
1 IntroductionThe problem that we are interested in in this work is to understand the asymptotical behavior, that isthe thermodynamic limit, of a classical mean �eld model perturbated by a small term of Sherrington-Kirkpatrick type. Such a question arises in a natural way ...More precisely, let us considerN independent and identically distributed random variables �i 2 [�1; 1]with common distribution �. Denote by � = (�1; : : : ; �N ) 2 [�1; 1]N the con�guration of the system, byP� the product measure �
N and by E� the expectation w.r.t. P� . Let us consider a smooth functionf : [�1; 1]! R. By classical mean �eld system, we mean a spin system ruled by the following hamiltonian:HfN (�) = Nf ��:1N �where we have set �:1 =PNi=1 �i the scalar product in RN of � and 1 = (1; : : : ; 1) 2 RN . The randomperturbation that we consider is given by a sequence (Ji;j)1�i<j of independent and identically distributedrandom variables with common standard gaussian distribution N (0; 1) through the hamiltonian:SK(�) = N�1=2 X1�i<j�N Ji;j�i�jWe recognize here the usual Sherrington-Kirkpatrick hamiltonian introduced in [SK75]. Let us nowconsider for � 2 (1=2; 1) the following hamiltonian:Hf;�N (�) = HfN (�) +N��=2SK(�)We are more speci�cally interested in the the partition function ZN (�) at the inverse temperature � > 0given by: ZN;� = E� exp�Hf;�N (�)and in the Gibbs measure GN;� given by:GN;�(d�1; : : : ; d�N ) = exp�Hf;�N (�)ZN;� P�(d�1; : : : ; d�N )The behaviour of ZN;� is well known when � =1, that is without the SK term. We aim at comparingour situation with this classical situation.In the �rst part, we shall brie�y summarize the results concerning the classical situation and stateour results. In the second part, we shall exhibit a short list of examples showing that all the situationsthat we consider are likely to happen. In the third part, we shall prove the claimed results.2 Statement of the results2.1 General results about classical mean �eld modelsThe main tool that is to be used is the theory of large deviation as developped in [Ell85], [DS89] or[DZ93]. Let us introduce some usual notations:�(�) = ln Z exp(�t) �(dt) and I(m) = sup�2Rf�m� �(�)g (1)Function I is called the Cramer transform of �. It is known to be lower semi-continuous with compactlevel sets, that is for every L > 0, the set fm : I(m) � Lg is a compact subset of R. From Varadhan'stheorem (see [DS89], theorem 2.1.10), one deduces:limN!1 1N lnZfN;� = supm2[�1;1] f�f(m)� I(m)g =: �It is easy to show that the supremum is attained on a �nite set K(�). Furthermore, if m 2 K(�) thenfunction I is of class C1 in a neighborhood of m and (see [Ell85])�0[�f 0(m)] = m (2)1



Hence, I(m) = �f 0(m)m� �[�f 0(m)]. We assume that all points in K(�) are non-degenerate that is:8m 2 K(�); �f 00(m)� I 00(m) < 0Denote by ~�m the tilted measure at m, that is the measure with density w.r.t. �:d~�md� (�) / exp(�f 0(m)�)Equation (2) can then also be written: Z[�1;1] � ~�m(d�) = mLet us at last denote by ~m the variance of ~�m. It is easy to see that ~m = (I 00(m))�1 hence thenon-degeneracy assumption yields �f 00(m)~m < 1. The result concerning the behaviour of ZfN;� is:limN!1 eN�ZfN;� = Xm2K(�) (1� �f 00(mk)~m)�1=2We set cm = (1 � �f 00(m)~m)�1=2= hPm02K(�)(1� �f 00(m0)~m0)�1=2i. The asymptotical behaviour ofthe Gibbs measure (see [Ell85]) is given by:GfN;� =) Xm2K(�) cm�
1m and GfN;� ���:1N ��1 =) Xm2K(�) cm�m2.2 Results about the randomly perturbated modelThe behavior of the perturbated model may be rather di�erent from what has been described in theprevious section. Let us consider the following sets:eK(�) = argmax�~m(2m2 + ~m) : m 2 K(�)	K+(�) = argmaxnm2 : m 2 eK(�)o and K�(�) = argminnm2 : m 2 eK(�)oClearly to K+(�) and K�(�) belong at most 2 points. Two situations may then occur:1. K+(�) = K�(�) = fmg or f�m;mg,2. K+(�) = fm+g or f�m+;m+g and K�(�) = fm�g or f�m�;m�g with jm+j > jm�j.Theorem 2.1The following asymptotical expansion holds in probability:e�N�Zf;�N;� = (1 + oP(1)) Xm2K+(�)[K�(�) exp h�24 ~m(2m2 + ~m)N1�� + �m2S2N(�+1)=2 ip1� �f 00(m)~mFrom this expression of the partition function, one can guess the asymptotical behavior of the Gibbsmeasure. Let us consider again both situations that have been introduced previously:1. If K+(�) 6= K�(�), set for m 2 K+(�)dm = (1� �f 00(m)~m)�1=2=24 Xq2K+(�)(1� �f 00(q)~q)�1=2352. If K+(�) 6= K�(�), set for m 2 K+(�)d+m = (1� �f 00(m)~m)�1=2=24 Xq2K+(�)(1� �f 00(q)~q)�1=235and for m 2 K�(�) d�m accordingly. 2



The result is the following:Theorem 2.21. If K+(�) = K�(�), then in probabilityGf;�N;� =) Xm2K+(�) dm�
1m2. If K+(�) 6= K�(�), then in distribution1N NXn=1Gf;�n;� =) �Z 10 1Bt2>0 dt� Xm2K+(�) d+m�
1m +�Z 10 1Bt2�0 dt� Xm2K�(�) d�m�
1mLet us comment on this theorem. The second situation is clearly di�erent from the �deterministic� one.In the �rst one, the result may di�er from the deterministic one according to whether K(�) = K+(�) ornot. We shall see in the forthcoming examples that both cases are likely to occur.To emphasize on the signi�cance of this theorem, we should notice that for m 2 K(�) one has:~m[2m2 + ~m] = h~�m; �2i2 � h~�m; �i4 = h~�m 
 ~�m; �2�2i � h~�m 
 ~�m; ��i2Hence maximizing ~m[2m2 + ~m] means in reality maximizing the variance of the order parameter.3 Some examples3.1 The generalized Curie-Weiss modelWe refer to the paper by Eisele-Ellis [EE88] and add to the Sherrington-Kirkpatrick term. In thissituation, all the functions and distributions that are considered are even or symmetric. Function f isstrictly increasing on [0; L[ with L > 0 being �nite or in�nite. According to theorem 1.2 in [EE88], anddepending on �, the supremum �f(x)�I(x) is attained either at 0 or at �m(�) with m(�) > 0. In eithersituation, and as function I is even, one has K(�) = K+(�) = K�(�). As a conclusion, nothing di�ersfrom the deterministic case.3.2 Selection by the random model among the critical pointsOn the upper part of �gure 1 is drawn the shape of ~x(~x + 2x2) = 1 � x4 for the usual Ising model,that is � = (�1 + ��1)=2. On the lower part of the �gure, one can see an example of function I � �fleading to K+(�) = K�(�) = f0g  K(�) = f�1=2; 0; 1=2g. In this precise situation, one has GfN;� )c�0 + (1� c)(�1 + ��1)=2 for a c > 0 whereas Gf;�N;� ) �0.3.3 Existence of metastatesOn the lower part of �gure 2 is now drawn the shape of ~x(~x + 2x2) for a non-GHS a priori measure� = a�0+(1�a)(�1+��1)=2, with a = 0:9. On the upper part, one can see an exemple of function I��fleading to K+(�) = f�m+;m+g and K(�) = f�m�;m�g, with 0 < m� < m+. On the other hand, onehas K(�) = f�m+;�m�;m�;m+g. In the classical situation there exists a real number c > 0 such that:GfN;� =) c(�
1�m+ + �
1m+ )=2 + (1� c)(�
1�m� + �
1m� )=2whereas for the perturbated model:1N NXn=1Gfn;� =) �Z 10 1Bt2>0 dt� (�
1�m+ + �
1m+ )=2 +�Z 10 1Bt2�0 dt� (�
1�m� + �
1m� )=2
3
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Figure 1: Selection of a critical point
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1Figure 2: Existence of metastates4 ProofsOur main result is theorem 2.1. Its proof relies on precise asymptotic expansions of the hamiltonian in aneighborhood of each critical point. For sake of clarity, we shall set g(x) = �f(x).4.1 Preliminary calculationsThe point of the proof is to reduce the complexity of the Sherrington-Kirkpatrick hamiltonian by condi-tioning. We �rst introduce the conditioning variables.4.1.1 Gaussian conditional calculationsWe summarize in this section the results of some easy calculations with gaussian random vectors. Weset: SNi = i�1Xj=1 Jj;i + NXj=i+1 Ji;j and SN = NXi=1 SNi = 2 X1�i<j�N Ji;jDenote by SN vector SN = (SN1 ; : : : ; SNN ) 2 RN . For clarity, we shall drop as often as possible superscriptN . Let us �rst describe the covariance structure of SN and the consequences of it.8i = 1; : : : ; N; E [(SNi )2] = N � 1 and 8i 6= j; ESNi SNj = 1If we consider a family (Ŝi; 1 � i � N; �) of iid N (0; 1) random variables then we have in distribution:SN D= (pN � 2Ŝi + �)1�i�N (3)As a consequence, there exists a random constant K! such that:P�8N � 1; max1�i�N jSNi j � K!pN lnN� (4)4



Equality (3) also yields to:P( limN!1 1N2 NXi=1(SNi )2 = 1) = 1 and 1N2 NXi=1 S2i = 1+ oa:s:(N�1=2+") (5)Let us now describe the conditional distribution of the J i;j 0s given SN which is known to be gaussian.The conditional expectation is given by:E [Ji;j jSN ] = SNi + SNjN � 2 � SN(N � 1)(N � 2)And the conditional variance by:Vij;pq = E ��Ji;j � E [Ji;j jSN ]� �Jp;q � E [Jp;q jSN ]� jSN�with Vij;ij = 1� 2N � 1 Vij;ip = � N � 3(N � 1)(N � 2) Vij;pq = 2(N � 1)(N � 2)4.1.2 Conditional integration of the partition functionLet us consider V a subinterval of [�1; 1] and the truncated partition function ZVN de�ned by:ZVN = E� nexp[Hf;�N;�(�)]1�:1N 2V oWe have:E [ZVN jS] = E� exp( �N (�+1)=2 Xi<j �Si + SjN � 2 � S(N � 1)(N � 2)��i�j+Ng(�:1N ) + �22N�+1 Xi<j;p<q Vij;pq�i�j�p�q)1�:1N 2VHence, we have to expand the covariance term, that is:VN (�) = Xi<j;p<q Vij;pq�i�j�p�qWe shall introduce a more general expression VN (�; �) as a function of two `replicas' � and � of thesystem, and expand it up to the order O(N) using the fact that the spins are bounded:VN (�; �) = Xi<j;p<q Vij;pq�i�j�p�q = 12(�:�)2 � 12N (�:1)(�:1)(�:�) + 12N2 (�:1)2(�:1)2 +O(N) (6)4.1.3 Change of variables and upper boundsLet us now introduce two vectorsm = (m1; : : : ;mN ) and � = (�1; : : : ; �N ) that will appear as centeringsa bit later on. We set �i = �i�mi. Vectorsm and �may be random but in this case they are a measurablefunction of SN . Let us de�ne the random variable ĤN (�) by:�24N�+1 �(�2:1)2 + 1N2 (�:1)4 � 2N (�2:1)(�:1)2� = �2N1��4 " 1N �:1��m:1N �2#2 + ĤN (�)Since the spins are bounded, there exists a deterministic constant C > 0 such that the following upperbound holds: jĤN (�)j � CN��1=2  j�:1jpN + �����PNi=1(�2i � �i)pN �����! (7)5



