1 Introduction

The problem that we are interested in in this work is to understand the asymptotical behavior, that is
the thermodynamic limit, of a classical mean field model perturbated by a small term of Sherrington-
Kirkpatrick type. Such a question arises in a natural way ...

More precisely, let us consider N independent and identically distributed random variables o; € [—1, 1]
with common distribution p. Denote by o = (o1,... ,on) € [=1,1]" the configuration of the system, by
P, the product measure p®" and by E, the expectation w.r.t. P,. Let us consider a smooth function
f:[-1,1] = R. By classical mean field system, we mean a spin system ruled by the following hamiltonian:

o1
H{(o)=Nf |-
n(o) f ( N)
where we have set 0.1 = Ei\il o; the scalar product in RV of o and 1 = (1,...,1) € RY. The random

perturbation that we consider is given by a sequence (J; j)1<i<; of independent and identically distributed
random variables with common standard gaussian distribution A(0,1) through the hamiltonian:

SK(U) :N71/2 Z Ji7j0'in
1<i<j<N

We recognize here the usual Sherrington-Kirkpatrick hamiltonian introduced in [SK75]. Let us now
consider for a € (1/2,1) the following hamiltonian:

H(0) = H{ (0) + N~%/2SK (o)

We are more specifically interested in the the partition function Zx(8) at the inverse temperature 8 > 0
given by:
Znp = Eqexp BHL (o)

and in the Gibbs measure G'v g given by:

exp BHE® (o)

P,(doy,....d
Ins (doy oN)

Gnpldoy,... ,don) =
The behaviour of Zy g is well known when o = oo, that is without the SK term. We aim at comparing
our situation with this classical situation.
In the first part, we shall briefly summarize the results concerning the classical situation and state
our results. In the second part, we shall exhibit a short list of examples showing that all the situations
that we consider are likely to happen. In the third part, we shall prove the claimed results.

2 Statement of the results

2.1 General results about classical mean field models

The main tool that is to be used is the theory of large deviation as developped in [El85], [DS89] or
[DZ93]. Let us introduce some usual notations:

AN = ln/exp()\t) p(dt) and I(m) = sup {\m — A(\)} (1)
AER
Function I is called the Cramer transform of p. It is known to be lower semi-continuous with compact
level sets, that is for every L > 0, the set {m : I(m) < L} is a compact subset of R. From Varadhan’s
theorem (see [DS89], theorem 2.1.10), one deduces:
1

lim —InZ{ , = sup {Bf(m)—I(m)} =:A
Jim = s (370m) = 10m)

It is easy to show that the supremum is attained on a finite set (). Furthermore, if m € K(3) then
function I is of class C* in a neighborhood of m and (see [ElI85])

N[B! (m)] = m (2)



Hence, I(m) = Bf'(m)m — A[Bf'(m)]. We assume that all points in K(8) are non-degenerate that is:
vm € K(B), Bf"(m)—1"(m) <0

Denote by ji,, the tilted measure at m, that is the measure with density w.r.t. p:

A 0) scexp(5f m)o)

Equation (2) can then also be written:

/ 0 fi,(do) =m
[_171]

Let us at last denote by 7,, the variance of fi,,. It is easy to see that 7, = (I"(m))~! hence the
non-degeneracy assumption yields Sf"(m)%,, < 1. The result concerning the behaviour of Z }:, 5 is:

dim eNAZl = ST (L= B i)
meK(B)

We set ¢, = (1 — Bf"(m)qm) "2/ [Zm’eK(ﬁ)(l - ﬂf”(m’)ﬁm/)_l/ﬂ. The asymptotical behaviour of
the Gibbs measure (see [ElI85]) is given by:

-1
G{V,g = Z cmd2> and G{\’,B o <UW1> = CmOm
meK(B) meK(B)
2.2 Results about the randomly perturbated model

The behavior of the perturbated model may be rather different from what has been described in the
previous section. Let us consider the following sets:

I%(ﬂ) = argmax {’ym(2m2 +m) s m€ /C(ﬂ)}
KT(B) = argmax {m2 meE K(ﬁ)} and K~ (83) = argmin {m2 cme I%(ﬂ)}
Clearly to KT (3) and K~ () belong at most 2 points. Two situations may then occur:
L K*(B) =K~ (B) = {m} or {—m,m},
2. K*(B)={m*} or {—m™,m*} and K~ (8) = {m~} or {—m~,m™} with [m™| > |m~|.

