Computational Complexity
of Multi-way, Dataflow Constraint Problems
Gilles Trombettoni, Bertrand Neveu
Rapport de Recherche CERMICS 97.86

Janvier 97

Computational Complexity
of Multi-way, Dataflow Constraint Problems

Gilles Trombettoni, Bertrand Neveu

Abstract

Although it is widely acknowledged that multi-way dataflow constraints make it easier to specify
certain relationships in interactive applications, concerns about their efficiency have impeded their
acceptance. Some of the local propagation algorithms that solve these constraints are polynomial,
others (such as SkyBlue) are exponential. In fact, every system handles a specific problem and
the influence of any particular restriction on the computational complexity is not yet precisely
determined. In this report, we present theoretical results that allow us to classify existing multi-
way constraint problems. We especially prove that the problem handled by SkyBlue is NP-hard.

Keywords: Constraints, Computational Complexity, Local Propagation, User Interfaces.

Complexité théorique de problemes
de contraintes fonctionnelles multi-directionnelles

Résumé

Les contraintes fonctionnelles multi-directionnelles permettent de spécifier facilement certaines rela-
tions dans les applications graphiques interactives. Elles sont pourtant encore peu utilisées & cause
de doutes concernant ’efficacité des techniques de résolution par propagation locale: certains al-
gorithmes de résolution par propagation locale sont polynomiaux, d’autres (comme SkyBlue) sont
exponentiels. En fait, chaque systeme existant traite un probleme spécifique et les conséquences
des diverses restrictions dans le formalisme des contraintes traitées sur la complexité théorique ne
sont pas déterminées précisément. Ce rapport présente des résultats de complexité théorique qui
permettent de classifier les différents problemes traités par les systémes existants. Nous montrons
en particulier que le probleme traité par SkyBlue est NP-difficile.

Mots-clés: Contraintes, Complexité théorique, Propagation locale, Interfaces graphiques.

1 Introduction

Dataflow constraints are rapidly gaining popularity in interactive applications because they simplify
the programming task, are conceptually simple and easy to understand, and are capable of expressing
relationships over multiple data types, including numbers, strings, booleans, bitmaps, fonts and
colors. The dataflow constraint solvers are used in numerous interactive systems, such as graphical
interface toolkits, spreadsheets, graphical layout systems and animations.

Dataflow constraints are divided into two main categories. A one-way dataflow constraint is as-
sociated to a function that recovers the consistency of the constraint by calculating output variables
based on the current value of the input variables. The spreadsheet model, more formally known as
the dependency graph model [Hoover 87|, only takes into account one-way constraints. This model
is widely used in interactive systems, mainly because the solving process is based on an efficient
incremental evaluation phase that topologically sorts the functions to execute.

A multi-way dataflow constraint has several functions (called methods) that may be used to
satisfy it. The solving process of problems that contain multi-way constraints needs an additional
planning phase that occurs before the evaluation phase. The planning phase assigns one method to
each constraint.

Although multi-way constraints are more expressive than one-way constraints, concerns about
their efficiency have made them less popular.

Every solving algorithm handles a specific constraint planning problem and the conditions that
allow us to decide whether it is computationally difficult are not clear by now.

This report aims at giving a classification for the computational complexity of the main existing
multi-way constraint problems.

2 Background

A multi-way dataflow constraint system is denoted as (V,C, M). V is a set of variables that all have
a current value. C is a set of dataflow constraints and M is a set of methods that can satisfy the
constraints.

Definition 1 A multi-way dataflow constraint is an equation that has one or more methods
associated with it that may be used to satisfy the equation.

A method consists of zero or more inputs, one or more outputs, and an arbitrary piece of code
that computes the output variables based on the current value of the input variables. A single-
output method determines only one variable.

A (dataflow) constraint system is commonly represented by a constraint graph G. as shown in
figure 1 (a).
Local propagation of multi-way constraint systems works in two phases:

e The planning phase directs the edges in G, by assigning one method to each constraint. The
result of this phase (i.e., the solution of the corresponding problem) is a valid graph G, called
method graph (see figure 1 (b) and (c)).

Definition 2 A method graph G, is valid if (1) every constraint has one method associated
with it in Gy, and (2) G, contains no variable conflict, that is, each variable is the output
of at most one method (i.e., has at most one incoming edge).

e When the method graph G,, contains no directed cycles, the evaluation phase executes the
methods in some topological order. When a method is executed, it sets the output variables to
values such that the constraint is satisfied. When G, is cyclic, strongly connected components
are collected and generally passed to external solvers to be satisfied as a whole.

