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which has spread out since its introduction in 1981 [1] because of its adaptabilityand accuracy; in this method the solute molecule under study is located inside amolecular cavity surrounded by a dielectric medium which models the solvent (seeFigure 1).
Fig. 1 - Scheme of solvation in the Polarizable Continuum Model.
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Figure 1: Scheme of solvation in the Polarizable Continuum ModelWe refer the reader to [2] for a comprehensive review of the whole class of thesemodels, with particular attention to PCM, and of the various numerical methodsin use for solving the corresponding equations.One of the basic quantities that has to be computed is the electrostatic interac-tion between two charge distributions � and �0 carried by the solute molecule. InPCM, this interaction takes into account the polarization of the dielectric mediummodelling the solvent. Its mathematical expression readsEI(�; �0) = ZIR3 �0(x)V (x) dx;where V (x) is the electrostatic potential generated by the charge distribution �(x).For standard PCM, it is solution to the equation�div(�(x)rV (x)) = �(x); (1.1)with �(x) = 1 inside the cavity and �(x) = �s outside (�s denotes the macroscopicdielectric constant of the solvent, �s = 78:6 for water).Equation 1.1 fully accounts for the dielectric polarization phenomenon.This equa-tion may be rewritten as 2



��V = �+ �a; (1.2)where �a may be regarded as an apparent charge. It is easy to see that, when �is located inside the cavity, the apparent charge �a is supported on the interface�. Indeed, inside the cavity (in 
i), �(x) = 1 and then �a = ��V + div(�rV ) =��V + �V = 0, and outside the cavity (in 
e), �(x) = �s and therefore �a =��V + div(�rV ) = � 1��s�s div(�rV ) = 1��s�s � = 0, as � = 0 in 
e. A classicalway to get the electrostatic energy EI consists in computing the surface density �of the apparent charge �a by an integral equation method. This technique allowsone to transform the three dimensional problem (1.1) which is, moreover, posed onan unbounded domain, namely IR3, into a two dimensional problem posed on thebounded domain � (see [2], and [3] for instance for the mathematical aspects). Thissigni�cantly reduces the computational e�ort.Over the last few years, some extensions of the standard solvation continuum modelshave been proposed to cover the cases when the solvent is an ionic solution or aliquid crystal.In the former case [4], equation (1.1) is replaced by the so-called linearized Poisson-Boltzmann Equation�div(�(x)rV (x)) + �(x)�2(x)V (x) = �(x); (1.3)with �(x) = � 1 if x 2 
i;�s if x 2 
e;and �(x) = � 0 if x 2 
i;�s if x 2 
e:The constant �s accounts for the ion screening: 1=�s is the Debye lenght.In the latter case [5], equation (1.1) keeps the same formal expression,�div(�=(x) � rV (x)) = �(x); (1.4)but the dielectric constant �=(x) is no longer a scalar: it is a 3 � 3 anisotropicsymmetric tensor so that �=(x) = ( I= 3 if x 2 
i;�= s if x 2 
e;3



(I= 3 denotes here the 3� 3 unit tensor).In both cases, it is of course still possible to de�ne an apparent charge �a by equation(1.2), but this charge is now supported both on the interface � and in the externalmedium 
e. That is why integral equation methods have not been applied, so faras we know, in those cases: until now three dimensional methods have been used,like the �nite di�erence method (FDM) for the Poisson-Boltzmann equation (1.3)[4], or a �nite element type method (FEM) for equation (1.4) [5].Our purpose here is to show that integral equation methods, which are more com-petitive in terms of computational e�ort, may actually also be used in these twocases.In Section 2, we present the theoretical bases which underlie the method that wepropose. We have chosen to collect in Section 2.1 what is necessary to know forimplementing this method. We believe that the proofs of these mathematical resultsare useful for a deep understanding of the method. Nevertheless, we have regroupedthem in Section 2.2, which is independant from the others. Thus, the reader whois less interested by the mathematical counterpart of this work, may easily skipSection 2.2, and proceed directly to Section 3 where we show how to implementthese results in Hartree-Fock calculations, and where we give some satisfactorynumerical results for real chemical systems. Conclusions and trends for future workconcerning analytical derivatives and inhomogeneous external media are presentedin Section 4.2 Theoretical backgroundLet us consider two charge distributions, both located inside the cavity 
i. Ouraim is to compute the interaction energyEI(�; �0) = ZIR3 �0V;where the electrostatic potential V is the unique solution (in a suitable functionalspace) to equation (1.1) for the standard PCM, (1.3) for ionic solutions, or (1.4) forliquid crystals.2.1 The integral equation approachNotations: If u is a function de�ned on IR3 such that uj
i and uj
e are �regularenough�, we denote by ui (resp. ue) the trace of uj
i (resp. uj
e) on the interface�, and by [u] = ui � ue the jump of u passing through �. The usual scalar producton L2(�) is denoted h�; �i� (for all v and w in L2(�), hu; vi� = R� uv).4



