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Abstract

We devote this work to the long time behaviour of the solution to
the incompressible Navier-Stokes equations for two viscous immiscible
fluids contained in a bounded domain and subjected only to grav-
ity forces. When there is surface tension at the interface or not, for
the model linearized around the steady-state of minimal energy or for
the standard nonlinear model, we investigate the following question.
Do the equations reproduce the behaviour expected from experiment,
namely a convergence to zero of the velocity field, and a convergence
of the interface to its stable position. Our results show a wide variety
of behaviours, depending on the case considered.

Résumé

Nous consacrons cette étude au comportement en temps long de la
solution des Equations de Navier-Stokes pour deux fluides incompress-
ibles visqueux immiscibles remplissant un domaine borné et soumis a
I'influence de la gravité seulement. En présence ou non de tension de
surface & l'interface, pour le modéle linéarisé autour de I’état station-
naire d’énergie minimale ou pour le modéle non linéaire initial, nous
cherchons & savoir si les équations reproduisent ou non le comporte-
ment attendu pour ce systéme dissipatif au vu de 'expérience : une
convergence vers zéro du champ de vitesse et un retour a ’équilibre de
Iinterface. Les résultats obtenus font apparaitre une grande variété de
comportements suivant les cas considérés.

!To appear in Differential and Integral Equations.
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1 Introduction

We present in this article a study of the long time behaviour of the time-
dependent Navier-Stokes equations for two incompressible immiscible fluids
in various settings. The main question under consideration here is the fol-
lowing : assume that the forces and the boundary conditions are such that
for any steady state, both fluids are at rest (the velocity is zero all over the
domain), then can one show that the viscous dissipation drives the system
to such a steady state as time goes to infinity 7 Intuitively, if for instance
the only forces are due to the gravity, and if the two fluids are of different
densities, it is expected that the system goes, as time goes to infinity, to
the situation when the two fluids are at rest, separated by a flat interface,
the heaviest fluid below this interface, and the lightest above. One of the
goal of this article is to investigate in what sense this simple intuitive ex-
pectation (and observation) is satisfied mathematically. In other words, we
aim at studying in what sense the Navier-Stokes equations do reproduce the
physical reality on that particular point.

More mathematically, consider (u, p, p) a solution to

O(pu) +div(pu @ u) — Au = =Vp+ pfm + fo,
Op +div (pu) = 0,
dive = 0, (1.1)

with the no-slip boundary condition

u =0 on 01, (1.2)
and with the initial data
u(t=0) = uo("), (1.3)
and .
i=0=p0={ 120 Gmmn a0

for a partition (£21,€s) of the domain € where the system (1.1) is set. We
do not detail in this introduction the sense in which (u, p, p) is a solution to
(1.1), but we will make it precise below. Possibly, we shall add to the right-
hand side of (1.1) a term modelling the effect of the surface tension at the
interface between the two fluids. Let us assume then that the given massic
forces f,, and volumic forces f, are such that any steady-state solution of
(1.1) consists of some piecewise constant density p € {p;, po} and of the zero
velocity field u = 0. Can we say something on the behaviour of (u, p) for ¢
going to infinity 7



1.1 Position of the problem

It is first of all to be remarked that we cannot hope to solve the question
of the long time behaviour of the solution to the two-fluids Navier-Stokes
equations in a very general setting, for arbitrary forces f,, and f,, since,
even for the one fluid case, this question is an extremely difficult one.

Let us briefly overview the main results known to this day on this subject.

As far as the long time behaviour of the Navier-Stokes equations (and
more generally of any dissipative system of infinite size) is concerned, the
main body of the theory is due to R. Temam and coworkers (see R. Temam
[46, 45|, and P. Constantin, C. Foias, B. Nicolaenko, R. Temam [12]). Glob-
ally speaking, the long time behaviour of these equations is finite dimensional
in two dimensions without restriction and in three dimensions at least for
flows which remain smooth. In fact, as will become clear in the examples
below and in the whole sequel, the determination of the long time behaviour
of the solutions is closely related to the existence of regular solutions for all
time.

In two dimensions, the solution is regular and therefore many things are
known. If the force is time independent, there exists an attractor, and its
Haussdorf dimension is finite. This attractor is all the more regular as the
force is (e.g. C*° if the force is C*°). In the space periodic case, it is even
possible to show that there exists an inertial manifold. An upper bound on
the finite dimension of the attractor is related to the Reynolds number of
the problem (see e.g. A. Miranville & X. Wang [32] and references therein).
Most of these results apply to the MHD system (M. Sermange, R. Temam
[34]). In three dimensions, it is only known that the functional invariant
sets bounded in L? are of finite Haussdorf dimension, but no existence of
attractor (which would exist if the solutions were regular for all time) have
been established to this day in the generic case.

In very particular situations, it is possible to improve these general results
by proving the convergence of the flow to some stationary state. Such kind
of results is in fact expected from experiment. When the body force the fluid
is subjected to is large (and even if it is stationary) there are some situations
where the flow remains turbulent and time dependent for long times (for
instance, it tends to a time-periodic solution). But when the force is small,
there are many situations where the flow converges as time goes to infinity
to the state where the fluid is at rest. Let us examine now the mathematical
counterpart of this experimental observation.

The first result in this spirit concerns the case of one homogeneous fluid
enclosed in a fixed box and goes back to Leray. In two or three dimensions
with homogeneous Dirichlet boundary conditions, when there is no body
force, the only steady state is the fluid at rest and the time dependent flow
converges to it in H'! as time goes to infinity. This result has in particular



been extended in the following two directions : if the force f and the data
(initial velocity and boundary conditions) are small enough then the flow
remains regular for all time (even in three dimensions) and the speed of
convergence toward the steady state can be evaluated (see C. Guillope [24],
J.G Heywood [25, 26|, C. Foias, J.C. Saut[18]); if the initial velocity is large
but when the force is gradient-like it is possible to show that the flow becomes
smooth after a finite time, then remains smooth and converges to the steady
state (see J.G Heywood [26]). Some analogous results are available under
convenient hypotheses in the unbounded case (see G.P. Galdi, J.G Heywood,
Y. Shibata [20], W. Borchers & T. Miyakawa [10] and references therein).

Let us now leave the case of one fluid in a fixed domain and deal with the
case of one fluid enclosed within a free surface or the case of two fluids. There
again, most studies deal with situations when there exist regular solutions
which is mostly the case when the data are small and the evolution is not far
from equilibrium : let us mention here the works by V.A. Solonnikov [38, 40,
37] and by J.T Beale |5, 7|. The basic result is the convergence to the steady
state as time goes to infinity. Let us also mention for the sake of completeness
the work by A. Tani and N. Tanaka [43], the works in the irrotational inviscid
case J.T Beale, T.Y Hou, J.S Lowengrub [6], T.Y Hou, Z.H Teng, P. Zhang
[27] and also a connected work by H. Beirao da Veiga [8].

In the case we deal with in this paper, this is therefore only under very re-
strictive assumptions one can hope to settle this question. All the situations
we shall consider below share the same following feature : there is unique-
ness of the stationary velocity field (but not necessarily of the stationary
interface).

Our study is actually motivated by the examination of the question of the
long time behaviour of the solution in a more complicated situation (arising
in the modelling of many industrial problems of metal processing), namely
the situation when the two incompressible fluids are in addition two electri-
cally conductor fluids, confined in a bounded domain, initially disposed as
two horizontal layers separated by a regular interface, and when the motion
of these two fluids is governed by a system of equations consisting of the
Navier-Stokes equations coupled with the Maxwell equations (namely the
magnetohydrodynamic equations). The massic force term f,,, in (1.1) is then
only due to the gravity, while the volumic force term f, is the Lorentz force

fo =curl B x B, (1.5)

the magnetic field B being solution to the Maxwell equations in a more or
less simplified form (see J.-F. Gerbeau, C. Le Bris [23] ). This article is to
be seen as a first step toward the study of this system. Many studies have

already dealt with this question : see among other references J. Descloux,
Y. Jaccard, M.V. Romerio [15|, P. Maillard, M.V. Romerio [31|. So far as



we know, most studies treat the linearized case (expansion of the solution in
the neighborhood of the zero steady state solution when the initial data is a
small perturbation). In view of all the difficulties of the generic case explained
above, it must of course not be surprising for the reader that the somewhat
practical studies we indicate here focus on this simplified linearized setting.
Many cases of magnetic and electric fields are considered, in various geome-
tries, in two or three dimensions, under various assumptions of symmetry.
The emphasis is layed on the behaviour of the velocity and of the electromag-
netic field, and the conclusion provided by these studies is mainly that, under
convenient assumptions, the velocity goes to zero, in a more or less strong
sense, while the electromagnetic field tends to some well identified limit. Un-
fortunately, nothing (or almost nothing) is known about the behaviour of the
interface separating the two fluids (see for instance Remark 3.4 in [15]). We
believe that some information on this behaviour could be useful, in particular
if one has in mind questions of stability of such two-fluids systems. From a
rigorous viewpoint, it is indeed not clear (and it will indeed be illustrated in
the sequel) that the interface goes to some equilibrium shape if the topology
for which the velocity goes to zero is too weak ; moreover, if the interface
does converge, one has to identify its limit. Some pathological situations
have to be ruled out (see Figure 1). In order to investigate this question,
we first go back from the sophisticated magnetohydrodynamic problem to
the more basic problem of the two fluids subjected only to the gravity (see
[21] for some magnetohydrodynamics case). The question is then : to what
extent does the hydrodynamic equation reproduce the behaviour expected
from experiment 7

Let us end this paragraph by making a comment on the numerical coun-
terpart of the questions we address here. Checking that the mathematical
model does reproduce the reality in very simple situations might be of pri-
mary interest when instabilities are observed in the numerical experimenta-
tions for most difficult cases (or even for these simple cases). Indeed, one
must then settle the following question : are such instabilities due to the nu-
merical approximation, or to the continuous mathematical model per se 7 In
addition, knowing that the mathematical model have the good dissipativity
properties helps in the process of designing numerical algorithms that also
share the same properties. On this latter point, we refer the reader to the
work of F. Armero and J.C. Simo [3|. In this reference, one may also find an
enlightening presentation of the theoretical concepts of attractors and related
notions, that we have hardly approached above, precisely in the context of
MHD equations (but in the one fluid case).



Figure 1: Two examples of situations when the velocity goes to 0 but when the
interface does not converge to the equilibrium expected from experiment. On
the left, the interface oscillates more and more (think to sin(tx) ast grows) ;
on the right, the interface is flat but has split into three pieces that separate
fluids 1 and 2 alternatively.

1.2 Summary of our results

Paradoxically, simple as it might seem, the question To what extent does the
hydrodynamic equation reproduce the behaviour expected from experiment ¢
has not been addressed before in this framework, to our knowledge at least.
Because, as shown above, this is a situation extensively addressed in the
literature devoted to applications, and because it is a case that exhibits very
particular properties, we first consider this question in the linearized setting.
This is the purpose of Section 3. We shall detail in particular there the role
played by the surface tension. The system that we shall consider there (see
below in Section 2 how we derivate it from (1.1)) is the following :

ou
Pogy Au = —Vp— (Y — 7A, y¢)0,—0€,
divu =0, in Q, (1.6)
o

— —u, =0o0n z =0,

ot

with the boundary conditions
u(-,t) =0 on 09, forallt, (1.7)

In this system, (z,y, z) denote the three coordinates, z being along the verti-
cal direction. The density py is the steady-state density (consisting of the two
layers of fluids separated by a flat interface at z = 0), the field u(zx,y, 2, ) is
the linearized velocity field, the field p is likewise the linearized pressure field,
the function ¢ (z,y,t) defines the position of the interface in this linearized
setting through the equation z = ¢ (z,y,t) (see Figure 2). The measure J,_
is the measure of unit charge supported by the 2-dimensional plane z = 0.
In addition, in this introduction, all constants have been set to one, except
the coefficient v related to the surface tension that therefore vanishes in the
case when there is no surface tension (Subsection 3.1).

