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Abstract

We present a new method for solving numerically the equations associated
with solvation continuum models, which also works when the solvent is an
anisotropic dielectric or an ionic solution. This method is based on the integral
equation formalism. Its theoretical background is set up and some numerical
results for simple systems are given. This method is much more effective than
three dimensional methods used so far, like finite-elements or finite-differences,
in terms of both numerical accuracy and computational costs.

1 Introduction

Solvent effects play a crucial role in most of the chemical and biological processes.
A convenient and fruitful way to deal with such effects in Molecular Mechanics or
Quantum Chemistry calculations consists in making use of the so-called solvation
continuum models. In particular the present paper focuses on a specific example
of this kind of models, namely the Polarizable Continuum Model (in short PCM),
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which has spread out since its introduction in 1981 [1] because of its adaptability
and accuracy; in this method the solute molecule under study is located inside a
molecular cavity surrounded by a dielectric medium which models the solvent (see
Figure 1).

Fig. 1- Schemeof slvation n the Poarizable Contnuum Model.

Figure 1: Scheme of solvation in the Polarizable Continuum Model

We refer the reader to [2] for a comprehensive review of the whole class of these
models, with particular attention to PCM, and of the various numerical methods
in use for solving the corresponding equations.

One of the basic quantities that has to be computed is the electrostatic interac-
tion between two charge distributions p and p’ carried by the solute molecule. In
PCM, this interaction takes into account the polarization of the dielectric medium
modelling the solvent. Its mathematical expression reads

Bi(ps) = | #@V(a)da,

where V() is the electrostatic potential generated by the charge distribution p(z).
For standard PCM, it is solution to the equation

—div(e(2)VV (2)) = p(a), (L1)

with €(z) = 1 inside the cavity and e(z) = e, outside (e, denotes the macroscopic
dielectric constant of the solvent, e; = 78.6 for water).

Equation 1.1 fully accounts for the dielectric polarization phenomenon.This equa-
tion may be rewritten as



—AV = p+ pa, (1.2)

where p, may be regarded as an apparent charge. It is easy to see that, when p
is located inside the cavity, the apparent charge p, is supported on the interface
I. Indeed, inside the cavity (in €;), e(z) = 1 and then p, = —AV + div(eVV) =
—AV + AV = 0, and outside the cavity (in ), e(z) = €; and therefore p, =
—AV 4+ div(eVV) = —lz—fdiv(eVV) = %p =0,as p=01in Q.. A classical
way to get the electrostatic energy E consists in computing the surface density o
of the apparent charge p, by an integral equation method. This technique allows
one to transform the three dimensional problem (1.1) which is, moreover, posed on
an unbounded domain, namely R?, into a two dimensional problem posed on the
bounded domain I' (see [2], and [3] for instance for the mathematical aspects). This
significantly reduces the computational effort.

Over the last few years, some extensions of the standard solvation continuum models
have been proposed to cover the cases when the solvent is an ionic solution or a
liquid crystal.

In the former case [4], equation (1.1) is replaced by the so-called linearized Poisson-
Boltzmann Equation

—div(e(z)VV (2)) + e(z)&*(2)V (z) = p(z), (1.3)
with
1 ifz e Qi;
e(z) = { €s if x € Q,
and
0 ifze Qi,
”"(“””):{ K if 2 € Q.

The constant ks accounts for the ion screening: 1/k, is the Debye lenght.

In the latter case [5], equation (1.1) keeps the same formal expression,
~div(e (@) - VV (@) = plx), (1.4)

but the dielectric constant €(z) is no longer a scalar: it is a 3 X 3 anisotropic

symmetric tensor so that

13 ifiL'EQi,
€5 if x € Qe,



(I 3 denotes here the 3 x 3 unit tensor).

In both cases, it is of course still possible to define an apparent charge p, by equation
(1.2), but this charge is now supported both on the interface I' and in the external
medium Q.. That is why integral equation methods have not been applied, so far
as we know, in those cases: until now three dimensional methods have been used,
like the finite difference method (FDM) for the Poisson-Boltzmann equation (1.3)
[4], or a finite element type method (FEM) for equation (1.4) [5].