Theorem 2.1
The following asymptotical expansion holds in probability:

2 ~ _ 2g
exp I:’BT’)/m(QMQ + ’)/m)Nl o + ﬁw}

e NAZLY = (1 +0p(1)) >
B =
mek+H(B)UK= (5) L= 87"(m)m

From this expression of the partition function, one can guess the asymptotical behavior of the Gibbs
measure. Let us consider again both situations that have been introduced previously:

1. If KY(B) # K (8B), set for m € KT(3)

= (1= Bf"(m)3m) ™2/ | Y2 (= Bf"(@)7) "

LZEXT(B)

2. If KT(B) £ K= (), set for m € KT(B)

df, = (L= Bf"(m)Fm) 2/ | Y. (1= Bf"(@)7,)

L7€KT(B)

and for m € K~ (B) d;, accordingly.



The result is the following:

Theorem 2.2
1. If K*(B) = K= (B), then in probability

G = ) ol
meK+(p)

2. If KT (B) # K~ (B), then in distribution

N 1 1
1 @ o0 — o0
N E G£’,5 — </0' lBt2 >0 dt> E 26% + (/; 1Bt2 <0 dt) E dmég
n=1

d
mek+(8) mek—(6)

Let us comment on this theorem. The second situation is clearly different from the “deterministic” one.
In the first one, the result may differ from the deterministic one according to whether X(8) = K*(8) or
not. We shall see in the forthcoming examples that both cases are likely to occur.

To emphasize on the significance of this theorem, we should notice that for m € K(3) one has:

’?m[2m2 + Ym] = (ﬂm702>2 = (fim;s U>4 = {fim ® ﬂm7027—2> = (firm ® fim, UT>2

Hence maximizing 4,,[2m? + 7,,,] means in reality maximizing the variance of the order parameter.

3 Some examples

3.1 The generalized Curie-Weiss model

We refer to the paper by Eisele-Ellis [EE88] and add to the Sherrington-Kirkpatrick term. In this
situation, all the functions and distributions that are considered are even or symmetric. Function f is
strictly increasing on [0, L[ with L > 0 being finite or infinite. According to theorem 1.2 in [EE88]|, and
depending on f, the supremum 3 f(x) —I(z) is attained either at 0 or at £m(f3) with m(3) > 0. In either
situation, and as function I is even, one has K(3) = KT(8) = K=(8). As a conclusion, nothing differs
from the deterministic case.

3.2 Selection by the random model among the critical points

On the upper part of figure 1 is drawn the shape of 7, (9, + 22?) = 1 — z* for the usual Ising model,
that is p = (d1 + 6_1)/2. On the lower part of the figure, one can see an example of function I — Sf

leading to KT (8) = K~ (8) = {0} & K(8) = {-1/2,0,1/2}. In this precise situation, one has G{Vﬁ =
cdp + (1 —¢)(61 +6-1)/2 for a ¢ > 0 whereas G{VC,“B = Jo-

3.3 Existence of metastates

On the lower part of figure 2 is now drawn the shape of 7, (7, + 2x?) for a non-GHS a priori measure
p=adp+(1—a)(d+0_1)/2, with a = 0.9. On the upper part, one can see an exemple of function I — 3 f
leading to K*(8) = {—m™,m*} and K(8) = {—m~,m~}, with 0 < m~ < m*. On the other hand, one
has K(B8) = {—m™,—m~,m~,m™}. In the classical situation there exists a real number ¢ > 0 such that:

Ghp = (022 +057)/2+ (1 — ) (6252 +62>)/2

whereas for the perturbated model:

N 1 1

1

6l = </ 15,050 dt) (6%, 4+ 55%)/2 + (/ 15,.<0 dt) (6% 4 55%)/2
n=1 0 0
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Figure 1: Selection of a critical point Figure 2: Existence of metastates

4 Proofs

Our main result is theorem 2.1. Its proof relies on precise asymptotic expansions of the hamiltonian in a
neighborhood of each critical point. For sake of clarity, we shall set g(x) = 8f(x).

