � are of the form�(t; s) = ZR f(t; �)f(s; �)d� ;where f(t; �) = (eit� � 1)a(t; �)j�j1=2+�(t) : (1)Moreover it is assumedA 1 Smoothness of the process.Function � is C1 with 0 < �(t) < 1 8t 2 [0; 1].A 2 Modulation.Function a(t; �) is de�ned from [0; 1] � R to R and satis�es:a(t; �) = a1(t) +R(t; �) ; (2)where a1 is C1 on [0; 1] with, 8t 2 [0; 1] ; a1(t) 6= 0 and R 2 C1;2([0; 1] � R) is negligible athigh frequency i.e. 9� > 0 such that 8i = 0 to 1; j = 0 to 2����� @i+j@ti@�jR(t; �)����� � Cj�j�+j :To motivate this de�nition recall that multifractional Brownian motion is presented in Be-nassi et al. (1997a) as Xt = ZR eit� � 1j�j1=2+�(t)W (d�)where W (d�) is a Brownian measure on L2(R); hence it corresponds tof(t; �) = eit� � 1j�j1=2+�(t) :Filtered white noises are other instances of mGp which are associated to a functionf(t; �) = a(t; �)(eit� � 1)j�j1=2+� :3



We refer to Benassi et al. (1996) where �ltered white noises are introduced to understandthe meaning of the function a(t; �): Although �ltered white noises have no stationary incrementsas multifractional Brownian motion they have still a constant index �: The most appealing factis that identi�cation techniques close to those of Benassi et al. (1996) used for �ltered whitenoises are applied to mGp.The aim is to obtain a process that behaves locally at point t like an �(t)�fractional process.The next proposition shows that mGps satisfy a multifractional framework as de�ned in theintroduction.Proposition 1 Let us assume X is a mGp and �(t; s) = E (X(t) �X(s))2 thenlimh!0�(t; t+ h)jhj�2�(t) = 4a21(t) ZR sin2u=2juj1+2�(t) du :Proof of Proposition 1Let T = a(t+ h; �)j�j�(t)(ei(t+h)� � 1)� a(t; �)(eit� � 1)j�j�(t+h) ;so that �(t; t+ h) = ZR jT j2j�j2�(t)+2�(t+h)+1 d� : By Taylor expansionsj�j�(t+h) = j�j�(t) + hLogj�j�0(c)j�j�(c) ;a(t+ h; �) = a(t; �) + ha0(�; �) ;where c; � 2]t; t+ h[ and a0(t; �) stands for @@ta(t; �) : Let T = T1 + T2 + T3 withT1 = a(t; �)j�j�(t)eit�(eih� � 1) ;T2 = �a(t; �)j�j�(c)�0(c)(eit� � 1)hLogj�j ;T3 = ha0(�; �)(ei(t+h)� � 1)j�j�(t) :De�ne Ii;j = ZR TiTjj�j2�(t)+2�(t+h)+1 d� ; i; j = 1; 2; 3 ; so that �(t; t+ h) = 3Xi;j=1 Ii;j : First con-sider I1;1 = 4 ZR sin2(h�=2)a2(t; �)j�j2�(t+h)+1 d� : By the change of variable u = h�,I1;1 = 4jhj2�(t+h) ZR sin2(u=2)a2(t; u=h)juj2�(t+h)+1 du : By Lebesgue Theorem, as h! 0,I1;1 � 4a21(t)jhj2�(t) ZR sin2u=2juj2�(t)+1 du :Let us now consider I2;2 = 4h2�02(c) ZR Log2j�jsin2(t�=2)a2(t; �)j�j2�(t+h)+2�(t)�2�(c)+1 d� : By the change of vari-able u = h�,I2;2 = 4�02(c)jhj2�(t+h)+2�(t)�2�(c)+2 ZR Log2jujsin2( tu2h )a2(t; u=h)juj2�(t+h)+2�(t)�2�(c)+1 du (3)�4�02(c)jhj2�(t+h)+2�(t)�2�(c)+2Log2jhj ZR sin2( tu2h)a2(t; u=h)juj2�(t+h)+2�(t)�2�(c)+1 du : (4)4