Our purpose here is to show that integral equation methods, which are more com-
petitive in terms of computational effort, may actually also be used in these two
cases.

In Section 2, we present the theoretical bases which underlie the method that we
propose. We have chosen to collect in Section 2.1 what is necessary to know for
implementing this method. We believe that the proofs of these mathematical results
are useful for a deep understanding of the method. Nevertheless, we have regrouped
them in Section 2.2, which is independant from the others. Thus, the reader who
is less interested by the mathematical counterpart of this work, may easily skip
Section 2.2, and proceed directly to Section 3 where we show how to implement
these results in Hartree-Fock calculations, and where we give some satisfactory
numerical results for real chemical systems. Conclusions and trends for future work
concerning analytical derivatives and inhomogeneous external media are presented
in Section 4.

2 Theoretical background

Let us consider two charge distributions, both located inside the cavity ;. Our
aim is to compute the interaction energy

Er(p,p') = / PV,
R3

where the electrostatic potential V' is the unique solution (in a suitable functional
space) to equation (1.1) for the standard PCM, (1.3) for ionic solutions, or (1.4) for
liquid crystals.

2.1 The integral equation approach

Notations: If u is a function defined on R? such that u|g, and u|g, are “regular
enough”, we denote by u; (resp. u.) the trace of u|g, (resp. u|q,) on the interface
T, and by [u] = u; — u, the jump of u passing through I'. The usual scalar product
on L*(T) is denoted (-,-)r (for all v and w in L*(T), (u,v)r = [ uv).




We first notice that the three equations (1.1), (1.3) and (1.4) may be unified under
the same formalism

LiV =p in Q,‘,
LV =0 in Q.,
DY w)=0 onT, (2:5)
[0LV]=0 onT.
The operators L; = —A and L. are second-order elliptic partial differential opera-

tors with constant coefficients. We have
e L.u= —esAu for the standard PCM (1.1),
e L.u= —esAu + esk2u for ionic solutions (1.3),
e Lou= —div(e - Vu) for liquid crystals (1.4).

The jump condition [V] = 0 means that the potential V' in continuous across the
interface I'. With the notations defined above, this condition reads

Vi—V.=0 onT.

The equality [0, V] = 0 is a formal expression of the jump condition of the gradient
of the potential. The jump of the gradient only depends on the second-order terms
of the operators L; and L.. The condition [07V] = 0 may be written as

oV, -0V, =0 onT, (2.6)
with, for all z € T

Vi) = (Vu(o) n(o) = (50 ) @

and
Ve(x) = (€5 - (Vu)e(w)) - n(),

where n(z) is the outward pointing normal at point z.

For the cases of the standard PCM (1.1) and of the ionic solutions (1.3), i.e. when
the dielectric constant is a scalar, equation (2.6) takes the well-known form

VY L (VY _,
8ni688n8_'

What permits the use of integral equations to get the potential V is the knowledge
of analytical expressions for the Green functions GG; and G, of L; and L, considered



as operators on R®. As explained below, this enables us to transform the first two
equations in (I) into integral equations on I', that can be easily solved with standard
numerical methods.

It is well known that the Green function of the operator L; = —A on R? is
_ 1 3 3
Gi(z,y) = yrp— V(z,y) eER* xR* z#y.

We recall that, if po is a charge distribution in R®, the potential

bo(@) = [ | mw)Gite.v)dy

is the Newton potential associated with pg and corresponds to the electrostatic
potential created by pp in the vacuum. It is solution to the Poisson equation

—Aglso = pPo in IR3.