4.1 Preliminary calculations

The point of the proof is to reduce the complexity of the Sherrington-Kirkpatrick hamiltonian by condi-
tioning. We first introduce the conditioning variables.

4.1.1 Gaussian conditional calculations

We summarize in this section the results of some easy calculations with gaussian random vectors. We

set:
i1 N N
SZN = ij,i + Z Ji,j and SN = ZSzN =2 Z Jz}j
=1 j=it1 i=1 1<i<j<N
Denote by SV vector SN = (SN, ..., SY) € RY. For clarity, we shall drop as often as possible superscript

N. Let us first describe the covariance structure of S and the consequences of it.
Vi=1,...,N,E[(S))’]=N—-1 and Vi#j, ESNSN =1
If we consider a family (S;,1 < i < N, ¢) of iid A(0,1) random variables then we have in distribution:
SN 2 (VN =25 + O1<icn (3)

As a consequence, there exists a random constant K, such that:

P {VN >1, max |SV| < Kw\/NlnN} (4)
1<i<N



Equality (3) also yields to:

N
P{lim %;(Siv)%l}_land ZSQ—I+0 (N2 5)

Let us now describe the conditional distribution of the J; ;'s given S¥ which is known to be gaussian.
The conditional expectation is given by:

SN+ sy SN
N-2 (N-1)(N-2)

E[J;,;1S"] =
And the conditional variance by:

Vijpg = E[(Jij — E[Ji;IS™]) (Jp.g — B4 8M]) [S™]

with 2 N_3 2
Vigij =1=5—7 Vi =~y (v og Viree=

4.1.2 Conditional integration of the partition function

Let us consider V a subinterval of [—1,1] and the truncated partition function ZX; defined by:

Z¥ =B, {exp[Hﬁ;(a)u%lev}

We have:

Vil I} Si + S; S
E[ZN|S]—EUGXP{WZ<N_2 - NN =2 0i0;

1<j

0.1 32
+ NQ(W) + SN+l Z Vij,pqaiajapaq}l%ev
1<j,p<q
Hence, we have to expand the covariance term, that is:
Z Vijpq0i0j0p0q

1<j,p<g¢

We shall introduce a more general expression Vi (o,7) as a function of two ‘replicas’ ¢ and 7 of the
system, and expand it up to the order O(NN) using the fact that the spins are bounded:

(07 = 5 (D) (E1)(07) + 515 (01771 +ON)  (6)

DN | =

Vn(o,7) = E , VijpgOiOjTpTy =

1<j,p<q

4.1.3 Change of variables and upper bounds

Let us now introduce two vectors m = (my,... ,my) and o = (1, ... , pn) that will appear as centerings
a bit later on. We set n; = o;—m,;. Vectors m and p may be random but in this case they are a measurable
function of SV, Let us define the random variable Hy (o) by:

3 22, 1 2, ,] BN |1 m.1)>
W (0'2.1)2 + m(01)4 - N(Uzl)(al)z] = T lﬁul — (T)

Since the spins are bounded, there exists a deterministic constant C' > 0 such that the following upper
bound holds:
) (7)

A

-l-HN(U)

- ¢ (Il |XX, 07 —w)
|Hy(0)] < No—1/2 (\/N +‘ N




We shall denote by m the empirical mean of m that is m = (m.1)/N. Making use of our centerings m
and p we get:
( 1)(0.S) = (n. 1)(7} S) + Nm(o.S) + (6.1)(m.S) — Nm(m.S)
mS mS S .
= n.1)?+ —(n1) + — — —— (.1
Z;Ulo.] 2N2 ) + N (77 ) + 2 2N2 (U )