We �rst notice that the three equations (1.1), (1.3) and (1.4) may be uni�ed underthe same formalism (I)8>><>>: LiV = � in 
i;LeV = 0 in 
e;[V ] = 0 on �;[@LV ] = 0 on �: (2.5)The operators Li = �� and Le are second-order elliptic partial di�erential opera-tors with constant coe�cients. We have� Leu = ��s�u for the standard PCM (1.1),� Leu = ��s�u+ �s�2su for ionic solutions (1.3),� Leu = �div(�= s � ru) for liquid crystals (1.4).The jump condition [V ] = 0 means that the potential V in continuous across theinterface �. With the notations de�ned above, this condition readsVi � Ve = 0 on �:The equality [@LV ] = 0 is a formal expression of the jump condition of the gradientof the potential. The jump of the gradient only depends on the second-order termsof the operators Li and Le. The condition [@LV ] = 0 may be written as@Vi � @Ve = 0 on �; (2.6)with, for all x 2 � @Vi(x) = (ru)i(x) � n(x) = �@u@n�i (x)and @Ve(x) = (�s � (ru)e(x)) � n(x);where n(x) is the outward pointing normal at point x.For the cases of the standard PCM (1.1) and of the ionic solutions (1.3), i.e. whenthe dielectric constant is a scalar, equation (2.6) takes the well-known form�@V@n�i � �s�@V@n�e = 0:What permits the use of integral equations to get the potential V is the knowledgeof analytical expressions for the Green functions Gi and Ge of Li and Le considered5



as operators on IR3. As explained below, this enables us to transform the �rst twoequations in (I) into integral equations on �, that can be easily solved with standardnumerical methods.It is well known that the Green function of the operator Li = �� on IR3 isGi(x; y) = 14�jx� yj 8(x; y) 2 IR3 � IR3 x 6= y:We recall that, if �0 is a charge distribution in IR3, the potential�0(x) = ZIR3 �0(y)Gi(x; y) dyis the Newton potential associated with �0 and corresponds to the electrostaticpotential created by �0 in the vacuum. It is solution to the Poisson equation���0 = �0 in IR3:Concerning the three di�erent operators Le, their Green functions on IR3 are thefollowing ones� for Le = ��s� (standard PCM), we have of courseGe(x; y) = 14��sjx� yj ;� for Le = ��s�+ �s�2s (ionic solutions),Ge(x; y) = e��sjx�yj4��sjx� yj ;This kernel is associated with a short-range Yukawa potential.� for Le = �div(�= s � r) (liquid crystals), we obtainGe(x; y) = 14�qdet(�= s)(�=�1s � (x� y); (x� y))1=2 �We denote by Si, Di and D�i the following operators: for u 2 L2(�) and x 2 �,6



