
Comparison between two numerical methods for amagnetostatic problemJ.-F. Gerbeau, C. Le BrisCERMICS, Ecole Nationale des Ponts et Chaussées. 6-8 av. Blaise PascalCité Descartes - Champs-sur-Marne 77455 Marne-La-Vallée (France)AbstractWe draw a comparison between two numerical methods to solve amagnetostatic problem set on a bounded convex domain. The problemis of vector Poisson type and is associated with boundary conditionsset on the curl of the unknown, here the magnetic �eld. These bound-ary conditions therefore introduce a coupling between the components.One of the two algorithms under consideration consists in an adapta-tion of the in�uence matrix method introduced by R. Glowinski andO. Pironneau [4] on the biharmonic equation and extended later by L.Quartapelle et al [7], [8], [9]. We present a detailed description of thepractical implementation of the algorithm. Through various numericaltests, we compare this uncoupled method with a strategy consisting ofa direct attack of the coupled problem.RésuméNous comparons deux méthodes numériques pour résoudre un pro-blème de magnétostatique posé sur un domaine convexe borné. Il s'agitd'un problème de Poisson vectoriel dont les conditions aux limites sontposées sur le rotationel de l'inconnu, ici le champ magnétique. Cesconditions aux limites couplent donc les composantes du vecteur in-connu. L'un des deux algorithmes considérés est une adaptation de laméthode des matrices d'in�uence introduite par R. Glowinski et O.Pironneau [4] pour le problème du bi-laplacien et étendue ensuite parL. Quartapelle et al [7], [8], [9]. Nous présentons une description dé-taillée de l'implémentation pratique de l'algorithme. Nous comparonsà travers divers tests numériques cette méthode découplée avec unerésolution directe du problème couplé.1 IntroductionIn this article, we consider a magnetostatic problem set on a bounded convexdomain 
 of R3 , enclosed in a C1;1 boundary �. The magnetic �eld B we
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seek is the solution to a vector Poisson problem with non-classical boundaryconditions, namely a system of the form8>><>>: curl (curlB) = fdivB = 0curlB � n = k � n on �B:n = q on �: (1.1)It can be seen on (1.1) that the boundary conditions on curlB � n, verynatural from the physical standpoint, introduce a coupling between the com-ponents of B which prevents one from solving the vectorial problem as threescalar Poisson equations, contrarily to the case when there are three Dirichletboundary conditions. Some di�culties are therefore likely to be encounteredfrom a computational viewpoint. Indeed, whereas in the case of a �classical�vector Poisson problem, three linear systems of size N2 have to be solved (Ndenotes the number of degrees of freedom on the mesh), a coupled system ishere to be solved, which increases the required memory.Let us point out that such a situation also occurs in the framework ofhydrodynamics when a vector potential associated to the velocity �eld inincompressible �ows is computed. In this latter context, the system is8<: �4 u = f;u� n = a� n on �;div u = b on �: (1.2)In order to solve (1.2) L. Quartapelle and coworkers have extended and anal-ysed an interesting uncoupled algorithm (see [7], [8], [9]) based on the in�u-ence matrix method introduced by R. Glowinski and O. Pironneau. The ideais basically to transform system (1.2) into the resolution of a standard systemwith Dirichlet boundary conditions together with the resolution of a problemon the surface �. From the computational viewpoint, this strategy replacesthe resolution of the original linear system by linear systems of smaller sizeN2. The boundary conditions on the vector Poisson equations are di�erentin magnetostatics from the ones used in hydrodynamics, but we show in thepresent work that this algorithm may however be extended in order to treatthe magnetostatic problem.Our aim is to compare the following two strategies to solve problem (1.1) :� a �direct method� which treats simultaneously the three componentsof B,� an �uncoupled method�, following the ideas of Glowinski-Pironneau andQuartapelle and coworkers, which treats successively the three compo-nents of B. 2