Furthermore

aﬂ 7 2 (S = (N—l)iN—m) 747

i<j
1 S
= ﬁ (N(Ul)(gs) — m ZUiO'j) +Op.s.(]-)

i<j

Thus we can define a random variable Hy (o) by:

g m1)(®nS) ps pmS

Hn(n) = N@+D)/2 N oN2t(atD)/2 (n-1)? W(n 1)

This random variable satisfies:

Si + S s fm(c.S) Blo.1)(mS) -
“*1 72 Z ( T (N-D(V - 2)> %i% = Ntz T Naroz T AN(E) +0ps (1)

and there exists a random constant K, such that:

K, 71\’ 7.8\’ 8ISl |n1
P i | (75) + (%) |+ s 25 ) = ®
Using now vector m one can write:
0.1 g Ve nl — 1=y 1-1
Ng(—) = N(g(m) —mg'(m)) + ¢'(m)o.1 + N { g(- +m) — g(m) — ¢'(m)

Hence we have:

E[Zy|S] =

2N1-a 1\?]" pmms m>S
:(1+0p,s.(1))exp{ﬁ : Hul—(‘%)] —fv‘?off})/}—mﬁ?;w+N<g<m>—mg'<m))}

N
AmsS; B(m.S)
o €Xp { Z: < Nz T Nz )

8 (o5 +m) — om) - o (52 ) + (o) + HN(@}LT-IW ©)

4.2 Truncation of the partition function and asymptotic expansion

Let us choose so small a 6 > 0 that the intervals [m — §, m + 6], for m € K(8), are disjoint sets. Let us

now define
> Er [ep(H{H0) g2 f<s
meK(B)
We are going to make an asymptotic expansion of stv and then prove rigorously than Zy may be
approximated by Z%. So, let us choose m. € K(8) and consider V = [m. — &,m. + 6]. Equation (9)
suggests that we should define ’effective’ magnetic fields h; by:

pmS;  B(m.S)
N(a+1)/2 N (a+3)/2

hi = g'(m) +

i=1,...,N (10)



Using these magnetic fields, one can define a new probability P by its density w.r.t. P,:

dPh al
P, X exp ; h;o;

We now can rewrite expression (9) as follows:

]E[Z]{\fr’n* —J,m*+5]|S] = (]_ + Op.s.(]'))

5 2 N
BN1-e |1 m.1\° fm(m.S Am>S I
Xexpy — N“'l -\~ - N(OE“)/Z) T 9N(at1)? + N(g(m) — mg'(m)) + ;A(hz)

1 — .01 - .
x Bl exp {N (957 +m) — gtm) - /()51 ) + (o) + HN}IUTI_MJ

The point is now to prove that one may use in the last expectation the central limit theorem. This will
be essentially possible if the 7; are centered. We prove in the next lemma that one can choose such an
m that this condition is fulfilled.

Lemma 4.1
There exists a dy independent of S such that for any § < dg, there exists N, such that for N > N, the
following non-linear system admits a unique solution m = m(S) with |m — m.| < J:

_ pmsS; p .
m; = A (g’(m) + [CE + INCESIE (mS)),1<i<N (11)

Moreover, there exists a random constant K, such that

K,vVInN
P {VN > N, 12‘85\[|m, my| < Ve } 1

Proof : Let us define for (z,p) € [—1,1] X R the following function:

P _ 1 al SA (o BxS; B
N,x(ﬂ)—wz; i 9($)+N(a+1)/2 +Na/2ll
1=
One has:
N
I3 BK,VIn N
! " . o o
920200 = 0o )| € Sy S0 A0 YIS = ) € 5 |

Hence, for N > N,, which depends on w but not on z, function @y, is a contraction and thus admits a
unique fixed point gy (x). Function py is smooth. One can easily check the following bound:

VN >Ny, sup {|un(z)] + |uy (@)} < K, VInN (12)
z€[—1,1]