Concerning the three different operators L., their Green functions on R? are the
following ones

e for L, = —¢;A (standard PCM), we have of course

1
G -
e(xay) 47r€s|$_y|7
e for L, = —e;A + €5k2 (ionic solutions),
e—tslT—yl
Ge(z,y) = ———
6( 7y) 47T€s|,’1’,‘—y|7

This kernel is associated with a short-range Yukawa potential.

e for L, = —div(€e ;- V) (liquid crystals), we obtain

1
A, [det(e 5)(€ S —y), (x—y)/2

We denote by S;, D; and D} the following operators: for u € L*(T') and z € T,

Ge(z,y) =




(Si () = / Gi(z,y)uly) dy,

—~
S
<
~
—~
&
Il

r

(Df - u)(x)

r

where 0,G;(z,y) = (V,Gi(z,y)) - n(z) and 0,G;(z,y) = (V,Gi(x,y)) - n(y).

These operators are well-known in the theory of integral equations. They are three
of the four components of the Calderon projector [3]. We recall some of their
properties: the operator S; is self-adjoint and D} is the adjoint of D; for the scalar
product (-,-)p. Besides, S;D; = D;S;. We also define similar operators for the
Green function G, that we need below:

(Se-w)z) = / G, y)uly) dy,
(De-u)(z) = / 8,Ge(z, y)uly) dy,
where 0,G.(z,y) = (&5 - VyGe(2,y)) - n(y).

At last, if pp and p}, are two charge distributions in R*, we denote by

D)= [ [ Guleim(or ) de dy

their interaction energy in the vacuum.

We can now state our main result, which is valid for each of the three physical con-
texts that we consider here (standard solvent, anisotropic solvent or ionic solution).

Theorem. Let p be a charge distribution located inside the cavity Q;.

1. There exists an apparent surface charge p, supported on U so that the inter-
action energy between p and another charge distribution p' also located inside
the cavity §; reads

Er(p,p") =D(p,p'") + D(pa,p').



2. We denote by ¢ the electrostatic potential created by p in the vacuum. The
density o of the apparent surface charge p, is the unique solution to the equa-

tion
Ao=g (2.7)
with
A= (é ~D,)Si + Se(é +Dj)
and

g:_(E_De)'QSi_Se'aQSi-

Remark 1: For the standard PCM, equation (2.7) may be simplified. Indeed, in
this case, the Green functions G; and G, are proportional, and we have S, = }Si
and D, = D;. Denoting by E, = —0¢; the normal component of the electric field
created by p in the vacuum and using the equality (% —D;)-¢;+S;-0¢; =0 (see
Lemma 1 below), equation (2.7) may be rewritten as

I 1.7 (es — 1)
i [(z—D)Y+ —(=+D})|-0=——"—=85;-E,.
5.5 -0+ LG+ o] o= s,
After multiplication by E:le; ! we obtain
es+11 . _
(68 _15 _Dz> o = En, (28)

which is exactly the same as equation (A1) in [6] for instance.

2.2 Mathematical proofs

Some tools are used in this Section, which are standard in mathematics but not in
theoretical chemistry. In order to simplify, we forget all considerations of functional
analysis. In particular, we assume that the cavity is smooth and that the charge
distributions belong to suitable functional spaces. Let us notice that the latter as-
sumption is always satisfied for charge distributions used in practice in Molecular
Mechanics or in Quantum Chemistry. On the other hand, the former one is obvi-
ously true for a spherical or an ellipsoidal cavity, and also for some molecular shape
cavities (as those defined as isodensity surfaces), but not for instance for molecular



cavities defined as intersections of spheres. The extension of the forthcoming theo-
retical results to general non-smooth cavities is a difficult mathematical issue which
is out of the scope of the present article.

Proof of the Theorem.

Let us consider a charge distribution p’ located inside €2; and let us denote

#(@) = [ Gulao' ) dy

the electrostatic potential generated by p’ in the vacuum. Let

flz) = { fRS Gi(z,y)p(y) dy if x € Q
Jis Ge(z,9)p(y) dy if 7 € Q,
and
W=V-f
This latter function satisfies
LW =0 in €,
LW =0 in Q.

With these notations,

Ez(p,p’)Z/ p’f+/ p'W.
R3 R3

The first term is easy to compute. Indeed, since we assume that the charge distri-
butions p and p’ are supported in €2;,

E, = /Rsp(m)f(a:)da:
P(@)py)
o e
= D(p,p)

Our purpose is to compute the second term. For that, we use an integral represen-
tation of the “apparent” potential W.