Let us brie�y derivate the magnetostatic equation we shall consider hence-forth. We begin with the stationary Maxwell equations :curl (B=�) = j; (1.3)divB = 0; (1.4)curlE = 0: (1.5)While the magnetostatic problem (1.3)-(1.4) is often solved numerically throughthe introduction of the so-called scalar and vector potentials (see for instanceE. Emson [2] and the bibliography therein), we shall not follow this approachhere.In the sequel, � is supposed to be constant, thus we may set � = 1 withoutloss of generality. On the boundary �, we specify some components of themagnetic and electric �elds as follows :B:nj� = q;E � nj� = 1� k:where n is the outward-pointing normal to 
. Using the Ohm's law j = �E(or j = �(E + u� B) with uj� = 0 for a magnetohydrodynamics �ow), theboundary conditions on E also reads1� curlB � n = 1� k � n:Let us denote j=� by g in the sequel. Taking the curl of (1.3) we obtain thesystem curl ( 1� curlB) = curl g in 
; (1.6)divB = 0 in 
; (1.7)1� curlB � n = 1� k � n on �; (1.8)B:n = q on �: (1.9)We suppose that the conductivity � is constant over the domain (see howeverRemark 5.1 below) and we set � = 1. Therefore, the equations to be solvedare : curl (curlB) = f in 
; (1.10)divB = 0 in 
; (1.11)curlB � n = k � n on �; (1.12)B:n = q on �; (1.13)3



where f = curl g.We shall proceed as follows. We study in Section 2 two variational for-mulations of (1.1). The formulation presented in 2.2 will be used in theuncoupled strategy whereas the formulation of Section 2.3 will be used inthe direct method. The two approaches are then detailed in Sections 3 and4. We compare the results obtained with the two methods in Section 5 interm of precision, CPU time and memory. Finally, in Section 6 we drawconclusions about our whole work.2 Variational formulationsWe present in this section two variational formulations of (1.10)-(1.13) thatwill be used in the sequel. We refer for example to F. Kikuchi [5] for otherformulations of the magnetostatic problem.2.1 Functional settingWe recall that 
 is supposed to be a bounded convex domain with a C1;1boundary. In particular, we exclude for this theoretical study domains withholes. We are aware that this assumption might be too restrictive in somepractical cases, nevertheless, such domains are su�cient for the applicationswe deal with. The �rst consequence of this assumption of regularity is thecontinuous embedding (see V. Girault, P.A. Raviart [3], Theorem 3.8 and3.9)fB 2 L2(
)3; curlB 2 L2(
)3; divB 2 L2(
)3; B:nj� = 0g ,! H1(
)3:(2.1)In the sequel, we shall need the following functional spacesW = fB 2 (H1(
))3; B:nj� = 0g;Wq = fB 2 (H1(
))3; B:nj� = qg:We denote by (:; :) the usual inner product of L2(
)3, by < :; : > the dualityproduct between H�1(
)3 and H10 (
)3, and by < :; : >� the duality productbetween H�1=2(�)3 and H1=2(�)3. For B, C 2 H1(
)3 we de�ne :((B;C)) = (curlB; curlC) + (divB; divC):The second consequence of the assumption on the domain 
 is that thereexists a constant c > 0 such that for any arbitrary B 2 W ,jjBjjH1(
)3 � c(jjcurlBjjL2(
)3 + jjdivBjjL2(
)3): (2.2)4



In other words, ((:; :)) is a scalar product on W which induces a norm thatis equivalent to the H1(
)3 norm on W (see V. Girault, P.A. Raviart [3],Lemma 3.6).The data are supposed to have to following regularity :q 2 H1=2(�); k 2 H�1=2(�)3; g 2 H1(
)3: (2.3)Moreover, we suppose that : Z� q d = 0; (2.4)< k � n;r� >�= 0; 8� 2 H2(
)3; (2.5)(curl g;r�) = 0; 8� 2 H2(
)3: (2.6)Assumption (2.4) is the standard compatibility condition with (1.11). As-sumptions (2.5) and (2.6), which are satis�ed in physical situations in viewof (1.5) and Ohm's law, will be of crucial importance below (see the proof ofProposition 2).2.2 Classical formulationWe de�ne the following variational problem : �nd B 2 Wq such that((B;C)) = (curl g; C)+ < k � n; C >�; for all C 2 W: (2.7)We then haveProposition 1The variational problem (2.7) has a unique solution.Proof. Remark �rst that (2.2) implies that ((:; :)) de�nes a bilinearsymmetric and coercive application on W �W . Since C ! (curl g; C)+ <k�n; C >� belongs obviously toW 0, the Lax-Milgram Theorem implies thereexists a unique B0 2 W such that((B0; C)) = (curl g; C)+ < k � n; C >�; for all C 2 W:Next, we de�ne Bq = r�, with � such that�4� = 0 in 
@�@n = q on �:Note that Bq:n = q, divBq = 0 and curlBq = 0 and that Bq 2 H1(
)3in view of a classical result of elliptic regularity. Thus B = B0 + Bq is asolution to (2.7). The uniqueness of B is a straightforward consequence ofthe coercivity of ((:; :)) on W . } 5