Let us now recall that ¢"(m.) — I'"(m,) < 0, that I"(z) = 1/A"[(A") "} (z)] and that m. = A'(g'(m.)).
As a consequence, in a neighborhood [m, — 8o, m. + dg] of m,, one has A" (¢'(x))g"" () — 1 < 0. Hence
function A(z) =  — A'(¢'(x)) is strictly increasing on [m. — by, m. + do] and equals 0 at m,. Consider
function Apn defined by:

N
1 BzS; Jé;
An(z) =z — N ;A, <g’(x) + N0/ + Narz uN(x)>

Using bound (12), one can prove that for large enough N function Ay is stricly increasing. Function
A converges uniformly on [m, — dy, m. + dp] toward A, hence limpy_y00 An(my + ) = A(my +6) >0
and limy 00 An(ms« — ) = A(m. —§) ><. As a consequence, for large enough N equation Ay (z) =0



admits a unique solution my € [m. — §, m. + 6]. Solving the non-linear system of the lemma is clearly
equivalent to solving Ay (z) = 0 with x = m and afterwards defining m; by (11). In order to obtain
the last bound, one first notices by extracting any converging subsequence that any limit point  of my
satisfies A(z) = 0. Hence my converges to m.. Now:

pmS; g
|mN - M*| - ‘ ZAI ( I N(a+1)/2 + N(a+3)/2 (mS)) - Al(gl(m*))‘

Ly BimySi| B
(2
N A”(g’ V) {g”(g’{’N”mN ~ e+ Naron t Nerare |mN'S|}

As & N, & v converges to g (m.), for large enough N we have 3% Ef;l A"(&i,n)g" (& v) < 1 and thanks
to (4) the bound is clear. We shall drop again subscript N and set m = my. [ ]
We now have to write down all the asymptotic expansions that we are going to use.

Lemma 4.2
The following asymptotic expansions hold almost surely:

1.
1
mT = Mx + Og.s.(N7*T)
2.
m.S . m*S v _—
N(a+1)/2 = N(at+1)/2 + A" (g'(m.)) Bm.N +0o(1)

3.

3 Bm.S

" A(h) = NA(g (m.)) + NA'(g' (m) £ (m.) (m = m.) +20(9' () ey

i=1

+A'(g'(m))A" (g (1)) B m N1~ + %A" (9'(m.))BmIN'~* +o(1) (13)

The proof of this lemma is tedious but straightforward. It only relies on Taylor expansions.

Let us now define vector u:
pi = Ego? = A" (hi) + [N (ha)]®

With this definition and using the previous asymptotic expansions, it is easy to get:

%NH‘ Hu.l - (%) ] ﬂ —N'A" (g (ma))]? + 0a.s.(1) (14)

As a consequence, we obtain:
2
62 1 m.1)>
N N“ N

EN A )] +

221 S 2—25 N
f\%ﬂ) /2) - 216(311) 75+ N(g(m) —mg'(m)) + ) A(hy)

i=1

Bm?2S 1

= N(g(m.) - A*(m.)) + e + 3 (¢ () I N + o(1)

Hence we have:

E[Zy—0m= 8] =
2
exp {N(g(m*) —A*(m.)) + BmzS 1

ﬂ » (! 2, 2pa7l—a
+ oz T A7 (g (M) B m N + 04.5.(1)

Nl a[AH( I( ))]2

B | exp {N (a5 ) = g(m) g/ (m) 57 ) + Finto) + (o)} 1|g,1m*|§5]

The next lemma shows that we may use the central limit theorem to evaluate the latter expectation:



Lemma 4.3

We have:
. nl __ . _.nl1 ~ N 1
Jim B e { ¥ (o5t 4+ ) — gm) - /() 52 ) + o) +Hw}lwm*g5] -

Proof : A very standard argument on triangular arrays of independent random variables enable to
check that under P” vector (.1/v/N,n.S/N, Zf\il(af — 11;)V/N) satisfies the central limit theorem and
converges in distribution to. |
We have now proved the following proposition:

Proposition 4.4

2 _ P - —a 2
exp [ 57 (20 + ) N0 + 228

e NAE[Z31S] = (1 + 0p.4.(1))

