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Abstract. In this article sharp asymptotics for the solution of non homogeneous Kol-
mogorov Petrovskii Piskunov equation depending on a small parameter are considered
when the initial condition is the characteristic function of a set 4 € R?. We show how
to extend the Ben Arous and Rouault’s result that deal with d = 1 and initial condition
A = {z < 0}. The dependance of the asymptotics on the geometry of the boundary of A
is precisely described for the problem with constraint.

Key-words: Reaction diffusion equation, Large deviations.

AMS classification (1991): 35K55, 35K57, 60F10, 60J65

1 Introduction.

The aim of this article is to obtain sharp asymptotics (¢ — 0) for the solution of non homo-
geneous Kolmogorov Petrovskii Piskunov [5] (in short KPP) equation when the variables
are in R i.e.

Ous € c(z) . .
W(t,x) = 5Au+ 2 U (1—u) (1)
u(0,2) = 1u(x)

where z € RY, ¢ is C® non negative function on R? such that c(z) < const(1 + |zl|),
for some generic strictly positive constant const. Actually we are extending both Ben
Arous-Rouault’s [2] results , that deal with d = 1 and initial condition A = {z < 0}, and
Freidlin’s results [4] that give only logarithmic asymptotics. From these previous studies
we know that all asymptotics are related to the path ¢ maximizing the rate function of this
large deviation problem with ¢9 = x and ¢ € A. If ¢ belongs to the interior of A the
problem is equivalent to a problem without constraint which is solved in [1]. For related
results we can quote [3] where sharp asymptotics are given for smooth initial conditions
in different frameworks, and the travelling wave for a step initial distribution is studied
but without the speed of convergence when e goes to 0. In this article we are focusing on



the case ¢ € 0A the boundary of A and we explain how the geometry of 0A interferes
with the constant describing the asymptotics. From this point of view Theorem 1 shows
that the sharp asymptotic for the linearized equation associated to (1) involves the secund
fundamental form of 0A at ¢p. Furthermore the constant which describes the asymptotics
of the non linear problem depends only on ¢7 and on the normal vector at ¢ pointing
outside A. Besides this geometric part the main tool is the Laplace transform in the Wiener
space and we refer to [2] as long as higher dimension and geometry do not require more
delicate techniques. For instance many arguments of the one dimensional case can be
extended to greater dimension if we let A = {f(z) < 0} where the assumptions concerning
the function f : R — R are given in the next section.

2 Statement of the results.

Let us recall the definitions of the actions related to this large deviation problem :

Ros() = [ ew) = 5I0lFls RS, ()= min Rou(0) )

0<a<t

and the potentials

V(T,z) = sup(Ror(¢) ;o =z, f(¢r)
VAT, z) = sup(Rg7(¥) ;%0 =z, f(¢r)

The asymptotic behavior of the solution of the linear equation

0) (3)

<
<0). (4)

e € c(z) .
E(t,x) = §Av+€—2v (5)
ve(0,z) =1a(x)

is described by R and V. Under the hypothesis :
H 1 the mazximum in'V s attained at a unique path ¢, and this mazimum is non degenerate

sharp asymptotics for v¢ are given by the Theorem 1. At first we need some smoothness
assumption for f in a neighborhood of ¢ to express the Euler equation associated to V.
Hence

H 2 ¢r is assumed to be on OA the boundary of A which is a C? manifold of dimension
d — 1 imbedded in R? in some neighborhood of ¢ .

Let us introduce some notations concerning the local geometry of 0A at point ¢7. In the
neighborhood N of ¢ where 04 is smooth we can assume f(z) = e(z)d(z,0A) where €(z)
is 1 outside A and —1 inside. Hence V f(z) is always a unitary vector on N and it is the
normal vector pointing outside A at each point of 9A. Moreover the Hessian f”(¢r) is
given by the opposite of the secund fundamental form « of 0A at ¢ i.e.

7 (¢r)(v,w) = —ag, (x(v), w(w)) (6)

where 7 is the orthogonal projection of R? onto Ty, 0A. When H 1, H 2 are fulfilled ¢
satisfies

b=—-c()
p = —¢r = ANV f(édr), with A>0 (7)
f(@r)=0 or ¢r=0

where the last condition is known as complementary slackness. In the following theorem

we only consider the problem with the constraint f(¢r) = 0 since the other instance is
already solved in [1].