Lemma (of representation). Let us consider u so that

Liu = p; in Q;,
Leu = p, in Q..

Then, if u, p; and p. belong to “suitable” functional spaces,



1. for all z € O,
0= [ G@none s - [wwaciend + [ G nnwa,
2. for all x € Q.,
@) = = | Gela)oucls) dy+ [ we)d, ol o+ [ Gl 9o dy
3. forallz €T,
31 = [ G poutdy — [ uwo Gy + [ G dy

4. for all x € T,

gue@) = = [ Gelepoutdy+ [ wwd,Cew)dy+ [ Gw e dy

Such results are standard in the Theory of integral equations. Nevertheless, for the
reader’s convenience, we will sketch a proof of this lemma at the end of the present
Section.

Using statement 1 of the Lemma with v = W, we obtain

E,

/ p'(x)W () dx

/ </ny5W dy—/W )dy)dm
= [owi) ([ s@Gnd) a- [wi) ( [ #@0,Gitw)dz) dy

= ana(b > (Wlaa(b >

We now apply twice statement 3 of the Lemma, firstly with « = W, which gives

Si . 8Wi —D;-W; = %WZ (2.9)

then with u = ¢, and we obtain

10



Si-0p; — D; - ¢y = —%iﬁi- (2.10)

Let us consider the quantity o = S, L. W;, which has the dimension of a surface
charge density. Using equations (2.9) and (2.10), we obtain

By = (0Wi ¢)r — (Wi, 0¢)r
= (5 (5 D) Wi dl)e — (Wi, 8, (=5 + D)6l
= (G4 D)) 00— (g + D), dr
= (o, ¢0r-

This equality may be written

E, = D(paa p’)a
where p, is the surface charge of density o. This closes the proof of the first
statement of our Theorem.
Let us now turn to the proof of the second statement.
The functions W;, W, , OW; and 0W, satisfy the following 4 x 4 system
S,--&W,-—D,--W,- = %Wl
Se-OW. — D, - W, = —%We

Wi—We = fe—[i
OW; — OW, = df. — df;.

(I1)

The first two equations come from a direct application of statements 3 and 4 of the
Lemma with u = W. The two latter ones are consequences of the jump conditions,
Vi—=Ve=0and 0V; — 0V, =0. As f = ¢ in Q; and as moreover, from statement 4
of the Lemma applied with v = f, S, - 9fc — D, - fe = —%fe, a straightforward
algebraic manipulation on system (II) gives equation (2.7).

In order to prove the uniqueness result, we consider two solutions o and ¢’ to
equation (2.7) and we denote 7 = o — ¢’. We have A -7 =0, and that means

<(§ —De)Si+Se(g +D;‘)) -7 =0. (2.11)

Let us define W so that

w

mwzﬁ@mwMMy

11



and W/, is the unique solution (in a suitable weighted Sobolev space) to

LW =0 in Q.
W=W,; on TI.

From (2.11) we deduce W ;—0W, = 0. Besides, as by construction W is continuous
across I,

/ (c(@) - VIV (2)) - VIT(2) = [ VIV VIV + / (es - VIV - VIV
R3 Q; Q.
= /W,@W, — W.0W,
r N
_ [ .o, _ o)
r
= 0.

Thus VW = 0 almost everywhere, and therefore W = 0, which implies 7 = 0.

We conclude this Section with the
Proof of the Lemma.

The proofs of the four statements of the Lemma are based upon the following Green
formula, which is nothing but a multidimensional integration by part: let 2 be a
bounded domain of R® with a piecewise smooth boundary 9%, and let L be a
second-order partial differential operator of the form

L-v=—div(e- Vv) +cv

where € is a 3 x 3 tensor field and c is a scalar field. We have, for all v and w regular
enough,

0 0
/ (L-v)w+ = / (L-w)v + —wv, (2.12)
Q a0 Ong Q o0 Ong
where 2% = (e Vu) - n (n denotes as usual the outward pointing normal).
nr