(@ AD (b) é} (©) <J—>

Figure 1: A constraint graph is a bipartite graph which nodes are constraints and variables, respec-
tively represented by rectangles and circles. Each constraint is connected to its variables. Figure
(a) shows an example. Figures (b) and (c¢) show two possible method graphs. The method selected
for each constraint is symbolized by directed edges from the constraint to the output variables, and
from the input variables to the constraint. The method graph in (b) contains no directed cycles,
contrarily to the method graph in (c).

Ignoring the operations involved in method execution and cycle solving, the evaluation problem
is in the class P of polynomial problems. Indeed, topological sort is O(d x |C|) where d is the max-
imum number of methods associated to one constraint. This report deals with the computational
complexity of the problem solved by the planning phase that will be called constraint planning
problem in the following.

Constraint planning algorithms can be divided into three main categories:
(1) DeltaBlue [Freeman-Benson 90| and SkyBlue [Sannella 94| work by propagating the conflicts
from the perturbations to the leaves of the constraint graph. (2) The propagation of degrees of free-
dom scheme (in short PDOF) selects the methods in the reverse order (selecting first the methods to
be executed last). It has been used in SketchPad [Sutherland 63] and QuickPlan [Vander Zanden 96].
(3) A third approach is related to the classical problem of graph matching. It gives the Mazimum-
matching algorithm [Gangnet 92].

3 Types of constraint planning problems

Existing local propagation algorithms solve different planning problems that imply various tradeoffs
between simplicity and power:

e required constraints only, or both required and preferential constraints that are satisfied if
possible

e single-output constraints only, or both single-output and multi-output ones
e acyclic constraint graphs only, or cycles allowed

e method restriction imposed or relaxed (see definition 3 below)

problem | method restriction | single-output | complexity proof algorithms
acpi yes yes P [Sutherland 63] PDOF, DeltaBlue
acps yes no P [Vander Zanden 96] QuickPlan
acps no yes NPC [Maloney 91] 3 -
acpa no no NPC [Maloney 91] 1 and 2 -
cp1 yes yes P [Gangnet 92| Maximum-matching
cp2 yes no 77 - SkyBlue
cps no yes ?? - -
CPa no no 77 - —

Table 1: Computational complexity of constraint planning problems. Cycles in the constraint
graph are allowed. Constraints are required (not preferential). Every problem depends on three
characteristics: (1) a problem that only accepts acyclic method graphs is designed by acp; (i €
{1..4}), whereas a problem that accepts both acyclic and cyclic solutions is designed by cp;; (2)
the method restriction; (3) the presence of single-output constraints only. A yes in a cell indicates
that the corresponding restriction is imposed. NPC stands for NP-complete. The computational
complexity of problems cpo, c¢ps and cpy is not known by now, especially c¢py that is handled by
SkyBlue.

Moreover, some systems forbid directed cycles in the method graph, whereas others do not,
which leads in fact to two different (and incomparable) problems. Indeed, a general computational
result states that a restriction imposed on a solution does not necessarily make the corresponding
problem easier [Papadimitriou 94].

Table 1 shows the computational complexity of some existing constraint planning problems.

4 An NP-complete planning problem with method restriction

Definition 3 The method restriction imposes that every constraint method of a given problem
must use all of the variables in the constraint either as an input or an output variable.

Disjunctive constraints do not respect the method restriction (e.g., constraint a V b has two
methods that output to either variable a or b with no input). However, these constraints are not
usually needed in interactive systems. Therefore, all of the propagation algorithms impose the
method restriction. The problems handled by these algorithms are in P, except cps2 (see table 1)
that has not been yet analyzed.

The only known NP-completeness results aim at problems acps and acps [Maloney 91| that are
not very interesting in practice because they relax the method restriction.

The following theorem states an NP-completeness result about the problem c¢ps handled by
SkyBlue, and for which the method restriction holds.

Theorem 1 Let G be a dataflow constraint system for which the method restriction holds.
Then proving the existence of a valid method graph (cyclic or not) corresponding to G is NP-
complete.

The proof and the polynomial reduction involved in it are described in the two following para-
graphs.

