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Computational Complexityof Multi-way, Data�ow Constraint ProblemsGilles Trombettoni, Bertrand Neveu
AbstractAlthough it is widely acknowledged that multi-way data�ow constraints make it easier to specifycertain relationships in interactive applications, concerns about their e�ciency have impeded theiracceptance. Some of the local propagation algorithms that solve these constraints are polynomial,others (such as SkyBlue) are exponential. In fact, every system handles a speci�c problem andthe in�uence of any particular restriction on the computational complexity is not yet preciselydetermined. In this report, we present theoretical results that allow us to classify existing multi-way constraint problems. We especially prove that the problem handled by SkyBlue is NP-hard.Keywords: Constraints, Computational Complexity, Local Propagation, User Interfaces.

Complexité théorique de problèmesde contraintes fonctionnelles multi-directionnellesRésuméLes contraintes fonctionnelles multi-directionnelles permettent de spéci�er facilement certaines rela-tions dans les applications graphiques interactives. Elles sont pourtant encore peu utilisées à causede doutes concernant l'e�cacité des techniques de résolution par propagation locale : certains al-gorithmes de résolution par propagation locale sont polynomiaux, d'autres (comme SkyBlue) sontexponentiels. En fait, chaque système existant traite un problème spéci�que et les conséquencesdes diverses restrictions dans le formalisme des contraintes traitées sur la complexité théorique nesont pas déterminées précisément. Ce rapport présente des résultats de complexité théorique quipermettent de classi�er les di�érents problèmes traités par les systèmes existants. Nous montronsen particulier que le problème traité par SkyBlue est NP-di�cile.Mots-clés: Contraintes, Complexité théorique, Propagation locale, Interfaces graphiques.
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1 IntroductionData�ow constraints are rapidly gaining popularity in interactive applications because they simplifythe programming task, are conceptually simple and easy to understand, and are capable of expressingrelationships over multiple data types, including numbers, strings, booleans, bitmaps, fonts andcolors. The data�ow constraint solvers are used in numerous interactive systems, such as graphicalinterface toolkits, spreadsheets, graphical layout systems and animations.Data�ow constraints are divided into two main categories. A one-way data�ow constraint is as-sociated to a function that recovers the consistency of the constraint by calculating output variablesbased on the current value of the input variables. The spreadsheet model, more formally known asthe dependency graph model [Hoover 87], only takes into account one-way constraints. This modelis widely used in interactive systems, mainly because the solving process is based on an e�cientincremental evaluation phase that topologically sorts the functions to execute.A multi-way data�ow constraint has several functions (called methods) that may be used tosatisfy it. The solving process of problems that contain multi-way constraints needs an additionalplanning phase that occurs before the evaluation phase. The planning phase assigns one method toeach constraint.Although multi-way constraints are more expressive than one-way constraints, concerns abouttheir e�ciency have made them less popular.Every solving algorithm handles a speci�c constraint planning problem and the conditions thatallow us to decide whether it is computationally di�cult are not clear by now.This report aims at giving a classi�cation for the computational complexity of the main existingmulti-way constraint problems.2 BackgroundA multi-way data�ow constraint system is denoted as (V;C;M). V is a set of variables that all havea current value. C is a set of data�ow constraints and M is a set of methods that can satisfy theconstraints.De�nition 1 A multi-way data�ow constraint is an equation that has one or more methodsassociated with it that may be used to satisfy the equation.A method consists of zero or more inputs, one or more outputs, and an arbitrary piece of codethat computes the output variables based on the current value of the input variables. A single-output method determines only one variable.A (data�ow) constraint system is commonly represented by a constraint graph Gc as shown in�gure 1 (a).Local propagation of multi-way constraint systems works in two phases :� The planning phase directs the edges in Gc by assigning one method to each constraint. Theresult of this phase (i.e., the solution of the corresponding problem) is a valid graph Gm calledmethod graph (see �gure 1 (b) and (c)).De�nition 2 A method graph Gm is valid if (1) every constraint has one method associatedwith it in Gm, and (2) Gm contains no variable con�ict, that is, each variable is the outputof at most one method (i.e., has at most one incoming edge).2



� When the method graph Gm contains no directed cycles, the evaluation phase executes themethods in some topological order. When a method is executed, it sets the output variables tovalues such that the constraint is satis�ed. When Gm is cyclic, strongly connected componentsare collected and generally passed to external solvers to be satis�ed as a whole.

