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the case �T 2 @A the boundary of A and we explain how the geometry of @A interfereswith the constant describing the asymptotics. From this point of view Theorem 1 showsthat the sharp asymptotic for the linearized equation associated to (1) involves the secundfundamental form of @A at �T : Furthermore the constant which describes the asymptoticsof the non linear problem depends only on �T and on the normal vector at �T pointingoutside A: Besides this geometric part the main tool is the Laplace transform in the Wienerspace and we refer to [2] as long as higher dimension and geometry do not require moredelicate techniques. For instance many arguments of the one dimensional case can beextended to greater dimension if we let A = ff(x) � 0g where the assumptions concerningthe function f : IRd 7�! IR are given in the next section.2 Statement of the results.Let us recall the de�nitions of the actions related to this large deviation problem :R0;t( ) = Z t0 [c( s)� 12k _ sk2]ds R�o;t( ) = min0�a�tRo;a( ) (2)and the potentials V (T; x) = sup(R0;T ( ) ; 0 = x; f( T ) � 0) (3)V �(T; x) = sup(R�0;T ( ) ; 0 = x; f( T ) � 0): (4)The asymptotic behavior of the solution of the linear equation8<:@v�@t (t; x) = �22 �v + c(x)�2 v�v�(0; x) = 1A(x) (5)is described by R and V . Under the hypothesis :H 1 the maximum in V is attained at a unique path �, and this maximum is non degeneratesharp asymptotics for v� are given by the Theorem 1. At �rst we need some smoothnessassumption for f in a neighborhood of �T to express the Euler equation associated to V .HenceH 2 �T is assumed to be on @A the boundary of A which is a C2 manifold of dimensiond� 1 imbedded in IRd in some neighborhood of �T .Let us introduce some notations concerning the local geometry of @A at point �T . In theneighborhood N of �T where @A is smooth we can assume f(x) = �(x)d(x; @A) where �(x)is 1 outside A and �1 inside. Hence rf(x) is always a unitary vector on N and it is thenormal vector pointing outside A at each point of @A. Moreover the Hessian f"(�T ) isgiven by the opposite of the secund fundamental form � of @A at �T i.e.f"(�T )(v; w) = ���T (�(v); �(w)) (6)where � is the orthogonal projection of IRd onto T�T @A: When H 1, H 2 are ful�lled �satis�es 8><>:�� = �c0(�)p := � _�T = �:rf(�T ); with � � 0f(�T ) = 0 or _�T = 0 (7)where the last condition is known as complementary slackness. In the following theoremwe only consider the problem with the constraint f(�T ) = 0 since the other instance isalready solved in [1]. 2