Proof of statement 1

Let z € Q; and 7 > 0 so that B.(n) C €; (where B.(n) = {y/|z —y| <n}). We
write the Green formula (2.12) for @ = Q; \ B,(n), L = L;, v(y) = Gi(z,y) and
w(y) =uly). As L; v =0and L; -w = p; in 2, we obtain

Gile) gy = [ w5 @)y

(2191

/@mwmw@+
Q

(291
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Thus

0G;
| c@npwar + [ Gemouwir— [ wwF e

Y

ou

e
= u(y)—(z,y) dy — / Gi(z,y)=—(y) dy.
/Sm (n) 8ny Sz (n) In

We let 7 go to zero, which gives:

|G dy — uto
Sz(n) y
and
/ Gi(w,y)a—u(y) dy — 0.
Sa () on
Finally,

:/Gi(w,y)aui(y) dy—/ui(y)aGi(w,y) dy+/ Gi(z,y)pi(y) dy.
r T Q

Proof of statement 2

Let z € Q, and 1) > 0 so that B, (1) C Q.. Let R > 0 so that (Q;UB.(n)) C Bo(R).
We use the Green formula (2.12) for Q = By(R) \ (B, (n) UQ;), v(y) = G(z,

w(y) = u(y). As L, v—Oande—pe in 2, we obtain

0G.

/G (z,y)pe(y dy+/ Ge( wy )dy—/ U(y)a (z,y)dy
o0 Ty

Thus

A@uwm@>— A&uwwuw@+ﬁwmuaw@

oG,
= [ G- [
/sm(m Ony Se(n)

oG,

v [ G - |
So(R) Ony So(R)

If w and p. belong to suitable functional spaces, we obtain statement 2 letting 1 go

to zero and R go to infinity.

We skip the proofs of statements 3 and 4 which are a bit more technical (the outlines
may be found in [3] for instance). We just point out that the factor 5 comes from
the fact that, when x belongs to I, S, () N $; is no longer a sphere but only half a

sphere (asymptotically, when 7 goes to zero).

13

0
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3 Numerical method and Results

We use here the notations defined in the previous Section.

3.1 Boundary element approximation

As for the apparent surface charge (ASC) method used for standard PCM [2], we
use a boundary element method (BEM) to solve equation (2.7) (i.e. Ao = g), and
to compute the second term Es = D(p,,p') of the interaction energy E;(p,p').
For this purpose, we firstly build a tessellation of the boundary I' consisting of
K tesserae (T)1<r<k. For the calculations, we have chosen a IPy-approximation.
That means that the charge density o is approximated by a piecewise constant
function (constant on each tessera of the tessellation). Let us denote by oy the
approximate value of the density o on the tessera T}. There comes at once

D(pa, p i ( dy) (3.13)

k=1

With this approximation, equation (2.7) amounts to a linear system of order K
denoted

where [0] is the column vector [o}], [A] is a K x K matrix, and [g] a column vector
depending on the charge distribution p. We obtain for all 1 < k, k' < K,

ARE :/ d:c/dy dz k(z,y,2) (3.14)
T Tkr

with
o) = (M52 - 0,6uen) ) Gl 2) + Guton) (5 40,610 )

and

/Tk d:c/ dy< < =Y _ 9,Gua, )) ¢i(y)—Ge(x,y)6¢,-(y)>. (3.15)

The two above expressions come from a variational calculation.

At this stage, the remaining problems are

e the computation of ¢;, 0¢; and ¢} (we tackle this problem in the next section),
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o the numerical computation of the various surface integrals in (3.13), (3.14) and
(3.15). When I is smooth, one can prove that for fixed z, the singularities
of the kernels G;(z,y), Ge(z,y), 0Gi(z,y) and OG.(x,y) are all in ﬁ
Therefore, all these singularities are integrable on a (two dimension) surface.
We have used Gaussian integration in suitable coordinates to perform these
quadratures, which gives good results.