Proposition 2Under the assumptions (2.3)-(2.6), system (1.10)-(1.13) is equivalent to thevariational problem (2.7).Proof (sketch). It is straightforward to prove that any solution of (1.10)-(1.13) is a solution of (2.7). Conversely, let B be a solution of (2.7). Onechecks by standard arguments that B satis�es (1.10), (1.12) and (1.13). Thepoint is to show that B is divergence-free. For this purpose, let us consideran arbitrary h 2 L2(
) with R
 h dx = 0 and let us de�ne � 2 H2(
) by( �4� = h@�@n = 0 on �:Taking C = r� as a test function in (2.7), we obtain :(curlB; curlr�) + (divB; divr�) = (curl g;r�)+ < k � n;r� > :In view of the assumptions (2.5) and (2.6) this equality yields :(divB; h) = 0:It follows that divB is constant over 
, and this constant is zero in view ofassumption (2.4). Consequently, (1.11) holds. }2.3 A mixed formulation to treat B:n = q as a constraintIn order to turn the formulation of Section 2.2 into a numerical method,we must �rst construct suitable �nite elements approximation spaces for Wand Wq. If the boundaries of the domain happen not to be parallel to thecoordinnates axes, this construction may be tedious from a computationalviewpoint. We now suggest a formulation that circumvents this di�culty :we work on the spaces X = H1(
)3;M = H�1=2(�):We denote by jj:jjX (resp. jj:jjM) the usual norm on H1(
)3 (resp. H�1=2(�))and we de�ne the bilinear form b on X �M byb(B; �) =< B:n; � >�For ease of notation, we denote by < :; : >� the duality product betweenH�1(
) and H10 (
) or between H�1(
)3 and H10 (
)3 as above. We introducethe following mixed formulation : 6



�nd (B; �) 2 X �M such that, 8(C; �) 2 X �M ,� ((B;C)) + b(B; �) = (f; C)+ < k � n; C >�;b(B; �) = < q; � >� : (2.8)Proposition 3The mixed variational problem (2.8) has a unique solution.Proof. First, we prove that there exists a constant � > 0 such thatinf�2M�f0g supB2X�f0g b(B; �)jjBjjXjj�jjM � �:Indeed, let � be inM�f0g. A classical corollary of the Hahn-Banach theoremyields the existence of � 2 H1=2(�) with jj�jjH1=2(�) = 1 such that :< �jj�jjM ; � >�= 1:It is straightforward to build B0 2 X such that B0:nj� = � and jjB0jjX �cjj�jjH1=2(�) = c, with c independent on B0 and �. Thus, for all � 2M ,b(B0; �)jjB0jjX = < �; � >�jjB0jjX � 1c jj�jjM ;which proves the inf-sup condition. Moreover, the space fC 2 X; b(C; �) =0; 8� 2 Mg is equal to space W and, according to (2.2), the bilinear form((:; :)) is coercive on W . Therefore, the classical theory on mixed variationalproblems permits to conclude the proof.}Remark 2.1 The solution of (2.8) may be seen as the saddle-point of the La-grange functional L(B; �) = 12((B;B))�(f; B)� < k�n;B >� +b(B; �)� <q; � >� :Proposition 4Under the assumptions (2.3)-(2.6), system (1.10)-(1.13) is equivalent to themixed problem (2.8).Proof.(sketch) Let B be a solution of (1.10)-(1.13). Equation (1.13) yieldsb(B; �) =< q; � >�, 8� 2M . Moreover, since divB = 0, we havecurl (curlB)�r(divB) = f:Multiplying this equation by C 2 X and integrating by part over 
 we obtainZ
(curlB:curlC+divBdivC) dx�Z�C:ndivB d = Z
 f:C dx+ < k�n; C >�7



