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Abstract

We draw a comparison between two numerical methods to solve a
magnetostatic problem set on a bounded convex domain. The problem
is of vector Poisson type and is associated with boundary conditions
set on the curl of the unknown, here the magnetic field. These bound-
ary conditions therefore introduce a coupling between the components.
One of the two algorithms under consideration consists in an adapta-
tion of the influence matrix method introduced by R. Glowinski and
O. Pironneau [4] on the biharmonic equation and extended later by L.
Quartapelle et al [7], [8], [9]. We present a detailed description of the
practical implementation of the algorithm. Through various numerical
tests, we compare this uncoupled method with a strategy consisting of
a direct attack of the coupled problem.

Résumé

Nous comparons deux méthodes numériques pour résoudre un pro-
bléme de magnétostatique posé sur un domaine convexe borné. Il s’agit
d’un probléme de Poisson vectoriel dont les conditions aux limites sont
posées sur le rotationel de l'inconnu, ici le champ magnétique. Ces
conditions aux limites couplent donc les composantes du vecteur in-
connu. L’un des deux algorithmes considérés est une adaptation de la
méthode des matrices d’influence introduite par R. Glowinski et O.
Pironneau [4] pour le probléme du bi-laplacien et étendue ensuite par
L. Quartapelle et al [7], [8], |9]. Nous présentons une description dé-
taillée de 'implémentation pratique de ’algorithme. Nous comparons
a travers divers tests numeériques cette méthode découplée avec une
résolution directe du probléme couplé.

1 Introduction

In this article, we consider a magnetostatic problem set on a bounded convex
domain Q of R?, enclosed in a C'! boundary I'. The magnetic field B we



seek is the solution to a vector Poisson problem with non-classical boundary
conditions, namely a system of the form

curl (curl B) = f
divB = 0
curlBxn = kxn onl
Bn = q onl.

(1.1)

It can be seen on (1.1) that the boundary conditions on curl B x n, very
natural from the physical standpoint, introduce a coupling between the com-
ponents of B which prevents one from solving the vectorial problem as three
scalar Poisson equations, contrarily to the case when there are three Dirichlet
boundary conditions. Some difficulties are therefore likely to be encountered
from a computational viewpoint. Indeed, whereas in the case of a “classical”
vector Poisson problem, three linear systems of size N? have to be solved (N
denotes the number of degrees of freedom on the mesh), a coupled system is
here to be solved, which increases the required memory.

Let us point out that such a situation also occurs in the framework of
hydrodynamics when a vector potential associated to the velocity field in
incompressible flows is computed. In this latter context, the system is

_Au = f7
uxn = axn onl, (1.2)
diveu = b onl.

In order to solve (1.2) L. Quartapelle and coworkers have extended and anal-
ysed an interesting uncoupled algorithm (see [7], [8], [9]) based on the influ-
ence matrix method introduced by R. Glowinski and O. Pironneau. The idea
is basically to transform system (1.2) into the resolution of a standard system
with Dirichlet boundary conditions together with the resolution of a problem
on the surface I'. From the computational viewpoint, this strategy replaces
the resolution of the original linear system by linear systems of smaller size
N?2. The boundary conditions on the vector Poisson equations are different
in magnetostatics from the ones used in hydrodynamics, but we show in the
present work that this algorithm may however be extended in order to treat
the magnetostatic problem.

Our aim is to compare the following two strategies to solve problem (1.1) :

e a “direct method” which treats simultaneously the three components
of B,

e an “uncoupled method”, following the ideas of Glowinski-Pironneau and
Quartapelle and coworkers, which treats successively the three compo-
nents of B.



Let us briefly derivate the magnetostatic equation we shall consider hence-
forth. We begin with the stationary Maxwell equations :

curl (B/p) = 7, (1.3)
divB = 0, (1.4)
curl £ = 0. (1.5)

While the magnetostatic problem (1.3)-(1.4) is often solved numerically through
the introduction of the so-called scalar and vector potentials (see for instance
E. Emson [2] and the bibliography therein), we shall not follow this approach
here.