4.1 Polynomial reduction

We will prove that the known NP-complete problem “Ezact Cover by 3-Sets” [Papadimitriou 94]
can be reduced to “constraint-planning’ (i.e., cpy). This reduction will be called planning reduction
in the following.

Definition 4 (Exact Cover by 3-Sets) Let X be a finite set, such that | X| = 3q for some integer
q- Let E be a family of sets that contain 3 elements of X each. Every element of X belongs to at
least one 3-set of E."

Does E contain an exact cover for X, that is, a subset S of E such that every element of X
belongs to exactly one 3-set of S?

4

(b)

Figure 2: An instance of the “Ezact Cover by 3-Sets” problem. X = {a..f}. The 3-sets in
E = {1...4} are represented by hyper-arcs, as shown in (a). The unique solution is shown in (b).

Let G = (X, E) be an instance of “Ezact Cover by 3-Sets”. Let G' = (V,C, M) be an instance
of “constraint-planning” obtained by a planning reduction applied to G as follows:

e Variables of V are divided into two sets VarX and VarE. Constraints of C are divided into
two sets ConstX and ConstE.

e Each element ¢ of X corresponds to one variable ¢-at-most of VarX.

e A 3-set p = {a,b,c} in E corresponds to a constraint set, of ConstE connecting six variables.
set, has two triple output methods that indicate whether the 3-set p is either present or absent
in the solution. The present method outputs to the three variables a-at-most, b-at-most, c-
at-most of VarX (It ensures that no other 3-set will cover the corresponding elements.) The
absent method outputs to the three variables a-p, b-p and c-p of VarE.

!This additional hypothesis discards trivial instances while keeping the problem NP-complete.

e When element ¢ of X can be covered by n different 3-sets {p;...p,} of E, one constructs
n variables {i-p;...i-p,} of VarE. One also builds one constraint i-at-least of ConstX that
connects these variables. i-at-least has n single-output methods, one for each variable in the
constraint. The method that outputs to variable i-p, ensures that element ¢ of X is covered
by (at least) the 3-set py.

Figure 2 shows an instance of “ Ezact Cover by 3-Sets”. It is reduced to the “constraint-planning”
instance of figure 3.

f-at-least

€D & D
G

o

@

set 3

\

b-at-least

e-at-least

@

D

=23
KD

D g3y

Figure 3: Valid method graph after transforming the instance of “ Ezact Cover by 3-Sets” given in
figure 2.

The planning reduction is based on the following intuition. One element ¢ of X appears in
exactly one 3-set of solution S. Thus, ¢ appears at most once and at least once in a 3-set of S. This
is translated into the planning problem as follows:

e (at most once) If the 3-set p belongs to solution S, then the present method of set, is selected
in the corresponding constraint planning problem. Thus, the variables determined by set,
ensure that no other 3-set than set, will cover them, otherwise it would lead to variable
conflicts.

e (at least once) As said above, a constraint i-at-least directed onto variable i-p ensures that
element ¢ of X is covered by the 3-set p in the solution. In fact, no method can be selected
for constraint i-at-least if every connected variable is the output of an absent method.

4.2 Proof of theorem 1

First, the planning reduction is O(| X |+|E|). Indeed, one element of E corresponds to one constraint,
five methods, nine edges and three variables in the planning problem; one element of X corresponds

to one constraint and one variable.

Second, “ constraint-planning’ is in NP since verifying that a method graph issued from a planning
reduction is valid is O(]V| + |C]). Indeed, one just has to verify that every variable is determined
by at most one constraint, and that every constraint has one method selected for it.

Finally, the two following paragraphs prove the equivalence between (i) a solution S for the
problem G of “Ezact Cover by 3-Sets” and (ii) a solution S’ for the planning problem G’ obtained
by the planning reduction applied to G.

(i) — (¢¢) S’ is obtained by selecting present methods for the constraints set, in ConstE when
the 3-set p isin S. The absent method is selected for the 3-sets that are not in S. Every constraint
i-at-least in ConstX is directed onto variable i-p of VarE when the 3-set p is in S. 4-p is an input of
the present method of constraint set, in ConstE. By construction, every constraint has one method
selected for it.

By hypothesis, every element of X belongs to exactly one 3-set of S. Since there is no intersection
between two any 3-sets in .S, this construction does not generate any conflict on variables i-at-most
of VarX.