The computations for (3) and (4) are similar. Therefore, we only consider (3) and split theintegral by integrating �rst on juj � h and then on juj > h :J2;2 = Zjuj�jhj Log2jujsin2( tu2h)a2(t; u=h)juj2�(t+h)+2�(t)�2�(c)+1 du+ Zjuj>jhj Log2jujsin2( tu2h)a2(t; u=h)juj2�(t+h)+2�(t)�2�(c)+1 du :Using assumption A2Zjuj�jhj Log2jujsin2( tu2h)a2(t; u=h)juj2�(t+h)+2�(t)�2�(c)+1 du � t24h2 supt;� ja(t; �)j Zjuj�jhj Log2juju2juj2�(t+h)+2�(t)�2�(c)+1 du� CLog2jhjjhj�(2�(t+h)+2�(t)�2�(c)) ;where C is a constant that may change from an occurrence to another. The second integralZjuj>jhj Log2jujsin2( tu2h)a2(t; u=h)juj2�(t+h)+2�(t)�2�(c)+1 du � C Zjuj>jhj Log2jujjuj2�(t+h)+2�(t)�2�(c)+1 du� CLog2jhjjhj�(2�(t+h)+2�(t)�2�(c)) :To sum up I2;2 � CLog2jhjh2 : With closely related arguments, one proves that I3;3 � O(h2).We now consider Ii;j; i; j = 1; 2; 3 i 6= j. By Cauchy-Schwarz, one has jIi;jj2 � Ii;i Ij;j : HenceI1;1 is preponderant and Proposition 1 is proved.2Besides the Proposition 1 that states a quadratic mean H�older condition for mGp thereis another theoretical reason to consider mGp as a natural multifractional generalization offractional Brownian motion. The distributions of mGp satisfy a local scaling property which issimilar to the one satis�ed by the multifractional Brownian motion. If mGp is localized aroundt by a scaling factor � and if a convenient renormalization is applied to the increments of thisprocess then it asymptotically converges in distribution to a fractional Brownian motion withindex �(t) when the scaling factor goes to zero. Let us write�2(t) = 4a21(t) ZR sin2u=2juj1+2�(t) duwhich is called the normalized variance, the following proposition expresses the local scalingproperty.Proposition 2 Let X be a mGp with multifractional function � and normalized variance �,lim�!0+�X(t+ �u)�X(t)��(t) �u2R (d)= �(t)�B�(t)(u)�u2Rwhere B�(t) is a fractional Brownian motion with index �(t): The convergence is a convergencein distribution on the space of continuous functions endowed with the topology of the uniformconvergence on compact sets. 5



ProofProposition 1 yields the convergence of the �nite dimensional distribution of the process�X(t+�u)�X(t)��(t) �u2R to those of �B�(t)(u)�u2R : To have the convergence in distribution for thetopology of the uniform convergence on compact sets a tightness result is required. Because ofProposition 1 for integer p = 2 and for every compact K there exists a �nite constant C(t; p)such that 8u; v 2 K E 



X(t+ �u)�X(t+ �v)��(t) 



p � C(t; p)ju� vj�(t)p:Since the processes are Gaussian this inequality can extended to p large enough to get �(t)p > 1:Hence one can classically deduce that the sequence of the laws of �X(t+�u)�X(t)��(t) ��>0 is relativelycompact.3 Identi�cation resultFirst the estimator is introduced then the convergence is proved in Theorem 1. The ProcessX is observed at sampling points pN ; p = 0; : : : ; N : For convenience, one assumes N even. Thelocalized generalized quadratic variations are now precisely described. For any t 2]0; 1[; " > 0and N > 0, we de�ne an (";N)-neighborhood of t byV";N(t) = �p 2 Z; ���� pN � t���� � "� :As pointed out in Istas and Lang (1997) the generalized variations have to be the sum ofdiscrete second derivatives (i.e. X(p+1N ) � 2X( pN ) +X(p�1N )) to have pN�rate of convergencefor our estimator. Hence the localized generalized variation is de�ned byV";N(t) = Xp2V";N (t)�X(p+ 1N )� 2X( pN ) +X(p� 1N )�2 : (5)There is an edge problem in the de�nition of (5): V";N (t) is de�ned for t such that " � t �1 � " �K=N . As N ! 1, " will decrease to 0. Therefore, for any t 2]0; 1[, V";N (t) is de�nedfor N large enough.An estimator of the multifractional function �(t) is de�ned byb�";N (t) = 12  log2 V";N=2(t)V";N(t) + 1! :Theorem 1 Assume A1 and A2. Take " = N�� with 0 < � < 1=2 : Then, as N !1,b�";N (t) ! �(t) (a.s.) :Take " = N�� with � = 1=3 6



� if � � 1=3 E (b�";N (t)� �)2 � O(Log2(N)N�2=3) :� if � < 1=3 E (b�";N (t)� �)2 � O(N�2�) :In the previous result the case � � 1=3 can be understood as the case where the error comingfrom the localization on V";N(t) is preponderant whereas the case � < 1=3 corresponds to thecase where the rest term R(t; �) is preponderant.Since the proof of Theorem 1 is mainly based on technical lemmas that are proved in Be-nassi et al. (1996) some notations are recalled . Then we remark that when the generalizedquadratic variations are localized on an open interval non depending on N the in�mum of themultifractional function on this open interval is estimated. This remark explains why localizedgeneralized variations work for smooth multifractional functions. At last we have stressed inLemma 1, 2 and Proposition 3 the arguments concerning the localization.Classically the study of V";N (t) requires estimates of its expectation and variance. For eachp; p0 2 Z and functions A; B the following integral is introducedI(A;B)p;p0 = ZR KXk;k0=0 dkdk0(ei(k+p)u � 1)(ei(k0+p0)u � 1)A(k + pN ;Nu)B(k0 + p0N ;Nu)Nduwhen they are de�ned. Let S(t; �) = a1(t)j�j�(t)+ 12 + R(t; �)j�j�(t)+ 12 ;if d0 = d2 = 1 and d1 = �2 then X(p+1N )� 2X( pN ) +X(p�1N ) =P2k=0 dkX(p+kN ) andE (V";N(t)) = Xp2V";N (t) E KXk;k0=0 dkdk0X(k + pN )X(k0 + pN ) (6)= Xp2V";N (t) I(S; S)p;p : (7)Since X is a Gaussian processvar(V";N (t))) = 2 Xp;p02V";N (t)[E KXk;k0=0 dkdk0X(k + pN )X(k0 + p0N )]2 (8)= 2 Xp;p02V";N (t)(I(S; S)p;p0)2: (9)Let us recall assumption A 4 of Benassi et al. (1996) which is used to get the asymptotic ofI(A;B)p;p0 as N !1: 7