In the sequel, i is supposed to be constant, thus we may set u = 1 without
loss of generality. On the boundary I', we specify some components of the
magnetic and electric fields as follows :

B.n|r =g,

1
EXTL|F:—]€.
o

where n is the outward-pointing normal to (2. Using the Ohm’s law j = o F
(or j = 0(F 4+ u x B) with u|p = 0 for a magnetohydrodynamics flow), the
boundary conditions on F also reads

1 1
—curlBxn=—k xn.
o o

Let us denote j/o by g in the sequel. Taking the curl of (1.3) we obtain the
system

1
curl (—curl B) = curlyg in Q,

(1.6)
o
divB = 0  inQ, (1.7)
1
—curlBxn = —kxn on I, (1.8)
o o
Bn = ¢ on I. (1.9)

We suppose that the conductivity o is constant over the domain (see however
Remark 5.1 below) and we set 0 = 1. Therefore, the equations to be solved
are :
curl (curl B) = f in €,
divB = 0 in €2,
curlBxn = kxn on I,

Bn = ¢ on I,



where f = curlg.

We shall proceed as follows. We study in Section 2 two variational for-
mulations of (1.1). The formulation presented in 2.2 will be used in the
uncoupled strategy whereas the formulation of Section 2.3 will be used in
the direct method. The two approaches are then detailed in Sections 3 and
4. We compare the results obtained with the two methods in Section 5 in
term of precision, CPU time and memory. Finally, in Section 6 we draw
conclusions about our whole work.

2 Variational formulations

We present in this section two variational formulations of (1.10)-(1.13) that
will be used in the sequel. We refer for example to F. Kikuchi [5] for other
formulations of the magnetostatic problem.

2.1 Functional setting

We recall that € is supposed to be a bounded convex domain with a Cb*
boundary. In particular, we exclude for this theoretical study domains with
holes. We are aware that this assumption might be too restrictive in some
practical cases, nevertheless, such domains are sufficient for the applications
we deal with. The first consequence of this assumption of regularity is the
continuous embedding (see V. Girault, P.A. Raviart [3], Theorem 3.8 and
3.9)

{B e L*(Q)* curl B € L*(Q)*,div B € L*(Q)?, B.n|r = 0} — H'(Q)*.
(2.1)
In the sequel, we shall need the following functional spaces

W = {B € (H'(Q))*, B.n|r = 0},

W, ={B € (H'(Q))*, B.n|r = q}.

We denote by (.,.) the usual inner product of L*(Q2)?, by < .,. > the duality
product between H1(Q)% and H;(2)?, and by < .,. > the duality product
between H~'/2(T")® and H'/?(T)?. For B, C € H'(Q)? we define :

(B, C)) = (curl B,curl C') + (div B, div C).

The second consequence of the assumption on the domain €2 is that there
exists a constant ¢ > 0 such that for any arbitrary B € W,

|| B|| a2 < c(||curl B|p2(q)e + ||div Bl|12)s)- (2.2)
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In other words, ((.,.)) is a scalar product on W which induces a norm that
is equivalent to the H'(Q)? norm on W (see V. Girault, P.A. Raviart [3],
Lemma 3.6).
The data are supposed to have to following regularity :
g€ HY* (), k€ HY2(T)3 g HY(Q)?. (2.3)

Moreover, we suppose that :

/F gdy =0, (2.4)

<kxn,V®>r=0 V®eH*Q)? (2.5)

(curlg, V®) =0, V& € H*(Q)>. (2.6)

Assumption (2.4) is the standard compatibility condition with (1.11). As-
sumptions (2.5) and (2.6), which are satisfied in physical situations in view

of (1.5) and Ohm’s law, will be of crucial importance below (see the proof of
Proposition 2).

2.2 Classical formulation

We define the following variational problem : find B € W, such that
(B,C)) = (curlg,C)+ < k x n,C >p, forall C € W. (2.7)

We then have

Proposition 1
The variational problem (2.7) has a unique solution.