7



Basically, the main results of these sections are the following ones, that
we state here in a heuristic way.

Basic Results in the linear setting

(i) linear case without surface tension i.e. v =0

As time goes to infinity, the velocity u goes to 0 in H', and the shape
Y of the interface goes to 0 in H¢ (for all e > 0), and in weak-L*. It
is not known whether that latter convergence holds true in L*.

(i) linear case with surface tension i.e. v > 0

As time goes to infinity, the velocity u goes to 0 in H'. The shape
Y of the interface goes, in H'¢ for all € > 0, to some interface s
solution of the steady-state equation with zero velocity field. If in addi-
tion, the velocity u is assumed to remain reqular for all time, then s
corresponds to the unique steady-state with zero velocity field sharing
the same boundary condition as the initial data ).

These results will be made precise below (see Propositions 1 and 2), but
let us already make a few comments.

Consider first the case (i) without surface tension. It is to be mentionned
that in this case, we can prove the existence of a solution with the regularity
that allows one to make all the manipulations needed to prove part (i) of
Proposition 1. In addition, despite the somewhat weak result of convergence
of the interface given in part (i) of Proposition 1 (oscillations may appear), it
remains that, in some weak sense at least, the fluid does return to its stable
steady-state in this linearized setting. Therefore we may conclude, in a very
rough way at least, that the physical behaviour is obtained. We shall see
below that this is out of our reach in the analogous case in the nonlinear
setting.

In the case with surface tension, the situation is less simple. We are able
to show an existence result for a reasonably regular solution of the equations.
We can show that the velocity goes to zero as time goes to infinity, and we
can identify the set of all possible limits for the shape of the interface ¢). This
set consists of all steady-states 1/, associated to a zero velocity field. Unfor-
tunately, without any additionnal assumption, we are not able to bootstrap
enough regularity on the velocity field to identify in this set the limit of
(recall the link mentionned above between existence of regular solutions and
behaviour of the solutions at infinity). If we assume some better regularity
for the velocity field, then we are able to completely determine the behaviour
of the interface as time goes to infinity. It turns out then that the behaviour
obtained is at least surprising from a physical viewpoint (see the details in
Section 3).



" Fluid 1

z=0

Fluid 2

Xy

Figure 2: The linearized case. The interface is defined by the equation z =
Y(x,y,t), the density py is constant on both sides of the plane z = 0 (p;
above, py > py below). The question is : does (-, t) — 0 as t — +oo ?

The strategy to obtain the behaviours at infinity of the solution basically
follows the same patterns in case (i) and in case (ii), nevertheless each of
these two cases requires very special techniques that differ from one case to
the other. That is the reason why we present both settings here.

Once we have treated the linearized setting, we go back, in Section 4 to
the nonlinear equations (1.1).

The situation is radically different, the drastic difference lying basically
in two facts. Of course the nonlinear setting leads to well known difficulties :
some compactness is required in order to determine the behaviour of the
nonlinear terms, and obtaining such a compactness through a priori estimates
is a real difficulty. But mostly for the aspects we are interested in here,
the difference with the linearized case is primarily due to the tremendous
difference between the number of steady-state solutions in each case. Indeed,
in the linearized case ((1.6) with v = 0), it is easy to see that if (u = 0,))
is a steady-state solution, then —Vp + 1d,_ge, = 0 thus @ is a constant.
Therefore, if one wants to reach such a steady state through an evolution for
which fz 1 do = 0, one necessarily obtains ¢» = 0. Therefore, the only steady
state that can be reached with v — 0, is ¢ = 0.

On the contrary, in the nonlinear setting (1.1), there are infinitely many
steady state solutions with u = 0. Indeed, when there is no surface tension, it
is easy to see that the flat interface may be splitted in many pieces (possibly
infinitely many), giving rise to stratified steady states as shown in Figure 1.

The difficulty would not be that great if these steady states were in some
way quantized. Now it turns out that they form a continuum of energy in
the neighbourhood of the steady state of minimal energy.

When there is surface tension, it will be shown in Section 4 that infinitely
many shapes of interface are convenient, also forming a continuum of energy
near the minimal energy steady-state. We have seen that in the linearized
setting, such a set of steady-states also exists. But the difficulty is now that
identifying the limit would require a regularity that seems out of reach (so
far as we know) for the nonlinear equations.



The results we have obtained in the nonlinear setting are the following
proposition (once more we state the results in a rather schematic way).

Basic Results in the nonlinear setting

(i) nonlinear case without surface tension i.e. v =0

As time goes to infinity, the velocity u goes to 0 in H' in some weak
sense (see (4.34)), and the density p goes to a density ps = pso(2)
in some weak sense. In two dimensions, u(-,t) goes to zero in H' "¢,
Ve > 0.

(i) nonlinear case with surface tension i.e. v > 0

Under some reasonable assumption of reqularity, the velocity u goes to
0in H', as time goes to infinity, in the same sense as in case (i), the
density p goes to a densily p in a stronger sense (see (4.46)).

In both cases, we are not able to identify ps, and we exhibit an infinity
of steady-states, possible limits whose energy is arbitrarily close to the
solution with minimal energy.

We now turn to the detailed statements and proofs of the results an-
nounced above.

2 Preliminaries

2.1 Derivation of the linearized equations

The derivation of the linearized Navier-Stokes equations for two fluids is
somewhat standard and we only reproduce it here for the sake of self consis-
tency.

Our starting point is the incompressible Navier-Stokes equations for two
immiscible fluids of constant positive densities p;, po :

O(pu) +div(pu®@u) —nAu = —Vp+ pfm + fo,
O + div (pu) = 0,
dive = 0. (2.1)

Remark 2.1 For the sake of simplicity, we suppose that the viscosity n s
constant over the domain, and we therefore set it to 1 henceforth. We could
as well consider a variable viscosity of the form n(p) which gives rise to a
term div(nVou) in the equation (2.1) instead of the term nAu, where V°u
denotes the symmetrized gradient of u. All the results we obtain in this work
hold true mutatis mutandis except the somewhat technical result of reqularity

10



established at the end of Section 3.1.2 and, more important, the results of
Section 4.3.2 where the hypothesis of constant n enables us to improve the
reqularity of the flow in two dimensions. As mentioned there, the results of
Section 4.3.2 may however be extended to the case of slight variable viscosi-
ties, in the sense of B. Desjardins (see [16]).

We assume that the given forces are such that (v = 0,p = pg,p = po)
is a steady state solution. We also assume that the domain €2 has Lipschitz
continuous boundary €2 which will allow us to make use in the sequel of all the
standard theorems of regularity and trace for convenient Sobolev exponents.
We now derivate the linearized equations in the neighborhood of this steady-
state solution. For the sake of simplicity, we assume in this derivation that
the massic forces are only due to the gravity, but it is a straightforward
modification of the following argument to extend this linearization procedure
to the case when there are other massic forces. We denote by py the steady
state solution for the density :

p1 > 0, constant in €y,
p2 > 0, constant in )y,

et =0 = () = { (2.2
where the partition €2y, {2, is entirely fixed by the given forces the system is
subjected to. In the purely gravitational case that we consider here, €2; and
(25 are the two subdomains separated by the flat horizontal interface at z = 0
as shown in Figure 2.

Let us consider a “small” constant ¢ > 0 which defines the size of the
perturbation, and denote by (guc, po + €pe, po+£pe) the solution to the above
Navier-Stokes equations. Neglecting the terms of second order or more with

respect to £, we obtain

epoOiu. —eAu, = —V(po+ep:) + (po +epe) fon + fo,
edipe + ediv (pous) = 0,

divu, = 0,

which, in view of the stationary equation

may be written
gpﬂatus - EAUE - _EVPs + gpefma
Oype +div (poue) = 0,
divu, = 0. (2.4)

Let us now define the function ¢ such that the shape of the perturbed inter-
face (with respect to the steady-state flat horizontal interface z = 0) is given

11



by the equation z = e(z,y,t) at any time ¢. We assume that

/ Pt = 0) = 0. (2.5)
{2=0)

We have ( )
o P1, 1f2’>577b xay7t )
po+epe(w,y, 2,1) = { pa, if 2 < ep(x,y, 1),

and therefore
0, if z > max(0,e¢(z,y,t)) or z < min(0,e(x,y,t)),
pe =14 L(p2—p), if 0 <z <ed(z,y,t)), (2.6)
21— p2), if e(n,y,t) <2 <0,
In the sense of distributions, we see that, as € goes to 0, the function p. goes
to the distribution m defined for any arbitrary ¢ € D(2) by

<m,p>=(p2—p1) [ Yo, (2.7)
2=0

which is in fact a bounded measure on €2, supported on the plane z = 0.
Therefore, from the equations (2.4), we obtain the linearized equations

pgatu —Au = —Vp + mfm7
divu = 0, n Q
om — (u-Vpy) = 0.

In the purely gravitational case, the massic forces are f,, = —e, (we set
the gravitational constant to unity), and we consider the perturbations with
respect to the standard steady-state where the heaviest fluid fills in the zone
below the plane z = 0. Then, the gradient of py is the measure Vp, =
—(pa — p1)e, concentrated on the plane z = 0. For the sake of simplicity, we
henceforth normalize the jump of densities ps — p; to unity, and denote by
1d,—¢ the measure m. The linearized equations therefore read

podiu — Au = —Vp —1pd,—ge,, (2.8)
divu = 0, in Q (2.9)
op—u-e, = 0, on{z=0} (2.10)

We shall deal with this system in Subsection 3.1 below.

Note that the interface consisting in the C* set {z = 0}, we are allowed
to apply the classical trace theorems W*?(Q) — W"5({z = 0}) for any
convenient k,p,r,s with k and r as large as we wish.

Remark 2.2 In the spirit of Remark 2.1, let us mention that if the viscosity
n depends on the density through a law n = n(p), the equation pyOyu — Au =
—Vp — d,-pe, must be replaced by pyOyu — n(po)Au = —=Vp —1d,_pe,.

12



v
Figure 3: In the linearized case, some part of the curve z = 1(z,y,t) may a
priori ly outside the domain Q.

2.2 About the surface tension

The argument of the previous subsection is now modified in order to take the
surface tension into account. Going back to our starting point (2.1), we add
to the right-hand side a term modelling the surface tension at the interface
between the two fluids. Let us denote the normal to the interface by n (say
from fluid 1 to fluid 2 to fix the ideas). The term 7 modelling the surface
tension may then be written as follows : it is the distribution defined, for
any test velocity w, by

<T,w >:/7Cw-n, (2.11)
r

where the coefficient v denotes as in the introduction the amplitude of the
surface tension, and where C denotes the local mean curvature of the interface
oriented with n. This may also be written as follows

<T,w>= —/*y(div n)w - n. (2.12)
r

It is important to note that the above expression does not depend of course
on the orientation of the interface : it is quadratic with respect to n. It
depends only on its local mean curvature.