(Si � u)(x) = Z�Gi(x; y)u(y) dy;(Di � u)(x) = Z� @yGi(x; y)u(y) dy;(D�i � u)(x) = Z� @xGi(x; y)u(y) dy;where @xGi(x; y) = (rxGi(x; y)) � n(x) and @yGi(x; y) = (ryGi(x; y)) � n(y).These operators are well-known in the theory of integral equations. They are threeof the four components of the Calderon projector [3]. We recall some of theirproperties: the operator Si is self-adjoint and D�i is the adjoint of Di for the scalarproduct h�; �i�. Besides, SiD�i = DiSi. We also de�ne similar operators for theGreen function Ge, that we need below:(Se � u)(x) = Z�Ge(x; y)u(y) dy;(De � u)(x) = Z� @yGe(x; y)u(y) dy;where @yGe(x; y) = (�s � ryGe(x; y)) � n(y).At last, if �0 and �00 are two charge distributions in IR3, we denote byD(�0; �00) = Z ZIR3�IR3 Gi(x; y)�0(x)�00(y) dx dytheir interaction energy in the vacuum.We can now state our main result, which is valid for each of the three physical con-texts that we consider here (standard solvent, anisotropic solvent or ionic solution).Theorem. Let � be a charge distribution located inside the cavity 
i.1. There exists an apparent surface charge �a supported on � so that the inter-action energy between � and another charge distribution �0 also located insidethe cavity 
i reads EI(�; �0) = D(�; �0) +D(�a; �0):
7



2. We denote by � the electrostatic potential created by � in the vacuum. Thedensity � of the apparent surface charge �a is the unique solution to the equa-tion A � � = g (2.7)with A = (I2 �De)Si + Se(I2 +D�i )and g = �(I2 �De) � �i � Se � @�i:Remark 1: For the standard PCM, equation (2.7) may be simpli�ed. Indeed, inthis case, the Green functions Gi and Ge are proportional, and we have Se = 1�sSiand De = Di. Denoting by En = �@�i the normal component of the electric �eldcreated by � in the vacuum and using the equality ( I2 �Di) � �i + Si � @�i = 0 (seeLemma 1 below), equation (2.7) may be rewritten asSi �(I2 �D�i ) + 1�s (I2 +D�i )� � � = � (�s � 1)�s Si � En:After multiplication by �s�s�1S�1i , we obtain��s + 1�s � 1 I2 �D�i� � � = �En; (2.8)which is exactly the same as equation (A1) in [6] for instance.2.2 Mathematical proofsSome tools are used in this Section, which are standard in mathematics but not intheoretical chemistry. In order to simplify, we forget all considerations of functionalanalysis. In particular, we assume that the cavity is smooth and that the chargedistributions belong to suitable functional spaces. Let us notice that the latter as-sumption is always satis�ed for charge distributions used in practice in MolecularMechanics or in Quantum Chemistry. On the other hand, the former one is obvi-ously true for a spherical or an ellipsoidal cavity, and also for some molecular shapecavities (as those de�ned as isodensity surfaces), but not for instance for molecular8



cavities de�ned as intersections of spheres. The extension of the forthcoming theo-retical results to general non-smooth cavities is a di�cult mathematical issue whichis out of the scope of the present article.Proof of the Theorem.Let us consider a charge distribution �0 located inside 
i and let us denote�0(x) = ZIR3 Gi(x; y)�0(y) dy;the electrostatic potential generated by �0 in the vacuum. Letf(x) = � RIR3 Gi(x; y)�(y) dy if x 2 
iRIR3 Ge(x; y)�(y) dy if x 2 
eand W = V � f:This latter function satis�es� LiW = 0 in 
i;LeW = 0 in 
e:With these notations, EI (�; �0) = ZIR3 �0f + ZIR3 �0W:The �rst term is easy to compute. Indeed, since we assume that the charge distri-butions � and �0 are supported in 
i,E1 = ZIR3 �0(x)f(x) dx= Z ZIR3�IR3 �0(x)�(y)4�jx� yj dx dy= D(�; �0):Our purpose is to compute the second term. For that, we use an integral represen-tation of the �apparent� potential W .Lemma (of representation). Let us consider u so that� Liu = �i in 
i;Leu = �e in 
e:Then, if u, �i and �e belong to �suitable� functional spaces,9