Proof. Remark first that (2.2) implies that ((.,.)) defines a bilinear
symmetric and coercive application on W x W. Since C' — (curlg, C)+ <
kxn,C >r belongs obviously to W', the Lax-Milgram Theorem implies there
exists a unique By € W such that

((By,C)) = (curlg,C)+ < k xn,C >p, foral CeW.
Next, we define B, = V&, with ® such that
-Ad =0 in (2
0P
on
Note that B,.n = ¢, divB, = 0 and curl B, = 0 and that B, € H'(Q)?
in view of a classical result of elliptic regularity. Thus B = By, + B, is a

solution to (2.7). The uniqueness of B is a straightforward consequence of
the coercivity of ((.,.)) on W. $

= q on I



Proposition 2
Under the assumptions (2.3)-(2.6), system (1.10)-(1.13) is equivalent to the
variational problem (2.7).

Proof (sketch). It is straightforward to prove that any solution of (1.10)-
(1.13) is a solution of (2.7). Conversely, let B be a solution of (2.7). One
checks by standard arguments that B satisfies (1.10), (1.12) and (1.13). The
point is to show that B is divergence-free. For this purpose, let us consider
an arbitrary h € L*(Q) with [, hdz = 0 and let us define & € H*(Q) by

-AN® = h
P
g—n =0 on I'.

Taking C'= V@ as a test function in (2.7), we obtain :
(curl B, curl V@) + (div B,divV®) = (curlg, V®)+ < k x n, V& > .
In view of the assumptions (2.5) and (2.6) this equality yields :
(div B, h) = 0.

It follows that div B is constant over €2, and this constant is zero in view of
assumption (2.4). Consequently, (1.11) holds. {

2.3 A mixed formulation to treat B.n = g as a constraint

In order to turn the formulation of Section 2.2 into a numerical method,
we must first construct suitable finite elements approximation spaces for W
and W,. If the boundaries of the domain happen not to be parallel to the
coordinnates axes, this construction may be tedious from a computational
viewpoint. We now suggest a formulation that circumvents this difficulty :
we work on the spaces

X =H'(Q)?,

M = HY(T).

We denote by ||.||x (resp. ||.||ar) the usual norm on H'(Q)3 (resp. H~'/?(T"))
and we define the bilinear form b on X x M by

b(Buu) =< Bnuu >r

For ease of notation, we denote by < .,. >p the duality product between
H='(Q) and H}(Q2) or between H~(Q)? and H}(Q)? as above. We introduce
the following mixed formulation :



find (B, \) € X x M such that, V(C,pu) € X x M,

{((B,C))er(B,)\) = (f,O)+ <k xn,C >r,

2.8
b(B7lu) = <¢p>r. ( )

Proposition 3
The mixed variational problem (2.8) has a unique solution.

Proof. First, we prove that there exists a constant 3 > 0 such that

B
inf sup (B, > f.

neM—{0} pex—{o} 1B x [1]| s

Indeed, let 1 be in M —{0}. A classical corollary of the Hahn-Banach theorem
yields the existence of - € H'/?(T') with ||ev|| 12y = 1 such that :

B asp=1.

[l las

It is straightforward to build By € X such that By.n|r = « and ||Bo||x <
cllall g2y = ¢, with ¢ independent on By and a. Thus, for all u € M,

b(Bo, ) _ < >r
|| Bol|x || Bollx

which proves the inf-sup condition. Moreover, the space {C' € X,b(C,pu) =
0,Vu € M} is equal to space W and, according to (2.2), the bilinear form
((.,.)) is coercive on W. Therefore, the classical theory on mixed variational
problems permits to conclude the proof.

1
> —||pl|n,
C

Remark 2.1 The solution of (2.8) may be seen as the saddle-point of the La-
grange functional L(B, n) = 5((B,B))—(f, B)— < kxn, B >p +b(B, 1)— <
q, > -

Proposition 4

Under the assumptions (2.3)-(2.6), system (1.10)-(1.13) is equivalent to the
mixed problem (2.8).