Let us now argue as in Subsection 2.1 above : we linearize the equations
in the neighborhood of the steady-state solution for the purely gravitational
case (note that in this setting the presence of the surface tension term does
not modify the steady-state, since the interface is flat for this steady-state).
The perturbed interface is then defined by the equation z = ey(x,y,t). It is
standard to compute the normal vector to such a surface, namely

1
n =
V1+eX((0:4)2 + (0,9)?)
and the corresponding curvature

o LU0+ (£0,0)°) + <000 (1t (0,0)°) — 26%0% V0,0, Y
2 (1 +2((0:90)2 + (9y10)%))*/?

13

(—e0ype, — 0ype, +e,), (2.13)

(2.14)



If we now argue as we did in the previous subsection, and follow our lin-
earization process, we only keep in the expression of Cn the term depending
linearly on the parameter €. This yields the following value of the linearized
surface tension term 7y :

1
< To,w >= —*y/ AYw-e, (2.15)
2" Jiz=0)

We henceforth set the coefficient %7 to 1. Therefore, the linearized equations
in this setting are

pﬂatu —Au = _VP - (Zb - Aw)ézzoeza
divu = 0, in Q
oy —u-e, = 0, on{z=0} (2.16)

Of course, the same calculation holds mutatis mutandis in 2 dimensions,
where the interface is only a curve z = ¢ (z, ).

The study of the long time behaviour of the solution to (2.16) is the
purpose of Section 3.2 below.

3 The linearized case

3.1 The linearized case without surface tension

In this subsection, we study the system
pOatu — Au = _vp - wéz:oez; in QJ
divu =0, in €, (3.1)
O —u, =0, on ¥ ={z=0},
The next paragraph deals with a prior: estimates. For the moment, we
establish them formally, or at least under the assumption that v and v are

sufficiently regular solutions of (3.1). All the manipulations we make will be
justified (up to mild modifications if necessary) in the sequel.

3.1.1 A priori estimates

We begin with a basic remark : the last equation of (3.1) and the incom-
pressibility constraint yield

d
—/ wdaz/ uzdaz/ divudr =0,
dt 2=0 2=0 (92

thus, in view of (2.5),

Ydo =0, (3.2)
z=0
which means nothing but the mass conservation of each fluid.
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First estimate Multiplying the first equation of (3.1) by u and integrating
over the domain, we obtain

/poatu-udx—/Au-udx:—/ Yu - e, do,
Q Q z=0

that is, using the third equation of (3.1),

/ |Vul? dz + ;5 pou® dz = —/ Yoy do. (3.3)
2=0

We therefore obtain the standard ﬁrst energy estimate

/|Vu|2da:+——</ pou’ dx+/ Y? do) =0. (3.4)
0 =0

From this estimate, we deduce first that

sup ||ull2@) < Ch, (3.5)
t€[0,00)

sup ||¢||L2(E) S Cl- (36)
t€[0,00)

Then, integrating (3.4) in time from 0 to oo, we obtain

“+00
/ Va2 dt < +o0. (3.7)
0

Second estimate We differentiate the first equation of (3.1) in the ¢ vari-
able, we multiply it by d,u and integrate over € :

1d
—— [ po(Opu)? dx + / \Voul? do = — Opoyu - e, do. (3.8)
2dt Q Q z=0
Derivating the third equation of (3.1) with respect to time, we have
02 — Byu - e, = 0, (3.9)

and thus we obtain the second energy estimate :

1d
—— </ po(Opu)? dx +/ (D41))? d0> +/ IVoul*dr =0 (3.10)
2dt Q 2=0 Q

We easily deduce from (3.10) that

sup ||0yul |12y < C*, (3.11)
te[0,00)
and
sup [|0p1)|]2x) < C*. (3.12)
t€[0,00)

Then, by integration in ¢ from 0 to co of (3.10), we obtain :

+o00o
/ 19 0yu] 2y it < 0. (3.13)
0

15



3.1.2 Questions of existence and regularity

We suppose for the moment that uy € L?(2) and 1)y € L*(X). With the first a
priori estimate, it is straightforward to prove the existence of a solution (u, )
satisfying u € L>(0, T;L*(Q))NL*(0,T;H} () and ¢ € L>(0,T; L*(X)) for
all arbitrary time 7. It suffices for instance to consider a Galerkin approxi-
mation of a weak form of system (3.1), prove the analogous estimate of (3.4)
for the finite dimensional solution, and then pass to the limit. We leave this
standard point to the reader. We just emphasize that such a solution satis-
fies Ou € L?(0,T; V"), where V' denotes the dual of {v € H} (Q2),dive = 0}.
Indeed, we have for v € L*(0,T; H} (Q)) with divv = 0,

T
/ / Owu.vdx| dt
o Ja

The right-hand side of this inequality is easily controlled by (3.6) and (3.7).
A similar argument proves that 9,1 € L?(0,T; L*(X)). Indeed, for any

¢ € L?(0,T; L*(X)), we have
T T
/ /atwds it < / /|uz|.|¢|ds
0 P Ot P
< CHIVullp2orwe @19l 2oz )

This regularity results yield (see R. Temam [44] for example)

< / (/ V. |Vv|dx+/|z/)||vz|da> it

< CU[|IVullezrez@) + ¥z )] 2o.rm @)

u € C([0,T);L*(Q)),YT >0 and 2dt/|u|2dx—/8tuuda: (3.14)

Y € C([0,T); L*(Q)),VT >0 and 2dt/ Y2 da—/ Oy do.
(3.15)

Remark 3.1 In the case when uy € L2 () and vy € H'2(X), it is possible
to show that v € CY/2(0,T, H'?(X)) and 9,¢p € L*(0, +o00, HY?(X)).

In the same spirit, assuming now that uy € H?(2), divug = 0, and ¢y €
H'/?(%), we can prove with the second estimate that we have a solution (u, 1)
satisfying dyu € L*(0, T; H' (Q))NL>(0, T;L*(Q)) and 9,9 € L*(0,T; L*(X)).
Thus, we have in particular 9,Vu € L*(0,T;L*(Q2)) and Vu € L*(0,T;L*(Q2)),
therefore

u € C([0,T]; Hy(2)),VT >0 and 2dt/|Vu|2dx—/8tVu Vudz.

(3.16)
Actually, we also have u € C/2([0, T]; H} () since u € H'(0, T; H (2)).
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This gives a rigorous sense to all the manipulations we made above.
Therefore, the solution we have obtained satisfies the energy equality (3.4).
Likewise, it satisfies the second energy estimate (3.10), this time as an in-
equality (since we have no compactness on dyu in L*(0,T; H! (Q))) :

1d (/ po(Opu)? dm+/(8tzb)2 do) +/ |Voul* dz <0 in D'(0, )
th O » Q

and

1 1 T
= / po(Opu)? do+= /(atw)Z da—i—/ / \Voul? de < O for all T < co.
2 Jo 2 /s o Ja

The two previous estimates (3.4) and (3.10) suffice to prove the existence
results and to study the long time behaviour of the solution. Nevertheless, we
end this paragraph by establishing an estimate that shows that the regularity
of the solutions obtained with the two previous estimates can be improved
locally in time, but (so far as we know) it does not give more information on
the long time behaviour.

We multiply the first equation of (3.1) by —Aw and integrate over (2 :

—/ Pooiu - Au d:r+/ | Aul|? dx :/ YA - e, do. (3.17)
Q Q z2=0

This estimate is somewhat even more formal that the two preceeding ones.
Indeed, the function —Awu does not vanish on the boundary 02 even in
a weak sense, contrarily to u itself and 0,u. Therefore stricto sensu the
pressure term does not disappear. But we recall that all the estimates we do
here on the continuous solution u for the sake of simplicity have to be made
at first on the discrete Galerkin solution (see Section 3.1.2). It is standard
in the study of Navier-Stokes to obtain regularity results on the solution by
formally multiplying the equation by Aw : the rigorous counterpart of this
formal argument is to use a special basis for the Galerkin approximation,
that is a basis of functions w; € (H(Q))" satisfying —Aw; + Vp; = A\jw;,
divw; = 0 : in this latter context, the pressure term does disappear, which
gives a sense to (3.17).
We now estimate the first term of (3.17) :
1d

—/poﬁtu-Aud:r: ——m p0|Vu|2dx+/ Vu-e, Owudo, (3.18)
Q 2dt Jq 2=0

where the last term is estimated as follows

/ Vu-e, - Ou do‘ Vel (fz=op 10| L2({z=01)
2=0

<
< OSt||vu'€Z||H1/2({z:0})||atu||1HI1/2({z:0})
< CMulle @ IV Orulliz @)
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Hence, controlling the H? norm by elliptic regularity,

Vu-e, - dudo| < C*MAulli2 o) ||Vl @)- (3.19)
z=0
On the other hand, we now estimate the right-hand side of (3.17). We denote
by % the initial position of the interface, we recall that we suppose that
fz:[] Yo do = 0. For the sake of simplicity, we suppose also that 1y € Hj(Z).
The third equation of (3.1) with the no-slip condition yields (t) |son{z=0; = 0.

We denote by the subscript z,y the differential operators on z = 0 : for
instance, A, , is the Laplace-Beltrami operator 38—;2 + g—;z on the plane z = 0,
and likewise div,,u is the function a%“ ey + %u - ey. Using the fact that
dive = 0 we transform the first term of the right-hand side of (3.17) as
follows :

/_0 YAu-e,do = VAL u - e, do — /_0 Ydiv 4, 0,u do,

2=0
= — Vip - Vyu-e,do+ Vi - 0,udo
z=0 z=0
where we have integrated by parts using 1(t)|son{z=0} = 0.
Thus we obtain

1d
/ VAu-e,do = —=— |V1b|2da+/ Vi - 0,udo
2=0 2dt z2=0 2=0
]' d 2 st
< 3 \V|=do + C*||0,u|i2 (220 | VO L2 (4220,
2=0
1d .
< —35% IV |? do + C*|| Aul| iz | V| L2(z=0})
2=0

which we insert, together with (3.18) and (3.19), in (3.17) to obtain

]' d 2 2 2
5%(/onwm dv + /z:0|w| da>+/Q|Au| dz
< CM(|| Aullize)10:Vullz) + [|Aullez) VY| L2(r2=0p)-

and finally the following third energy estimate

d
—(/ po|Vul?de + / |v¢|2da)+/|Au|2dx
dt \Jq 2=0 Q
< CMNoVullz: + CHIVY|Tamgy-  (3.20)

This third estimate yields v € L*®(0,T;H; () N L*(0,T;H*(2)), ¢ €
L>(0,T; HY(X)) and 0y € L2(0,T; H3?(X)) N L>(0,T; HY?(X)), thus ¢ €
CY/4(0,T; H'(X)), for any arbitrary time 7.

Unfortunately, the new bounds obtained with this estimate depend on the
time T'. Therefore, it improves the regularity results but it does not provide,
so far as we know, any additional information on the behaviour of (u, ) as
time goes to infinity.
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3.1.3 Long time behaviour

Under the assumptions uy € H? (), divuy = 0, and 1 € Hé/Q(E), we have
built above a solution that satisfies in particular u € C(0, +oo0; H!(Q2)), ¢ €
C(0, +00; L* (X)), dyu € L2 (0, +o00; H! (2)) and the two energy inequalities

/|Vu|2dx+——(/ pguzda:+/ 1/)2da> <0.
Q z=0
1d

—— (/ po(Ou)? da:+/(8t1[))2 da) +/ |Voul® de <0 in D'(0, o)

Only with these properties, we are now able to determine the behaviour of
(u,1)) as time goes to infinity.