Every element ¢ of X is covered by (at least) one 3-set p of S. By construction, set,, is activated
with the present method that outputs to ¢-at-most. By construction, variable i-p is determined by
constraint i-at-least, thus generating no variable conflict. Since the other variables of constraint
i-at-least are not determined by it and are linked to exactly two constraints, they cannot provide
variable conflicts. Thus, for every element i of X, no corresponding variable in the constraint
planning problem can cause a variable conflict.

(i¢) — (¢) Based on S’, S is built by collecting a 3-set {a,b,c} when the present method that
outputs to variables a-at-most, b-at-most, and c-at-most is selected. Since the method graph is
valid, the intersection of any two 3-sets in .S is empty.

Let us consider every constraint i-at-least of ConstX in S’. Let i-p be the variable determined by
i-at-least. i-p is necessarily an input variable of constraint set, that determines variable i-at-most,

otherwise a variable conflict would occur on i-p. By construction, ¢ necessarily belongs to a 3-set in
S. O

4.3 Complexity of 2-output constraint planning problems

We know that when “constraint-planning” is restricted to single-output constraints, the problem
complexity comes down to P (cp;). Our previous planning reduction shows that “constraint-
planning” is NP-complete with 3-output constraints. A natural question is therefore whether the
2-output constraint restriction would yield a polynomial problem or not.

Theorem 2 Let G be a dataflow constraint system for which the method restriction holds. G
contains methods that have at most two outputs.

Then proving the existence of a valid method graph (cyclic or not) corresponding to G is NP-
complete.

Proof Every 3-output constraint set, can easily be transformed into two 2-output constraints and
a “dummy” variable, as shown in figure 4. The global behavior is exactly the same. O

i

N e

set >T<

p| X
\ X

G o e cp

Figure 4: A 3-output constraint set, transformed into two 2-output constraints. The small diagrams
close to a constraint indicate the possible methods.

5 Influence of the method restriction on problems with cyclic solu-
tions

Theorem 3 Let C be o class of dataflow constraint systems and let Pc be the problem of existence
of a valid method graph (cyclic or not) for any instance in the class C. Let P, be the restriction of
Po to constraint systems that satisfy the method restriction.

Then Pc and P{, are polynomially (actually LOG-space) equivalent.

In other words, when cyclic solutions are allowed, the method restriction has no influence on
the computational complexity of the constraint planning problem.
The proof is based on the method transformation defined as follows:

Definition 5 Let Gy = (V4,C1, My) be a constraint system. Based on G, the method trans-
formation provides a constraint system Gy = (Va,Co, My) such that: (1) Vi = Vs, (2) C1 = Cy,
(8) methods in My for which the method restriction holds, occur unchanged in My, and (4) every
method my in My for which the method restriction does not hold is replaced by a method mo in M,
for which the method restriction holds: mo has the same output variables as mq and has all of the
other variables of the associated constraint as input.

Note that this trivial transformation is LOG-space. Thus, theorem 3 can be applied to problems
that are in P or are NP-complete.

Proof of theorem 3 First, P, can be reduced to Pc since P/ is a restriction of Po. Second,
Pc can be reduced to P/, thanks to the method transformation that reduces a constraint system
GG1 into a constraint system G5 for which the method restriction holds. We prove the equivalence
between a solution of Gy (i) and a solution of Gy (i7).

(¢4) — (¢) A valid method graph of G can be transformed into a valid method graph of G since
G1 is G4, except that some edges are omitted, which cannot induce variable conflicts.

(¢) — (¢¢) A valid method graph of G can be transformed into a valid method graph of G4 since
every edge added by the method transformation connects a constraint and one of its input variable,
which cannot generate variable conflicts. O

Note that if directed cycles were forbidden in the solution, this latest implication would be false
because adding an input edge could introduce a directed cycle.

6 Synthesis

problem | method restriction | single-output | complexity proof algorithms
acpi yes yes P [Sutherland 63] PDOF, DeltaBlue
acps yes no P [Vander Zanden 96] QuickPlan
acps no yes NPC [Maloney 91| 3 -
acpa no no NPC [Maloney 91] 1 and 2 -
cp1 yes yes P [Gangnet 92] Maximum-matching
cp2 yes no NPC theorems 1 and 2 SkyBlue
cps no yes P theorem 3 and c¢p: | Maximum-matching
CPa no no NPC cp2 —

Table 2: Computational complexity of constraint planning problems. The contributions of this work

are bold-faced.