Thus (2.8) holds with the Lagrange multiplier � = �divBj�. Conversely,some analogous arguments prove that the solution of (2.8) satis�es (1.10)-(1.13). In particular, we check that B is divergence-free in the same fashionas in Proposition 4.}3 Direct resolution based on the mixed formu-lation3.1 Penalized formulationThe mixed formulation (2.8) can actually be applied to a �nite element anal-ysis. However, it requires the computation of the Lagrange multiplier �. Astandard method to avoid this computation is to consider the correspondingpenalized formulation. Let " > 0, we assume thatb(B; �)� < q; � >�= " < �; � >; 8� 2M;and we seek B 2 X such that 8C 2 X((B;C))+1" < B:n; C:n >�= (f; C)+ < k�n; C >� +1" < q; C:n >� : (3.1)3.2 DiscretisationLet h > 0 be �xed. The domain 
 is approximated by a polyhedron 
h withits vertices on �. A partition Th of 
h into elements consisting of tetrahedronsor convex hexahedrons is performed in a standard way. In the sequel, Rm(K)stands for Pm(K) if K is a tetrahedron and for Qm(K) if K is a hexahedron,where for each integer m � 0, Pm and Qm have the usual meaning. For thesake of simplicity, we only consider Lagrangian �nite elements.We denote by �h the boundary of 
h, by n its approximated unit outwardpointing normal, and by t1, t2 an approximated orthogonal set of tangentvectors (see Remark 3.2 below for the treatment of the singular points of �).The number of nodes on 
h (resp. �h) is denoted by N (resp. M).Xh = fvh 2 C0(
); vhjT 2 Rm(T ); 8T 2 Thg;Xh0 = fvh 2 C0(
); vhjT 2 Rm(T ); 8T 2 Thg \H10(
);Y h = fvhj�h; vh 2 Xhg:Thus, we search Bh 2 X3h such that for all Ch 2 X3h((Bh; Ch))+ 1" < Bh:n; Ch:n >�= (f; Ch)+ < k�n; Ch >� +1" < q; Ch:n >� :(3.2)8



Remark 3.1 In the numerical simulations we have performed, the value " =1:e� 4 has given very good results without increasing too much the conditionnumber of the system.Remark 3.2 In our numerical tests, we have computed the normals and thetangents at the nodes of the boundary. Denoting by 'i the hat function atthe node i, the approximated normal is given by :ni = Z
r'i dxZ� 'i dx :We then deduce from ni the values of t1 and t2 at the node i.In order to compute ((Bh; Ch)) we can use the following formula (see [1] or[6]) ((B;C)) = Z
rB:rC dx + 3Xk=1 Z�(rBk � n):(ek � C) d; (3.3)where (ek, 1 � k � 3) denotes the canonical basis of R3 and Bk stands forB:ek. This equality can be easily established in the continuous case. It alsoholds in the discrete case since the boundary terms only involve tangentialderivatives, and thus cancel on the inside faces.From a computational viewpoint, the formula (3.3) shows that it is uselessto allocate memory for a 3� 3 system of (sparse) blocks N2 �N2 : we onlyneed 3 blocks of size N2 � N2 for the three laplacians and 6 blocks of sizeN � N� for the boundary terms. Nevertheless, in some practical problems,this system may still be too large. In such cases, one may use the methodpresented in Section 4 which allows to solve the problem with a N�N sparsesystem.4 Uncoupled resolution based on the �rst for-mulationAs above mentioned, the formulation (2.7) has two drawbacks : �rst, it needsa �nite element basis to approximate the space W , second it leads � like for-mulation (2.8) � to large systems (even if the formula (3.3) somewhat reducesthe size of the matrix). Thus, rather than detailing the direct discretisationof (2.7), we present a method based on the same variational formulationwhich avoids the coupling induced by the boundary conditions and thus leadto smaller matrices. 9