Behaviour of the velocity The second estimate allows us to establish
the behaviour of w in H'(2) as ¢ goes to infinity. Indeed,

2
‘th/|Vu| dx

Relations (3.7) and (3.13) imply that the right-hand side of this inequality
belongs to L'(0,00). Therefore, together with (3.7), we deduce that the
function t — [, [Vu|? dz belongs to W''(0,00). This yields

< /Watulquldw
Q
< IV |20yl Vul L)

Let us indicate here that we give another proof of this assertion in Ap-
pendix A.

Behaviour of the interface So far, we have established convergence re-
sults about the velocity field u and its derivatives. Let us now use these
informations in order to examine the behaviour of the shape of the inter-
face 1.

First, using (3.4), we see that

t— / pou? da:+/ Y?do is a nonincreasing continuous function of time ¢.
Q z=0

(3.22)
Thus, this quantity has a limit, denoted by «, as t goes to infinity.
= I 2d 2do| . 3.23
o t_lgloo[/ﬂpou x+/z:01b 0] (3.23)
It follows from (3.21) that we have
lim |[))][L2(x) = o (3.24)

t—+00
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Since (3.6) holds, it is clear that (-, ) lives in a bounded set of L*({z =
0}) and therefore that, up to an extraction in time, it is weakly convergent
in this space. We are going to see that actually the whole sequence converges
to 0 for the weak topology of L2.

For this purpose, we prove the following convergence result :

lim ||7,b||H 1({z=0}) — 0. (325)

t—r+o0

Let us introduce, for any time ¢ the function ¢(z,y,t) € Hy({z =0} N Q),
such that

—Ap+p=1. (3.26)
It is standard that ||¢|| g1y = [|¥||g-1(s). Next,
11d
S elinm| < el

= [[Wlla-1oll0llm-1(s)
= [[Ylla-rmllu - ella-1x)

By a standard result for trace of divergence free fields,
||u'€z||H—1(E) S CStHUHLZ(Q) (327)

It follows from the above two estimates that

11d

| S| < - ulle. (328)

We denote by H~!(3) the quotient space H~(3)/R. By definition of the
H~! norm, we have

<, f>
||¢||H71(z) SUP I
ret(s),fy fdo=o I1f 1l micgz=o0p)

Using the fact that for any function f € Hj(X) such that [ fdo =0, there
exists a divergence free field w € H*2(Q) such that w =0 on 9Q, w-e, = f
on %, and [[wl|gs/2(q) < C*||f[lg3(s), we may then write

<Yp,w-e, >

191l -1 < O sup (3.29)

||w||IHI3/2(Q)

If we now turn to the linearized equation (3.1), we see that, for any arbitrary
time ¢,

< poOyu — Au, w >

||1/)||H—1(2) C*' sup

IN

||w||H3/2(Q)
C* (10vulli2 ) + IV ulliz(o))-

N
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Using (3.7) and (3.13), this yields
19112 () € L*(0,+00). (3.30)

Let us next insert this information in (3.28) and use (3.5). This yields
||1/)||2 ) € L'(0, +00). (3.31)

The two assertions (3.31) and (3.30) together imply that

[9[15 15 € W0, +00). (3.32)

Thus, 9 tends to 0 in Hfl(Z). This yields that ¢ tends to a constant in
H~'(X) and this constant is zero in view of (3.2). Therefore (3.25) holds.

Remark 3.2 The same argument as above, but with some technical modifi-
cations, shows that the convergence of 1 to 0 also holds in H /2.

In view of (3.25) and of the L? bound on ¢ (3.6), it is straightforward to
see that 1) converges weakly to 0 in L2.

From (3.25) and (3.6), we also deduce by interpolation that, for all £ > 0,
we have

lim ||1/)||H ¢({z=0}) — 0. (333)

t— 400

We now collect in the following Proposition the information we have obtained
in this Section on the behaviour as time goes to infinity of the solution to
(3.1).

Proposition 1
In the linearized case without surface tension (3.1), the behaviour as time
goes to infinity of a solution w, satisfying the estimates recalled at the
beginning of Section 3.1.3, is the following :

(i) the velocity field u goes to 0 in Hj ().

(ii) the shape 1) of the interface goes to 0 in H* (for all ¢ > 0) and in
weak-L?.

In addition,

(iii) ||¢||L2(x) has a limit as t goes to infinity,

09) [l + 0l g e < +oc.

Remark 3.3 In this setting we cannot control (as far as we know at least)
the L™ norm of 1. In other words, nothing seems to ensure that the graph of
Y, which models the interface, does not go out of the domain S (see Figure 3).
This is of course in contradiction with the intuition ! It is not clear whether
it must be interpreted as the possibility of some explosion of the system within
a finite time or not.

21



Remark 3.4 It is not known whether the convergence of 1 to 0 holds true for
the strong topology of L?. This is of course a very interesting open question.
Typically, say in 2 dimensions to fix the ideas, one must show that some
oscillation of the form 1 (z,t) = sin(x\/t) cannot occur.

3.2 The linearized case with surface tension

In this subsection, we consider the linearized equations in presence of surface
tension (2.16). We essentially follow the same scheme as in Section 3.1 :
we first establish formally a priori bounds, next we study the long time
behaviour.

3.2.1 A priori estimates
First estimate Let us first multiply the equation
podiu — Au = —=Vp + (A — ¢)d,=ge, (3.34)

by u and integrate over the domain €2. All the terms, except the surface
tension term in A, have already been treated in Subsection 3.1 above (see
equations (3.3) and (3.4)). Therefore we concentrate on that latter term. We
have, integrating by parts,
/Az/)u e, do = /Az/;@tw do
b b

= —/Vzb.vat@/)da+/ VOip.ns.0ph dA
£No0

2
- -4 d
th/w 0.

Hence, the first estimate (3.4) of Subsection 3.1 is replaced here by

/|Vu|2dx+——(/9p0u2dx+/z(w2+|V¢|2) ds) =0, (339)

It is immediate to deduce from this equality the following three estimates :

+0o0
/ IV u]2 it < +00, (3.36)
0
sup ||ullf2q) < C*, (3.37)
t€[0,00)
sup 19|13 (s) < C* (3.38)
te[0,00)

Moreover

t— ||\/50u||i2(9) + ||1/)||%I1(E) is a nonincreasing function of time ¢. (3.39)
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Remark 3.5 When Q is a domain of R?, the set ¥ = {z = 0} is one
dimensional, and thus H'(X) < L®(X). Therefore the estimate (5.38) yields
a control of ||Y||pesy. If the initial data is small enough, this ensures that
the graph of 1 remains inside Q) (compare with Remark 3.3).

We now turn to another energy estimate anologous to (3.10).

Second estimate We differentiate (3.34) with respect to the time, we
multiply it by d,u and we integrate over {2. We only treat the term related
to the tension surface since the others have already been computed in the
second estimate of Section 3.1.1.

/ A@tz/)atu * €y do / A@twattz/) do
2 2

== —/ V@twvattd) dO'+/ V@td).ng.&gtw d\

£Non
_ _+a 2
= th/ |VOu|* do.

We deduce the second estimate :

/|vatu|2da;+ﬁ(/ p0|8tu|2dx+/(|8tzb|2+|V8tzb|2)d0) ~ 0. (3.40)
>

It is immediate to deduce from this estimate the following estimates :

+00
/ V8,2 i < +o0, (3.41)
0
sup [|0yull?2q) < O, (3.42)
te[0,00)
sup (0|71 < C*. (3.43)
t€[0,00)

3.2.2 Questions of existence and regularity

As in Section 3.1.2, we can prove under the assumptions that uy € L*(Q)
and ¢y € H'(X), that the above energy estimate (3.35) yields the existence
of a solution u € L2(0,T;H;(Q2)) N L>(0,T;1*()), ¢ € L>*(0,T; H'(X)),
on any finite time interval (0,7).

Likewise, assuming the required regularity uwy, € H?(R2), divuy = 0,
and 1y € Hg/2(§]), on the initial data, the estimate (3.40) yields the ex-
istence of a solution satisfying dyu € L%*(0,T;H;(Q)) N L>(0,T;L*(Q)),
o € L=(0,T; H*(X)), on any finite time interval (0, 7).
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In particular, it is worth noticing that such a solution satisfies :

u € C(0,T;H;(Q2)), for any T' > 0, (3.44)
Y € C(0,T; H (X)), for any T' > 0, (3.45)
O € C(0,T; HY*(X)), for any T > 0. (3.46)

Remark 3.6 In fact, some better regularity is available : we also have u €

CY2(0, T Hy (), ¢ € Lip(0,T; HY(S)), 0wp € CV2(0, T3 H'(S)).

3.2.3 Long time behaviour

Behaviour of the velocity The arguments to study the long time be-
haviour of the velocity in this setting are those already used in the case
without surface tension. We have :

1d )
‘th/|Vu| dx

Relations (3.36) and (3.41) imply that the right-hand side of this inequality
belongs to L'(0,00). Therefore, together with (3.36), we deduce that the
function ¢ — [, [Vul?* dz belongs to W'(0, 00). This yields

< / |VOouu||Vu| dx
Q
< ||V8tu||L2(Q)||Vu||L2(Q)

hm |Vul|L2 @) = 0. (3.47)

t—r+

Behaviour of the interface According to the continuity of v and ¢ (see
(3.44,3.45)), we deduce from the linearized Navier-Stokes equations that
dyu € C(0,00; H3/2(Q)).

Properties (3.36) and (3.41) yields that there exists a sequence (t,)nen,
tn >0, lim, oo t,, = 400 such that ||Oyu(t,)|[g-s/2(q) and [|u(ts)||m @) both
go to zero as n — oco. Extracting a subsequence if necessary, we may assume,
in view of (3.38), that t(t,) converges weakly in H'! to some 1),,. Therefore
we can pass to the limit in

poOiu(ty) — Au(t,) = —=Vp(t,) + (A Y(t,) — ¥(t,))oxe,

which gives (—A Yo + Voo)€,0s = —Vps. The left-hand side of this equal-
ity only depends on (x,y) whereas the right-hand side only depends on z.
Therefore, the left-hand side is a constant.

Briefly speaking, we have proved that, up to an extraction, i) converges
as t goes to infinity to a function v, defined on ¥ solution of

Ao+ Yo = « on X,
/ o — 0 (3.48)
by
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where « is some unknown constant. It is worth noticing that there exists
an infinity of 1, which satisfy (3.48), each of them being associated to one
Dirichlet boundary condition on 9%, and that the energy of these steady-
states related to a fluid at rest describe a continuum. This statement can
straightforwardly be checked in two dimensions (2 C R?) when the partial
differential equation of (3.48) becomes an ordinary differential equation :

— U, + oo = . (3.49)

The solutions are of the form 1., = ae® 4+ be™" + a where the three constants
(a,b, ) are related together by the only condition that [ s = 0, namely

ale? —1) —ble " = 1)+ aL =0, (3.50)

where L is the length of ¥. The energy associated to such a solution is

/(1[)&)2 + (Voo)? = /(a,e’C —be ™) + (ae® + be™® + a)?, (3.51)
) b
which can be shown to be arbitrarily close to the zero energy of the interface
with minimum energy v, = 0, even under the condition (3.50). We leave to
the reader the analogous proof in three dimensions.

Assuming a little more regularity on u we can improve this result. Indeed,
if we suppose that u € C(0,T; H'™(Q) for any T > 0 (compare with (3.44)),
the function u, (t)|x belongs to HY?*¢(X) and thus has a trace on 0% (other
assumptions than the H!* () regularity are possible, namely any regularity
W% which allows to define a trace on 0X). Therefore, in this case 01 (t)|ox =
0 for ¢ > 0. In particular ©w|os = tolsx, where ¥y = 1|;—¢. Then we claim
that the limit ¢, is now precisely identified as the unique solution of

NV + Ve = « on X,
= 1[)0 on 62,

[ 0

In other words, the possible indetermination of the limit ¢, has disappeared,
because the linearized system has kept memory of the boundary value of the
initial data |;—.