These three theorems allow us to deduce the three missing computational complexity results, as
shown in table 2. Since cps (that is NP-complete) is a restriction of cpy and cpy is in NP, cpy is also
NP-complete?. Theorem 3 proves that cp; and cps have the same computational complexity.

Since the table is now complete, we can highlight interesting points about the constraint planning
problems handled by existing algorithms.

SkyBlue Problem cpy assumes that the constraints must be required, whereas SkyBlue [Sannella 94|
can handle a kind of preferential constraints. Therefore, the SkyBlue problem is NP-hard. The
NP-completeness result given by theorem 1 makes the exponential worst case time complexity of
SkyBlue less surprising. However, [Sannella 94| has proved that SkyBlue could reach this worst case
complexity even on problems acps and cp; that are in P.

QuickPlan QuickPlan [Vander Zanden 96| cannot be extended without making the corresponding
problem NP-complete. Indeed, the gap between acpy (in P) and acps (NP-complete) is due to the
method restriction, as mentioned in |[Vander Zanden 96]. Moreover, the gap between acps (in P)
and cpy (NP-complete) also lies in the fact that cyclic solutions are forbidden or not.

Note that if the following proposition was false, we would have proved that P would be equal

to NP.

Proposition 1 There exist instances of “constraint-planning” issued from the planning reduction

which only have cyclic solutions.

2Theorem 3 applied to cp» and cp4 also proves this result.

Proposition 1 can be proved as follows. Let us consider an instance G = (X, E) of “ Ezact Cover
by 3-Set” for which at least two elements of E intersect. Let G’ be the instance of “constraint-
planning” issued from the planning reduction applied to G. Let GM be a valid method graph that
corresponds to G'. We prove that GM contains at least one directed cycle.

Indeed, let us consider an element i that belongs to two 3-sets of E. Since GM is valid, a method
is selected for contraint i-at-least that outputs to a variable #-p. Since there is no variable conflict,
variable i-p is an input variable of a present method of the constraint set, that outputs to variable
i-at-most. For the same reason, variable i-at-most is an input variable of a constraint set, (set,
exists by construction) that outputs to a variable i-¢, which leads to a directed cycle on contraint
i-at-least. O

Maximum-matching The Maximum-matching problem is in P |Gangnet 92|. Since the gap
between cp; and cpy lies in the single-output constraint restriction, Maximum-matching cannot be
extended to multi-output constraints.

Note that Maximum-matching can also solve problem cps. Indeed, theorem 3 can easily be
extended to the problem of finding a solution, thanks to a reverse transformation. So one needs to
(1) transform an instance of cp3 into one of cp; with the method transformation, (2) call Maximum-
matching on the ¢p; instance and (3) retrieve the solution (if any) with the reverse method trans-
formation.

7 Complexity of other constraint planning problems
Table 2 has given the computational complexity of constraints problems for which:
e the constraints are required (not preferential), and

e the constraint graph may be cyclic or not.

Based on the previous results, paragraphs 7.2 and 7.3 analyse the influence of these two charac-
teristics on the computational complexity. The restriction to a widely known type of single-output
constraints is also discussed in the following paragraph.

7.1 Regular constraints

Interactive applications usually enclose a large part of regular constraints, such as linear or quadratic
equations.

Definition 6 A regular constraint connecting n variables is a multi-way single-output constraint
that contains n single-ouput methods that output to every variable.

We can observe that problems c¢p; and acp; are both in P. Thus, the restrictions of ¢p; and
acpy to problems that only contain regular constraints are also in P.

10

Remark Maximum-matching is restricted to regular constraints. However, a minor improvement
could allow it to handle any type of single-output constraints by ensuring that the latest chosen
method in the alterning path can actually be “inverted”®. Thus, the computational complexity of
problem c¢p; has in fact been deduced thanks to this improvement.

7.2 Complexity of constraint hierarchies

Given a problem with both preferential and required constraints, if not all of the preferential con-
straints can be satisfied, algorithms need a way to select which solutions are desired.