3.2 Application to Hartree-Fock SCF calculations

Let us deal at first with the nuclei repulsion term. In this case, p = ¢ (- — Z) and
p' = ¢'6(- —T') are two point charges, and thus the functions ¢;, d¢; and ¢} are
very easy to be computed. Indeed, for all z € I’

¢i(r) = ﬁ
o) = —L

Al — |

Let us now turn to the electronic energy. From now on, (x,)1<p<n denotes the set
of the atomic orbitals. We use the following classical notations:

Ly () = /R Xp(¥)Xq () dy

s dmlz —y|

and

_ Xp(@)Xa (@)X ()X (Y)
Tpgrs —/R3 /R3 prpe— dz dy.

In the PCM, the Fock matrix reads (for a spinless model to simplify the notations)
Fuy = hyy + G,“,(P)
with
1 nuc
by = 3 Vxu - Vxe = Er(p™", xuxv)
R3

and

1
GIJV(P) = ZPKA <EI(XK}XA7X}LXV) - 51’“’“}\) ;
KyA

15



where

M
=D b,
k=1

is the charge distribution of the M nuclei and P the one-electron density matrix.

Denoting

= PaaXuXa
KA

the electronic density and using the results obtained in the previous section, we
write the Fock matrix as

Fuy = Fj, + D3 + pfl, Xuxw)

where F° denotes the standard Fock matrix (for the molecule in the vacuum) and
pit and p¢! are the apparent surface charges created by the nuclei and the electronic
cloud respectively. To compute the Fock matrix, we only need to know for all z € T’

M
di(z) = Zm_zpm)\[nk(x)
k=1 KyA
M
O¢i(x) = —sz $4;|Z’“_wk(| ;PM Vi () - n(z))
Pi(x) = _[;w(x)-

When atomic orbitals are contracted gaussians, which is the case in most of the
quantum chemistry calculations for molecules, the functions I,y and their gradients
are very easy to compute and that makes this method very effective.

Remark 2. The electronic distribution is not rigorously located inside the cavity:
there is always an “electronic tail” spreading outside. For standard cavities and
basis functions, the approximation that we make when computing the Fock matrix
as above is quite valid. In some special cases, for example when diffuse functions
are used to compute excited states, this approximation may be too crude. Let us
notice however that the same problem occurs when computing the standard PCM
equation (1.1) with the ASC method (i.e. starting from equation (2.8)).

16



3.3 Numerical results

In this section we report a selection of results obtained with the implementation
on GAMESS package [7] of the new formalism presented above within the PCM
framework.

As the scope of the present article is the detailed presentation of the theoretical
bases which underlie the method, we have limited our numerical study to some very
simple systems: the solute molecules are small and the cavity is a single sphere even
for polyatomic solutes. Besides, the reported values are not analyzed in their real
chemical meaning, but only as a proof of the reliability of the method. Other more
complex systems are studied in a parallel work [8] dedicated to a detailed analysis
of the potentialities and the effective performances of this new integral equation
formalism, in which we also check that the new method, when applied to standard
isotropic liquids, gives the same results as standard PCM (apart from numerical
approximations).

The results reported here regard two solute-solvent systems of different natures.
The first one is an application to intrinsically anisotropic dielectrics, character-
ized by a tensorial permittivity. In the specific case that we have considered, the
chosen solvent is the liquid crystal known with the acronym 7CB (4-n-heptyl-4'-
cyanobiphenyl), which is nematic at room temperature (its transition temperature
to the isotropic phase is 312 K). The main characteristic of this kind of “mesophases"
is that they exhibit long-range orientational order, with the long axes of the ani-
sometric component molecules tending to align parallel to a space-fixed axis called
the director. From a physical point of view, a consequence of this is that their per-
mittivity is described by a symmetric tensor which has two eigenvalues equal: for
7CB the double eigenvalue is €, = 5.54 and the simple eigenvalue is ¢) = 17.1 (in
other words, €| is the permittivity along the direction of preferential alignment of
solvent molecules, and €, the value in the plane normal to this direction). Because
of the structural specificity mentioned above, solute molecules dissolved in nematic
liquid crystals are subject to anisotropic forces which lead them to orient. Usually,
a rodlike dipolar molecule orders such that its long axis is preferantially oriented
parallel to the nematic director. One of the major sources of this orientational
ordering of rigid solutes in liquid crystals is given by electrostatic interactions bew-
teen the polar solute and the solvent molecules. Other minor contributions come
from dispersion forces and short-range repulsion. The method we have presented
above allows us to get in a very efficient way the electrostatic contribution. We have
limited ourselves to the calculation of this term. A more accurate evaluation of the
ordering mechanism can be easily obtained within PCM framework [9], by including
the cavitation term, but it is not performed here as out of the scope of the present
paper. In the following figure we have reported the electrostatic contribution to the
solvation free energy of HF in 7CB with respect to the angle between the solute
bond and the solvent director. These results are obtained with the HF molecule