Theorem 1 (linear case) Under the assumptions H 1 and H 2 if f(�T ) = 0 :1� exp(�V (T; x)�2 )v�(T; x) �!�!0 (8)1kpk(2�T )d=2 Z<rf(�T )>? Cb(�) exp(�kbk22T + kpk2 ��T (b; b))dbwith Cb(�) = IE(exp(12 Z T0 c00(�s)(W 0s + sbT )2ds)):The limit in (1) is always �nite if � is a non degenerated maximum of V (T; x):Please note that c00(�s) stands for the Hessian of c at point �s and that this quadraticform is applied to (W 0s + sbT ;W 0s + sbT ) written symbolically (W 0s + sbT )2 where W 0s is aBrownian bridge on [0; T ]. We remark that Cb(�) is the natural extension of the constantC0(�) in [2] where various interpretations of this constant are given. Moreover the limitin (1) can be written as1kpkp2�T IEW@A [exp(12 Z T0 c00(�s)(W@A(s))2ds+ kpk2 ��T (W@A(T ))2)]where W@A is Brownian bridge with the end point on the tangent space of @A at �T : Todescribe the asymptotics of u� the counterpart of the hypotheses (H3)and (H4) in [2] isH 3 f(�; a) 2 Hx � [0; T ] ; f(�T ) � 0 and R0;a(�) = R�o;T (�) = V �(T; x)g is a singleton(�; T ) with V �(T; x) < 0 and c(�T )� 12k _�T k2 < 0:As in [2] this hypothesis summarizes the fact that the path � leading the asymptotics forthe linear problem runs always ahead of the front of the non linear problem. It is crucialto use the boundary layer techniques and it naturally involves global geometric conditionson A which seem hard to precise at least when c is not constant. For examples wherethe hypotheses H 1, H 2 and H 3 are ful�lled one can refer to Remark 4 in [2] and thediscussion of the hypothesis (N) in [4]. To �nd the constant for the sharp asymptotics ofthe non linear problem the following homogeneous KPP equation is introduced8<:@~u@s (s; �) = 12�~u+ c(�T )~u(s; �)(1� ~u(s; �))~u(0; �) = 1n:��0 (9)where n = rf(�T ). Actually ~u(s; �) does only depend on the normal component of �, it isnothing but u(s; �:n) where u(s; x) is the unique solution of8<:@u@s (s; x) = 12 @2u@x2 (s; x) + c(�T )u(s; x)(1� u(s; x))u(0; x) = 1x�0: (10)Then the following functional of ~u :G(p; y) = IE[exp(�c(�T ) Z 10 ~u(s; [Bs + kpks+ y]n)ds)]is introduced, where B is a standardWiener process. We remark that this constant dependsonly on �T and n which is a consequence of the boundary layer techniques.Theorem 2 Let (T; x) be such that V �(T; x) < 0. Under the assumptions H 1, H 2 andH 31� exp(�V �(T; x)�2 )u�(T; x) �!�!0 (11)1(2�T )d=2 Z<rf(�T )>? dbCb(�): exp(�kbk22T ) Z 12��T (b;b)�1 G(p; y)ekpkydy:3



3 Proof for linear regimeApplying Feynman-Kac formula we get :v�(T; x) = IE[1(f(X�T � 0)) exp(F (X�)�2 )] (12)u�(T; x) = IE[1(f(X�T � 0)) exp(F (X�)� F1(X�; 0; T )�2 )] (13)with X�s = x+ �Ws andF ( ) = Z T0 c( s)ds, F1( ; t1; t2) = Z t2t1 c( s)u�(T � s;  s)ds: (14)To localize around � let us denote Z�s = �s + �Ws, U �(t1; t2) = R t2t1 [R 10 (1 � v)c00(�s +�Ws)dv]W 2s ds and ��(t1; t2) = fmax(j�W 0sj; k�W 00s k < �;8s 2 [t1; t2]g where we have usedthe following convention : if x 2 IRd we denote x � n by x0 and the projection �(x) by x00,the norm max(jx0j; kx00k) will be denoted by jjjxjjj.Lemma 1 Under assumptions H 1, H 2, 8� > 0, 9� > 0 such thatv�(T; x) = exp(V (T; x)�2 )IE[1(f(Z�T � 0) \ ��(0; T )) exp(p �WT� + U �(0; T ))]+O(exp(V (T; x)� ��2 )) (15)Under assumptions H 1, H 2 and H 3, 9�1 > 0, 8� 2 (0; 1), 8� � �1, 9� > 0 such thatu�(T; x) = exp(V �(T; x)�2 )u�3(T; x; �) +O(exp(V �(T; x)� ��2 )) (16)whereu�3(T; x; �) = IE[1(f(Z�T � 0) \ ��1��(0; T )) exp(p �WT� + U �(0; T )� F1(Z�; 0; T )�2 )]:ProofThe proofs of lemmas 3.5 and 3.9 in [2] are essentially unchanged, since we have justtransformed 1X�T�0 into 1f(X�T )�0 to get (12) and (13), all the arguments concerning theWiener Space remain true.2Proof of th 1Using a Taylor expansion of U �, we deduce from (15):v�(T; x) = exp(V (T; x)�2 )Z�(1 + o(1))where Z� = IE(1(f(Z�T � 0) \ ��(0; T )) exp(p�WT� + U0(0; T ))): Since the Brownian bridgeW 0s = (Ws � sTWT )0�s�T is independent of WTZ� = Z +1�1 Zw002<n>? dw0dw00(2�T )d=21(f(�T + �[w0n+ w00]) � 0; �jjjWT jjj � �)exp(�( (w0)2 + kw00k22T ) + w0kpk� )IE(1(�jjjW 0: + :T (w0n+ w00)jjj1 � �) exp(12 Z T0 c00(�s)(W 0s + sT (w0n+ w00))2ds))4



where we have writtenWT = w0 �n+w00. Hence if w0 ! �w0 we get f(�T + �2[w0n+w00]) =�2(w0 + f"(�T )(w")22 ) + o(�2) because of rf(�T ) = n and of (6). ThenZ� = Zw02R Zw"2<n>? �dw0dw00(2�T )d=21(w0 + f"(�T )(w")22 + o(1) � 0)exp(�(�2(w0)2 + kw00k22T ) + w0kpk)IE(1(�kW 0: + :T (�w0n+ w00)k1 � �) exp(12 Z T0 c00(�s)(W 0s + sT (�w0n+ w00))2ds))which leads us to� Zw0+ 12 f"(�T )(w")2�0 Zw002<n>? �dw0dw00(2�T )d=2 exp(�kw00k22T + w0kpk)IE(exp(12 : Z T0 c00(�s)(W 0s + sT w00)2ds))= Zw002<n>? �dw00(2�T )d=2 exp(�kw00k22T + kpk2 ��T (b; b))IE(exp(12 : Z T0 c00(�s)(W 0s + sT w00)2ds))We explain now why this last integral converges. Since � is the maximum of R0;T ( ) =R T0 [c( s)� 12k _ sk2]ds under the constraint f( T ) � 0, the Lagrangian L( ) = R0;T ( ) ��f( T ) , � � 0 is critical at �, i.e. 8h 2 H DL(�)(h) = 0, where H = fh : h(0) =0; R T0 k _hk2sdsg is the Cameron Martin spaceDL(�)(h) = Z T0 c0(�s)hsds� Z T0 _�s _hsds� �f 0(�T )hT= Z T0 c0(�s)hsds+ Z T0 ��shsds� _�ThT � �f 0(�T )hT :Hence � = kpk and c0(�s) = � ��s: The second order condition for a maximum is here8h 2 H 0 � D2L(�)(h) = Z T0 c"(�s)h2sds� Z T0 k _hsk2ds� kpkf"(�T )(hT )2:This last inequality shows that the integral is well de�ned. 24 The non linear regimeTo study the asymptotics of u�3(T; x; �), a so called boundary layer is introduced and fora 2 (0; 1); T� = T � �a, Lemma 2 shows that the contribution on [0;T�] comes only fromthe linear part. If Q� = 12 Z T�0 c00(�s)W 2s dsand u�4(T; x; �) = IE[1(f(Z�T � 0) \ ��1��(0; T )) exp(p �WT� +Q� � F1(Z�;T�; T )�2 )]:Lemma 2 For all � 2 (0; 1� a), u�4 � u�3 = O(�1+a�2�); (�! 0).5



The proof is postponed to section 5.To take into account the coordinates W 00 in the study of u�4, we need a conditional expec-tation with respect to the tangent component, hence g� becomesg�(W 00; y; z) := IE[1(��1��(T�; T )) exp(�F1(Z�; T�; T )�2 )=(W 00;W 0T = �y;W 0T� = z)]:Lemma 3u�4(T; x; �; a) = IE[1(f(Z�T � 0) \ ��1��(0; T�)) exp(p �WT� +Q�)g�(W 00; W 0T� ;W 0T� )]Proof : As W 00 is assumed to be constant by conditioning, we can apply the Markovproperty for W 0.2A more accurate localization will be done by consideringG�1 = f(W 0T � ��1�
) \ jW 0T� � T�T W 1T j � �1�
gand by introducingu�5(T; x; �; a) = IE[1(G�1 \ (f(Z�T ) � 0) \ ��1��(0; T�)) exp(p �WT� +Q�)g�(W 00;W 0T� ;W 0T�)]Lemma 4 For all 
 in (1� a=2; 2� a), we haveu�4 � u�5 = O(exp(�const:�2�a�2
)); (�! 0):Proof : Sinceu�4 � u�5 �IE[1(f(Z�T � 0) \ ��1��(0; T�)):1(W 0T < ��1�
) exp(kpk:W 0T� +Q�)]+IE[eQ�1(��1��(0; T�) \ jW 0T� � T�T j > �1�
)]we use the same proof as in [2] by replacing W by W 0. 2Let ~Q� = 12 R T�0 c00(�s)(W 0s � sT�W 0T� ; (W 00)2s)dsand letu�6(T; x; �; a) = IE[1(G�1 \ (f(Z�T ) � 0)) exp(p �WT� + ~Q�)g�(W 00; W 1T� ;W 0T� )];Lemma 5 u�5 = [1 +O(�1�
��)]u�6 +O(exp(�const:��2�)):Then the limit of g� is given by :Lemma 6 8y 2 IR;g�(W 00; y; z) �! IE(exp(�c(�T ) Z T0 ~u(s; [Bs + kpks+ y]n)ds)) = G(p; y)uniformly for z�1�a ! 0, uniformly in W 00:These two lemmas are proved in section 5.Proof of theorem 2 Since we have the same relation between the asymptotic behaviorof u�6 and u� when �! 0 as in the case d = 1, the only new feature is the presence of W 00in the de�nition of u�6 hence we denote byU �6(W 00) = IEW 0 [1(G�1 \ (f(Z�T ) � 0)) exp(p �WT� + ~Q�)g�(W 00; W 0T� ;W 0T�)]6



and we get u�6 = IEW 00 [U �6(W 00)]: But by independence of the increments of the Brownianmotion W 0U �6(W 00) = IEW 0(e ~Q�) ZZ 1(��1�
 � z1; jz2 � T�T z1j � �1�
 ; f(�T + �z1:n+ �W"T ) � 0):(2�)�1(�aT�)�1=2 exp(kpkz1� � z212T � (z2 � T�T z1)22�a T�T )g�(W"; z1� ; z2)dz1dz2:Let z1 = �y1 and z2 � T�T z1 = y2�a=2(T�=T ) 12 :(2�T )1=2 U �6(W 00)�IEW 0(e ~Q�) = ZIR2 1(���
 � y1; f(�T + �2y1n+ �W"T ) � 0 )1(jy2j � ��a2�
+1rT�T ):g�(W"; y1; z2) exp(y1kpk � �2y212T � ky2k22 )dy1dy2�! Zy1+ 12 f"(�T )(W"T )2�0G(p; y1) exp(y1kpk � ky2k22 )dy1dy2= Z � 12 f"(�T )(W"T )2�1 G(p; y1)e(y1kpk)dy1Since IEW 0(e ~Q�)! CW"T (�) the proof of Theorem 2 is complete if a dominated convergenceis applied to the expectation with respect of W" .25 Proofs of the lemmas5.1 Proof of lemma 2To prove the Lemma 2 an exponential estimate of u�(s; �) is performed where the boundingterms involve f(�) which is related to the distance of � to A: The next lemma summarizesthe changes performed in Lemma 5.1, 5.2 and 5.3 in [2]. Let us introduce the new de�nitionsfor �c(�) = supfc(z); kz � �T k � �gandG2(�; �; �; l) = fp2l[�c(2�) + �](T � s) � f(Z�s) � �pdland kZ�s � �T k � � ;8s 2 [T � �;T�]g:Lemma 7 (i) There exists �0 > 0; such that for 0 < � < �0; 8l > 1 :for sp2l[�c(2�) + �] � f(�) � �pdl and k� � �T k � �u�(s; �) � const exp(��s�2 );(ii) on G2 \ ��1��(0; T ) : 0 � ��2F1(Z�; 0; T�) � const:e�const:�a�2 ;(iii) and for � small enoughP(Gc2 \ ��2(0; T )) � const:e�const:�2a�2 :7