4.3 Expansion of Z3

Let us denote by Zﬁ"s the truncated partition function associated with [m — 6, m + 4] for m € K(5). In
this section, we are interested in the asymptotic behavior of IE[ZR,""J ZI’(,"”I"5|S].
The conditional integration leads to a very similar expression with two 'replicas’ o and 7 of the system,
the only difference being a coupling term that will be proved to have no effect. It may be written:
52
Hy(o,7) = o+l Z VijpaTi0iTpTy
1<j,p<q

= e {5 - $EDED e + 3P 1 |+ 0 )

Let us introduce the localizations m and p for o, m’ and p’ for 7. We set n; = o; —m;; et 9} = 7, —m;. We
then make the exponential changes of probability associated with the ’effective’ fields h and h'. Under
P" @ P! random vectors n and 7’ are independent. One then checks that:

Ni+1 {%(0.7)2 - %(0.1)(7‘.1)(0.7‘) + L(0.1)2(7'.1)2}

2N?
2 71—a ' 2
:61\; {1 . ,_<m.1> <m1>} Ry

with a remainder Ry that can be bounded as follows:

K, n.m’ n’.m‘ ‘n.n’ ‘ n.1 ‘ ‘n’.l H
Ry| < + + + =]+
|Bn| < Na—1/2 [ VN VN VN VN VN

The empirical covariance term may be estimated:
. . N N N 2
—62 NZ [ 1 ( L ! 1 / "N arl—3a+e
+1_ _Z mi__zmi mi__zmi SKWN :Oa.s.(]-)
N« 2 |N pa N pt N —

With very similar arguments to what has been used in the previous section, that is central limit theorem
and uniform integrability, one gets:

m,8 >m',0 m,0 m' .8
ElZN"Zy " |S] = E[Zy" [SE[Zy [S](1 + 0a.s.(1))
As a consequence of this result, we get:

E[(Z3)?|S] = (1 + 04.5. (1)) E[Z} |S]”



Hence,
E[2z3 - E[Z}S]8]”

0 a.s.
2E[Z3,|S]2 Now P

P {12} - B2} IS > <EIZ} 8|S} <
Taking now the expectation w.r.t. S, one gets:
Ve >0, lim P{|Z% —E[Z}|S]| > cE[Z}|S]} =0
N—o00
Hence we have proved:

2 - _ 2g
exp I:’BT’)/m(2m2 + ’)/m)Nl 4 mﬁ(zlw}

eNAZY = (14 0p(1)) — (15)
mek(B) -9 (m)r)/m
4.4 Expansion of Zy
We end this section by proving that we have really made an asymptotic expansion of Zy. Clearly,
— 1
A}im I In[EZy — EZ3] <sup{g(z) —I(z): |t —m| >, me KB} =A, <A
—00
Let us fix p > 1 and define ¢ = p/(p — 1):
1/q
5 0.1 L/p Bq
ZN = Zy < | EBo exppNg(57)1 22 _mi>s, mek(s) Eo exp > Jijoio
i<j
By Markov’s inequality:
Bq B i Bq® i B¢
P Eo— exp m Z JZ'J'U'iO'j Z exp Nl « S eXp[— Nl a]EU exp 4Na+1 0_30_32'
i<j 1<j
2,2 2 2 2.2
< exp[——ﬂf N9 exp[—ﬂf N 2] = exp——ﬂf Nt-e

Borel-Cantelli’s lemma shows that there exists (2, with full probability such that:

Bq
N(a+1)/2

2.2
ZJi7jain < expﬂ—qu_o‘

Yw € Qy, AN(w) : Vn > N(w), Egexp 5
1<j

Thus on €2, we have:

T~ InZy — 73] < }) sup{pg(x) — I(x) : Ym € K(B), |& —m| > 6}

N—o00

By considering Ngec,¢>1€2q, the previous relation holds almost surely for any p € Q such that p > 1. As
g is bounded,

1 p—1
Esup{pg(fv) —I(x) : Vm € K(B), |z —m| > 6} < Tllglloo + A,
Letting now p going to 1, one obtains:
— 1 5
— - < -p.S.
1\}E>nooN1n[ZN Zy] <A, P-ps

Equation (15) gives for any ¢ > 0:

Zn — 78 1 1 1
1 1
SP{NIHZ?V < —Nln€+Ac+(A—AC)/2}
FP{n(Zy = Z8) > Au+ (A = AL)/2) — 0
N N—o00

Hence in probability Zy = Z3(1 + op(1)).