(b) (c)(a)Figure 1: A constraint graph is a bipartite graph which nodes are constraints and variables, respec-tively represented by rectangles and circles. Each constraint is connected to its variables. Figure(a) shows an example. Figures (b) and (c) show two possible method graphs. The method selectedfor each constraint is symbolized by directed edges from the constraint to the output variables, andfrom the input variables to the constraint. The method graph in (b) contains no directed cycles,contrarily to the method graph in (c).Ignoring the operations involved in method execution and cycle solving, the evaluation problemis in the class P of polynomial problems. Indeed, topological sort is O(d� jCj) where d is the max-imum number of methods associated to one constraint. This report deals with the computationalcomplexity of the problem solved by the planning phase that will be called constraint planningproblem in the following.Constraint planning algorithms can be divided into three main categories:(1) DeltaBlue [Freeman-Benson 90] and SkyBlue [Sannella 94] work by propagating the con�ictsfrom the perturbations to the leaves of the constraint graph. (2) The propagation of degrees of free-dom scheme (in short PDOF) selects the methods in the reverse order (selecting �rst the methods tobe executed last). It has been used in SketchPad [Sutherland 63] and QuickPlan [Vander Zanden 96].(3) A third approach is related to the classical problem of graph matching. It gives the Maximum-matching algorithm [Gangnet 92].3 Types of constraint planning problemsExisting local propagation algorithms solve di�erent planning problems that imply various tradeo�sbetween simplicity and power:� required constraints only, or both required and preferential constraints that are satis�ed ifpossible 3



� single-output constraints only, or both single-output and multi-output ones� acyclic constraint graphs only, or cycles allowed� method restriction imposed or relaxed (see de�nition 3 below)problem method restriction single-output complexity proof algorithmsacp1 yes yes P [Sutherland 63] PDOF, DeltaBlueacp2 yes no P [Vander Zanden 96] QuickPlanacp3 no yes NPC [Maloney 91] 3 �acp4 no no NPC [Maloney 91] 1 and 2 �cp1 yes yes P [Gangnet 92] Maximum-matchingcp2 yes no ?? � SkyBluecp3 no yes ?? � �cp4 no no ?? � �Table 1: Computational complexity of constraint planning problems. Cycles in the constraintgraph are allowed. Constraints are required (not preferential). Every problem depends on threecharacteristics: (1) a problem that only accepts acyclic method graphs is designed by acpi (i 2f1::4g), whereas a problem that accepts both acyclic and cyclic solutions is designed by cpi; (2)the method restriction; (3) the presence of single-output constraints only. A yes in a cell indicatesthat the corresponding restriction is imposed. NPC stands for NP-complete. The computationalcomplexity of problems cp2, cp3 and cp4 is not known by now, especially cp2 that is handled bySkyBlue.Moreover, some systems forbid directed cycles in the method graph, whereas others do not,which leads in fact to two di�erent (and incomparable) problems. Indeed, a general computationalresult states that a restriction imposed on a solution does not necessarily make the correspondingproblem easier [Papadimitriou 94].Table 1 shows the computational complexity of some existing constraint planning problems.4 An NP-complete planning problem with method restrictionDe�nition 3 The method restriction imposes that every constraint method of a given problemmust use all of the variables in the constraint either as an input or an output variable.Disjunctive constraints do not respect the method restriction (e.g., constraint a _ b has twomethods that output to either variable a or b with no input). However, these constraints are notusually needed in interactive systems. Therefore, all of the propagation algorithms impose themethod restriction. The problems handled by these algorithms are in P , except cp2 (see table 1)that has not been yet analyzed.The only known NP-completeness results aim at problems acp3 and acp4 [Maloney 91] that arenot very interesting in practice because they relax the method restriction.The following theorem states an NP-completeness result about the problem cp2 handled bySkyBlue, and for which the method restriction holds.4



Theorem 1 Let G be a data�ow constraint system for which the method restriction holds.Then proving the existence of a valid method graph (cyclic or not) corresponding to G is NP-complete.The proof and the polynomial reduction involved in it are described in the two following para-graphs.4.1 Polynomial reductionWe will prove that the known NP-complete problem �Exact Cover by 3-Sets� [Papadimitriou 94]can be reduced to �constraint-planning� (i.e., cp2). This reduction will be called planning reductionin the following.De�nition 4 (Exact Cover by 3-Sets) Let X be a �nite set, such that jXj = 3q for some integerq. Let E be a family of sets that contain 3 elements of X each. Every element of X belongs to atleast one 3-set of E.1Does E contain an exact cover for X, that is, a subset S of E such that every element of Xbelongs to exactly one 3-set of S?