Proof.(sketch) Let B be a solution of (1.10)-(1.13). Equation (1.13) yields
b(B, p) =< q, 1 >r, Yu € M. Moreover, since div B = 0, we have

curl (curl B) — V(div B) = f.

Multiplying this equation by C' € X and integrating by part over {2 we obtain

/(curlB.curl C+div Bdiv C') daj—/
0

r

C.ndivBdy = / f-Cdr+ < kxn,C >r
Q
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Thus (2.8) holds with the Lagrange multiplier A = —div B|p. Conversely,
some analogous arguments prove that the solution of (2.8) satisfies (1.10)-
(1.13). In particular, we check that B is divergence-free in the same fashion
as in Proposition 4.

3 Direct resolution based on the mixed formu-
lation

3.1 Penalized formulation

The mixed formulation (2.8) can actually be applied to a finite element anal-
ysis. However, it requires the computation of the Lagrange multiplier A\. A
standard method to avoid this computation is to consider the corresponding
penalized formulation. Let € > 0, we assume that

b(B,p)— < q,u>r=c<A\p> VYueM,
and we seek B € X such that VC' € X

1 1
((B,C’))+g < Bn,Cn>pr= (f,C)+ <kxn,C >p +o < q,C.n>p . (3.1)

3.2 Discretisation

Let h > 0 be fixed. The domain 2 is approximated by a polyhedron €2, with
its vertices on I'. A partition 7}, of €2, into elements consisting of tetrahedrons
or convex hexahedrons is performed in a standard way. In the sequel, R,,(K)
stands for P, (K) if K is a tetrahedron and for @,,,(K) if K is a hexahedron,
where for each integer m > 0, P, and (), have the usual meaning. For the
sake of simplicity, we only consider Lagrangian finite elements.

We denote by I'j, the boundary of €2, by n its approximated unit outward
pointing normal, and by ¢, o an approximated orthogonal set of tangent
vectors (see Remark 3.2 below for the treatment of the singular points of T').
The number of nodes on Q, (resp. I'y) is denoted by N (resp. M).

Xt = {on € C%Q); vnlr € R(T),VT € Tr},
Xt o= {v, € COQ);vnlr € Ry (T),VT € T} N HE(Q),
Yh = A, vn € X"}

Thus, we search By, € X} such that for all C), € X}

1 1
((Bh,Ch))—Fg < Bp.n, Cp.n >pr= (f, Ch)+ < I{JXn, Cy >r +g <q, Chp.n>r.
(3.2)



Remark 3.1 In the numerical simulations we have performed, the value € =
l.e — 4 has given very good results without increasing too much the condition
number of the system.

Remark 3.2 In our numerical tests, we have computed the normals and the
tangents at the nodes of the boundary. Denoting by p; the hat function at
the node i, the approximated normal is given by :

9 0000
/%’ dx
r

We then deduce from n; the values of t; and ty at the node i.

n; =

In order to compute ((Bp,C})) we can use the following formula (see [1] or

[6])
(B,C)) = / VB.VC di + Z/(VBk < n) (e x Oy, (3.3)

where (e, 1 < k < 3) denotes the canonical basis of R? and B stands for
B.ei. This equality can be easily established in the continuous case. It also
holds in the discrete case since the boundary terms only involve tangential
derivatives, and thus cancel on the inside faces.

From a computational viewpoint, the formula (3.3) shows that it is useless
to allocate memory for a 3 x 3 system of (sparse) blocks N? x N2 : we only
need 3 blocks of size N2 x N2 for the three laplacians and 6 blocks of size
N x Nr for the boundary terms. Nevertheless, in some practical problems,
this system may still be too large. In such cases, one may use the method
presented in Section 4 which allows to solve the problem with a N x N sparse
system.