Theorem 1 (linear case) Under the assumptions H 1 and H 2 if f(¢7) =0 :

V(T
et X _M el
lpll27T)7? /<vf(¢,T)>L Co(9) exp(= T + 5 r (b,5))db
with - b
Cu@) = Blexp(g [ (@) WS + PPd).

The limit in (1) is always finite if ¢ is a non degenerated mazximum of V (T, x).

Please note that ¢''(¢;) stands for the Hessian of ¢ at point ¢, and that this quadratic
form is applied to (W2 + 2, W0 + £) written symbolically (W? + ££)% where W? is a
Brownian bridge on [0,7]. We remark that Cj(¢) is the natural extension of the constant
Co(¢) in [2] where various interpretations of this constant are given. Moreover the limit
in (1) can be written as

1 e Il
— exp(= " Waal(s))?ds + “—aps, (Waa(T))?
Bl [ 60 (Woa(s)ds + s, (Woa (1))
where Wy,4 is Brownian bridge with the end point on the tangent space of 0A at ¢p. To
describe the asymptotics of u¢ the counterpart of the hypotheses (H3)and (H4) in [2] is

H 3 {(¢,a) € H* x [0,T] ; f(¢1) <0 and Ro,u(¢) = R, 7(¢) = V*(T,2)} is a singleton
(6, T) with V*(T,z) < 0 and c(¢r) — L|ér|[? < 0.

As in [2] this hypothesis summarizes the fact that the path ¢ leading the asymptotics for
the linear problem runs always ahead of the front of the non linear problem. It is crucial
to use the boundary layer techniques and it naturally involves global geometric conditions
on A which seem hard to precise at least when c¢ is not constant. For examples where
the hypotheses H 1, H 2 and H 3 are fulfilled one can refer to Remark 4 in [2] and the
discussion of the hypothesis (N) in [4]. To find the constant for the sharp asymptotics of
the non linear problem the following homogeneous KPP equation is introduced

ot 1, . . -
%(Saf) = iAu—l—C(d)T)U(S,f)(l —U(S,f)) (9)
a(0,§)  =1lne<o

where n = V f(¢r). Actually (s, ) does only depend on the normal component of &, it is
nothing but u(s,&.n) where u(s,z) is the unique solution of

ou 16%u
%(s,x) = Eﬁ(s,x) + c(opr)u(s, z)(1 —u(s,x)) (10)
u(0, z) = 1.<0.

Then the following functional of 4 :

G(p,y) = Elexp(—c(¢r) /OOO (s, [Bs + |lplls + yln)ds)]

is introduced, where B is a standard Wiener process. We remark that this constant depends
only on ¢ and n which is a consequence of the boundary layer techniques.

Theorem 2 Let (T, z) be such that V*(T,x) < 0. Under the assumptions H 1, H 2 and
H3

1 “(T
Lesp(- (1 0) — (1)
€ € e—0
1 be B2y (24D L g
W/WMT»L "w)'eXp(_W)/_m (p,y)e"¥dy.



3 Proof for linear regime

Applying Feynman-Kac formula we get :

V(Ta) = BA(G < 0)esp(T )] (12)
W(Tw) = B < 0) exp(l TG0y (13)
with X{ =z + €W, and
T to
FO) = [ ewads Rt = [ dpgu@—spads. ()
0 t1
To localize around ¢ let us denote Z¢ = ¢y + €W, U(t1,t2) = fo d'(¢s +

eW,)dv]|W2ds and T, (t1,t2) = {max(|eW]|, [[eW/]| < p;Vs € [t1,t2]} Where we have used
the following convention : if 2 € R? we denote z - n by 2’ and the projection = (x) by =",
the norm max(|z'|, ||z"||) will be denoted by |||z|||.