1. for all x 2 
i,u(x) = Z�Gi(x; y)@ui(y) dy � Z� ui(y)@yGi(x; y) dy + Z
i Gi(x; y)�i(y) dy;2. for all x 2 
e,u(x) = � Z�Ge(x; y)@ue(y) dy+ Z� ue(y)@yGe(x; y) dy+ Z
e Ge(x; y)�e(y) dy;3. for all x 2 �,12ui(x) = Z�Gi(x; y)@ui(y) dy � Z� ui(y)@yGi(x; y) dy + Z
i Gi(x; y)�i(y) dy;4. for all x 2 �,12ue(x) = � Z�Ge(x; y)@ue(y) dy+ Z� ue(y)@yGe(x; y) dy+ Z
e Ge(x; y)�e(y) dy:Such results are standard in the Theory of integral equations. Nevertheless, for thereader's convenience, we will sketch a proof of this lemma at the end of the presentSection.Using statement 1 of the Lemma with u =W , we obtainE2 = ZIR3 �0(x)W (x) dx= ZIR3 �0(x)�Z�Gi(x; y)@Wi(y) dy � Z�Wi(y)@yGi(x; y) dy� dx= Z� @Wi(y)�ZIR3 �0(x)Gi(x; y) dx� dy � Z�Wi(y)�ZIR3 �0(x)@yGi(x; y) dx� dy= h@Wi; �0ii� � hWi; @�0ii�:We now apply twice statement 3 of the Lemma, �rstly with u =W , which givesSi � @Wi �Di �Wi = 12Wi (2.9)then with u = �, and we obtain 10



Si � @�i �Di � �i = �12�i: (2.10)Let us consider the quantity � = S�1i �Wi, which has the dimension of a surfacecharge density. Using equations (2.9) and (2.10), we obtainE2 = h@Wi; �0ii� � hWi; @�0ii�= hS�1i (I2 +Di) �Wi; �0ii� � hWi; S�1i (�I2 +Di) � �0ii�= h(I2 +D�i ) � �; �0ii� � h(�I2 +D�i ) � �; �0ii�= h�; �0ii�:This equality may be written E2 = D(�a; �0);where �a is the surface charge of density �. This closes the proof of the �rststatement of our Theorem.Let us now turn to the proof of the second statement.The functions Wi, We , @Wi and @We satisfy the following 4� 4 system(II) 8>><>>: Si � @Wi �Di �Wi = 12WiSe � @We �De �We = � 12WeWi �We = fe � fi@Wi � @We = @fe � @fi:The �rst two equations come from a direct application of statements 3 and 4 of theLemma with u =W . The two latter ones are consequences of the jump conditions,Vi � Ve = 0 and @Vi � @Ve = 0. As f = � in 
i and as moreover, from statement 4of the Lemma applied with u = f , Se � @fe � De � fe = � 12fe, a straightforwardalgebraic manipulation on system (II) gives equation (2.7).In order to prove the uniqueness result, we consider two solutions � and �0 toequation (2.7) and we denote � = � � �0. We have A � � = 0, and that means�(I2 �De)Si + Se(I2 +D�i )� � � = 0: (2.11)Let us de�ne W so that W j
i(x) = Z�Gi(x; y)�(y) dy11



and W j
e is the unique solution (in a suitable weighted Sobolev space) to� LeW = 0 in 
eW =W i on �:From (2.11) we deduce @W i�@W e = 0. Besides, as by constructionW is continuousacross �,ZIR3(�(x) � rW (x)) � rW (x) = Z
i rW � rW + Z
e(�s � rW ) � rW= Z�W i@W i � Z�W e@W e= Z�W i(@W i � @W e)= 0:Thus rW = 0 almost everywhere, and therefore W = 0, which implies � = 0.We conclude this Section with theProof of the Lemma.The proofs of the four statements of the Lemma are based upon the following Greenformula, which is nothing but a multidimensional integration by part: let 
 be abounded domain of IR3 with a piecewise smooth boundary @
, and let L be asecond-order partial di�erential operator of the formL � v = �div(� � rv) + c vwhere � is a 3�3 tensor �eld and c is a scalar �eld. We have, for all v and w regularenough, Z
(L � v)w + Z@
 @v@nLw = Z
(L � w)v + Z@
 @w@nL v; (2.12)where @u@nL = (� � ru) � n (n denotes as usual the outward pointing normal).Proof of statement 1Let x 2 
i and � > 0 so that Bx(�) � 
i (where Bx(�) = fy=jx� yj < �g). Wewrite the Green formula (2.12) for 
 = 
i n Bx(�), L = Li, v(y) = Gi(x; y) andw(y) = u(y). As Li � v = 0 and Li � w = �i in 
, we obtainZ
Gi(x; y)�i(y) dy + Z@
Gi(x; y)@u@n (y) dy = Z@
 u(y)@Gi@ny (x; y) dy:12