4 Uncoupled resolution based on the first for-
mulation

As above mentioned, the formulation (2.7) has two drawbacks : first, it needs
a finite element basis to approximate the space W, second it leads — like for-
mulation (2.8) — to large systems (even if the formula (3.3) somewhat reduces
the size of the matrix). Thus, rather than detailing the direct discretisation
of (2.7), we present a method based on the same variational formulation
which avoids the coupling induced by the boundary conditions and thus lead
to smaller matrices.



4.1 Uncoupled formulation

J. Zhu, L. Quartapelle and A. F. D. Loula have considered in |9] a problem
arising in computational fluid dynamics which basically shares the same fea-
tures as ours. They propose an uncoupled technique that we now adapt to
(2.7). We introduce :

Wor ={B € H(Q)?® Bn|r = q,B x n =0},

Hy ={Bc H(Q)?,AB=0inQ,Bn=0o0nTI}.
Note that B € qu may be decomposed as :

with By € Wy and By € Hy (solve —A By = 0 on Q, By.n|r = 0,
By|r X n = B]r X n, and set By = B — By). In the same fashion, C' € W

may be decomposed as :
C=0Co+Cy

with Cj € H&(Q)3 and Cy € Hy.
By linearity, (2.7) reads :

{ ((Baco)) = (faOO)a VC[) € (H&(Q))3
((B,Oy)) = (f, 07.[)— < k,C’}{ X n >r, VC’H S HN.

Since B = By + By, we have :

((By,Cy)) = / curl (curl By).Cy dx + / div By div Cy dx
0

Q
Q Q
= 0.

Therefore, the variational formulation (2.7) is equivalent to the following
uncoupled formulation : find By € W, and By € Hx such that

((Br,Co)) = (f,Co), VCoe€ Hy(2)? (4.1)
((B;L[, 07.[)) = (f, C’}{) — ((BT,C’}{))_ < k x n, 07.[ xXn >[‘,VO7.[ € HN.
(4.2)

Equation (4.1) is a system consisting of three independent scalar Dirichlet
problems. One next remarks that (4.2) may be solved as a problem set on
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I'. Indeed, (4.2) is equivalent to find A', A € HY?(I') such that, for all
ptop® € H()

((Cu(N'S N2, O, 12))) = (f, Culp', 1?)) = ((Br, Cu(p', 1%) )
- < k, ,U,ltl + /L2t1 >r
(4.3)
with Cy(p', u?) defined by

—-A CH(MIHUQ) =0 in Qa
CH(Mla /LQ) xXn = Hltl + /u2t2 on Fa
Cy(pt,p*)m = 0 on I

Remark 4.1 As shown in [9],
(( CH()‘la )‘2)7 CH(Nla N2) )) = (( CH()‘la )‘2)7 w))

for any arbitrary vector field w € (H'(Q))? which coincides with Cyy(p', p?)
on I'. Indeed :

(O (AL, A%, Cu(put, 1)) = /Q curl (curl Cy (AN, A?)).Oy (1, p?) da

+/ curl Cyy (A1, Ag) x n.Cy(pt, u?) dry
r
—/ V(divCy (A, N2)).Ox(pt, p?) da

0

= [ curlCy(Ai, A2) X nowdy
r

= (Cu(A1, A2), w)).
It may be proved following the same lines that :
(f, Cu(pt, 1)) = (( Br, Co(pt, 1) )= < k, 'ty + ity >r

= (f,w) — ((By,w))— < k,w X n >p

These properties will be used in the numerical implementation below.