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Figure 2: An instance of the �Exact Cover by 3-Sets� problem. X = fa:::fg. The 3-sets inE = f1:::4g are represented by hyper-arcs, as shown in (a). The unique solution is shown in (b).Let G = (X;E) be an instance of �Exact Cover by 3-Sets�. Let G0 = (V;C;M) be an instanceof �constraint-planning� obtained by a planning reduction applied to G as follows:� Variables of V are divided into two sets VarX and VarE. Constraints of C are divided intotwo sets ConstX and ConstE.� Each element i of X corresponds to one variable i-at-most of VarX.� A 3-set p = fa; b; cg in E corresponds to a constraint setp of ConstE connecting six variables.setp has two triple output methods that indicate whether the 3-set p is either present or absentin the solution. The present method outputs to the three variables a-at-most, b-at-most, c-at-most of VarX (It ensures that no other 3-set will cover the corresponding elements.) Theabsent method outputs to the three variables a-p, b-p and c-p of VarE.1This additional hypothesis discards trivial instances while keeping the problem NP-complete.5



� When element i of X can be covered by n di�erent 3-sets fp1:::png of E, one constructsn variables {i-p1...i-pn} of VarE. One also builds one constraint i-at-least of ConstX thatconnects these variables. i-at-least has n single-output methods, one for each variable in theconstraint. The method that outputs to variable i-pk ensures that element i of X is coveredby (at least) the 3-set pk.Figure 2 shows an instance of �Exact Cover by 3-Sets�. It is reduced to the �constraint-planning�instance of �gure 3.
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Figure 3: Valid method graph after transforming the instance of �Exact Cover by 3-Sets� given in�gure 2.The planning reduction is based on the following intuition. One element i of X appears inexactly one 3-set of solution S. Thus, i appears at most once and at least once in a 3-set of S. Thisis translated into the planning problem as follows:� (at most once) If the 3-set p belongs to solution S, then the present method of setp is selectedin the corresponding constraint planning problem. Thus, the variables determined by setpensure that no other 3-set than setp will cover them, otherwise it would lead to variablecon�icts.� (at least once) As said above, a constraint i-at-least directed onto variable i-p ensures thatelement i of X is covered by the 3-set p in the solution. In fact, no method can be selectedfor constraint i-at-least if every connected variable is the output of an absent method.4.2 Proof of theorem 1First, the planning reduction is O(jXj+jEj). Indeed, one element of E corresponds to one constraint,�ve methods, nine edges and three variables in the planning problem; one element of X corresponds6



to one constraint and one variable.Second, �constraint-planning� is in NP since verifying that a method graph issued from a planningreduction is valid is O(jV j + jCj). Indeed, one just has to verify that every variable is determinedby at most one constraint, and that every constraint has one method selected for it.Finally, the two following paragraphs prove the equivalence between (i) a solution S for theproblem G of �Exact Cover by 3-Sets� and (ii) a solution S0 for the planning problem G0 obtainedby the planning reduction applied to G.(i) ! (ii) S0 is obtained by selecting present methods for the constraints setp in ConstE whenthe 3-set p is in S. The absent method is selected for the 3-sets that are not in S. Every constrainti-at-least in ConstX is directed onto variable i-p of VarE when the 3-set p is in S. i-p is an input ofthe present method of constraint setp in ConstE. By construction, every constraint has one methodselected for it.By hypothesis, every element ofX belongs to exactly one 3-set of S. Since there is no intersectionbetween two any 3-sets in S, this construction does not generate any con�ict on variables i-at-mostof VarX.Every element i of X is covered by (at least) one 3-set p of S. By construction, setp is activatedwith the present method that outputs to i-at-most. By construction, variable i-p is determined byconstraint i-at-least, thus generating no variable con�ict. Since the other variables of constrainti-at-least are not determined by it and are linked to exactly two constraints, they cannot providevariable con�icts. Thus, for every element i of X, no corresponding variable in the constraintplanning problem can cause a variable con�ict.