4.1 Uncoupled formulationJ. Zhu, L. Quartapelle and A. F. D. Loula have considered in [9] a problemarising in computational �uid dynamics which basically shares the same fea-tures as ours. They propose an uncoupled technique that we now adapt to(2.7). We introduce :Wq;T = fB 2 H1(
)3; B:nj� = q; B � n = 0g;HN = fB 2 H1(
)3;4B = 0 in 
; B:n = 0 on �g:Note that B 2 W 1q may be decomposed as :B = BT +BH:with BT 2 Wq;T and BH 2 HN (solve �4BH = 0 on 
, BH:nj� = 0,BHj� � n = Bj� � n, and set BT = B � BH). In the same fashion, C 2 Wmay be decomposed as : C = C0 + CHwith C0 2 H10(
)3 and CH 2 HN .By linearity, (2.7) reads :� ((B;C0)) = (f; C0); 8C0 2 (H10 (
))3((B;CH)) = (f; CH)� < k;CH � n >�; 8CH 2 HN :Since B = BT +BH, we have :((BH; C0)) = Z
 curl (curlBH):C0 dx+ Z
 divBHdivC0 dx= Z
�4BH:C0 +r(divBH):C0 dx� Z
r(divBH):C0 dx= 0:Therefore, the variational formulation (2.7) is equivalent to the followinguncoupled formulation : �nd BT 2 Wq;T and BH 2 HN such that((BT ; C0)) = (f; C0); 8C0 2 H10 (
)3 (4.1)((BH; CH)) = (f; CH)� ((BT ; CH))� < k � n; CH � n >�; 8CH 2 HN :(4.2)Equation (4.1) is a system consisting of three independent scalar Dirichletproblems. One next remarks that (4.2) may be solved as a problem set on10



�. Indeed, (4.2) is equivalent to �nd �1, �2 2 H1=2(�) such that, for all�1; �2 2 H1=2(�) :((CH(�1; �2); CH(�1; �2) )) = (f; CH(�1; �2))� ((BT ; CH(�1; �2) ))� < k; �1t1 + �2t1 >� (4.3)with CH(�1; �2) de�ned by8<: �4CH(�1; �2) = 0 in 
;CH(�1; �2)� n = �1t1 + �2t2 on �;CH(�1; �2):n = 0 on �:Remark 4.1 As shown in [9],((CH(�1; �2); CH(�1; �2) )) = ((CH(�1; �2); w))for any arbitrary vector �eld w 2 (H1(
))3 which coincides with CH(�1; �2)on �. Indeed :((CH(�1; �2); CH(�1; �2) )) = Z
 curl (curlCH(�1; �2)):CH(�1; �2) dx+Z� curlCH(�1; �2)� n:CH(�1; �2) d�Z
r(divCH(�1; �2)):CH(�1; �2) dx= Z� curlCH(�1; �2)� n:w d= ((CH(�1; �2); w)):It may be proved following the same lines that :(f; CH(�1; �2))� ((BT ; CH(�1; �2) ))� < k; �1t1 + �2t1 >� := (f; w)� ((BT ; w))� < k;w � n >�These properties will be used in the numerical implementation below.4.2 DiscretisationWe de�ne an approximation of the space HT byHhT = fBh 2 (Xh)3; Z
h rBh:rCh dx = 0; 8Ch 2 (Xh0 )3 and Bh:nj�h = 0gLet ('1; :::; 'N�) be a basis of Yh ('i is typically the �hat function� at thenode i of �h). We construct a basis (b11; :::; b1N�; b11; :::; b2N�) of HhT with bki11