4.2 Discretisation

We define an approximation of the space Hr by

HL = (B, € (Xh)3,/ VB, VCydr = 0,YC), € (X{)? and By.nlp, = 0}
Qp

Let (¢1, ..., on) be a basis of Y}, (¢; is typically the “hat function” at the

node i of I';). We construct a basis (b}, ..., by, b}, ..., b3,.) of H} with bf
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such that b} = ¢;t; and b? = @ity on ['4. In other words, b¥ satisfies for all
Ch € (Xg)?
(VVE,NVC,) = 0
o= it onT

An approximation B of the solution to equation (4.1) may be computed
in a classical way through the resolution of three Poisson scalar problems.
In order to solve (4.2), let us now decompose BY, on the basis (b}, b?);=1. n, :

Nr
By =Y Alb} + X207

The pair (A}, A\?) may be seen as the coordinates of BY on the “discrete

harmonic basis” (b}, b?);=1...n,. as well as the tangential components of B}, on
['y,. That is why (4.2) may be interpreted as a problem set on the boundary.
The discrete approximation of (4.2) reads :

(B, b7)) = (f,0F) = ((Bg, 0))— <k, b x n >,

7

fori=1,..., Ny and p = 1,2. More precisely, in order to solve (4.2), we have
to find (A}, ..., Ay, AT, ..., A},.) such that

ZAl ((b5,0)) + A2((03,61)) = (f,b}) — ((BR,b1)— < k, b} x 1 >p

i bi) 3> %

SOABLE) CAUCLR) = (F) — (BB < kb xn >0

3>
\]1

(4.4)
for i = ]_, . NF.

4.3 Numerical implementation

In this section, we lay some emphasis on the practical implementation of the
discrete algorithm we have presented above.

We denote by A the matrix of the linear system (4.4) and by M the matrix
of the linear system yielded by the discretisation of the original coupled
problem (2.7).

The discretisation presented in Section 4.2 has two drawbacks. First, the
discrete vector harmonic basis (b}, b?) must be computed, which involves the
resolution of 2NV} Poisson problems on €2,. Second, the size of A is actually
smaller than the size of M ((2Np)? instead of (3N)?) but A is full whereas
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M is sparse, thus it is not clear whether it is much cheaper to store A rather
than M.

In order to overcome both difficulties, we make use of the conjugate gra-
dient algorithm presented by R. Glowinski and O. Pironneau in |4] and that
we recall now for the convenience of the reader. As we shall see, this method
avoids both the computation of the discrete harmonic basis and the storage
of A.

We set A = (Af,...; Ay, AL, ..., AR,.) and we denote by £ the right-hand-
side of (4.4). Suppose now that we solve (4.4) by the conjugate gradient
method. The algorithm reads :

Ay € RPN arbitrarily chosen (4.1)
g = AN —§ (4.2)

20 = Yo, n=20 (4.3)

d, = Az, (4.4)

P = Zn-Gn/%n.dn (4.5)

Ay = Ay — puzn (4.6)

Gn+1 = Gn— Putn (4.7)

Yo = Gni1-Gni1/In-Gn (4.8)

Zntl = Gntl T Tnn (4.9)

n — n-+1and go to (4.4) (4.10)

In order to compute Az for any vector z = (2", 2%) = (21, -.-s 2y, 215 -5 Z8p) €
R?Mt without explicitly knowing A, we define the function C' € H by

Nr
C(z' %) = Zz}bll + 2207
i=1
Recall that C'(z!, 2?) is the solution of the following discrete Poisson problem :
find C(2, 2?) € (X")3 such that

(VC(24,2?),VD) = 0 forall De (X})3,
Cn 0, (4.11)
C(z,2%) xn = N zloity + 22pits.

Let us note that this problem may be straightforwardly decoupled in three
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scalar Laplace equations. By definition of A, we have

Np

Z (b5, b7)) + 25 (b7, 7))

Z (65, 67) + 25 (857, 57))

izl,...,N[‘

- (a3 ).,

Therefore, the computation of Az only requires the knowledge of the
vector field C'(z!, 2?) and not the explicit knowledge of A itself. However, it
also requires so far the knowledge of the basis (b}, 0?)i—1.. n.-

)
Let us now indicate how to avoid the computation of b¥. We denote by
w} (resp. w?) the vector field of (X")3 which takes the value zero at all the

(2
nodes of €2, except at the node i of I'j, where it takes the value #; (resp.