Lemma 1 Under assumptions H 1, H 2, Vp > 0, 3¢ > 0 such that

V(T,z)
€2

p-Wr

ve(T, x) = exp( JE[L(f(Z7 < 0) N Ty (0,T)) exp(

+U(0,7))]

V(T7 :U) — C))

Under assumptions H 1, H 2 and H 3, dp; > 0, Va € (0,1), Vp < p1, ¢ > 0 such that

(15)
+0(exp(

w'(,2) = eap( 0Dy (7,2, 0) + Ofesp( D=8 (16)
where
(T, 2,00 = B[L(f(Z5 < 0) N Lo (0, 1) exp(2 0T 1 00, 7) - F1E0 D0y

Proof

The proofs of lemmas 3.5 and 3.9 in [2] are essentially unchanged, since we have just
transformed 1x: <o into 17(x:)<o to get (12) and (13), all the arguments concerning the
Wiener Space remain true.Od

Proof of th 1

Using a Taylor expansion of U¢, we deduce from (15):

v(12) = ean(C ) 7,(1 4 0(1))

where Z, = E(1(f(Z5 <0)NT,(0,T)) exp(% +U°(0,7T))). Since the Brownian bridge
W= (W, — #Wr)o<s<r is independent of Wy

dw'dw"
/ / . @amyan T +ew'n+ ") <Ol Wrll| < p)
o "Te<n>
(w')? + [lw"|2) . w'lipl
exp(—( 5T )+ =)

T
BOW + #(w'n+ 0l < plexplz [ @0 + Hw'n+ ) ds)



where we have written Wz = w’'-n+w". Hence if w' — ew' we get f(ér +€*[w'n+w"]) =
”» 2\2
e2(w' + %) + o(€?) because of Vf(¢r) = n and of (6). Then

ecw’dw” 1 (¢r)(w”)*
Z = ap Hw + ————+0(1) <0
g /w’eR /w”e<n>L (27rT)d/2 (w' + 2 +0(1) <0)

!
) o)

exp(—(
T

BEW + #(ew'n+ ) < pesp [ 0072+ Zew'n+ "))

which leads us to

/ / e LIy )
- exp(— w'||p
wl+%f”(¢T)(w”)2§0 w'e<n>L (27TT)d/2 2T

T
Blexp(. / (G)IWY + Zu")ds))

edw" w1, [lpl
- Tomazz XPl— =y, (bb
/w”6<n>J- (2nT)4/2 e 2T + 2 ¥z (b, D))

]E(exp(l'/T ¢ (fa) (W0 + —w'")?ds))
2" J, T
We explain now why this last integral converges. Since ¢ is the maximum of Ry r(¢)) =
fOT[c(ws) - %||¢s||2]ds under the constraint f(ir) < 0, the Lagrangian L(v) = Ro.7(¢) —
Af(r) , A > 0 is critical at ¢, i.e. YVh € H DL(¢)(h) = 0, where H = {h : h(0) =
0, fOT |h||2ds} is the Cameron Martin space

T T
DL(¢)(h) = / CI(¢s)hst - / Pshsds — Afl(d)T)hT
0 0
T T .. .
= / c(¢s)hsds + / ¢shsds — drhr — Af'(¢1)hr.
0 0
Hence A = ||p|| and ¢ (¢5) = —¢s. The second order condition for a maximum is here

) T ) T . )
Vhe H 0> DL(g)(h) = / & (¢o)h2ds — / VhallPds — 1p £ (6r) (hr)?.

This last inequality shows that the integral is well defined. O

4 The non linear regime

To study the asymptotics of u§(T, z,a), a so called boundary layer is introduced and for
a € (0;1), T =T — €*, Lemma 2 shows that the contribution on [0; T¢] comes only from
the linear part. If

Te
@ =5 [ ooz
and
(T, .0) = EI((Z € 0) AT o (0,T) exp(2 L 4 @ - LTy

Lemma 2 For all a € (0;1 — a), u§ — u§ = O(e7*72%), (¢ = 0).