We now prove the convergence in time to 1. For ease of notation, we
introduce the functions ¢ and h defined on ¥ x (0,T) by ¢ = ¢ — 1), and
h = —/4 + 1. It is worth noticing that 1(¢) vanishes on % for any time #
and hése, = Au— du — Vp — a. We denote by H () the quotient space
H '(X)/R. By definition,

(3.52)

< h,¢o >
Mg = s 0>l
PEH (D), [y, ¢ do=0,p#£0 ||¢||H3(2)
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For ¢ € H{(X) with [;, ¢do = 0, there exists w € Hj() (even in H3/2(Q) N
H} (Q)) such that divw = 0 and w.e,|s = f. Thus,

s < h,w >
g < O sup L]

weH] (2),divw=0 | |w | |H1 (Q)
| < Au— O, w > |

< o sup
weH} (Q),divw=0 ||w||H(1)(Q)

S CStHUIHH(l)(Q) + C'St||8tu||H_1(Q)

In view of (3.41) and (3.36), this proves that h € L2(0,00; HTY()). It is
straightforward to check that |[¢||g1 () = [|h||g-15). Indeed, on the one

hand we note that |||y = ||h||n-1(x) since ¢ vanishes on X, on the
other hand we have
| <h,¢>|
||h||H71(2) = sup .
PeH (D), [s, ¢ do=0,p7#0 ||¢||H3(2)
< h,¢ >
< sup & S e
et o |0llm)
and
| <h,¢>|
||h||frl(z) = sup T E—
vt (2),fy pdo=0070 ||Pllm1(m)
| <-AY+g,p>] =
= = = [¢|lm )
()
Therefore, B
Y € L*(0,00; Hy(X)). (3.53)

We have moreover
d — _ _
EqubHHl(Z) < [llm e 10 m s
< CNP e lull ey

This inequality together with (3.53) proves that ||E||§I1(Z) € W0, 400). In
particular, limy_, o ||¥) — ¥so||m1(x) = 0. Therefore, using (3.45) and (3.39)
we deduce by interpolation that

tgr—rl—loo 1% = tool|r1-2 = 0. (3.54)

Proposition 2

In the linearized case with surface tension (3.34), the behaviour of u,1) (sat-
isfying the two estimates of Section 3.2.1 and the regularity mentionned in
Section 3.2.2) as time goes to infinity is the following :
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(i) the velocity field u belongs to C(0, +oo; Hjj (2)) and goes to 0 in Hj (£2).

(i) the shape 9 of the interface belongs to C(0,+oo; H'(X)); there exists
a sequence t, — +oo such that, in weak — H', (-, t,) — s solution of
(3.48).

In addition,

(iii) ||¢|| g1 (z) has a limit as t goes to infinity,

o0
(iv)/ lallZs iy + 1Betll2 ) i < +o0.
0

If we assume that the velocity u remains more regular, say C(0, oo; H'*¢(Q)),
then (ii) may be improved into

(v) Denote by 1, the unique solution of (3.52) then 1 goes to 1, in
H'=¢, for all ¢ > 0, thus in LP, for all 1 < p < +oo. In 2 dimensions, this
also implies in particular that supy, |¢) — 1| goes to 0.

This Proposition deserves some comments.

Remark 3.7 We do not know whether the additional assumption of global
reqularity of u is automatically satisfied by the solution or not. But we need
it in order to show (v).

Remark 3.8 Other types of “weak” convergence than (ii) can be proved. We
refer the reader to the nonlinear case below.

Remark 3.9 The result (v) is somewhat puzzling. Indeed, assume that the
flow remains regular, and suppose (just to fix the ideas) that Q is a cylinder.
Take an initial data (t = 0) such that its boundary value is not a constant
(and in particular it is not zero). If the coefficient of surface tension is small
enough, it is expected that the limit 1o, of 1 will be the state of minimal energy
Voo = 0, or at least a state (meniscus-like) not too far from this state (remark
that for the model we deal with in this article 1V s the state of minimal
energy, whereas from experiment, it s known that it is the meniscus which
minimizes the enerqgy; this is related to the modelling of the surface tension
we have chosen and to the question of boundary conditions). Considering
the case we deal with, the state is at least expected to be radially symmetric,
thus have a constant boundary value. This cannot be the case ! Note in
addition that the initial state may be chosen arbitrarily close to the expected
limit, in such a way that we do not theoretically leave the setting of a small
perturbation problem. The result (v) suggests the following alternative in
such a situation : either the flow becomes singular at some time (in the sense
that it is not more reqular than H') or we may conclude that the linearized
model does not reproduce the physical observation.

Remark 3.10 There exists an infinity of steady-states with zero velocity field
and since they form a continuum of energy it is not possible to discriminate
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among them in (ii). Of course, if the system is in such a steady state at
t =0, it remains there. A similar situation will be observed in the nonlinear
case.

Remark 3.11 All the difficulties we experiment in the treatment of the bound-
ary value 0pp = 0 have their numerical counterpart. The macroscopic non-

slip condition u = 0 on the boundary is obviously not true on the microscopic

scale and one must find numerical tricks to artificially move the interface on

the boundary of the domain.

4 The nonlinear case

We now return to the nonlinear case, that is equations (1.1). As we will see
below, and as we announced in the introduction, the situation is radically
different from the situation encountered in Section 3 for the linearized case.
Let us begin with a heuristic argument that shows what we may expect in
this case.

4.1 A heuristic argument

We begin with a very simple heuristic argument that shows that we expect
that the velocity field vanishes as time goes to infinity. Multiplying by u the
Navier-Stokes equation (1.1) :

O¢(pu) + div (pu ® u) — Au = —Vp — pe,, (4.1)

we obtain the standard energy estimate (we skip the details of the computa-
tions that will be made precisely below in the next two sections)

d /1 9 o,
%<§/ﬂpu dx+/9pzdx> +/Q|Vu| dz = 0. (4.2)

It follows that oo
/ Va2 dt < +00. (4.3)
0

This suggests that, in a formal sense at least, u goes to zero as time goes to
infinity. We deduce then, in some way that obviously has to be made precise
(we recall that we are only making here a formal argument), that 0;(pu) also
goes to zero. We then recover with the Navier-Stokes equation (4.1) that

—Vp —pe, — 0,

as t goes to infinity. This means that —V (p+ pz) + 2V p goes to zero, which
can be expressed as follows : curl (2 Vp) — 0, or also Vp X e, goes to zero,
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which means that p becomes a function of z as time goes to infinity. If we
admit, relying upon some common sense, that no mixing of the two fluids
happens in the limit ¢ — +o00, this implies that the interface between the
two fluids is made of planes, which are parallel to the (O, z,y) plane, and
which separate two consecutive layers of fluids. It is then to be remarked

that nothing tells us that the interface is made of only one plane (see Section
4.2.1).

Let us now continue our formal argument by adding to the Navier-Stokes
equation a term due the presence of surface tension.

Or(pu) + div (pu @ u) — Au= —-Vp—pe, + T, (4.4)

The energy estimate then becomes (see the details below)

d /1 5 1 27 _
%(i/gpu dm+/pzdx+§L(F)> +/Q|VU| dz =0, (4.5)

where L(I') denotes the length of the interface I' between the two fluids. The
same argument as above shows that v and 0;(pu) go to 0 as time goes to
infinity. Next, with the Navier-Stokes equation we recover

—Vp —pe, — (divn)n — 0,
where the normal vector n is also n = Vp. We therefore have
—V(p+ pz) + (z — divn)Vp — 0.

As above, it implies, taking for instance the curl of the above expression,
that the quantity z — divn is constant along the connected components of
the interface (assuming that Vp is normal to the interface, namely there is
non homogeneization in the fluids).

Of course, z = 0 (and thus Vp = e,) is a solution to the equation giving
the position of the interface at the equilibrium, but there exists a lot of other
solutions (see Section 4.2.2 below).

In both cases (with or without surface tension) the above heuristic argu-
ment shows that the situation is the following :

1. It is reasonably easy to show that the velocity field u goes to zero, at
least in a weak sense, as time goes to infinity.

2. As well, we can prove that p converges to some limit p, (in a weak
sense also), which is a solution to the Navier-Stokes equation with zero
velocity field.

3. Only an argument based upon energetic considerations could possibly
help us to discriminate between all the solutions p., of the Navier-
Stokes equations with zero velocity field (in fact we shall see below
that such an argument unfortunately cannot help us to conclude).
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Therefore, before turning to the rigorous proofs of convergence of u and p
to their limit, it is important to deal with the solutions (u = 0, p) of the
Navier-Stokes equations with or without surface tension.

4.2 An infinity of steady states
4.2.1 Without surface tension

As claimed above, as t goes to infinity, one can prove that the fluid velocity
goes to zero and the density is a function of z. Nevertheless, we are not
able to prove that the situation shown on the right-hand side of Figure 1
(several layers of the two fluids) cannot occur (it is in fact even worse than
that, since there might exist an infinite superposition of layers, in the sense
that the two fluids might mix with each other in the limit, but let us leave
apart this situation that we shall detail in the sequel). Moreover, it is easy to
check that the energy of such a pathological state may be arbitrarily close to
the minimal energy of the system (when the heaviest fluid is below the flat
interface, and the lightest above; a situation that we henceforth denote by
the density pg). Indeed, if suffices to swap in the minimal energy steady-state
an arbitrary thin layer of the heaviest fluid with a layer of the lightest one.
We then obtain a steady-state (namely a zero velocity field and flat interfaces
between the two fluids) with an energy arbitrarily close to the minimal one.

4.2.2 With surface tension

In presence of surface tension, we have explained above that we expect to
reach, as ¢t goes to infinity, a state with zero velocity and an interface satis-
fying z — divn = C*" along each connected component.

As in the previous case, we do not know if the interface remains connected.
Nevertheless, even if one would able to prove that the interface is a connected
graph, we now show that there is still an infinity of steady-states.

For the sake of simplicity, we restrict ourselves to the the case when
2 C R?. Then, equation z — divn = C* reads

5 — 127” =t
2 (1 + 21?)3/2 '
We consider a case with a zero right-hand side. Integrating this equation we
have

1
— =" 4.6
V1427 (46)
We assume that the constant is 1 and that the interface is a graph described
by a one-to-one function z = z(z). Even under these restrictive hypotheses,

22+
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Figure 4: The window represents a domain 2 C R?, the curve is an interface

solution of the steady state equations with surface tension and a zero velocity
field.

there is still an infinity of solutions. Indeed, the functions

1 V2 / 22
T = ﬁ <Argch7—2 1-— 5) + 2.

where zy is a constant, are solution of (4.6) (see L. Landau, E. Lifchitz [28]).
The curve is ploted on Figure 4 where the window represents the domain
Q2. Notice that the window has to be translated along the z axis in order to
satisfy the mass conservation. Moreover, it can be translated along the x axis
by fixing the constant xy. It should be noted that the energy of the system
tends to the minimal energy (flat interface) as the window is translated on
the right.

Thus, we have outlined a proof of the existence of steady-states with
zero velocity and a non-flat interface with an energy arbitrarily close to the
minimal energy.

Remark 4.1 An analogous situation has been encountered in Section 3.2 :
the lack of information on the position of the interface on 0 prevents us from
tdentifying a unique steady-state. Nevertheless, to obtain this information in
the linear case, it was sufficient to assume a slightly better reqularity on u
(namely HY*¢) whereas in this nonlinear case, the regularity required to give
a sense to Oyp = —div(pu) on O seems definitely out of reach.