t3). The function w? coincides with b¥ on I'j, thus, in view of remark 4.1,

((C(z1, 2%),b%)) = ((C(2', 22),wF)). Therefore we have

_( (CE 22, wh) + (C( 22),w)))
A ( (C(z", %), w)) + ((C(2, 2%), w))) ) LN (4-12)

and

_{ (fyw}) = ((Br,w}))= < k,w} x n >
B = < (f, w?) — ((B;,w?))— <k,w?xn >£ )Z " (4.13)

Thus, step (4.2) of the conjugate gradient algorithm is replaced by the
sequence

e compute the vector field C'(A}, A2) related to Ay by solving (4.11).
e compute AN\ by (4.12).
e compute (3 by (4.13).

Likewise, step (4.4) is replaced by

e compute the vector field C'(z}, 22) related to z, by solving (4.11).

TL’TL

e compute Az by (4.12).
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The computation and the storage of matrix A are therefore not necessary,
but the price to pay for this saving in memory usage is an increase of the
computational time due to the fact that three Poisson problems have to be
solved on €2, at each step of the conjugate gradient algorithm.

Remark 4.2 Note that the three Poisson problems of each step of the con-
Jjugate gradient algorithm are independent and may easily be solved simulta-
neously on a parallel architecture.

5 Numerical results

In the sequel, the method of Section 3 will be referred to as the “direct
method” and the algorithm presented in Section 4 will be referred to as the
“uncoupled method”. We have implemented these algorithms both in 2D and
3D with Q1 finite elements. The tests in two dimensions are the following :

1) Q=10,1]%, B = (sin(wz) cos(my)/m, — cos(mzx) sin(my) /7).
2) Q=[-1,1% B = (—a'y/12 + y2?/2,23y*/6 — 2° /60 — y*z /2 + x).
3) Q=D(0,1), B=(-y/2,z/2).

where D(0,1) denotes a disk with center (0,0) and radius 1.

We present in Table 1 the results obtained on various meshes with the two
methods. The relative error is computed in L? norm. Solutions are plotted
on Figures 1, 2, 3.

Uncoupled method Direct method
Test Grid Rel. error ||div B||p> | Rel. error ||div B>
1 20 x 20 0020569  .0319320 | .0020570  .0319320
40 x 40 0005141 .0160153 | .0005140  .0160154
80 x 80 .0001312  .0080139 | .0001285  .0080138
2 20 x 20 0073202  .0373165 | .0073196  .0373145
40 x 40 0037708  .0196841 | .0037711  .0196779
80 x 80 0019940  .0115525 | .0019938  .0115325
3 169 nodes | .0086348  .0006356 | .0086349  .0006352
649 nodes | .0021503  .0007940 | .0021503  .0007926
2545 nodes | .0005400  .0006745 | .0005400  .0006725

Table 1: Tests in two dimensions.

In three dimensions, the following cases have been considered :
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Uncoupled Method Direct method
Test Grid Rel. error ||div B||z2 | Rel. error ||div B||.:
4 5x5Hxb 0331172 0820945 | .0331172  .0820946
10 x 10 x 10 | .0082390  .0442373 | .0082382  .0442374
20 x 20 x 20 | .0020602  .0225329 | .0020570  .0225329
5 5x5Hxb 2232074 0664852 | .2232074  .0664852
10 x 10 x 10 | .0514764  .0491199 | .0514764  .0491199
20 x 20 x 20 | .0125658  .0269531 | .0125658  .0269530
6 840 nodes 0722001  .0325454 | .0721998  .0325452
2560 nodes | .0506948  .0150413 | .0506958  .0150396
5436 nodes | .0434860  .0101620 | .0434856  .0101527

Table 2: Tests in three dimensions.

4) Q =[0,1]*, B = (sinwx cosmy cos mz/m, — cos wr sin y cos w2/, 0).

5) Q=10,1]*, B = curl(g, g, g) with g = 10*(zyz(x — 1)(y — 1)(z — 1))?.