We shall denote by m the empirical mean of m that is m = (m:1)=N . Making use of our centerings mand � we get: (�:1)(�:S) = (�:1)(�:S) +Nm(�:S) + (�:1)(m:S)�Nm(m:S)SN2 Xi<j �i�j = S2N2 (�:1)2 + mSN (�:1) + m2S2 � S2N2 (�2:1)Furthermore�N (�+1)=2 Xi<j �Si + SjN � 2 � S(N � 1)(N � 2)��i�j= �N (�+1)=2 0@ 1N (�:1)(�:S) � SN2 Xi<j �i�j1A+ op:s:(1)Thus we can de�ne a random variable ~HN (�) by:~HN (�) = �N (�+1)=2 (�:1)(�:S)N � �S2N2+(�+1)=2 (�:1)2 � �mS2N1+(�+1)=2 (�:1)This random variable satis�es:�N (�+1)=2 Xi<j �Si + SjN � 2 � S(N � 1)(N � 2)��i�j = �m(�:S)N (�+1)=2 + �(�:1)(m:S)N (�+3)=2 + ~HN (�) + op:s:(1)and there exists a random constant K! such that:P(8N � 1; j ~HN j � K!N�=2 "� �:1pN �2 +��:SN �2#+ �jSjN1+�=2 ���� �:1pN ����) = 1 (8)Using now vector m one can write:Ng(�:1N ) = N(g(m)�mg0(m)) + g0(m)�:1+N �g(�:1N +m)� g(m)� g0(m)�:1N �Hence we have:E [ZVN jS] == (1 + op:s:(1)) exp8<:�2N1��4 " 1N �:1��m:1N �2#2 � �m(m:S)N (�+1)=2 � �m2S2N (�+1)2 +N(g(m)�mg0(m))9=;E� exp( NXi=1 �g0(m) + �mSiN (�+1)=2 + �(m:S)N (�+3)=2��i+N �g(�:1N +m)� g(m)� g0(m)�:1N �+ ~HN (�) + ĤN (�))1�:1N 2V (9)4.2 Truncation of the partition function and asymptotic expansionLet us choose so small a � > 0 that the intervals [m� �;m+ �], for m 2 K(�), are disjoint sets. Let usnow de�ne Z�N = Xm2K(�)E� hexp(Hf;�N;�(�))1j �:1N �mj��iWe are going to make an asymptotic expansion of Z�N and then prove rigorously than ZN may beapproximated by Z�N . So, let us choose m� 2 K(�) and consider V = [m� � �;m� + �]. Equation (9)suggests that we should de�ne 'e�ective' magnetic �elds hi by:hi = g0(m) + �mSiN (�+1)=2 + �(m:S)N (�+3)=2 i = 1; : : : ; N (10)6



Using these magnetic �elds, one can de�ne a new probability Ph� by its density w.r.t. P� :dPh�dP� / exp NXi=1 hi�iWe now can rewrite expression (9) as follows:E [Z [m���;m�+�]N jS] = (1 + op:s:(1))� exp8<:�2N1��4 " 1N �:1��m:1N �2#2 � �m(m:S)N (�+1)=2 � �m2S2N (�+1)2 +N(g(m)�mg0(m)) + NXi=1 �(hi)9=;�Eh� exp(N �g(�:1N +m)� g(m)� g0(m)�:1N �+ ~HN (�) + ĤN)1j�:1N �m�j��The point is now to prove that one may use in the last expectation the central limit theorem. This willbe essentially possible if the �i are centered. We prove in the next lemma that one can choose such anm that this condition is ful�lled.Lemma 4.1There exists a �0 independent of S such that for any � � �0, there exists N! such that for N � N! thefollowing non-linear system admits a unique solution m =m(S) with jm�m�j � �:mi = �0�g0(m) + �mSiN (�+1)=2 + �N (�+3)=2 (m:S)� ; 1 � i � N (11)Moreover, there exists a random constant K! such thatP(8N � N!; max1�i�N jmi �m�j � K!plnNN�=2 ) = 1Proof : Let us de�ne for (x; �) 2 [�1; 1]� R the following function:�N;x(�) = 1N3=2 NXi=1 Si�0�g0(x) + �xSiN (�+1)=2 + �N�=2��One has: j�N;x(�)� �N;x(�0)j � �N (�+3)=2 sup�2R�00(�) NXi=1 jSij:j�� �0j � �K!plnNN�=2 :j�� �0jHence, for N � N! which depends on ! but not on x, function �N;x is a contraction and thus admits aunique �xed point �N (x). Function �N is smooth. One can easily check the following bound:8N � N!; supx2[�1;1]fj�N (x)j+ j�0N (x)jg � K 0!plnN (12)Let us now recall that g00(m�) � I 00(m�) < 0, that I 00(x) = 1=�00[(�0)�1(x)] and that m� = �0(g0(m�)).As a consequence, in a neighborhood [m� � �0;m� + �0] of m�, one has �00(g0(x))g00(x) � 1 < 0. Hencefunction �(x) = x � �0(g0(x)) is strictly increasing on [m� � �0;m� + �0] and equals 0 at m�. Considerfunction �N de�ned by:�N (x) = x� 1N NXi=1 �0�g0(x) + �xSiN (�+1)=2 + �N�=2�N (x)�Using bound (12), one can prove that for large enough N function �N is stricly increasing. Function�N converges uniformly on [m� � �0;m� + �0] toward �, hence limN!1�N (m� + �) = �(m� + �) > 0and limN!1�N (m� � �) = �(m� � �) ><. As a consequence, for large enough N equation �N (x) = 07



admits a unique solution mN 2 [m� � �;m� + �]. Solving the non-linear system of the lemma is clearlyequivalent to solving �N (x) = 0 with x = m and afterwards de�ning mi by (11). In order to obtainthe last bound, one �rst notices by extracting any converging subsequence that any limit point x of mNsatis�es �(x) = 0. Hence mN converges to m�. Now:jmN �m�j = ����� 1N NXi=1 �0�g0(mN ) + �mSiN (�+1)=2 + �N (�+3)=2 (m:S)�� �0(g0(m�))������ 1N NXi=1 �00(�i;N )�g00(�0i;N )jmN �m�j+ �jmNSijN (�+1)=2 + �N (�+3)=2 jmN :Sj�As �i;N ; �0i;N converges to g00(m�), for large enough N we have 1N PNi=1 �00(�i;N )g00(�0i;N ) < 1 and thanksto (4) the bound is clear. We shall drop again subscript N and set m =mN . �We now have to write down all the asymptotic expansions that we are going to use.Lemma 4.2The following asymptotic expansions hold almost surely:1. m:1N = m� +Oa:s:(N��+")2. m:SN (�+1)=2 = m�SN (�+1)=2 +�00(g0(m�))�m�N1�� + o(1)3. NXi=1 �(hi) = N�(g0(m�)) +N�0(g0(m�))f 00(m�)(m�m�) + 2�0(g0(m�)) �m�SN (�+1)=2+�0(g0(m�))�00(g0(m�))�2m�N1�� + 12�"(g0(m�))�2m2�N1�� + o(1) (13)The proof of this lemma is tedious but straightforward. It only relies on Taylor expansions.Let us now de�ne vector �: �i = Eh��2i = �00(hi) + [�0(hi)]2With this de�nition and using the previous asymptotic expansions, it is easy to get:�24 N1�� " 1N �:1��m:1N �2#2 = �24 N1��[�00(g0(m�))]2 + oa:s:(1) (14)As a consequence, we obtain:�24 N1�� " 1N �:1��m:1N �2#2 � �m(m:S)N (�+1)=2 � �2m2S2N (�+1)=2 +N(g(m)�mg0(m)) + NXi=1 �(hi)= N(g(m�)� ��(m�)) + �24 N1��[�00(g0(m�))]2 + �m2�S2N (�+1)=2 + 12�"(g0(m�))�2m2�N1�� + o(1)Hence we have:E [Z [m���;m�+�]N jS] =exp�N(g(m�)� ��(m�)) + �24 N1��[�00(g0(m�))]2 + �m2�S2N (�+1)=2 + 12�"(g0(m�))�2m2�N1�� + oa:s:(1)�Eh�" exp�N �g(�:1N +m)� g(m)� g0(m)�:1N �+ ~HN (�) + ĤN (�)� 1j�:1N �m�j��#The next lemma shows that we may use the central limit theorem to evaluate the latter expectation:8