such that b1i = 'it1 and b2i = 'it2 on �h. In other words, bki satis�es for allCh 2 (Xh0 )3 : � (rbki ;rCh) = 0bki = 'itk on �An approximation BhT of the solution to equation (4.1) may be computedin a classical way through the resolution of three Poisson scalar problems.In order to solve (4.2), let us now decomposeBhH on the basis (b1i ; b2i )i=1:::N� :BhH = N�Xi=1 �1i b1i + �2i b2i :The pair (�1i ; �2i ) may be seen as the coordinates of BhH on the �discreteharmonic basis� (b1i ; b2i )i=1:::N� as well as the tangential components of BhH on�h. That is why (4.2) may be interpreted as a problem set on the boundary.The discrete approximation of (4.2) reads :((BhH; bpi )) = (f; bpi )� ((BhT ; bpi ))� < k; bpi � n >�;for i = 1; :::; N� and p = 1; 2. More precisely, in order to solve (4.2), we haveto �nd (�11; :::; �1N�; �21; :::; �2N�) such that8>>>>><>>>>>:
N�Xj=1 �1j((b1j ; b1i )) + �2j((b2j ; b1i )) = (f; b1i )� ((BhT ; b1i ))� < k; b1i � n >�N�Xj=1 �1j((b1j ; b2i )) + �2j((b2j ; b2i )) = (f; b2i )� ((BhT ; b2i ))� < k; b2i � n >�(4.4)for i = 1; :::; N�.4.3 Numerical implementationIn this section, we lay some emphasis on the practical implementation of thediscrete algorithm we have presented above.We denote byA the matrix of the linear system (4.4) and byM the matrixof the linear system yielded by the discretisation of the original coupledproblem (2.7).The discretisation presented in Section 4.2 has two drawbacks. First, thediscrete vector harmonic basis (b1i ; b2i ) must be computed, which involves theresolution of 2N� Poisson problems on 
h. Second, the size of A is actuallysmaller than the size of M ((2N�)2 instead of (3N)2) but A is full whereas12



M is sparse, thus it is not clear whether it is much cheaper to store A ratherthan M.In order to overcome both di�culties, we make use of the conjugate gra-dient algorithm presented by R. Glowinski and O. Pironneau in [4] and thatwe recall now for the convenience of the reader. As we shall see, this methodavoids both the computation of the discrete harmonic basis and the storageof A.We set � = (�11; :::; �1N�; �21; :::; �2N�) and we denote by � the right-hand-side of (4.4). Suppose now that we solve (4.4) by the conjugate gradientmethod. The algorithm reads :�0 2 R2N� ; arbitrarily chosen (4.1)g0 = A�0 � � (4.2)z0 = g0; n = 0 (4.3)dn = Azn (4.4)�n = zn:gn=zn:dn (4.5)�n+1 = �n � �nzn (4.6)gn+1 = gn � �ndn (4.7)n = gn+1:gn+1=gn:gn (4.8)zn+1 = gn+1 + nzn (4.9)n ! n + 1 and go to (4.4) (4.10)In order to computeAz for any vector z = (z1; z2) = (z11 ; :::; z1N�; z21 ; :::; z2N�) 2R2N� without explicitly knowing A, we de�ne the function C 2 HhT byC(z1; z2) = N�Xi=1 z1i b1i + z2i b2i :Recall that C(z1; z2) is the solution of the following discrete Poisson problem :�nd C(z1; z2) 2 (Xh)3 such that8<: (rC(z1; z2);rD) = 0 for all D 2 (Xh0 )3;C:n = 0;C(z1; z2)� n = PN�i=1 z1i 'it1 + z2i 'it2: (4.11)Let us note that this problem may be straightforwardly decoupled in three
13



scalar Laplace equations. By de�nition of A, we haveAz = 0BBBBB@ N�Xj=1 z1j ((b1j ; b1i )) + z2j ((b2j ; b1i ))N�Xj=1 z1j ((b1j ; b2i )) + z2j ((b2j ; b2i ))
1CCCCCAi=1;:::;N�= � ((C(z1; z2); b1i ))((C(z1; z2); b2i )) �i=1;:::;N�Therefore, the computation of Az only requires the knowledge of thevector �eld C(z1; z2) and not the explicit knowledge of A itself. However, italso requires so far the knowledge of the basis (b1i ; b2i )i=1:::N�.Let us now indicate how to avoid the computation of bki . We denote byw1i (resp. w2i ) the vector �eld of (Xh)3 which takes the value zero at all thenodes of 
h except at the node i of �h where it takes the value t1 (resp.t2). The function wki coincides with bki on �h, thus, in view of remark 4.1,((C(z1; z2); bki )) = ((C(z1; z2); wki )). Therefore we haveAz = � ((C(z1; z2); w1i )) + ((C(z1; z2); w1i ))((C(z1; z2); w2i )) + ((C(z1; z2); w2i )) �i=1;:::;N� (4.12)and � = � (f; w1i )� ((BT ; w1i ))� < k;w1i � n >�(f; w2i )� ((BT ; w2i ))� < k;w2i � n >� �i=1;:::;N� (4.13)Thus, step (4.2) of the conjugate gradient algorithm is replaced by thesequence� compute the vector �eld C(�10;�20) related to �0 by solving (4.11).� compute A�0 by (4.12).� compute � by (4.13).Likewise, step (4.4) is replaced by� compute the vector �eld C(z1n; z2n) related to zn by solving (4.11).� compute Az by (4.12). 14