10



5 Convergence of the Gibbs measure

In order to obtain a more precise result, we are going to study a conditioned Gibbs measure. Let us
first choose a § > 0 such that the intervals [m — d,m + ¢], with m € K(f), are disjoint. Consider now
m € K(B) define as usual the truncated partition function Z%, = E, exp Hﬁ%(a)l[m_57m+5] and the
associated Gibbs measure that is in fact G{VC,“B given &t € [m — &, m + 8] and that we shall denote by I'y.
We begin by stating a lemma in which we prove that 1/NIn Z% is self-averaging:

Lemma 5.1
For any u > 0, we have:

lim —lnﬂp{‘ In ZN lnIEZN
N—oco N

>u}:—oo

Proof : We may consider that the .J;; are the values at ¢t = 1 of independent standard brownian
motions J; j(t). Replacing in Z% J;; by J; ;(t) we obtain a process Zn(t), and a Gibbs measure G,

given %L € [m — §,m + 6]. Usual Ito’s formula gives:

1 | s 1 [t 3 . 0.1
NIHZN—N]EIHZN:N o E WGN 0i0j W
1<i<j<N

€m—-o,m+ 6]) dJiJ'(t)

Now, for any u,0 > 0 we have:

1 1 _ 1 /! 8 0.1
P{NIHZ?V_NIH]EZ?V ZU} Se 0“]Eexp9 N‘/O Z WG?\[ <0’in W
1<i<j<N

2
%1 € [m—6,m+5]>> dt

< 1, we obtain the upper bound:

€ [m—b,m + 5]> 0

w B
"Eexp— N2/0 Z Notl Gl | oio;

1<i<j<N
t 7
Gy <UzUJ

Choosing § = 2Nl /3%, we obtain:

Since

%E[m—é,m%—(i])

1 s 1 § —but ;28
P NIHZN_NIHEZNZU <e aNeF

1 1 Notly?
P {Nlnzfv — NlnIEZj‘v > u} < exp {—T
The same result could have been obtained for P {% InZ§ — + ln EZ < u} with a negative #. Hence

the result of the lemma holds with Eln stv instead of ln IEZJ The upper bound that has just been
obtained proves that almost surely the difference goes to zero. Since we have already proved that in
probability In[Z%]/EZ4 = o(N), it is clear that:

. 1 1
Jim {N InEZS, — ~EIn va] =0

Hence we may replace Eln Zj{, by In IEZj‘V for large enough N and the result is proved. ]
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Denote by Ly the empirical measure of (o,7), that is Ly = + Zf\;l 0¢; ;- Define ¢1(0,7) = o and
1

q2(0,7) = 7. For any borel subset B of P([—1,1]?), we have:
Er'y @ T%(Ly € B)

2
H
Eq eI g s mie) Lot em—smto)LLnveR []EEUe VO1eg e[mféymwl]

2 2
[EEa et (o) l%e[m—é,m—i-&]] [EaeHN(”) lea e[m—a,m+5]]

2
P []EE" eHN(J)l%e[m—a,eré]] Ne

N

- [EgeHN(”)l a-le[m*‘imw]] 2

L eNoE EG-J.CHN((T)'FHN(T) l”T-le[m—&er&]1%€[m76,m+5]1LNEB

2
[EEU efin(o)] ”Tl E[mfé,m+6]:|

Hence, using the previous lemma, we get:

1
i B 9T (Ly € B) < <+ sup {g(ai)) + 9((vsa2)) — HO1p™)
(v,q1) € [m —8,m + 9], (v,q) € [m —§,m+d],v GE} —2A