(ii) ! (i) Based on S0, S is built by collecting a 3-set fa; b; cg when the present method thatoutputs to variables a-at-most, b-at-most, and c-at-most is selected. Since the method graph isvalid, the intersection of any two 3-sets in S is empty.Let us consider every constraint i-at-least of ConstX in S0. Let i-p be the variable determined byi-at-least. i-p is necessarily an input variable of constraint setp that determines variable i-at-most,otherwise a variable con�ict would occur on i-p. By construction, i necessarily belongs to a 3-set inS. 24.3 Complexity of 2-output constraint planning problemsWe know that when �constraint-planning� is restricted to single-output constraints, the problemcomplexity comes down to P (cp1). Our previous planning reduction shows that �constraint-planning� is NP-complete with 3-output constraints. A natural question is therefore whether the2-output constraint restriction would yield a polynomial problem or not.Theorem 2 Let G be a data�ow constraint system for which the method restriction holds. Gcontains methods that have at most two outputs.Then proving the existence of a valid method graph (cyclic or not) corresponding to G is NP-complete.Proof Every 3-output constraint setp can easily be transformed into two 2-output constraints anda �dummy� variable, as shown in �gure 4. The global behavior is exactly the same. 27
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Figure 4: A 3-output constraint setp transformed into two 2-output constraints. The small diagramsclose to a constraint indicate the possible methods.5 In�uence of the method restriction on problems with cyclic solu-tionsTheorem 3 Let C be a class of data�ow constraint systems and let PC be the problem of existenceof a valid method graph (cyclic or not) for any instance in the class C. Let P 0C be the restriction ofPC to constraint systems that satisfy the method restriction.Then PC and P 0C are polynomially (actually LOG-space) equivalent.In other words, when cyclic solutions are allowed, the method restriction has no in�uence onthe computational complexity of the constraint planning problem.The proof is based on the method transformation de�ned as follows:De�nition 5 Let G1 = (V1; C1;M1) be a constraint system. Based on G1, the method trans-formation provides a constraint system G2 = (V2; C2;M2) such that: (1) V1 = V2, (2) C1 = C2,(3) methods in M1 for which the method restriction holds, occur unchanged in M2, and (4) everymethod m1 in M1 for which the method restriction does not hold is replaced by a method m2 in M2for which the method restriction holds: m2 has the same output variables as m1 and has all of theother variables of the associated constraint as input.Note that this trivial transformation is LOG-space. Thus, theorem 3 can be applied to problemsthat are in P or are NP-complete.Proof of theorem 3 First, P 0C can be reduced to PC since P 0C is a restriction of PC . Second,PC can be reduced to P 0C thanks to the method transformation that reduces a constraint systemG1 into a constraint system G2 for which the method restriction holds. We prove the equivalencebetween a solution of G1 (i) and a solution of G2 (ii).(ii)! (i) A valid method graph of G2 can be transformed into a valid method graph of G1 sinceG1 is G2, except that some edges are omitted, which cannot induce variable con�icts.8