The computation and the storage of matrix A are therefore not necessary,but the price to pay for this saving in memory usage is an increase of thecomputational time due to the fact that three Poisson problems have to besolved on 
h at each step of the conjugate gradient algorithm.Remark 4.2 Note that the three Poisson problems of each step of the con-jugate gradient algorithm are independent and may easily be solved simulta-neously on a parallel architecture.5 Numerical resultsIn the sequel, the method of Section 3 will be referred to as the �directmethod� and the algorithm presented in Section 4 will be referred to as the�uncoupled method�. We have implemented these algorithms both in 2D and3D with Q1 �nite elements. The tests in two dimensions are the following :1) 
 = [0; 1]2, B = (sin(�x) cos(�y)=�;� cos(�x) sin(�y)=�).2) 
 = [�1; 1]2, B = (�x4y=12 + yx2=2; x3y2=6� x5=60� y2x=2 + x).3) 
 = D(0; 1), B = (�y=2; x=2).where D(0; 1) denotes a disk with center (0; 0) and radius 1.We present in Table 1 the results obtained on various meshes with the twomethods. The relative error is computed in L2 norm. Solutions are plottedon Figures 1, 2, 3. Uncoupled method Direct methodTest Grid Rel. error jjdivBjjL2 Rel. error jjdivBjjL21 20� 20 .0020569 .0319320 .0020570 .031932040� 40 .0005141 .0160153 .0005140 .016015480� 80 .0001312 .0080139 .0001285 .00801382 20� 20 .0073202 .0373165 .0073196 .037314540� 40 .0037708 .0196841 .0037711 .019677980� 80 .0019940 .0115525 .0019938 .01153253 169 nodes .0086348 .0006356 .0086349 .0006352649 nodes .0021503 .0007940 .0021503 .00079262545 nodes .0005400 .0006745 .0005400 .0006725Table 1: Tests in two dimensions.In three dimensions, the following cases have been considered :15



Uncoupled Method Direct methodTest Grid Rel. error jjdivBjjL2 Rel. error jjdivBjjL24 5� 5� 5 .0331172 .0820945 .0331172 .082094610� 10� 10 .0082390 .0442373 .0082382 .044237420� 20� 20 .0020602 .0225329 .0020570 .02253295 5� 5� 5 .2232074 .0664852 .2232074 .066485210� 10� 10 .0514764 .0491199 .0514764 .049119920� 20� 20 .0125658 .0269531 .0125658 .02695306 840 nodes .0722001 .0325454 .0721998 .03254522560 nodes .0506948 .0150413 .0506958 .01503965436 nodes .0434860 .0101620 .0434856 .0101527Table 2: Tests in three dimensions.4) 
 = [0; 1]3, B = (sin�x cos �y cos �z=�;� cos �x sin�y cos �z=�; 0).5) 
 = [0; 1]3, B = curl (g; g; g) with g = 104(xyz(x� 1)(y � 1)(z � 1))3.6) 
 =Cylinder with height 0.6 and cross sectionD(0; 1), B = (�y=2; x=2; 0).Table 2 and Figures 4, 5, 6 show the results we obtained in 3D.We have used the Conjugate Gradient method with Incomplete Choleskypreconditioner to solve the linear systems in both methods. We emphasizethat it is necessary to achieve a very good convergence in the resolutionof linear systems into the loop of Glowinski-Pironneau conjugate gradientalgorithm.These tables show that the relative errors and the value of jjdivBjjL2 arealmost the same for the two methods. The evolution of these values with thestep of the grid is good. The only exceptions are the values of jjdivBjjL2 intest 3. Our understanding of this phenomena is rather poor, but we suspectit is due to the non regularity of the mesh on the disk.In our examples and with our home-made code, the memory required bythe uncoupled method is three (resp. six) times as small as the memoryneeded by the direct one in 2D (resp. in 3D). On the contrary, the CPUtime required for the uncoupled method is about 1.5 times as large as theCPU time required for the direct method. But, as said above, the uncoupledalgorithm can be easily treated on a parallel architecture. For the 3D tests, wehave used three computers connected within a PVM network : each machinesolves one of the three scalar Poisson problem and compute the third of theexpression (4.12). The CPU time is then almost divided by a factor 2. Theuncoupled method becomes therefore faster than the direct one.16