6) 2 = Cylinder with height 0.6 and cross section D(0, 1), B = (—y/2,2/2,0).
Table 2 and Figures 4, 5, 6 show the results we obtained in 3D.

We have used the Conjugate Gradient method with Incomplete Cholesky
preconditioner to solve the linear systems in both methods. We emphasize
that it is necessary to achieve a very good convergence in the resolution
of linear systems into the loop of Glowinski-Pironneau conjugate gradient
algorithm.

These tables show that the relative errors and the value of ||div B||> are
almost the same for the two methods. The evolution of these values with the
step of the grid is good. The only exceptions are the values of ||div B||.2 in
test 3. Our understanding of this phenomena is rather poor, but we suspect
it is due to the non regularity of the mesh on the disk.

In our examples and with our home-made code, the memory required by
the uncoupled method is three (resp. siz) times as small as the memory
needed by the direct one in 2D (resp. in 3D). On the contrary, the CPU
time required for the uncoupled method is about 1.5 times as large as the
CPU time required for the direct method. But, as said above, the uncoupled
algorithm can be easily treated on a parallel architecture. For the 3D tests, we
have used three computers connected within a PVM network : each machine
solves one of the three scalar Poisson problem and compute the third of the
expression (4.12). The CPU time is then almost divided by a factor 2. The
uncoupled method becomes therefore faster than the direct one.
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Remark 5.1 The only limitation we see today to the use of the uncoupled
algorithm is that it is not well-suited for problems involving a non homo-
geneous conductivity o. In this case the equations (1.10)-(1.13) have to be
replaced by (1.6)-(1.9). Current work is in progress on the subject but we can
already suggest three tricks to treat the case when o is not constant with the
uncoupled method.

1
The first way is to split — curl B in a gradient and a solenoidal part :
o

1
—curl B = curl A — V.
o
The unknown 1 is then determined by a scalar Poisson problem, A and
B by a vector Poisson problem which can be solved by the uncoupled method.
The second way is to use the vector analysis relation

1 1 1
curl (=curl B) = V= x curl B+ —curl(curl B),
o o o

and to adopt an iterative strateqy : the value B"' is determined by the

1
resolution of a vector Poisson problem with oV — x curl B" at the right hand
o

side.

In the case when o is constant over two subdomains 2y and Qy of €2, a
third way consists in solving a vector Poisson problem alternatively on the
two subdomains. The boundary conditions on 02 N Oy deal with curl B X n
and B.n for the problem set on y and with divB and B x n for the problem
set on $2y.

6 Conclusion

We have proposed two approaches to solve a magnetostatic problem : a
direct method, very natural, and an uncoupled algorithm, that draws its
inspiration from methods exposed in [7] and [4] in other frameworks. We
have studied the variational formulations and the numerical implementation
for both approaches. Our numerical results show that the two methods are
very similar in term of accuracy. In average the direct method is 1.5 times
as fast as the uncoupled one. Conversely the memory required in 3D by
the uncoupled method is 6 times as small as the memory needed by the
direct one. In a very large problem, the uncoupled method is therefore more
attractive. It is indeed all the more attractive since we have shown that the
uncoupled algorithm can be straighforwardly used on a parallel architecture
of three computers which roughly divides the CPU time by a factor of two.
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In addition, we have briefly suggested three tricks to extend the uncoupled
algorithm to the case when the electric conductivity is not constant over the
domain. Nevertheless, we believe that in this non-homogeneous case, the
direct method remains more natural.

In conclusion, our study shows that, in comparison with the direct reso-
lution of the coupled system, the uncoupled method :

- is as accurate as the direct one,
- is far more attractive in term of memory storage,

- does not require a much longer CPU time.
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Figure 2: B field computed in test 2.
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Figure 3: B field computed in test 3.

Figure 4: B field computed in test 4.
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Figure 5: B field computed in test 5.

Figure 6: B field computed in test 6.

22