In existing local propagation systems that handle preferential constraints, required and prefer-
ential constraints are partitioned in an arbitrary number of levels of preference called constraint
hierarchies, each successive level being less preferred than the previous one. Moreover, the best
solution is always determined with respect to the same generic-LGB comparator.* In short, a valid
method graph is generic-LGB iff:

e all of the required constraints are satisfied, and

e one cannot satisfy a desactived preferential constraint in the method graph without desacti-
vating a stronger constraint or a constraint with the same strength®.

See |[Borning 92| for more details.

Let hacp; and hep; (i € {1..4}) be the respective generalizations of problems acp; and cp; for
which a solution is expected that satisfies the generic-LGB criterion in a constraint hierarchy.

Since table 2 is now complete, we can observe that all of the constraint planning algorithms
able to handle constraint planning problems in P (i.e., acpi, acpz, ¢p1, and cp3) can also support
constraint hierarchies with the generic-LGB criterion, while remaining polynomial.

Then, we can conclude that the problems hacpi, hacpo, hcpy and heps are in P.

We can also remark that, as the problems acps, acpy, cpa, cps, are NP-complete with required
constraints, their respective generalizations hacps, hacpy, hcpa, hepy are NP-hard.

7.3 Complexity of problems with acyclic constraint graphs

We know that an acyclic constraint graph cannot yield a method graph with directed cycles. The
restriction of the two problems acp; and cp; (i € {1..4}) to acyclic constraints graphs is then a
unique problem pf.

e Since p} and p), are restrictions of problems acp; and acps, they are also in P.
e In the same way, p} is in P since it is a restriction of cps.

e p, and p) can be seen as problems where cyclic solutions are allowed (in fact, all solutions
are acyclic and one does not need to forbid cyclic solutions). They satisfy the conditions of
theorem 3. Thus, p} is in P since it has the same complexity as pf.

We can then conclude that all of the restrictions to acyclic constraint graphs are in P.

3This improvement is very close to the way of calculating the walkabout strengths in DeltaBlue.

“This criterion is called generic since it can be applied to any constraint planning problem (with the single-output
constraint restriction or not, accepting cyclic solutions or not...)

5Tt is the well-known LGB comparator in DeltaBlue and QuickPlan, the L.p.b.-predicate one in Maximum-matching
and the MGB one in SkyBlue.

11

Constraint hierarchies

Let us call hp! the restriction to acyclic constraint graphs of the two problems hep; and hacp; (see
paragraph 7.2).

The problems hp}] and hp, are in P because they are restrictions of the problems hacp; and
hacps. Moreover, these problems can be solved by QuickPlan, so that the problems hpf and hp)y can
also be solved by Quickplan thanks to the theorem 3 extended to the problem of finding a solution
(see paragraph 6). Thus, the problems hpf and hp), are also in P.

8 Conclusion

This report has proved two computational complexity results. First, the constraint planning prob-
lem handled by SkyBlue is NP-hard. We do not know yet whether it is in NP, when handling
constraint hierarchies with the generic-LGB criterion. Second, when cyclic solutions are allowed,
the computational complexity is not sensitive to the method restriction. Based on the theoretical
results presented in this report, the following simple rule gives sufficient conditions to determine if
a given counstraint planning problem is in P.

if the constraint graph contains no cycle then
the problem is in P
else if an acyclic solution is expected then
the problem is in P if the method restriction is imposed
else
the problem is in P if it only contains single-output constraints

This rule highlights the importance of the “cyclic/acyclic solution” condition. When directed
cycles are not allowed in the solution, the gap between problems in P and NP-complete ones comes
from the method restriction, whereas it is not sensitive to the single-output constraint restriction.
It is exactly the opposite behavior when cyclic solutions are allowed. Finally, the polynomial
complexity of problem acpi, acps, cp1, or cps is not lost when handling constraint hierarchies.

We believe that these results will help designers to conceive multi-way constraint systems that
provide a good balance between expressiveness and efficiency.

Acknowledgements

We especially want to thank Nicolas Chleq and Thomas Schiex whose comments were very helpful.
Also thanks to Christian Bliek and Nicolas Prcovic.

12

References

[Borning 92| Alan Borning, Bjorn Freeman-Benson, Molly Wilson. Constraint hierarchies. Lisp and
Symbolic Computation, 5(3):223-270, Sept. 1992.

[Freeman-Benson 90| Bjorn Freeman-Benson, John Maloney, Alan Borning. An incremental con-
straint solver. Communications of the ACM, 33(1):54-63, Jan. 1990.