The consequence of the existence of infinitely many steady states (u =
0, p) forming a continuum of energy above the state of minimal energy (u =
0, po) is the following. Even if we were able to prove that the convergence of
(u(t,z), p(t,z)) to (u =0, pes = p(z)) holds in a (reasonable) strong sense,
we could not prove that p,, = po, thereby recovering with the mathematical
model the behaviour expected from common sense.

Therefore we continue our study of the nonlinear case in the following
spirit : we show in the next two sections how the convergences stated in
a heuristic way in Section 4.1 for w and p can be made precise. For this
purpose, we show some convergences for v and p. We do not pretend that
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these convergences cannot be improved, but in view of the above remark on
the number of possible limits, we have chosen to present some convergences
that can be established reasonably easily. It is likely that intricate arguments
might lead to better convergences. They will however not allow to circumvent
the main difficulty : it cannot be shown that the only limit is (u = 0, pp).

4.3 The nonlinear case without surface tension
4.3.1 A priori estimates, the general case

First, we observe that for any 8 € C!(]0,00);R), we have
0,(B(p)) + div (uB(p)) = B'(p){0ip + u.Vp} = 0.
This yields (see P.-L. Lions [30] for details)
o) |zo=() = [10°[| o0, VE > 0, (4.7)

and more precisely

meas{z € Q, p(xr) = p;},7 = 1,2 is independent of ¢ > 0. (4.8)
Next, we multiply the Navier-Stokes equation

O¢(pu) + div (pu ® u) — Au = —Vp — pe,

by u and integrate over the domain. In doing so, we obtain

1
—/at(pu)-udx+/div(pu®u)-udaz+/|Vu|2dx:—/pu-ezdx. (4.9)
2 Ja Q Q Q

It is standard to compute the first two terms. We have

1 1d 1
3 /Q Oi(pu) - udx = T qu2 dx + 5 /Q(('ﬂtp)u2 dx (4.10)
1
/div(pu@u)-ud:c: —E/pu-V(|u|2) dx (4.11)
Q Q

Adding (4.10) to (4.11) and making use of the equation of mass conservation
in (1.1), we obtain

1 1d
—/pﬁt(|u|2) dx+/div(pu®u) cudr = ——/puzdx. (4.12)

For the right-hand side of (4.9), we write

d
/pu-ezdx:/pu-V(z) da;:—/zdiv(pu) dx:/zatpda;:—/pzda;.
Q Q Q Q dt Jq
(4.13)
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Inserting (4.12) and (4.13) into (4.9), we obtain the first energy estimate

1
Z( /pu dx—i—/pzdx /|Vu|2 dr = 0. (4.14)

From this energy estimate, we deduce that in particular

+oo
/ ull2s g d < +o00. (4.15)
0
and
sup ||ullr2() < 4o0. (4.16)
te[0,00)

4.3.2 A priori estimates, the bidimensional case

The rest of the argument depends on the dimension of the space. Moreover,
in this Section, it is necessary to assume that the viscosity is constant over
the domain (or to suppose at least that it is slightly variable, using the results
of B. Desjardins [16]).

We now assume for the rest of this Subsection 4.3.2 that the domain €2 is
a subset of R?. We multiply (4.1) by d;u and integrate over the domain

/p(Btu)deJF/ pu- Vu@tudx+——/ |Vul*dr = —/pez-ﬁtudx. (4.17)

Q Q

The point is to treat the Navier term in the left-hand side. We have

[ o Vudiuds| < lollollu- Valallouelzn < ol [Vullllals el
Q

We use the following inequality (of Gagliardo-Nirenberg type)

s 1/2 1/2
IVl < CHIVullys ul (418)
which yields
[ - Vududs| < ol IVl 2l 200l (419)

Considering now (4.1), we remark that
I = Au+ Vpllze < C*([|0ullz2 + [Ju- Vullzz + llpll2),
which, by standard elliptic regularity for the Stokes equation, yields

lullzz < C*(lullze + 10wullze + llu - Vullzz + lIpll22).
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If we use again (4.18) we know for any £ > 0 the existence of a constant C.
such that

1/2 1/2
lu-Vaul 2 < Jlulla | Vulle < CMfullal Va2l < ellullie+Cellullfal| Vull 2.

Taking ¢ small enough, we have
1
sllullz < C*(fullzz + [10ullez + lullzal|Vallz2 + [lpfl22)- (4.20)
Inserting this latter estimate into (4.19), we obtain
| / pu- Vududa| < Cpllus | Vully fulls ol (lull} + 0ll}
Q

1/2 1/2
| |Vl J57 4 1ol 5).

Since we know that ||u||z2 + ||p||r= is bounded by a constant, we have

\/ pu-Vudude| < C|Vull 2 ullvalGullz: + OVl Pllullallorul
Q
+C| Wl o 29y 2

If we use now
ullze < C*HJul| 2 1Vl (4.21)

and note again that ||u||;» is bounded, we may bound the first term as follows
IVull 2 ullsllOnull 2 < CH|Byullp ||Vl 2 < elldpulf: + Cel| Vallf.
The second term is estimated by an interpolation inequality
1/2 3/2
IVull 2 lull o1l 72 < elldeullzs + Col| VullZalul 11,
and the third term is estimated likewise by
IV ullzellullZallOpull 2 < ellBeullz: + Cell VullZ lullzs.

Therefore, we have
\/ pu - Vudyu dx‘ < el|opullZs + Co(|VullZ + [Jull L Vull2,).  (4.22)
Q

Now that we have controlled the Navier term, we turn to the right-hand side
of (4.17)

d
/pez-ﬁtudx = pez udm—/@tpez-uda;
Q dt Q
d
= - sz udaj+/div (pu)e, - udx
Q

d2

= 3 pzda:—/pu-V(ez-u)dx.
t“ Ja Q
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Hence

2
Inserting this latter estimate together with estimate (4.22) into (4.17), we
obtain, for a small constant oz > 0,

1d d .
ol + 5 IVulls + 5 [ p2do) < CHIVUls + e Valf)

(4.23)

d2
—/pez dudr < — [ pzdz+ | pl| e |Vl 2.
Q Q

This estimate may be written

1d d ) )
||atu||i2(ﬂ)+§%(||Vu||]%42(9)+£/Qpde) < O Vullfa o) +C ullza gy VullF2 (),

(4.24)
or also
1d L d ,
10cullze + S — (IVullia) + = [ pzdz) < f(t) + 9(O)IVullis ), (4.25)
2 dt T,
where the nonnegative functions f(¢) and ¢(t) are both L'(0, +00) since
F(t) = C*[[VullZg) (4.26)
9(t) = C*|ulliaq) < C*ullfz)l|Vullf2 @) < C*|Vullfzg)- (4.27)

We finally obtain the a prior: estimates by a Gronwall type argument : let
us introduce

o) = exp(=2 [ 9(6)ds) 1l

Inequality (4.25) yields

1, 2
3Y (t)Sf(t)—ﬁ/szdx-

Integrating this inequality in the ¢ variable and using

JE
pzdx — | pe,-udx
dt Q

we obtain that y € L>(0, 00) which implies

sup  ||[Vu||rz) < oo. (4.28)
te[0,+00)

< Clpllz@llullz@) < C*.

Finally, integrating (4.25) we obtain
/ |22 it < +00. (4.29)
0

We deduce from (4.20) that for any 7' > 0,
||U||L2(0,T;1HI2 () < +00. (4.30)

This new bound is not uniform in 7" but it allows to prove that u is a strong
solution for all ¢ € (0, 4+00) and that u € C(0, oo; Hj (Q2)).
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4.3.3 Questions of existence and regularity

The general case The first existence results in the setting of the Navier-
Stokes equations with a free surface are local in time existence results due to
V.A. Solonnikov [35] and to J.T.Beale [4]. Global existence for small initial
data and f = 0 is due to V. Solonnikov, [38] (bounded case) and to Tani
& Tanaka [43| (unbounded case). In our case when two fluids are present,
an existence result of weak solutions is due to A. Nouri, F. Poupaud [33], a
global in time existence result of strong solutions for small data is announced
in N. Tanaka [41] (bounded case, with an initial data consisting of a bubble
of the first fluid enclosed in the second fluid), but the most exhaustive work
to this day is due to P.-L. Lions. It is proved in P.-L. Lions [30] that there
exists a weak solution to the system (1.1) defined on [0, 400) satisfying for
any time 1" > 0 :

we L2(0, T H)(2)) 0 L®(0, T; L (2)), (4.31)
p € L>®((0,T)xQ)NC0,T;LP(N)),1 <p < o0, (4.32)
together with the energy inequality
d /1 9 9
—(Z < .
dt<2/9pu dx+/ﬂpzdx>+/Q|Vu| dr <0 (4.33)

Remark 4.2 Let us make a few remarks on the regularity of the flow. For
the standard one fluid Navier-Stokes equation, it is well known that a global
strong solution exists in 3D if the initial data and the forces are “small
enough”. As far as the body force term is concerned, “small” means small in a
functional space of the type LP((0, 00), X (2)) for some functional space X (2)
and some p < oo (see R. Temam [44]) or even in L*°((0,00), X (£2)) (see
H. Fujita & T. Kato [19]). As we have mentioned above, such results of requ-
larity have been extended for some small special initial data in the two-fluids
case by N. Tanaka [41] only for a force that is small in LP((0,00), X (2))
for some p < +4o00. The result does not cover the case of some force in
L*>((0,00),1L4(Q2)) that does not vanish as t — +o0 in any weak sense, say
for instance a force constant in time, or also the force we deal with here,
namely —pe,, whose LY norm is a constant. Indeed, in our context, the body
force term is “small” in L*>((0,00),L9(Q2)) as soon as the densities of the
two fluids are close to each other : it suffices to replace the term of —pge,
by (p — p1)ge, and to add the term pygz to the pressure p. It is of course
not small in any LP((0,00), X (Q)) for p < 400 since it even does not belong
to such a space. However, the result by Tanaka suffices to show that, given
some arbitrary time T, the solution remains regular on (0,T) if the initial
data ug and the difference of densities dp are both small enough.

We suspect it is possible to improve this result in the following way. It
s known that we also have global regularity for two fluids in 2D under the
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additional assumption that the viscosity is constant all over the domain, and
then no matter how large the force is (see S.N. Antontsev, A.V. Kazhikov,
V.N. Monakhov [2]). In view of all these results, it sounds reasonable to
believe that the following reqularity result holds : in 3D, for two fluids sharing
the same viscosity, under the hypothesis that the initial velocity s small and
that the body force is small in some L*((0,00), X(2)), the flow remains
reqular for all ttme. To the best of our knowledge, such a result has not been
proven yet. We will approach this question in a subsequent work ([22]) since
it would provide a regularity result for small data in the setting we work in.

Furthermore, continuing our formal analysis of open questions that should
be relevant in our context, we even believe that in the very special case we
are interested in here, the reqularity results can be extended. Noticing that
the term (p — p1)ge, does not modify the first energy estimate (that holds
for the zero force case), one should be able to show (at least) the following
property : given an arbitrary density difference 0p = pa— p1, then if the initial
velocity ug is small enough and the initial state is not far from equilibrium,
the flow remains reqular for all time. Since we have chosen to focus in this
article on the long time behaviour we will not present here the investigation
of this question and refer the reader to [22] where we hope to settle all these
reqularity issues.