Lemma 4.3We have:limN!1Eh�" exp�N �g(�:1N +m)� g(m)� g0(m)�:1N �+ ~HN (�) + ĤN�1j�:1N �m�j��# = 1p1� g00(m�)~m�Proof : A very standard argument on triangular arrays of independent random variables enable tocheck that under Ph� vector (�:1=pN; �:S=N;PNi=1(�2i � �i)pN) satis�es the central limit theorem andconverges in distribution to. �We have now proved the following proposition:Proposition 4.4e�N�E [Z�N jS] = (1 + op:s:(1)) Xm2K(�) exp h�24 ~m(2(m2 + ~m)N1�� + �m2S2N(�+1)=2 ip1� g00(m)~m4.3 Expansion of Z�NLet us denote by Zm;�N the truncated partition function associated with [m� �;m+ �] for m 2 K(�). Inthis section, we are interested in the asymptotic behavior of E [Zm;�N Zm0;�N jS].The conditional integration leads to a very similar expression with two 'replicas' � and � of the system,the only di�erence being a coupling term that will be proved to have no e�ect. It may be written:HN (�; �) = �2N�+1 Xi<j;p<q Vij;pq�i�j�p�q= �2N�+1 �12(�:�)2 � 1N (�:1)(�:1)(�:�) + 12N2 (�:1)2(�:1)2�+ op:s:(1)Let us introduce the localizationsm and � for �,m0 and �0 for � . We set �i = �i�mi et �0i = �i�mi. Wethen make the exponential changes of probability associated with the 'e�ective' �elds h and h0. UnderPh� 
Ph� , random vectors � and �0 are independent. One then checks that:�2N�+1 �12(�:�)2 � 1N (�:1)(�:1)(�:�) + 12N2 (�:1)2(�:1)2�= �2N1��2 � 1Nm:m0 ��m:1N ��m0:1N ��2 +RNwith a remainder RN that can be bounded as follows:jRN j � K!N��1=2 ������:m0pN ����+ �����0:mpN ����+ ���� �:�0pN ����+ ���� �:1pN ����+ ���� �0:1pN �����The empirical covariance term may be estimated:�2N�+1 N22 " 1N NXi=1  mi � 1N NXi=1mi! m0i � 1N NXi=1m0i!#2 � K 00!N1�3�+" = oa:s:(1)With very similar arguments to what has been used in the previous section, that is central limit theoremand uniform integrability, one gets:E [Zm;�N Zm0;�N jS] = E [Zm;�N jS]E [Zm0 ;�N jS](1 + oa:s:(1))As a consequence of this result, we get:E [(Z�N )2jS] = (1 + oa:s:(1))E [Z�N jS]29



Hence, PnjZ�N � E [Z�N jS]j � "E [Z�N jS]���So � E �Z�N � E [Z�N jS]jS�2"2E [Z�N jS]2 ����!N!1 0 a:s:Taking now the expectation w.r.t. S, one gets:8" > 0; limN!1P�jZ�N � E [Z�N jS]j � "E [Z�N jS]	 = 0Hence we have proved:e�N�Z�N = (1 + oP(1)) Xm2K(�) exp h�24 ~m(2m2 + ~m)N1�� + �m2S2N(�+1)=2 ip1� g00(m)~m (15)4.4 Expansion of ZNWe end this section by proving that we have really made an asymptotic expansion of ZN . Clearly,limN!1 1N ln[EZN � EZ�N ] � supfg(x)� I(x) : jx�mj � �; m 2 K(�)g = �c < �Let us �x p > 1 and de�ne q = p=(p� 1):ZN � Z�N � �E� exp pNg(�:1N )1j�:1N �mj��; m2K(�)�1=p0@E� exp �qN (�+1)=2 Xi<j Ji;j�i�j1A1=qBy Markov's inequality:P0@E� exp �qN (�+1)=2 Xi<j Ji;j�i�j � exp �2q22 N1��1A � exp[��2q22 N1��]E� exp0@ �2q24N�+1 Xi<j �2i �2j1A� exp[��2q24 N1��] exp[�2q24 N1��] = exp��2q24 N1��Borel-Cantelli's lemma shows that there exists 
q with full probability such that:8! 2 
q ; 9N(!) : 8n � N(!); E� exp �qN (�+1)=2 Xi<j Ji;j�i�j < exp �2q22 N1��Thus on 
q we have:limN!1 1N ln[ZN � Z�N ] � 1p supfpg(x)� I(x) : 8m 2 K(�); jx�mj � �gBy considering \q2Q;q>1
q , the previous relation holds almost surely for any p 2 Q such that p > 1. Asg is bounded, 1p supfpg(x)� I(x) : 8m 2 K(�); jx�mj � �g � p� 1p kgk1 +�cLetting now p going to 1, one obtains:limN!1 1N ln[ZN � Z�N ] � �c P-p.s.Equation (15) gives for any " > 0:P�ZN � Z�NZ�N > "� = P� 1N lnZ�N < � 1N ln "+ 1N ln(ZN � Z�N )�� P� 1N lnZ�N < � 1N ln "+�c + (���c)=2�+ Pf 1N ln(ZN � Z�N ) � �c + (���c)=2g ����!N!1 0Hence in probability ZN = Z�N(1 + oP(1)). 10