ThusZ
Gi(x; y)�i(y) dy + Z�Gi(x; y)@ui(y) dy � Z� ui(y)@Gi@ny (x; y) dy= ZSx(�) u(y)@Gi@ny (x; y) dy � ZSx(�)Gi(x; y)@u@n (y) dy:We let � go to zero, which gives:ZSx(�) u(y)@Gi@ny (x; y) dy �! u(x)and ZSx(�)Gi(x; y)@u@n (y) dy �! 0:Finally,u(x) = Z�Gi(x; y)@ui(y) dy � Z� ui(y)@Gi(x; y) dy + Z
Gi(x; y)�i(y) dy:Proof of statement 2Let x 2 
e and � > 0 so that Bx(�) � 
e. Let R > 0 so that (
i[Bx(�)) � B0(R).We use the Green formula (2.12) for 
 = B0(R)n (Bx(�)[
i), v(y) = Ge(x; y) andw(y) = u(y). As Le � v = 0 and Lew = �e in 
, we obtainZ
Ge(x; y)�e(y) dy + Z@
Ge(x; y)@u@n (y) dy = Z@
 u(y)@Ge@ny (x; y) dyThusZ
Ge(x; y)�e(y) � Z�Ge(x; y)@ue(y) dy + Z� ue@Ge(x; y) dy= ZSx(�) u(y)@Ge@ny (x; y) dy � ZSx(�)Ge(x; y)@u@n (y) dy+ ZS0(R) u(y)@Ge@ny (x; y) dy � ZS0(R)Ge(x; y)@u@n (y) dy:If u and �e belong to suitable functional spaces, we obtain statement 2 letting � goto zero and R go to in�nity.We skip the proofs of statements 3 and 4 which are a bit more technical (the outlinesmay be found in [3] for instance). We just point out that the factor 12 comes fromthe fact that, when x belongs to �, Sx(�) \
i is no longer a sphere but only half asphere (asymptotically, when � goes to zero).13



3 Numerical method and ResultsWe use here the notations de�ned in the previous Section.3.1 Boundary element approximationAs for the apparent surface charge (ASC) method used for standard PCM [2], weuse a boundary element method (BEM) to solve equation (2.7) (i.e. A� = g), andto compute the second term E2 = D(�a; �0) of the interaction energy EI(�; �0).For this purpose, we �rstly build a tessellation of the boundary � consisting ofK tesserae (Tk)1�k�K . For the calculations, we have chosen a IP0-approximation.That means that the charge density � is approximated by a piecewise constantfunction (constant on each tessera of the tessellation). Let us denote by �k theapproximate value of the density � on the tessera Tk. There comes at onceD(�a; �0) = KXk=1 �k �ZTk �0(y) dy� : (3.13)With this approximation, equation (2.7) amounts to a linear system of order Kdenoted [A] � [�] = [g]where [�] is the column vector [�k ], [A] is a K �K matrix, and [g] a column vectordepending on the charge distribution �. We obtain for all 1 � k; k0 � K,Akk0 = ZTk dx Z� dy ZTk0 dz k(x; y; z) (3.14)withk(x; y; z) = ���(x� y)2 � @yGe(x; y)�Gi(y; z) +Ge(x; y)��(y � z)2 + @yGi(y; z)��andgk = ZTk dx Z� dy ����(x� y)2 � @yGe(x; y)��i(y)�Ge(x; y)@�i(y)� : (3.15)The two above expressions come from a variational calculation.At this stage, the remaining problems are� the computation of �i, @�i and �0i (we tackle this problem in the next section),14