The proof is postponed to section 5.
To take into account the coordinates W' in the study of u§, we need a conditional expec-
tation with respect to the tangent component, hence g¢ becomes

F(Z5,T.,T
g(W"39,2) = BT - (T, 1)) exp(~ X E D)) iy = o, = 2)
Lemma 3
-W. W,
(T, ,0,0) = E[L((Z < 0) N Toma (0.7 exp(E 0L 1 @)t

Proof : As W' is assumed to be constant by conditioning, we can apply the Markov
property for W'.O
A more accurate localization will be done by considering

T _
Gy = {(Wh 2 =) N |Wh, = = WH < 77}

and by introducing

- W Wy
g (T, 0,) = E[L(GS 1 (F(Z5) < 0) N Torma (0,T0)) exp(Z2L + Q)" (W LW, )]
Lemma 4 For all v in (1 —a/2;2 — a), we have
u§ — uf = O(exp(—const.e?~*727)), (e = 0).
Proof : Since
€ _ € € ! PR e “p“WII"’ €
uy —us <E[1(f(Z7 < 0)NTa-a(0,70)).1(Wyp < —e ") exp(——— + Q)]

€

. T. _
+E[e? 1(Ta-«(0,T.) N W}, — 71> e M)

we use the same proof as in [2] by replacing W by W'. O
Let Q=15 Jy ¢ (p)(W) — 2 Wp; (W")2)ds

and let

p- W

_ 1
(T, 0) = BL(GE N (£(25) < 0))exp(E0T 4 Qo) (W T2 Wi )],

Lemma 5
ug = [1+ O(e' 7 M) u§ + O(exp(—const.e **)).

Then the limit of g€ is given by :

Lemma 6 Vy € R,

T
G W5y, 2) — E(exp(—c(ér) / (s, [B. + lIplls + ylm)ds)) = G(p,y)

uniformly for ze'=* — 0, uniformly in W".

These two lemmas are proved in section 5.

Proof of theorem 2 Since we have the same relation between the asymptotic behavior
of u§ and u® when € — 0 as in the case d = 1, the only new feature is the presence of W"
in the definition of u§ hence we denote by

US(W") = B [1(G1 1 (£(25) < 0) exp(ZE + Q)" (W75 0,1, )




and we get u§ = Ew[Us(W")]. But by independence of the increments of the Brownian
motion W'

T
Us(W") = Ew (e // (=77 < 21520 — T21| <€ flor +ezim+ W p) <0)

(2m)~t(evT) /2 eXp(—”p”Z1 _a _(=oFa) %Z1)2)!]E(W"' 2] 29)dz1dzo
’ ¢ € 2T 25“% Te’ '

Let z; = ey; and 2y — %zl = y2e"/2(T./T)z.

U WII
(2m )WM = / (=" <yi; f(or + yn + W r) <0)
elEw (eQ ) R?2
a T, e2y?
(el < =84 50 g (s, 20) explan ] - S — 120y,

— / G(p,y1) exp(y1llpll — Iz —)dy1dy>
v+ 17 (6r) (W2 1)2<0

2
— 3 (er) (W7 r)?
= / G(p,yr)etv P dy,

o0

Since Ey- (eQS) — Cw . (¢) the proof of Theorem 2 is complete if a dominated convergence
is applied to the expectation with respect of W” .0

5 Proofs of the lemmas

5.1 Proof of lemma 2

To prove the Lemma 2 an exponential estimate of u¢(s, ) is performed where the bounding
terms involve f({) which is related to the distance of ¢ to A. The next lemma summarizes
the changes performed in Lemma 5.1, 5.2 and 5.3 in [2]. Let us introduce the new definitions
for

c(n) = sup{c(z); |z — ozl < n}
and
G2(e,6,n,1) = {V/2[c(2n) + n)(T — s) < f(Z) < —=
and || ZS — or|| < n;Vs e [T — 6T}

Lemma 7 (i) There exists no > 0, such that for 0 <n <mny, VI>1:

for s\/21[¢(2n) +n] < f(C T and || —orl| <n

g

“(s,() < const exp(—g),
€

(ii) on GoNTa-«(0,T) : 0< e 2F(Z;0,T.) < const.e=onste"
(iii) and for € small enough

2a—2

P(Gg N Fp2 (0, T)) S const_e*CO’nst.e



Proof : For the part (i) as in the case d = 1 we are using the Feynman Kac formula and
Markov property at 7 = inf{o < s, ||eW,| > n}. Hence for ¢ < 7 and || — ¢7|| < n we
have 0 < ¢(¢ + €Wy) < &(2n) and

c(2n)s
2

u(s, () < exp( YP(s <7Nf(C+eWs) <0)+P(r < s).