(i)! (ii) A valid method graph of G1 can be transformed into a valid method graph of G2 sinceevery edge added by the method transformation connects a constraint and one of its input variable,which cannot generate variable con�icts. 2Note that if directed cycles were forbidden in the solution, this latest implication would be falsebecause adding an input edge could introduce a directed cycle.6 Synthesisproblem method restriction single-output complexity proof algorithmsacp1 yes yes P [Sutherland 63] PDOF, DeltaBlueacp2 yes no P [Vander Zanden 96] QuickPlanacp3 no yes NPC [Maloney 91] 3 �acp4 no no NPC [Maloney 91] 1 and 2 �cp1 yes yes P [Gangnet 92] Maximum-matchingcp2 yes no NPC theorems 1 and 2 SkyBluecp3 no yes P theorem 3 and cp1 Maximum-matchingcp4 no no NPC cp2 �Table 2: Computational complexity of constraint planning problems. The contributions of this workare bold-faced.These three theorems allow us to deduce the three missing computational complexity results, asshown in table 2. Since cp2 (that is NP-complete) is a restriction of cp4 and cp4 is in NP, cp4 is alsoNP-complete2. Theorem 3 proves that cp1 and cp3 have the same computational complexity.Since the table is now complete, we can highlight interesting points about the constraint planningproblems handled by existing algorithms.SkyBlue Problem cp2 assumes that the constraints must be required, whereas SkyBlue [Sannella 94]can handle a kind of preferential constraints. Therefore, the SkyBlue problem is NP-hard. TheNP-completeness result given by theorem 1 makes the exponential worst case time complexity ofSkyBlue less surprising. However, [Sannella 94] has proved that SkyBlue could reach this worst casecomplexity even on problems acp2 and cp1 that are in P .QuickPlan QuickPlan [Vander Zanden 96] cannot be extended without making the correspondingproblem NP-complete. Indeed, the gap between acp2 (in P ) and acp4 (NP-complete) is due to themethod restriction, as mentioned in [Vander Zanden 96]. Moreover, the gap between acp2 (in P )and cp2 (NP-complete) also lies in the fact that cyclic solutions are forbidden or not.Note that if the following proposition was false, we would have proved that P would be equalto NP.Proposition 1 There exist instances of �constraint-planning� issued from the planning reductionwhich only have cyclic solutions.2Theorem 3 applied to cp2 and cp4 also proves this result.9



Proposition 1 can be proved as follows. Let us consider an instance G = (X;E) of �Exact Coverby 3-Set� for which at least two elements of E intersect. Let G0 be the instance of �constraint-planning� issued from the planning reduction applied to G. Let GM be a valid method graph thatcorresponds to G0. We prove that GM contains at least one directed cycle.Indeed, let us consider an element i that belongs to two 3-sets of E. Since GM is valid, a methodis selected for contraint i-at-least that outputs to a variable i-p. Since there is no variable con�ict,variable i-p is an input variable of a present method of the constraint setp that outputs to variablei-at-most. For the same reason, variable i-at-most is an input variable of a constraint setq (setqexists by construction) that outputs to a variable i-q, which leads to a directed cycle on contrainti-at-least. 2Maximum-matching The Maximum-matching problem is in P [Gangnet 92]. Since the gapbetween cp1 and cp2 lies in the single-output constraint restriction, Maximum-matching cannot beextended to multi-output constraints.Note that Maximum-matching can also solve problem cp3. Indeed, theorem 3 can easily beextended to the problem of �nding a solution, thanks to a reverse transformation. So one needs to(1) transform an instance of cp3 into one of cp1 with the method transformation, (2) call Maximum-matching on the cp1 instance and (3) retrieve the solution (if any) with the reverse method trans-formation.7 Complexity of other constraint planning problemsTable 2 has given the computational complexity of constraints problems for which:� the constraints are required (not preferential), and� the constraint graph may be cyclic or not.Based on the previous results, paragraphs 7.2 and 7.3 analyse the in�uence of these two charac-teristics on the computational complexity. The restriction to a widely known type of single-outputconstraints is also discussed in the following paragraph.7.1 Regular constraintsInteractive applications usually enclose a large part of regular constraints, such as linear or quadraticequations.De�nition 6 A regular constraint connecting n variables is a multi-way single-output constraintthat contains n single-ouput methods that output to every variable.We can observe that problems cp1 and acp1 are both in P . Thus, the restrictions of cp1 andacp1 to problems that only contain regular constraints are also in P .