� the numerical computation of the various surface integrals in (3.13), (3.14) and(3.15). When � is smooth, one can prove that for �xed x, the singularitiesof the kernels Gi(x; y), Ge(x; y), @Gi(x; y) and @Ge(x; y) are all in 1jx�yj .Therefore, all these singularities are integrable on a (two dimension) surface.We have used Gaussian integration in suitable coordinates to perform thesequadratures, which gives good results.3.2 Application to Hartree-Fock SCF calculationsLet us deal at �rst with the nuclei repulsion term. In this case, � = q �(� � x) and�0 = q0�(� � x0) are two point charges, and thus the functions �i, @�i and �0i arevery easy to be computed. Indeed, for all x 2 ��i(x) = q4�jx� xj@�i(x) = �q (x� x) � n(x)4�jx� xj3�0i(x) = q04�jx� x0j :Let us now turn to the electronic energy. From now on, (�p)1�p�N denotes the setof the atomic orbitals. We use the following classical notations:Ipq(x) = ZIR3 �p(y)�q(y)4�jx� yj dyand Ipqrs = ZIR3 ZIR3 �p(x)�q(x)�r(y)�s(y)4�jx� yj dx dy:In the PCM, the Fock matrix reads (for a spinless model to simplify the notations)F�� = h�� +G��(P )with h�� = 12 ZIR3 r�� � r�� �EI(�nuc; ����)and G��(P ) =X�;� P���EI (����; ����)� 12I����� ;15



where �nuc = MXk=1 zk�xkis the charge distribution of the M nuclei and P the one-electron density matrix.Denoting �el =X�;� P������the electronic density and using the results obtained in the previous section, wewrite the Fock matrix asF�� = F 0�� +D(�nuca + �ela ; ����)where F 0 denotes the standard Fock matrix (for the molecule in the vacuum) and�nuca and �ela are the apparent surface charges created by the nuclei and the electroniccloud respectively. To compute the Fock matrix, we only need to know for all x 2 ��i(x) = MXk=1 zk4�jx� xkj �X�;� P��I��(x)@�i(x) = � MXk=1 zk (x� xk) � n(x)4�jx� xkj �X�;� P��(rI��(x) � n(x))�0i(x) = �I��(x):When atomic orbitals are contracted gaussians, which is the case in most of thequantum chemistry calculations for molecules, the functions I�� and their gradientsare very easy to compute and that makes this method very e�ective.Remark 2. The electronic distribution is not rigorously located inside the cavity:there is always an �electronic tail� spreading outside. For standard cavities andbasis functions, the approximation that we make when computing the Fock matrixas above is quite valid. In some special cases, for example when di�use functionsare used to compute excited states, this approximation may be too crude. Let usnotice however that the same problem occurs when computing the standard PCMequation (1.1) with the ASC method (i.e. starting from equation (2.8)).
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3.3 Numerical resultsIn this section we report a selection of results obtained with the implementationon GAMESS package [7] of the new formalism presented above within the PCMframework.As the scope of the present article is the detailed presentation of the theoreticalbases which underlie the method, we have limited our numerical study to some verysimple systems: the solute molecules are small and the cavity is a single sphere evenfor polyatomic solutes. Besides, the reported values are not analyzed in their realchemical meaning, but only as a proof of the reliability of the method. Other morecomplex systems are studied in a parallel work [8] dedicated to a detailed analysisof the potentialities and the e�ective performances of this new integral equationformalism, in which we also check that the new method, when applied to standardisotropic liquids, gives the same results as standard PCM (apart from numericalapproximations).The results reported here regard two solute-solvent systems of di�erent natures.The �rst one is an application to intrinsically anisotropic dielectrics, character-ized by a tensorial permittivity. In the speci�c case that we have considered, thechosen solvent is the liquid crystal known with the acronym 7CB (4-n-heptyl-40-cyanobiphenyl), which is nematic at room temperature (its transition temperatureto the isotropic phase is 312 K). The main characteristic of this kind of �mesophases"is that they exhibit long-range orientational order, with the long axes of the ani-sometric component molecules tending to align parallel to a space-�xed axis calledthe director. From a physical point of view, a consequence of this is that their per-mittivity is described by a symmetric tensor which has two eigenvalues equal: for7CB the double eigenvalue is �? = 5:54 and the simple eigenvalue is �k = 17:1 (inother words, �k is the permittivity along the direction of preferential alignment ofsolvent molecules, and �? the value in the plane normal to this direction). Becauseof the structural speci�city mentioned above, solute molecules dissolved in nematicliquid crystals are subject to anisotropic forces which lead them to orient. Usually,a rodlike dipolar molecule orders such that its long axis is preferantially orientedparallel to the nematic director. One of the major sources of this orientationalordering of rigid solutes in liquid crystals is given by electrostatic interactions bew-teen the polar solute and the solvent molecules. Other minor contributions comefrom dispersion forces and short-range repulsion. The method we have presentedabove allows us to get in a very e�cient way the electrostatic contribution. We havelimited ourselves to the calculation of this term. A more accurate evaluation of theordering mechanism can be easily obtained within PCM framework [9], by includingthe cavitation term, but it is not performed here as out of the scope of the presentpaper. In the following �gure we have reported the electrostatic contribution to thesolvation free energy of HF in 7CB with respect to the angle between the solutebond and the solvent director. These results are obtained with the HF molecule17