Since W is a d dimensional Wiener process we get P(7 < s) < dexp(Q_ET";d) and because

sy/2l[e(2n) + 1] < f({) < ﬁ we have
c2m)s __n* O _ms, _ [AO

€2 2e2sdl — (2l€28 B (—:2) 2le2s

and

Q)
—
DO
3
A
Y

exp( P(r <s) < dexp(—Z—j).

€2

Then we set 19 such that f is C? in the ball with center ¢7 and radius 7o we are aiming
to bound P(s < 7N f(¢ + eWs) < 0). If n < o on the event s < 7 there exists # € (0,1)
such that

F(C+eWs) = f(¢) + VF(C).eWs + f”(C + 0eWs).(eWs, eWs). (17)

We can choose 7 small enough to have { + 0eW; close enough to ¢r. Because f”(¢r) is
given by (6), if K4 is the greater eigenvalue of ag, for each m > 0 and K > K4 there
exists 11 € (no,n1) such that n < 7y implies that

FICH W) > F(C) +eW/ — 62(§IIWS//||2 +m(W/)?) (18)

where we have set W/ = V(). W and w!/ is a Brownian motion orthogonal to V f(().
Since WS/ / is independent of Ws/ , large deviation for Gaussian random variables gives :

K 2
lim e In(P(0 > f(¢) + eW/ — =||eW//||> = m(eW/)?)) = —inf lz]
e—0 2 ge  2s

where 2’ € R, 2” € R*™", 2 = (2/,2”) and € is the ellipsoid {z' — £||27(]2 — m(2")? >

—f(0)}. The infimum of % on £° is attained at (1_7 ‘W, 0) then for m small enough

lel? _ _ Q)

2s 2ls

Vi>1 —inf
gc

and

P(O0 > 7(Q) + W/ — S|/ | — m(eW!)) = O(exp(=L219y)
when € — 0. Because of (18) we get

-2(¢)
2le%s

P(s <tN{f(¢+ eWs) < 0}) < const exp(

and

which concludes the proof of part (i).



For the part (ii) we refer the reader to the proof of Lemma 5.3 [2] where we have
changed (5.4) in

const.c(n)

0 <R (25T =6,T(e)) < exp(—ne™2=).

To prove (iii) straightforward changes in the proof of Lemma 5.6 [2] (replacing ¢(0) by
c(ér), p by [Ipll, o7 — dr—s by ||¢r — dr—s|| and Z¢ by Z¢ — ¢r) allows us to claim
Vs € [I'=96,T(e)] 1r, 01ellZs —orll <n

for 6 < dp and p, small enough. Furthermore we get
n
Vse [T —-94,T 1 . ZH)| < —=
[ O 1r,, 0,7l f(Z) Nz
since f(¢r) =0 and ||V f]| =1 in a neighborhood of ¢r. Hence
GyNT,(0,T)={3s € [T =6, T(e)], [f(Z5) < V2e2n) +n|(T =)} NT,, (0,T).

In H 3 ¢(¢r) is assumed to be strictly lower than %||¢.T||2, consequently there exists [ > 1

such that c(¢r) < 2il||¢)T||2 Hence c; = [|p|| — v/2I[¢(2n) + 1] — doL is strictly positive, we
deduce that on G5 NT,,(0,T)

s € [T —06,T(e)] f(ds +eWs) < (|Ipll —c2 — o L)(T — s).
Using a Taylor expansion for s' =T — s € [¢%,d] we get
Fbr—s +eWr_g) = Vf(o1)(d1-5 + Wr_sy — ¢1) + O(ll$7-5 + W5t —67]*),

Vi(gr)(dr—s — ér) = |Iplls" + O((s")?) and Vf(¢r).cWr_y = eW]_,,. Therefore on
G3NT,,(0,T) 3s € [T —6,T(e)] such that p]|(T — ) + eW! + O((T - 5)2) < (IIpll - cs —
doL)(T —s) and G§NT,,(0,T(e)) C {Is € [0,T(e)], eW,) < —ca(T — s)} which gives the
inequality (iii).