Proof : For the part (i) as in the case d = 1 we are using the Feynman Kac formula andMarkov property at � = inff� � s; k�W�k > �g: Hence for � < � and k� � �T k � � wehave 0 � c(� + �Ws) � �c(2�) andu�(s; �) � exp( �c(2�)s�2 )P(s � � \ f(� + �Ws) < 0) +P(� < s):Since W is a d dimensional Wiener process we get P(� < s) � d exp( ��22�2sd ) and becausesp2l[�c(2�) + �] � f(�) � �pdl we have�c(2�)s�2 � �22�2sdl � (f2(�)2l�2s � �s�2 )� f2(�)2l�2sand exp( �c(2�)s�2 )P(� < s) � d exp(��s�2 ):Then we set �0 such that f is C2 in the ball with center �T and radius �0 we are aimingto bound P(s � � \ f(� + �Ws) < 0): If � � �0 on the event s � � there exists � 2 (0; 1)such that f(� + �Ws) = f(�) +rf(�):�Ws + f 00(� + ��Ws):(�Ws; �Ws): (17)We can choose � small enough to have � + ��Ws close enough to �T . Because f"(�T ) isgiven by (6), if KA is the greater eigenvalue of ��T for each m > 0 and K > KA thereexists �1 2 (�0; �1) such that � � �1 implies thatf(� + �Ws) � f(�) + �W =s � �2(K2 kW ==s k2 +m(W =s )2) (18)where we have set W =s = rf(�):Ws and W ==s is a Brownian motion orthogonal to rf(�):Since W ==s is independent of W =s , large deviation for Gaussian random variables gives :lim�!0 �2 ln(P(0 � f(�) + �W =s � K2 k�W ==s k2 �m(�W =s )2)) = � infEc kxk22swhere x0 2 IR; x" 2 IRd�1; x = (x0; x") and E is the ellipsoid fx0 � K2 kx"k2 �m(x0)2 ��f(�)g: The in�mum of kxk22s on Ec is attained at ( 1�p1+4mf(�)2m ; 0) then form small enough8l > 1 � infEc kxk22s � �f2(�)2lsand P(0 � f(�) + �W =s � K2 k�W ==s k2 �m(�W =s )2) = O(exp(�f2(�)2l�2s ))when �! 0: Because of (18) we getP(s � � \ ff(� + �Ws) < 0g) � const exp(�f2(�)2l�2s )and �c(2�)s�2 � f2(�)2l�2s � ��s�2which concludes the proof of part (i). 8



For the part (ii) we refer the reader to the proof of Lemma 5.3 [2] where we havechanged (5.4) in 0 � ��2F1(Z�; T � �; T (�)) � const:�c(�)� exp(����(2�a)):To prove (iii) straightforward changes in the proof of Lemma 5.6 [2] (replacing c(0) byc(�T ), p by kpk, �T � �T�s by k�T � �T�sk and Z� by Z� � �T ) allows us to claim8s 2 [T � �; T (�)] 1��2 (0;T (�))kZ�s � �T k � �for � < �0 and �2 small enough. Furthermore we get8s 2 [T � �; T (�)] 1��2 (0;T (�))jf(Z�s)j � �pdsince f(�T ) = 0 and krfk = 1 in a neighborhood of �T : HenceGc2 \ ��2(0; T ) = f9s 2 [T � �; T (�)]; f(Z�s) <p2l[�c(2�) + �](T � s)g \ ��2(0; T ):In H 3 c(�T ) is assumed to be strictly lower than 12k _�T k2, consequently there exists l > 1such that c(�T ) < 12lk _�T k2: Hence c2 = kpk �p2l[�c(2�) + �]� �0L is strictly positive, wededuce that on Gc2 \ ��2(0; T )9s 2 [T � �; T (�)] f(�s + �Ws) < (kpk � c2 � �0L)(T � s):Using a Taylor expansion for s0 = T � s 2 [�a; �] we getf(�T�s0 + �WT�s0) = rf(�T )(�T�s0 + �WT�s0 � �T ) +O(k�T�s0 + �WT�s0 � �T k2);rf(�T )(�T�s0 � �T ) = kpks0 + O((s0)2) and rf(�T ):�WT�s0 = �W 0T�s0 : Therefore onGc2 \��2(0; T ) 9s 2 [T � �; T (�)] such that kpk(T � s)+ �W 0s+O((T � s)2) < (kpk� c2��0L)(T � s) and Gc2 \ ��2(0; T (�)) � f9s 2 [0; T (�)]; �W 0s < �c2(T � s)g which gives theinequality (iii).Proof of lemma 2 : In the end of the proof of Lemma 2 all arguments of the onedimensional case can be used for d � 2, but we have to show that1(f(Z�T � 0)): exp p:WT� � 1 (19)instead of 1(WT � 0) exp(p:WT� ) � 1 to