The bidimensional case In the bidimensional case and when the viscos-
ity n is supposed to be a positive constant, it is proved in S.N. Antontsev,
A.V. Kazhikov, V.N. Monakhov [2| that there exists a global in time regular
solution (see also P.-L. Lions [30]). More precisely, we have for any time
T >0,

u € L*(0, T3 1 () N C([0, T, H' (),

and
du € L*((0,T) x ).

4.3.4 Long time behaviour

Let (¢,)nen be an arbitrary sequence of positive reals such that lim,, , o t,, =
+00. We define the sequences p, and u, by p,(z,t) = p(z,t + t,) and
up(x,t) = u(x,t+t,) (in the sense of distributions).

Behaviour of the velocity in the general case According to estimate
(4.15), we have

+0o0
lim / \Vu(z,t)|* dv dt = 0,
tn JO

n—-+o0o

therefore
u, — 0 in L*(0, 00; H' (2)) as n — +o0 (4.34)
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Remark 4.3 As far as we know, we cannot rigorously improve this conver-
gence since we do not know if t — u(t,.) is continuous (say with values in
L?(2)).

If we postulate that u € C(0,+00;L*(Q2)), we can show that u — 0 in
L%(Q) as t — +oo. Indeed, if we go back to (4.14) and use the fact that

d
‘—%/ﬂpzdx :‘—/Qpez-udx
d1

we may write
——/qudx< —/ |Vu|2dx—i/pzdx<05t.

Therefore, the nonnegative function f(t) = %fﬂ pu? dx satisfies the two con-
ditions
e df st
f(t)dt < +o0, o <C (4.35)

< Clpllz@llullz@) < C*.

0
It follows by a standard arqgument that f goes to 0 at infinity, that is

lim ||ul|z2 = 0. (4.36)

t—400

Behaviour of the velocity in the bidimensional case So far as we
know, we cannot say more on the velocity than the convergence (4.34) in
three dimensions . On the contrary, in two dimensions, we can go further
in the argument. In this case, u is known to belong to C([0,T]; H' ().
Estimates (4.15) and (4.29) show that the right hand side of

< Jull2 o [0 |L2 )

d
AR

is in L*(0,00). Thus, [Jul|f2qy € W'(0,00) and therefore v — 0 in L*(Q)
as t — oo. Moreover, (4.28) shows that u belongs to L*°(0,c0; H' (Q2)).
Therefore, by interpolation between L?(2) and H'(2), we deduce that

u — 0 in H'™¢(Q) as t — 400, Ve > 0. (4.37)

Behaviour of the interface In view of (4.7) the sequence (p,,) remains in a
bounded set of L>*((0, +00) x 2). Therefore there exists ps, € L>((0, +00) x
2) such that

P = Poo in L*((0, +00) x §2) weak-x (4.38)
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We first prove that p,, does not depend on t. Let v € L?(0, co; Hj (2)),
we have

| < Oipn,v > = |— <divpyup,v > | = |/pnun.Vvda;|

< CStHPnHLOO 0,T)x ) ||Un||L2 (0,7;H} (2 ||U||L2 (0,7°5HL (€2))

which proves in view of (4.34) that
Oipn — 0 in L*(0,00; H' () as n — +o0.

Therefore, since in the sense of distributions 0;p, — 0;pee, We deduce 0;po =
0.
We now prove that p,, only depends on the third space variable z. We
have
—Vpn — Pn€r = at(pnun) + div (pnun ® U'n) - A Unp

Let v € C§°((0,00) x Q),

|<at(pnun)7v>| < ||pn||L°° 0,00) ><Q||U’71||L2 0,00) XQHatUHLZ (0,00)x2)>
| < div (pntin @ un),v > | < C¥|lpnllzo(0.000x0) | [tinl [ 70 oge ) 1012 (0,008 )
| < =D, v > < [un | 220,00 (@) 1011 220,008 (0):

thus the right-hand sides of the these inequalities go to zero as n — oo (see
(4.34) and (4.38)). Therefore

—Vpn, — pne, — 0

in the sense of distributions. Thus, curl (pse,) = Vpoo X €, = 0, which proves
that 0;pe = Oypoo = 0. Therefore

Poo = Poo(2)- (4.39)

Finally, let us check the global mass conservation. In view of (4.38), we
have for arbitary f € L'(Q x (0, +00))

+0o0 +0o0
/ /pnxt a:tda:dt—)/ /poo f(z,t) dzdt.

In particular with f(z,t) = f(t) € L'(0,+o00) such that [," f(¢)dt = 1 we
have, according to (4.7)

/0+°°/Qpn(3:,t)f(t) dxdt:/0+°°f(t)/9pn(3:,t) dxdt:/gpo(x) dr.

Thus
/ono(x) dx:/QpO(x) da
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which proves the global mass conservation.

Notice that, according to (4.8), we know that meas {z € Q,p,(z) =
pi} = M; is independent of n. Nevertheless, we are not able to prove that
meas {z € Q, poo(x) = p;} = M;. Indeed, to show this property, we need to
prove that for any 3 € C!([0, 00), R)

/Q Blpn(x, 1) dz —> / Blpne(@)) da,

which seems not possible (so far as we know) in view of the weak convergence
of p,.

Therefore we cannot prove that homogeneization does not appear in the
limit. In other words there may exist some parts of {2 where p,, has values
between p; and ps. All that we know is that these areas consist of horizontal
layers (possibly infinitely thin).

Remark 4.4 If for some sequence t, — +oo we have p(t,,:) — psol(*)
almost everywhere in ), then it is possible to show, using Theorem 2.4 of

[30], that
VT < 00,¥p < 00, lim supicionp(t+ tn, ) = poo()ir =0, (4:40)

which therefore prevents homogeneization.

This shows our claim of Section 4.1, and in view of Section 4.2.1, we
cannot say more on pu.

Proposition 3

In the nonlinear case without surface tension, a solution (p,u) satisfying the
estimates (4.7), (4.15), (4.16) has the following behaviour as time goes to
infinity :

(i) The velocity field u goes to 0 in H'(2) in the “weak” sense of (4.34).

If we postulate that u € C(0,00;L?(2)) and that (4.33) holds then u goes
to 0 in L*(Q).

If Q C R? then u € C(0,00;H'(Q)) and u goes to 0 in H'¢(Q), Ve > 0
ast — +oo.

(ii) The density p goes to py in the sense of (4.38) with po = pso(2). In
other words, the “interface” tends in a weak sense (and up to an extraction
in time) to one or several horizontal planes. Homogeneization may appear.

(iii) We are able to exhibit an infinity of steady solutions (u = 0, peo)
whose energy is arbitrarily close to the minimal energy.

Remark 4.5 While we do not know much about ps, it s worth mentionning
that, in 2 dimensions, the topology (say number of bubbles to fix the ideas) is
preserved by the flow (see [16], [17]).
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Remark 4.6 In the spirit of Remark 4.2, we would like to indicate here that
we believe that under the additional assumption that the data are small (at
least wnitial velocity and difference of densities, but initial velocity is likely
to be enough), some better reqularity on the flow is available. It might also
improve the quality of the convergence to zero of u (as it is well know in
the one-fluid case, see Section 1.1. above). Such regularity issues will be
investigated in [22]. Once more, we emphasize we have chosen to deal here
with any wnitial velocity, and therefore to state the most general result we can
prove with the weakest assumptions.

4.4 The nonlinear case with surface tension
4.4.1 A priori estimates

First of all, notice that the transport equation yields the same properties
(4.7) and (4.8) as in the case without surface tension.

pe L¥(Q x (0,00)). (4.41)

Let us now establish the energy estimate, analogous to the estimate (4.14).
It is obvious that multiplying the Navier-Stokes equation (4.4) by u and
integrating over the domain lead to the following assertion

d /1
dt< /pu da:—i—/pzdx /|Vu|2dx—<7'u> /Cu n,

where the curvature C is oriented along the unit normal n.

We recall that we assume for ease of notation that p, — p; = 1, thus
nds = Vp/|Vp| = Vp. To compute the right-hand side, at least formally, we
suppose that u is smooth enough in order to have d;p = 0 on 9€2. Thus

/Cu-nda:—/div (Vp)u-Vpdx:—/Bth.Vpda;————/ |Vp|? dx.
by Q Q 2dt

Denoting by L(X) the length of the interface X, we have formally L(X) =
J do= [ |Inf*do = [, |Vp|* dz. Thus the energy estimate reads

d /1
dt< /pu dx+/pzdx+ —L(Z /|Vu|2dx—0 (4.42)

From this energy equality, it is straighforward to derive the same estimate
as in the nonlinear case without surface tension, namely

u € L*(0, 00; H} (22)) N L>(0, 00; L (2)). (4.43)
In addition we obtain here

p € L*>(0,00; BV (). (4.44)
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4.4.2 Questions of existence and regularity

Let us begin with a short overview of the state of the art concerning the
existence of solutions in this setting with surface tension. For the case of
one fluid with a free surface, local in time existence results can be found in
G. Allain [1], V.A. Solonnikov [36], global in time existence results for small
initial data and f = 0 appeared in V.A. Solonnikov [39] (bounded case),
J.T. Beale [5] (unbounded case), and also in A. Tani & N. Tanaka [43], and
for small initial data and f not necessarily zero in Tani [42]. For the two fluids
case, local in time existence of strong solutions is due to I.V. Denisova [13|
and I.V. Denisova, V.A. Solonnikov [14], global in time existence for small
data is due to V.A. Solonnikov [37] and also N. Tanaka [41] (for a special
initial condition, see above)).

As far as we know, no existence result of global weak solution has been
established for the multifluids Navier-Stokes equations with surface tension.
Thus, we need to assume in the sequel that there exist (u(z,t), p(x,t)) that
are solutions to (4.4) in a formal sense, and that satisfy the a priori estimates
(4.41), (4.43), (4.44). This regularity implies that p € C(0,T; L?(€2)) for all
1 < p < oo. Such an assumption seems to us reasonable in view of the
manipulations made above and in view of the regularity proved in the case
without surface tension. Henceforth, we deal with a solution satisfying all
these assumptions.

4.4.3 Longtime behaviour

As in Section 4.3, we define the sequences p, and u, by p,(z,t) = p(x,t+1t,)
and u,(z,t) = u(z,t +t,) when (¢,)nen is an arbitrary sequence of positive
reals such that lim,,_, . t, = +o0.

Behaviour of the velocity The behaviour of u,, is the same as in the case
without surface tension, namely

u, — 0 in L*(0, 00; H'(Q)) as n — +oo.

Behaviour of the interface In the sequel, 7" > 0 is fixed. We now show
that the presence of surface tension allows us to improve the convergence
(4.38) of p,, more precisely we prove that this sequence is in a compact set
of LP(Q2 x (0,T)) for any p > 1.

Estimates (4.41) and (4.44) show that p,, is in a bounded set of the space
L>(0,7; BV(2) N L*(R2)). Noticing that L>(Q) — L7(N2) for any ¢ > 1
and the space of bounded measures M, (Q) — W (Q), with s’ = = for
any r, s such that rs > 3, we deduce that V0, 0 < 6 < 1 (see J. Bergh, J.
Lofstrom [9] or J.-L. Lions, E. Magenes [29]),

L¥(9) N BV(Q) < [LI(Q); W' ()], = W amn=o7m ().
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For example, with ¢ =6, r =2/3, s = 6 and § = 1/2 we have
L®(Q) N BV (Q) — HY5(Q).

Thus the sequence p,, is bounded in L?(0,T; H'/%(Q).