Remark 5.1 The only limitation we see today to the use of the uncoupledalgorithm is that it is not well-suited for problems involving a non homo-geneous conductivity �. In this case the equations (1.10)-(1.13) have to bereplaced by (1.6)-(1.9). Current work is in progress on the subject but we canalready suggest three tricks to treat the case when � is not constant with theuncoupled method.The �rst way is to split 1� curlB in a gradient and a solenoidal part :1� curlB = curlA�r :The unknown  is then determined by a scalar Poisson problem, A andB by a vector Poisson problem which can be solved by the uncoupled method.The second way is to use the vector analysis relationcurl ( 1� curlB) = r 1� � curlB + 1� curl (curlB);and to adopt an iterative strategy : the value Bn+1 is determined by theresolution of a vector Poisson problem with �r 1� � curlBn at the right handside.In the case when � is constant over two subdomains 
1 and 
2 of 
, athird way consists in solving a vector Poisson problem alternatively on thetwo subdomains. The boundary conditions on @
1 \@
2 deal with curlB�nand B:n for the problem set on 
1 and with divB and B�n for the problemset on 
2.6 ConclusionWe have proposed two approaches to solve a magnetostatic problem : adirect method, very natural, and an uncoupled algorithm, that draws itsinspiration from methods exposed in [7] and [4] in other frameworks. Wehave studied the variational formulations and the numerical implementationfor both approaches. Our numerical results show that the two methods arevery similar in term of accuracy. In average the direct method is 1.5 timesas fast as the uncoupled one. Conversely the memory required in 3D bythe uncoupled method is 6 times as small as the memory needed by thedirect one. In a very large problem, the uncoupled method is therefore moreattractive. It is indeed all the more attractive since we have shown that theuncoupled algorithm can be straighforwardly used on a parallel architectureof three computers which roughly divides the CPU time by a factor of two.17



In addition, we have brie�y suggested three tricks to extend the uncoupledalgorithm to the case when the electric conductivity is not constant over thedomain. Nevertheless, we believe that in this non-homogeneous case, thedirect method remains more natural.In conclusion, our study shows that, in comparison with the direct reso-lution of the coupled system, the uncoupled method :- is as accurate as the direct one,- is far more attractive in term of memory storage,- does not require a much longer CPU time.Acknowledgements The authors should like to express their thanks toProf. O. Pironneau and Prof. M. Bercovier for stimulating discussions.References[1] F. Assous, P. Degond, E. Heintze, P.A. Raviart, and Segre J. On a �nite-element method for solving the three dimensional Maxwell equations.Jour. Comp. Phys., 109:222�237, 1993.[2] A. Bossavit, C. Emson, and I.D. Mayergoyz. Méthodes numériques enélectromagnétisme. Eyrolles, 1991.[3] V. Girault and P.-A. Raviart. Finite element methods for Navier-Stokesequations. Springer-Verlag, 1986.[4] R. Glowinski and O. Pironneau. Numerical methods for the �rst bi-harmonic equation and for the two-dimensional Stokes problem. SIAM,21(2):167�212, April 1979.[5] F. Kikuchi. Numerical analysis electrostatic and magnetostatic problem.Sugaku expositions, 6(1):332�345, June 1993.[6] O. Pironneau. Finite element methods for �uids. Wiley, 1989.[7] L. Quartapelle and A. Muzzio. Decoupled solution of a vector Poissonequations with boundary condition coupling. In G. de Vahl Davis andC. Fletcher, editors, Computational Fluid Dynamics, pages 609�619. El-sevier Science Publishers, (North-Holland), 1988.18
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Figure 1: B �eld computed in test 1.

Figure 2: B �eld computed in test 2.
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Figure 3: B �eld computed in test 3.

Figure 4: B �eld computed in test 4.
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Figure 5: B �eld computed in test 5.

Figure 6: B �eld computed in test 6.
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