5 Convergence of the Gibbs measureIn order to obtain a more precise result, we are going to study a conditioned Gibbs measure. Let us�rst choose a � > 0 such that the intervals [m� �;m+ �], with m 2 K(�), are disjoint. Consider nowm 2 K(�) de�ne as usual the truncated partition function Z�N = E� expHf;�N;�(�)1[m��;m+�] and theassociated Gibbs measure that is in fact Gf;�N;� given �:1N 2 [m� �;m+ �] and that we shall denote by ��N .We begin by stating a lemma in which we prove that 1=N lnZ�N is self-averaging:Lemma 5.1For any u > 0, we have: limN!1 1N lnP����� 1N lnZ�N � 1N ln EZ�N ���� � u� = �1Proof : We may consider that the Ji;j are the values at t = 1 of independent standard brownianmotions Ji;j(t). Replacing in Z�N Ji;j by Ji;j(t) we obtain a process ZN (t), and a Gibbs measure GtNgiven �:1N 2 [m� �;m+ �]. Usual Ito's formula gives:1N lnZ�N � 1N E ln Z�N = 1N Z 10 X1�i<j�N �N (�+1)=2GtN  �i�j ������:1N 2 [m� �;m+ �]! dJi;j(t)Now, for any u; � > 0 we have:P� 1N lnZ�N � 1N ln EZ�N � u� � e��uE exp �8<: 1N Z 10 X1�i<j�N �N (�+1)=2GtN  �i�j������:1N 2 [m� �;m+ �]! dJi;j(t)9=;= e��uE exp �22 8<: 1N2 Z 10 X1�i<j�N �2N�+1  GtN  �i�j������:1N 2 [m� �;m+ �]!!2 dt9=;Since �����GtN  �i�j������:1N 2 [m� �;m+ �]!����� � 1, we obtain the upper bound:P� 1N lnZ�N � 1N ln EZ�N � u� � e��u+ �2�24N�+1Choosing � = 2N�+1u=�2, we obtain:P� 1N lnZ�N � 1N ln EZ�N � u� � exp ��N�+1u2�2 �The same result could have been obtained for P� 1N lnZ�N � 1N ln EZ�N � �u	 with a negative �. Hencethe result of the lemma holds with E ln Z�N instead of ln EZ�N . The upper bound that has just beenobtained proves that almost surely the di�erence goes to zero. Since we have already proved that inprobability ln[Z�N ]=EZ�N = o(N), it is clear that:limN!1 � 1N ln EZ�N � 1N E ln Z�N� = 0Hence we may replace E ln Z�N by ln EZ�N for large enough N and the result is proved. �
11



Denote by LN the empirical measure of (�; �), that is LN = 1N PNi=1 ��i;�i . De�ne q1(�; �) = � andq2(�; �) = � . For any borel subset B of P([�1; 1]2), we have:E��N 
 ��N (LN 2 B)= E8><>:E�;�eHN (�)+HN (�)1�:1N 2[m��;m+�]1 �:1N 2[m��;m+�]1LN2BhEE� eHN (�)1�:1N 2[m��;m+�]i2 � hEE� eHN (�)1�:1N 2[m��;m+�]i2hE�eHN (�)1�:1N 2[m��;m+�]i2 9>=>;� P8><>:hEE� eHN (�)1�:1N 2[m��;m+�]i2hE�eHN (�)1�:1N 2[m��;m+�]i2 > eN"9>=>;+ eN"E8><>:E�;�eHN (�)+HN (�)1�:1N 2[m��;m+�]1 �:1N 2[m��;m+�]1LN2BhEE� eHN (�)1�:1N 2[m��;m+�]i2 9>=>;Hence, using the previous lemma, we get:limN!1 1N ln E��N 
 ��N (LN 2 B) � "+ supng(h�; q1i) + g(h�; q2i)�H(�j�
2) :h�; q1i 2 [m� �;m+ �]; h�; q2i 2 [m� �;m+ �]; � 2 Bo� 2�It is now possible to let " go to 0. Function � 7! g(h�; q1i) + g(h�; q2i) � H(�j�
2) admits a uniquemaximum on f� : h�; q1i 2 [m� �;m+ �]; h�; q2i 2 [m� �;m+ �]g at ~�m
~�m. Standard large deviationsarguments then lead to the convergence of LN to ~�m 
 ~�m. Since probability measure E��N 
 ��N isexchangeable, using Sznitman's results in [Szn], one obtains the propagation of chaos, which means thatfor any k � 1, ((�1; �1); : : : ; (�k ; �k)) converges in distribution to (~�m 