[Gangnet 92] Michel Gangnet, Burton Rosenberg. Constraint programming and graph algorithms.
In Second International Symposium on Artificial Intelligence and Mathematics, Jan. 1992.

[Hoover 87| Roger Hoover. Incremental Graph Evaluation. PhD thesis, Cornell University, Ithaca,
1987.

[Maloney 91] John Maloney. Using Constraints for User Interface Construction. PhD thesis, De-
partment of Computer Science and Engineering, University of Washington, Seattle, 1991. Pub-
lished as Technical Report 91-08-12.

[Papadimitriou 94| Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Sannella 94| Michael Sannella. Constraint Satisfaction and Debugging for Interactive User Inter-
faces. PhD thesis, Department of Computer Science and Engineering, University of Washington,
Seattle, 1994. Also available as Technical Report 94-09-10.

[Sutherland 63| Ivan Sutherland. Sketchpad: A Man-Machine Graphical Communication System.
PhD thesis, Department of Electrical Engineering, MIT, 1963.

[Vander Zanden 96| Bradley Vander Zanden. An incremental algorithm for satisfying hierarchies
of multi-way, dataflow constraints. ACM Transactions on Programming Languages and Systems,
18(1):30-72, Jan. 1996.

13

Liste des derniers rapports de recherche du CERMICS

96-73

96-74

96-75

96-76

96-77

96-78

96-79

96-80

List of previous CERMICS research reports

Y. J. Xiao

B. Lapeyre
Y. J. Xiao

A. Toubol

C. Buisson,
J. P.Lebacque,
J. B.Lesort

E. Cances,

C.Le Bris

S. Depeyre

J.F.Gerbeau
N.Glinsky-Olivier
B.Larrouturou

B. Jourdain

Variation of product function and numerical of some
partial differential equations by low-discrepancy se-
quences

7 pages, aoit 1996, Noisy-Le-Grand

Volume-discrepancy of sequences and numerical tests
16 pages, septembre 1996, Noisy-Le-Grand

High temperature regime for a multidimensional
Sherrigton- Kirkpatrick model of spin glass
34 pages, septembre 1996, Noisy-Le-Grand

Travel Times Computation for Dynamic Assignment
Modelling
15 pages, novembre 1996, Noisy-Le-Grand

On the perturbation methods for some nonlinear quan-
tum chemistry models
45 pages, novembre 1996, Noisy-Le-Grand

Une méthode couplée pour la simulation d’écoulements
disphasiques dispersés
57 pages, octobre 1996, Sophia-Antipolis

Semi-implicit Roe-type fluzes for low-mach number
flows
octobre 1996, Sophia-Antipolis

Propagation du chaos trajectorielle pour les lois de con-
servation scalaire
14 pages, décembre 1996, Noisy-Le-Grand

14

96-81 B. Jourdain Diffusions with a nonlinear drift coefficient and proba-
bilistic interpretation of generalized Burger’s equations
16 pages, décembre 1996, Noisy-Le-Grand

96-82 D. Hirschkoff Up-to context proofs for the w-calculus in the Coq sys-
tem
18 pages, janvier 1997, Noisy-Le-Grand

96-83 E. V Abrarova, Sur la stabilité et les bifurcations des mouvements sta-
A. V. Karapetyan tionnaires d’un corps solide dans un champ de gravi-
tation central
22 pages, janvier 1997, Noisy-Le-Grand

96-84 E. V Abrarova, Sur les mouvements stationnaires en orbite d’un sys-
teme de deux corps avec liaison élastique
20 pages, janvier 1997, Noisy-Le-Grand

97-85 J.P. Cioni Parallelisation of Mazwell and 3D simulations in elec-
tromagnetism using clusters of workstations
18 pages, janvier 1997, Sophia-Antipolis

97-86 B. Neveu Computational complexity of Multi-way, Dataflow con-
G. Trombettoni straint problems
13 pages, janvier 1997, Sophia-Antipolis

Ces rapports peuvent étre obtenus en s’adressant au secrétariat du CERMICS :
The reports can be asked from:

Imane HAMADE

ENPC-CERMICS

6 et 8 Avenue Blaise Pascal

Cité Descartes Champs-sur-Marne

77455-Marne-La-Vallée CEDEX 2

Tél : (33) 01 - 64-15-35-71

email: hamade@newaphro.enpc.fr

15