A 4 A(t; �) 2 C1;2([0; 1] � R�) is a function such that;����� @i+j@ti@�jA(t; �)����� � Cj�j 12+�+j ;for i = 0 to 1 and j = 0 to 2 with 1 > � > 0.Let us de�ne S0(s; �) = a1(s)j�j�(s)+ 12 (10)and S1(s; �) = R(s; �)j�j�(s)+ 12 ; (11)these two functions satisfy A 4 when j�j ! +1 with � < inf(�(s); s 2 [0; 1]) for S0; and� < inf(�(s); s 2 [0; 1]) + � for S1: Hence we can upperbound Ip;p0(Si; Sj) as in Lemma 1of Benassi et al. (1996).Remark 1 Consider b�(t0; t1) = 12  log2 VN=2(t0; t1)VN (t0; t1) ) + 1!where 0 < t0 < t1 < 1 and whereVN (t0; t1) = Xfp2Z; t0� pN�t1g�X(p+ 1N )� 2X( pN ) +X(p� 1N )�2 :One can prove that limN!+1 b�(t0; t1) = inf(�(s); s 2 (t0; t1)) (a:s:):Besides the fact that inf(�(s); s 2 (t0; t1)) is an important quantity to understand a mGp on agiven interval (t0; t1)(See Proposition 8 in Peltier and Levy-Vehel (1996) for a related result) weprefer a direct estimation of the function �(t):Let us give localized versions of two Lemmas of Benassi et al. (1996)Lemma 1 For each � such that �(t) > � there exists a neighborhood Vt of t and N0 such thatfor N � N0 and p=N; p0=N 2 VtjI(Si; Sj)p;p0 j � CN2�+(i+j)�(1 + (p� p0)2) for i; j = 0; 1:Proof of Lemma 1Since � is continuous there exists a neighborhood Vt of t such that inf(�(s); s 2 Vt) > �.Moreover I(Si; Sj)p;p0 depends only on Si; Sj in a neighborhood of pN and p0N : Hence Lemma 1of Benassi et al. (1996) can be applied.Indeed we get a �ner estimate for I(S0; S0)p;p0:8



Lemma 2 For each � such that �(t) > � > max(�(t)� 12 ; 0) there exists a neighborhood Vt of tsuch that sup(�(s); s 2 Vt) < � + 1=2 and N0 such that for N � N0 p=N; p0=N 2 VtI(S0; S0)p;p0 = a1(p=N)a1(p0=N)N�(p=N)+�(p0=N) F�(p=N)+�(p0=N)(p� p0) +O( 1N2�+1(1 + (p� p0)2));where F
(x) = 2 KXk;k0=0 dkdk0 ZR eiux sin2( (k�k0)u2 )juj
+1 du:See Lemma 2 of Benassi et al. (1996) for a closely related proof.Then one can get the asymptotic of expectation, variance and a law of the large number forV";N(t):Proposition 3 If " = N�� with 0 < � < 1=2E (V";N(t)) = a21(t)N1�2�(t)��F2�(t)(0) +O(ln(N)N1�2�(t)�2�) +O(N1�2�(t)����)var(V";N(t)) = 2 a41(t) +1Xq=�1F 22�(t)(q)N1�4�(t)��(1 + o(1))limN!+1 V";N(t)E (V";N(t)) = 1 (a:s:):Proof of Proposition 3Using Lemmas 1 and 2 the asymptotic of E(V";N(t)) are estimated as in the proof of Propo-sition 1 in Benassi et al. (1996),E (V";N (t)) = "a21(t)N1�2�(t)F2�(0) +O("2 ln(N)N1�2�(t))+ O("N1�2�(")��) :where �(") = minf�(t); t 2 V2 ";N(t)g: To compute the asymptotic of var(V";N(t)) QN isintroduced to truncate the sums that appear in the study of the asymptotic of var(V";N(t)) asin the proof of Proposition 1 in Benassi et al. (1996). Then :var(V";N(t)) = 4 "N1�4�(t)a41(t) +1Xq=�1F 22�(t)(q) +O(QN"2N1�4�(t))+ O("2N1�4�(t) ln(N)) +O(Q�3N N1�4�(")) +O("N1�4�(")�2 �)where QN ! +1 with QN = o(N"). Since " = N�� and N��(") � N��(t) as N ! 1, the�rst two asymptotics are easily deduced. Slight modi�cations of Proposition 2 in Benassi et al.(1996) leads to E(V";N(t)� E(V";N(t)))4 = O(var2(V";N(t)));9
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