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Remark Maximum-matching is restricted to regular constraints. However, a minor improvementcould allow it to handle any type of single-output constraints by ensuring that the latest chosenmethod in the alterning path can actually be �inverted�3. Thus, the computational complexity ofproblem cp1 has in fact been deduced thanks to this improvement.7.2 Complexity of constraint hierarchiesGiven a problem with both preferential and required constraints, if not all of the preferential con-straints can be satis�ed, algorithms need a way to select which solutions are desired.In existing local propagation systems that handle preferential constraints, required and prefer-ential constraints are partitioned in an arbitrary number of levels of preference called constrainthierarchies, each successive level being less preferred than the previous one. Moreover, the bestsolution is always determined with respect to the same generic-LGB comparator.4 In short, a validmethod graph is generic-LGB i�:� all of the required constraints are satis�ed, and� one cannot satisfy a desactived preferential constraint in the method graph without desacti-vating a stronger constraint or a constraint with the same strength5.See [Borning 92] for more details.Let hacpi and hcpi (i 2 f1::4g) be the respective generalizations of problems acpi and cpi forwhich a solution is expected that satis�es the generic-LGB criterion in a constraint hierarchy.Since table 2 is now complete, we can observe that all of the constraint planning algorithmsable to handle constraint planning problems in P (i.e., acp1, acp2, cp1, and cp3) can also supportconstraint hierarchies with the generic-LGB criterion, while remaining polynomial.Then, we can conclude that the problems hacp1, hacp2, hcp1 and hcp3 are in P .We can also remark that, as the problems acp3, acp4, cp2, cp4, are NP-complete with requiredconstraints, their respective generalizations hacp3, hacp4, hcp2, hcp4 are NP-hard.7.3 Complexity of problems with acyclic constraint graphsWe know that an acyclic constraint graph cannot yield a method graph with directed cycles. Therestriction of the two problems acpi and cpi (i 2 f1::4g) to acyclic constraints graphs is then aunique problem p0i.� Since p01 and p02 are restrictions of problems acp1 and acp2, they are also in P .� In the same way, p03 is in P since it is a restriction of cp3.� p02 and p04 can be seen as problems where cyclic solutions are allowed (in fact, all solutionsare acyclic and one does not need to forbid cyclic solutions). They satisfy the conditions oftheorem 3. Thus, p04 is in P since it has the same complexity as p02.We can then conclude that all of the restrictions to acyclic constraint graphs are in P .3This improvement is very close to the way of calculating the walkabout strengths in DeltaBlue.4This criterion is called generic since it can be applied to any constraint planning problem (with the single-outputconstraint restriction or not, accepting cyclic solutions or not...)5It is the well-known LGB comparator in DeltaBlue and QuickPlan, the l.p.b.-predicate one in Maximum-matchingand the MGB one in SkyBlue. 11



Constraint hierarchiesLet us call hp0i the restriction to acyclic constraint graphs of the two problems hcpi and hacpi (seeparagraph 7.2).The problems hp01 and hp02 are in P because they are restrictions of the problems hacp1 andhacp2. Moreover, these problems can be solved by QuickPlan, so that the problems hp03 and hp04 canalso be solved by Quickplan thanks to the theorem 3 extended to the problem of �nding a solution(see paragraph 6). Thus, the problems hp03 and hp04 are also in P .8 ConclusionThis report has proved two computational complexity results. First, the constraint planning prob-lem handled by SkyBlue is NP-hard. We do not know yet whether it is in NP, when handlingconstraint hierarchies with the generic-LGB criterion. Second, when cyclic solutions are allowed,the computational complexity is not sensitive to the method restriction. Based on the theoreticalresults presented in this report, the following simple rule gives su�cient conditions to determine ifa given constraint planning problem is in P .if the constraint graph contains no cycle thenthe problem is in Pelse if an acyclic solution is expected thenthe problem is in P if the method restriction is imposedelsethe problem is in P if it only contains single-output constraintsThis rule highlights the importance of the �cyclic/acyclic solution� condition. When directedcycles are not allowed in the solution, the gap between problems in P and NP-complete ones comesfrom the method restriction, whereas it is not sensitive to the single-output constraint restriction.It is exactly the opposite behavior when cyclic solutions are allowed. Finally, the polynomialcomplexity of problem acp1, acp2, cp1, or cp3 is not lost when handling constraint hierarchies.We believe that these results will help designers to conceive multi-way constraint systems thatprovide a good balance between expressiveness and e�ciency.AcknowledgementsWe especially want to thank Nicolas Chleq and Thomas Schiex whose comments were very helpful.Also thanks to Christian Bliek and Nicolas Prcovic.
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