17



embedded in a sphere of radius 1.734 A and described with a standard DZV basis
set.

Figure 2: AGgy values of HF in 7CB with respect to the angle between the bond
axis and the z axis.

As we can easily see, the differences between the various orientations are quite
small, but small is also the anisotropy of the dielectric; anyway it appears that the
stablest configurations (i.e. those with the most negative AGs,;) are those with
the HF bond parallel to the axis along which the dielectric tensor has the greatest
value (clearly the graph is symmetric with respect to the angle value of 90°). In the
figure we also report as limit values, those obtained for two hypothetical isotropic
media with permittivity equal to each of the two different eigenvalues of e for 7CB.

The second application of the new method presented in the previous sections is the
analysis of the solvation behavior of a probe solute in salt solutions of various ionic
strengths. Verification of this new algorithm was accomplished by calculating the
ion contribution to the solvation free energy of a spherical charged solute (here the
anion H~ embedded in a sphere of radius 1.4 A in a solution of water (dielectric
constant=78.5) and a 1:1 salt at variable concentration. The ion contribution,

18



defined as the free energy in solution minus the energy calculated at zero ionic
strength, is reported in figure 3 with respect to the bulk ionic strength I expressed
in mole per litre.

Figure 3: Ion contribution to the solvation free energy of H™ in water containing a
1:1 salt at variable concentrations. I is the bulk ionic strength in mole/l.

Continuum models accounting for ionic screening have found an increasing applica-
tion in the modelling of hydrated molecules, particularly biological macromolecules.
Our future intent is to follow this trend and try to exploit the present algorithm to
understand many interesting phenomena related to biological systems. However, in
the present paper we have limited our analysis to a very simple system; the reason
of this choice is that for the moment our scope is to stress even if with an almost
propedeutic example, the reliability of this extension of a pure integral equation
methods to problems usually solved with three dimensional methods.
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4 Conclusion and future trends

We have shown in this article that integral equation methods are also efficient for
the above extensions of solvation continuum models when the solvent is an ionic
solution or a liquid crystal. In fact, these methods are generally relevant from the
moment that the medium which spreads outside the cavity is homogeneous.

In all these cases, integral equations methods are much more efficient than three
dimensional methods as finite difference or finite element methods used so far, be-
cause

1. the computational effort is lower,

2. no approximation is made to account for boundary conditions.

Moreover it becomes easy to compute analytical derivatives of the energy with
respect to physical parameters, as the temperature in the case of ionic solutions,
or as the orientation of the molecule with respect to the principal directions of
the anisotropic tensor €, in the case of liquid crystals. Analytical derivatives with

respect to nuclear coor&inates, which are useful for geometry optimization [10], are
more difficult to be computed because of the change of the cavity shape, but seems
nevertheless accessible. We are at the moment studying this extension [11].

On the other hand, for an inhomogeneous external medium, three dimensional meth-
ods are required. However, if there is in the model an inhomogeneous zone in the
external medium, it is usually located in the neighbourhood of the molecule under
study. It is therefore possible to put both the molecule and the inhomogeneous
zone in a bigger cavity of simple shape (for example a cube) and to couple integral
methods (for solving the external problem) with three-dimensional methods (for
solving the internal problem). The advantage of such a method, compared with
pure three-dimensional methods, is to take into account the boundary conditons
rigourously. We intend to look soon into inhomogeneous models.
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