Moreover, the equation d;p, = —div (p,u,) together with estimates (4.43)
and (4.41) show that 9,p, is bounded in L*(0,7; H *()).

Thus, p, is bounded in L?(0, T; HY*(Q))NH'(0,T; H*(Q2)). Interpolat-
ing between these two spaces, we have for 0 < 0 <1

[L2(0,T; H/%(Q)), H(0,T; H~*())]y — H'7%(0, T; H/571(Q)).

Choosing 6/7 < # < 1, we deduce that p, is bounded in H?(0,T; H?(Q2))
with 3 > 0 and v > 0. Therefore, (p,)nen is a compact set of (for example)
L*(©2 x (0,T)). Since the sequence is bounded in LF(Q x (0,7)), Vp > 1,
we deduce that (p,)nen is a compact set of LP(£2 x (0,T")). Therefore, there
exists an extraction of (p,),en such that

Pt — Poo i1 LP(Q % (0,7)),Vp > 1 as n’ — +oo.

Then, we can prove by the arguments used in Section 4.3.4 that p(z,t) =
Poo () and the conservation of the global mass.

We next show that there exists a sequence (s,)nen such that s, € [0, 7]
and lim;,, o SUPye(o,17] on (5t + sn) — pOO(')HLP(Q) =0,Vp=>1

For ease of notation, we define X, (t) = ||pn(t)|| zr(0) and Xoo = ||pool|Lr(0)-
We recall that p is supposed to be in C'(0,00; L?(2)), thus X,, € C(0,00).
Moreover X,, — X, as n — +oo for the strong topology of LP(0,7T). Thus,
there exists a sequence (s,)nen in [0, 7] such that

nl—lgloo X (sn) = Xoo- (4.45)

Then, we denote by (@, )nen and (py, )nen the sequences defined by @, (z,t) =
up(x,t + s,) and p,(z,t) = py(z,t + s,). Assertion (4.45) proves the con-
vergence of p,(-,t = 0) to po(-) as n — +oo for the strong topology of
LP(Q).

Gathering the previous results, we have : 0 < p, < C, Op, + divau, =
0, div (pi,) = 0, pulizo = poo in LP(Q) and @, — 0 in L*(0,T;H' (Q2)).
We deduce from these properties (see P.-L. Lions [30] Theorem 2.4) that py,
converges to poo in C([0, T, LP(£2)).

In other words, we have shown that, for 7" > 0, p > 1 and for any
sequences (t,)nen, tn — +00, there exists (S, )nen, Sn € [0, 7] such that, up
to an extraction,

lim  sup [|p(c, + b+ 50) = poo ) laey = 0. (4.46)
=400 ¢c(0,7T]

43



We finally show that no homogeneization appears. Indeed, for any 3 €
C'([0,00),R) we have then

/Q B(pn(, 1)) dz — / Blpse(x) de,

thus by regularization we obtain that
meas{z € Q, poo(z) = p;} = meas{z € Q, p(x,t) = p;} (4.47)

which is a constant of the evolution.

We collect the results obtained in this nonlinear case with surface tension
in the following final proposition.

Proposition 4

In the nonlinear case with surface tension, assuming the existence of a solu-
tion regular enough to give a sense to the surface tension term and satisfying
the a priori estimates (4.41), (4.43) and (4.44), the behaviour of u, p as time
goes to infinity is the following :

(i) The velocity field u goes to 0 in H' () in the same sense as in the case
without surface tension (see (4.34)).

(ii) The density p goes to p., in a stronger sense than in the case without
surface tension (see (4.46)). The density p., consists only of zones of den-
sities p; and py (see (4.47)), homogeneization being therefore excluded. In
addition, p, is such that the quantity z —divn is constant on each connected
component of the interface between zones of densities p; and ps.

(iii) We do not know whether the limit interface is unique nor connected.
Moreover, we are able to exhibit an infinity of steady solutions (u = 0, pso)
whose energy is arbitrarily close to the minimal energy.

5 Final Remarks

We would like to emphasize that most of the above analysis in the purely
gravitational case is likely to be extended mutandis mutandis to some Mag-
netohydrodynamics equations, provided the boundary conditions are conve-
nient. The situation we have in mind is the following one : the right-hand
side of the two-fluids Navier-Stokes equations contains a Lorentz force term
curl B x B where the evolution of the magnetic field B follows an equation of
parabolic type derived from the Maxwell system under convenient simplify-
ing assumptions. In addition, the boundary conditions on the magnetic field
are assumed to decay with time. The system under consideration is therefore

Op +div (pu) = 0,
Oi(pu) +div (pu @ u) — div (2nd(u)) + Vp = —pgé, + curl B x B,
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divu = 0,
1
0B + curl (=curl B) = curl(u x B),
o
divB = 0,

The well-posedness of this system has been established in 23] (global in
time existence of weak solutions), and in |17] (regularity results in the bidi-
mensional case under convenient assumptions on the viscosities and on the
electrical conductivities).

We intend to present results on the long time behaviour of this system in
a subsequent work (see [21]).
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Appendix : alternative proofs

We present in this Appendix two alternative proofs. One of these proofs leads to weaker results
than the one presented above but we believe both of them might be useful in other contexts. To
simplify the presentation, we only argue in a formal way.

A Convergence in H! of u in the linear case without surface
tension

We indicate an alternative way to show (3.21) that makes use of another estimate instead of (3.10).
Though the argument we shall present is a bit more intricate, we believe it might be useful in other

estimate. ] ] ]
First, the consideration of the estimate (3.4) suffices to prove that we have

lim [ull. = 0. (A1)

t—400

Indeed, let us go back to (3.3), and bound from above the right-hand side as follows :

/|V >+ 5@ pou’ = —/ PYOop < [l 2 (z=oyp) lull L2 (f2=0})-
2=0

We therefore obtain L d
[ 1vu+ 55 [ oo < Colllagamap 1Vl

which in view of (3.5) yields

1 d
[1vup+ 35 [ i < Cov/lvals < 5 [ 19ul + o,

It follows that there exists a constant C'3 such that

d

dt pou < 03, (A2)

We claim that the two assertions (3.7) (A.2) imply (A.1). Indeed, the function f(t) = [lul|?, is a

nonnegative function in L!(]0,4o0[) such that its first derivative f'(t) is uniformly bounded from
above. Hence it converges to 0 as ¢ goes to infinity (we refer the reader to [15] for a proof of this simple
statement).

Next, we multiply the first equation of (3.1) by d;u and integrate over € :

(Oyu)? —/V2 /zp@u-ez. A3
[ o+ 5% [rout == [ o (4.3)

Derivating the second equation of (3.1) with respect to time, we have

Oih — Oyu - e, = 0, (A.4)

[oowr+ 55 [rvur=—[ wotw=—30 [ we [ @wr a9

49

and thus



Since

(Or)? = (u-e.)?,
faow= ],

we then obtain an alternative to second energy estimate :

[z + 35 ([1vu e 5 [ 0?) = [ e (4.6)

By standard trace theorem, the right-hand side of (A.6) is in L!(]0,+oc[), thus if we integrate
(A.6) from t = 0 to ¢t = T, for any arbitrary time 7', we obtain

(Jros o ) [ [

d
< ag( v g [ o
Cy

(A7)

where the constants C3 and Cy do not depend on T'. Since

AT/m@wVZ&

d
[rvur+ g [ w<an (A8)

at all time. Next, we remark as above that

\m/ﬂ

Hence, (A.8) yields

it follows that

/'0¢@¢\scﬁwwnmgmﬂnnvmuzsc%uvmua (4.9)

IVulZ: < Ca+2C5]| Va2,

from where we infer

[Vullz: < Cs, (A.10)

for a constant Cg independant of time. Inserting this estimate (A.10) into (A.9), we deduce

1d 5
\m/z:o‘”

Inserting this last estimate into (A.7), we obtain

< (4. (All)

+o00
/ 18ul|72 < +oo. (A.12)
0

We now show that, as ¢ goes to infinity, u goes to 0 in a stronger sense than the L? sense given by

(A.1).
Using (3.4), we may write

7

d 2
\@/”1/’
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thus, by Cauchy-Schwarz inequality,

‘% [ <2 [19up oo ([ ) " (/ (atuﬁ)m.

%/ZO 2 € L1(]0, +o0]). (A13)

A straightforward consequence is that

Therefore

d
IVallte+ 5 [ 4 € 2100, +oc. (A14)

In addition, we infer from ( ) that
/ (u- ez)2 — /po(&gu)Q‘
2=0

(/|Vu|2 < zp)‘ -
| e+ [ miow?

< C¥|Vullfs + C*dul.

IN

Hence,
d <||Vu||L2 + jt 1,b2> € L'(]0, +o0]), (A.15)
which, together with (A.13) and (3.7), yields
V|2, + % /ZO Y% € Wh(]0, +o0). (A.16)
As a consequence,
 lim [Vull32 + % /zo ¢? =0. (A.17)

Next, we remark that by a standard trace result (see for instance H. Brezis [11]), we have

lwllz2(gz=op) < Cllwll oty IVl g, (A.18)

[y

1%/l L2 (z=0p) 1906 |l L2 (4 z=0})

= |¥lle2e=op llu - exllL2(fz=0y)

C'te 1/2 1/2
||¢||L2({z=o})||u||Lz MVull g,

which, in view of (A.1)-(3.24)-(A.10), yields

Therefore, we deduce from (A.17) that

for any arbitrary w € H'(Q). Thus,

1d )
\m/z:ow

IN

IN

lim ||[Vulz: = 0. (A.20)

t—F
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B Convergence of v in L? in the linear case with surface

tension
We establish here an estimate which enables us to show that
Jim [[ullz(g) = 0 (B.1)

instead of (3.47).

This alternative way to proceed is less standard, that is why we present it. Nevertheless, as far as
we know, it does not allow one to recover u — 0 in H! (2) but only in 2 () which is weaker.

Let us introduce the field w in HJ (2) solution to the following Stokes problem on 2 :

—Aw = pou — VT,
{ divw = 0, (B2)
We then multiply equation (3.34) by dyw :
/po(?tu - Opw + /Vu -Vouw = / (Y — A)oyw - e,. (B.3)
z=0
We treat the two terms of the left-hand side as follows :
/poatu - Opw = —/A@tw - pw = / |V8tw|2. (B.4)
‘/Vu . V@tw‘ < |Vu|p2||IVOow|| 2. (B.5)
Besides,
| w-spauw-e. (B.6)
z=0
d
= £< Qﬁw-ez—l—VQﬁ-V(w-ez))—i—/ (u-e; —Agyu-e)w-e,
2=0
d
<4 ( [ ot 90V ez)) 4 Ol oy (ol ey + )
d

using successively trace theorems and elliptic regularity on the Stokes system (B.2). Inserting these
three estimates in (B.3), we obtain

d
1ot < ([ vw-ect Vi Tiw-e ) + I9ul Vol + ¢l
=

thus

1 2 d st 2

5 [ IVowl™ = = OWU e+ Vip-V(w-e:) | +Clully gy,

=

which we integrate between 0 and 7' to obtain

1

T T
5 IVowle < Ol lullize + ¢ [ 19, (B3)
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using again elliptic regularity. In view of (3.7) and (3.37), this yields what will play henceforth the
role of the second energy estimate (instead of the estimate (A.12) on 0,u derivated from the second
energy estimate (3.10) in the case without surface tension)

It is straightforward to see that this estimate may also be written

/||poatu||§,1 < 400, (B.10)

By the same kind of argument as the one used to prove (3.47) and using

d
— d
dt/QpOu x

< lpoOul| -1y lullm (),

equation (B.10) yields (B.1).
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