 ~�m)
k. In particular, for anycontinuous functions � and  on [�1; 1]k we have:limN!1 E "GN  �(�1; : : : ; �k)������:1N 2 [m� �;m+ �]!#"GN   (�1; : : : ; �k)������:1N 2 [m� �;m+ �]!#= h~�
km ; �ih~�
km ;  iBy taking one function  equal to one, one gets:limN!1 EGN  �(�1; : : : ; �k)������:1N 2 [m� �;m+ �]! = h~�
km ; �iThus we have proved:Proposition 5.2For any m 2 K(�) and any � > 0 such that [m� �;m+ �] does not contain any point of K(�) but m,then in L2, for any k � 1 and any continuous � on [�1; 1]k we have:limN!1GN  �(�1; : : : ; �k)������:1N 2 [m� �;m+ �]! = h~�
km ; �iThis result describes rather precisely the Gibbs measure. Let us now prove theorem 2.2.We �rst assume that K+(�) = K�(�). Expression 15 shows that if m =2 K+(�) then it is clear thatGN ��:1N 2 [m� �;m+ �]� goes to zero, whereas if m 2 K+(�) then GN ��:1N 2 [m� �;m+ �]� goes todm, all the convergences are meant in the probability sense. Hence:limN!1GN (�(�1; : : : ; �k))= limN!1 Xm2K(�)GN  �(�1; : : : ; �k)������:1N 2 [m� �;m+ �]!GN ��:1N 2 [m� �;m+ �]� = Xm2K+(�) dmh~�
km ; �i12



When K+(�) 6= K�(�), the Gibbs measure is not converging in the usual sense but in the Cesaro'ssense. This is what has been called by Newman 'metastates'. We �rst notice that we only have to takecare of m 2 K+(�) [ K�(�).Our proof relies on Kulske's ideas [Kul96]. For " 2 (0; 1), setHN = �! : jSN j � N1��	 and H = (! : limN!1 1N NXn=11!2Hcn = 0)It is proved in [Kul96] that P(H) = 1. Let us now introduce the relative weights pmN , for m 2 K+(�) [K�(�), de�ned by:pmN = exp h �m2S2N(�+1)=2 i =p1� g00(m)~mexp h �(m+)2S2N(�+1)=2 iPq2K+(�) 1p1�g00(q)~q + exp h �(m�)2S2N(�+1)=2 iPq2K�(�) 1p1�g00(q)~qIt is clear that in probability, Z�N=ZN � pmN goes to zero. If SN is large, then pmN may be approximatedby d+m1SN>0 if m 2 K+(�) and by d�m1SN<0 if m 2 K�(�). More precisely, let us �x " > 0. For N � N",independent of !, we have for m 2 K+(�):jpmn � d+m1Sn>0j � "1!2Hn + 2:1!2Hcn � "+ 2:1!2HcnHence: ����� 1N NXn=1 pmn � d+m 1N NXn=11Sn>0����� � " 2N NXn=11!2HcnThus, , since P(H) = 1, we have:P( limN!1 1N NXn=1 pmn � d+mN NXn=11Sn>0! = 0) = 1We deduce from this expression that in probabilitylimN!1 1N NXn=1Gn��:1N 2 [m� �;m+ �]�� d+mN NXn=11Sn>0 = 0Something similar could be proved for m 2 K�(�). Thus, for any k � 1 and any continuous function �on [�1; 1]k we have in probability:limN!124 1N NXn=1Gn (�(�1; : : : ; �k))� 1N NXn=11Sn>0! Xm2K+(�) d+mh~�
km ; �i � 1N NXn=11Sn<0! Xm2K�(�) d�mh~�
km ; �i35 = 0In order to obtain the claimed result, one just has to notice that 1N PNn=1 1Sn<0 converges in distributionto R 10 1Bt2>0 dt.References[DS89] J.D. Deuschel and D.W. Stroock. Large deviations. Academic Press, Boston, 1989.[DZ93] A. Dembo and O. Zeitouni. Large deviations and applications. Jones and Bartlett Publishers,1993.[EE88] T. Eisele and R.S. Ellis. Multiple phase transitions in the generalized Curie-Weiss model. J.Stat. Phys., 1988.[Ell85] R.S. Ellis. Entropy, large deviations and statistical mechanics. Springer verlag, 1985.13
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