deal with the non linear part that depends on F1:But (19) is clear since Z�T = �T + �WT is inside A and p is pointing outside A:5.2 Proof of lemma 5We give the needed modi�cations of the proof of the corresponding lemma 4.10 in [2]. At�rst we study the consequences of replacingQ� by ~Q� = 12 R T�0 c"(�s):(W 0s� sT�W 0T� ;W"s)2dsand u�8 is introduced as :IE[1(G�1 \ ��1�� [0; T�])1(f(Z�T � 0)): exp(p:WT� + ~Q�)g�(W"; W 0T� ;WT� )]:By a polarization argumentQ� = ~Q� + Z T�0 c"(�s):[(W 0s � sT�W 0T� ;W"s); ( sT�W 0T� ;W"s)]2ds:Then W 0 is estimated as in the one dimensional case and we getjQ� � ~Q�j � const(�1�
��)where the random constant can be easily bounded. Henceu5 = (1 +O(�1�
��)u8:In [2] (6.7) remains true with 1(f(Z�T � 0)) instead of 1(WT � 0), that impliesu6 � u8 = O(�const:��2�): 2 9



5.3 Proof of lemma 6Let B be a real valued Wiener process independent of W". The distribution of ��2(Z�T��2s��T )0�s���(2�a) under P (:=W 0T = �y;W 0T� = z) is identical to that of (��s)0�s���(2�a) , where�0�s = ��2(�0T��2s � �0T ) + y � s�2�a(B(��(2�a))� z��1 + y)and where the tangent part �"�s is de�ned by :�"�s = ��2(�"T��2s � �"T ) + ��1W"T��2s:Hence we get with the same change of variable argument as in [2]g�(W"; y; z) = IE[1(~��)exp(�(Z ��(2�a)0 ~c�(��s)~u�(s; ��s)ds))=W"]where ~�� = fjjj�2��s + �T � �T��2sjjj � �1��; 8s 2 [0; ��(2�a)]gand ~c�(�) = c(�2� + �T ); ~u�(s; �) = u(�2s; �2� + �T ):Moreover ~u� is solution of the P.D.E. :8<:@~u�@s (s; �) = 12�~u� + ~c�(�)~u�(1� ~u�)~u�(0; �) = 1(f(�T + �2�) � 0) (20)Hence ~u� converges uniformly for s � s0 and �2j�j ! 0 to ~u� thanks to a standard argumentof perturbation applied to the PDE (20). Since ~u(s; �) depends only on the orthogonal partof �, and since for s, y �xed and z�1�a ! 0, �0�s converges a.s. to B(s) + kpks+ y, and thelimit of ~u�(s; ��s) is ~u(B(s) + kpks+ y) a.s..To conclude the proof of lemma 6 we only have to upper bound ~c�(��s)~u�(s; ��s) in order tohave the convergence of R ��(2�a)0 ~c�(��s)~u�(s; ��s)ds to c(�T ) R10 ~u(s;B(s)+kpks+y)ds < +1:Because of the de�nition of jjj jjj the characteristic function of ~�� is the product1(~��) =1(f�kW"T��2sk � �1��;8s 2 [0; ��(2��)]g:1(fj��0�s + (�T � �T��2s)0j � �1��;8s 2 [0; ��(2��)]gand if 
1 = fB(s)s ! 0g and 
2 = f�1+�supfjB(s)j; s � �2�ag ! 0g we get the counterpartof (6.18) which is1(~��) = 1(f�kW"T��2sk � �1��;8s 2 [0; ��(2��)]g for � < �0:Since �2��s + �T converges a.s. to �T ;0 � ~c(��s) � �c(�) for � < �0where �c(�) is de�ned before lemma 7. As in [2] we aim the following inequality : for s > s1and � < �3(!), 1(s � ��(2�a)):~u�(s; ��s) � 2d exp(��s)which will be a consequence of lemma 7, if we can provef(�2��s + �T )s >p2l(�c(2�) + �) for � < �3 and s > s1:But f(�2��s + �T ) = �2�0�s + o(�2), and since �0�s is the exact counterpart of the real valuedprocess denoted by ��s in [2], there is no further change in their proof.10
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