Proof of lemma 2 : In the end of the proof of Lemma 2 all arguments of the one

dimensional case can be used for d > 2, but we have to show that

(7 < 0)exp P0T <1 (19)

instead of 1(Wr < 0) exp(%) < 1 to deal with the non linear part that depends on Fj.
But (19) is clear since Z5 = ¢ + eWr is inside A and p is pointing outside A.

5.2 Proof of lemma 5

We give the needed modifications of the proof of the corresponding lemma 4.10 in [2]. At
first we study the consequences of replacing Q¢ by Q¢ = % fOTe ™ (¢s). (Wy—7Wr, W”)%ds
and ug is introduced as :

E[1(G{ NToaa [0, T)1(f(Z5 < 0)). exp(ZL 4 Go) g (W7 T 7))

€ €

By a polarization argument

Te
~ s s :
QE = QE + / c” (d)s)[(Ws’ - TWYI“QW”S): (TWTI"UW”S)]ZdS'
0 € €

Then W' is estimated as in the one dimensional case and we get

|Q€ — Q¢| < const(e!=7™%)
where the random constant can be easily bounded. Hence

U = (1 + O(EI_W_Q)U,E;.

In [2] (6.7) remains true with 1(f(Z5 < 0)) instead of 1(Wr < 0), that implies
ug — ug = O(—const.e2¥). 0O



5.3 Proof of lemma 6

Let B be areal valued Wiener process independent of W". The distribution of e (Z5_ . s

?1)o<s<e—(2—a) under P(./Wr = ey, W = z) is identical to that of (£5)p<s<.-2-a), Where

=€ 2 (Wrzg — $1) +y — s (Bl ) —ze )
and where the tangent part £”¢ is defined by :
é—ng — 672(¢7’T—e2s _ QS”T) + 671W”T_€23-

Hence we get with the same change of variable argument as in [2]

—(2-a)

9 W7y, 2) = E[l(fe)efvp(—(/ e (€5)ac (s, €5)ds)) /W7

0

where
T = {||[€°¢ + o7 — dr—exll| < 7%, Vs € 0,67}
and
() =c(E+ o), a(s,€) = u(e’s, €€ + ¢r).
Moreover @€ is solution of the P.D.E. :

(5,0 = hau + e (@i
)

a(0,6)  =1(f(¢r +€%¢

(1—a) (20)
<0)
Hence @¢ converges uniformly for s < s and €?|€] — 0 to @¢ thanks to a standard argument
of perturbation applied to the PDE (20). Since (s, £) depends only on the orthogonal part
of ¢, and since for s, y fixed and ze! =* — 0, £'S converges a.s. to B(s) + ||p||s + v, and the
limit of a¢(s, &) is a(B(s) + ||plls + y) a-s..

To conclude the proof of lemma 6 we only have to upper bound é¢(£5)a(s, £5) in order to

E—(2—a) ~ ~ ~
have the convergence of [ c(&)a(s, 8)ds to c(or) [y (s, B(s)+|plls+y)ds < +oo.
Because of the definition of ||| ||| the characteristic function of I'¢ is the product

l(fe) :1({€||W”T7625|| S 61—a,v8 c [0’6—(2—(1)]}
1({|6§,§ + (d)T - ¢T—523),| S 6170‘7V8 € [07 6*(270{)]}

and if Q; = {@ — 0} and Qs = {e!Tsup{|B(s)],s < €27} — 0} we get the counterpart
of (6.18) which is

1) = 1({e||W” p_ || < €172, Vs € [0, 9]} for € < €.
Since €2£¢ + ¢ converges a.s. to ¢,
0<é(E) <e(n) for e<e

where &(n) is defined before lemma 7. As in [2] we aim the following inequality : for s > s;
and € < e3(w),
1(s < e~ =9).a(s, £) < 2d exp(—ns)

which will be a consequence of lemma, 7, if we can prove

(& + o)

>/20(E(2n)+n) for e<es and s> s.
s

But f(e2€S + ¢7) = €2€'S + o(€?), and since €% is the exact counterpart of the real valued
process denoted by &f in [2], there is no further change in their proof.
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