It is now possible to let € go to 0. Function v — g({v,q1)) + 9({v,q2)) — H(v|p®?) admits a unique
maximumon {v : (v,q1) € [m — 0,m + 9], (v,q2) € [m — §, m + 6]} at 1, @fiy,. Standard large deviations
arguments then lead to the convergence of Ly to fi,, ® fim. Since probability measure ET'Y @ 'Y, is
exchangeable, using Sznitman’s results in [Szn|, one obtains the propagation of chaos, which means that
for any k > 1, ((o1,71),...,(0k, 7)) converges in distribution to (fi,, ® fi,,)®*. In particular, for any
continuous functions ¢ and 1 on [—1,1]* we have:

GN <¢(01,... ,a'k)

lim E
N—o0

%le[m—&m-{-é])

GN (1/1(71,... ,Tk)

%E[m—é,m+6]>

= ([, o) (g 1)

By taking one function 1 equal to one, one gets:

lim EGn <¢(01,... ,0%)
N—00

%e[m—s,mw]):m;?;’z )

Thus we have proved:

Proposition 5.2
For any m € K(B) and any § > 0 such that [m — 6,m + J] does not contain any point of K(3) but m,
then in L?, for any k > 1 and any continuous ¢ on [—1,1]¥ we have:

]\}i—r)noo Gn <¢(01, e OF)

sz-le[m—a,mw]):m%;k, )

This result describes rather precisely the Gibbs measure. Let us now prove theorem 2.2.

We first assume that K+ (3) = K~ (8). Expression 15 shows that if m ¢ Kt (3) then it is clear that
Gn (% € [m — 6, m + 68]) goes to zero, whereas if m € KT (8) then Gy (% € [m — 6, m + 6]) goes to
dm, all the convergences are meant in the probability sense. Hence:

lim GN (d)(al, e ,U'k))

N—o0

:J\}iinoo Z GN <¢(U1,...,crk)

mek(B)

.1 o.1 ok
WE[m—é,m+6]>GN<WE[m—é,m+6]>: Z dm (B2F, ¢)
meK+(5)
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When KT (8) # K=(8), the Gibbs measure is not converging in the usual sense but in the Cesaro’s
sense. This is what has been called by Newman ’'metastates’. We first notice that we only have to take
care of m € K¥(8) UK ().

Our proof relies on Kulske’s ideas |[Kul96]. For € € (0, 1), set

N
1
_ . |oN 1-6 _ L -
HN—{w.|S | >N }and?—[—{w.l\}lm —ngllweHn—O}

It is proved in [Kul96] that P(H) = 1. Let us now introduce the relative weights p, for m € K+ (8) U
K~ (B), defined by:

2 ~
exp [MB(T%)/Z] /1= g"(m)Am
B(m*)2S B(m~)

1
exp [2N(a+1)/2] 2o aek+(8) T Vi- g”(q + P [ZN(““)/Z] Lger=() V19" (0%,

PN =

It is clear that in probability, Z% /Zn — pR goes to zero. If SV is large, then p% may be approximated
by df 150 if m € K*(8) and by d,,1g~ o if m € K~ (). More precisely, let us fix e > 0. For N > N.,
independent of w, we have for m € K¥(3):

lppn — df Lsnso| < eluen, +21uen: < e+ 2.1uens

Hence:

1 & 1 & 2 &
N;pﬁ—dﬁzﬁ;lswo S8an::11we%;

Thus, , since P(H) = 1, we have:
]P’{lim (izij Z1Sn >: }:1
N \ N 2 >0
We deduce from this expression that in probability
&
A}gnOONZG < [m — 5m+5]> m;uw:o

Something similar could be proved for m € K~ (83). Thus, for any k¥ > 1 and any continuous function ¢
n [—1,1]* we have in probability:

1 & 1 & 1 & .
g |5 6ot o - (§ o) B it - (3 ee) X at

mek+(8 mek— ()

In order to obtain the claimed result, one just has to notice that % Zgil 1gn <o converges in distribution
1
to fO 1B52>0 dt.
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