embedded in a sphere of radius 1.734 Å and described with a standard DZV basisset.

Figure 2: �Gsol values of HF in 7CB with respect to the angle between the bondaxis and the z axis.As we can easily see, the di�erences between the various orientations are quitesmall, but small is also the anisotropy of the dielectric; anyway it appears that thestablest con�gurations (i.e. those with the most negative �Gsol) are those withthe HF bond parallel to the axis along which the dielectric tensor has the greatestvalue (clearly the graph is symmetric with respect to the angle value of 90�). In the�gure we also report as limit values, those obtained for two hypothetical isotropicmedia with permittivity equal to each of the two di�erent eigenvalues of � for 7CB.The second application of the new method presented in the previous sections is theanalysis of the solvation behavior of a probe solute in salt solutions of various ionicstrengths. Veri�cation of this new algorithm was accomplished by calculating theion contribution to the solvation free energy of a spherical charged solute (here theanion H� embedded in a sphere of radius 1.4 Å in a solution of water (dielectricconstant=78.5) and a 1:1 salt at variable concentration. The ion contribution,18



de�ned as the free energy in solution minus the energy calculated at zero ionicstrength, is reported in �gure 3 with respect to the bulk ionic strength I expressedin mole per litre.

Figure 3: Ion contribution to the solvation free energy of H� in water containing a1:1 salt at variable concentrations. I is the bulk ionic strength in mole/l.Continuum models accounting for ionic screening have found an increasing applica-tion in the modelling of hydrated molecules, particularly biological macromolecules.Our future intent is to follow this trend and try to exploit the present algorithm tounderstand many interesting phenomena related to biological systems. However, inthe present paper we have limited our analysis to a very simple system; the reasonof this choice is that for the moment our scope is to stress even if with an almostpropedeutic example, the reliability of this extension of a pure integral equationmethods to problems usually solved with three dimensional methods.
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4 Conclusion and future trendsWe have shown in this article that integral equation methods are also e�cient forthe above extensions of solvation continuum models when the solvent is an ionicsolution or a liquid crystal. In fact, these methods are generally relevant from themoment that the medium which spreads outside the cavity is homogeneous.In all these cases, integral equations methods are much more e�cient than threedimensional methods as �nite di�erence or �nite element methods used so far, be-cause1. the computational e�ort is lower,2. no approximation is made to account for boundary conditions.Moreover it becomes easy to compute analytical derivatives of the energy withrespect to physical parameters, as the temperature in the case of ionic solutions,or as the orientation of the molecule with respect to the principal directions ofthe anisotropic tensor �s= in the case of liquid crystals. Analytical derivatives withrespect to nuclear coordinates, which are useful for geometry optimization [10], aremore di�cult to be computed because of the change of the cavity shape, but seemsnevertheless accessible. We are at the moment studying this extension [11].On the other hand, for an inhomogeneous external medium, three dimensional meth-ods are required. However, if there is in the model an inhomogeneous zone in theexternal medium, it is usually located in the neighbourhood of the molecule understudy. It is therefore possible to put both the molecule and the inhomogeneouszone in a bigger cavity of simple shape (for example a cube) and to couple integralmethods (for solving the external problem) with three-dimensional methods (forsolving the internal problem). The advantage of such a method, compared withpure three-dimensional methods, is to take into account the boundary conditonsrigourously. We intend to look soon into inhomogeneous models.AKNOWLEDGMENTSThe authors would like to thank Pr. J. Tomasi, Dr. M. Defranceschi and Dr. C.Le Bris for helpful discussions.
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