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The Kinetic Chemical Equilibrium RegimeAlexandre ERN and Vincent GIOVANGIGLI
1 IntroductionExtensive interest in the kinetic theory of gas mixtures with chemical reactions hasgrown signi�cantly over the past few years. The subject is indeed related to a widerange of practical applications, including spacecraft ights, plasma physics, combustionprocesses and chemical reactors. An attractive approach for modeling gas mixtureswith chemical reactions relies upon a generalized Boltzmann equation with chemicalsource term and the Enskog expansion. With this approach, the collision term inthe Boltzmann equation is split into fast and slow processes, thus giving rise to aformal expansion of the species distribution functions and the kinetic equations. Mostapplications are concerned with the zeroth and �rst order terms in the expansion.In this context, several kinetic regimes may arise for chemically reactive gas mix-tures [1,2]. When the chemistry times are much larger than the relaxation times fortranslational and internal energy exchange, the chemical source term in the Boltz-mann equation accounts for slow processes while the nonreactive source term resultsfrom fast processes. This regime has been studied extensively in the past and givesrise, in particular, to the tempered and slow reaction regimes, for which expressions oftransport coe�cients have been given [1,3{6]. On the other hand, when the chemicalcharacteristic times are of the same order of magnitude as the relaxation times of trans-lational and internal energy, a kinetic chemical equilibirum regime arises. This regimehas been introduced formally by Ludwig and Heil [6] for dissociation and ionization ofgas mixtures, but these authors did not introduce the appropriate collisional invariantsassociated with the chemical elements. The main goal of this work is now to derivea general theoretical framework for gas mixtures in the kinetic chemical equilibriumregime.Our paper is organized as follows. In the next section we present the generalizedBoltzmann equation for chemically reactive mixtures in a semi-classical framework.Our analysis is concerned with dilute, isotropic mixtures with fast relaxation of allthe internal energy modes, thus excluding cases such as external magnetic and electric2



�elds or strong vibrational desequilibrium [7]. We discuss the form of the chemicalsource term for arbitrary chemical reaction mechanisms and show that all nonreactiveand reactive collisions arising at the microscopic level yield a positive contribution tothe entropy production. We then introduce the collisional invariants associated withchemical elements, momentum and energy and study the Enskog expansion in thekinetic chemical equilibrium regime.In Section 3 we investigate the Euler regime corresponding to the zeroth orderEnskog expansion. In this regime, the species distribution functions are given by localMaxwellian distribution functions, but the species number densities are constrained bythe chemical equilibrium conditions. We present the macroscopic equations expressingconservation of element densities, momentum and energy.Finally, in Section 4 we investigate the Navier-Stokes regime corresponding to the�rst order Enskog expansion. The macroscopic equations for element densities, mo-mentum and energy involve several transport uxes: the element di�usion velocities,the pressure tensor and the heat ux vector. We express these uxes in terms of vari-ous transport coe�cients including, in particular, the element di�usion matrix. Uponintroducing the species di�usion velocities, we show that the �rst order kinetic equi-librium regime is formally equivalent to the one obtained from a �rst order expansionwith nonequilibrium chemistry and then letting the chemical reactions approach equi-librium. The actual values of the transport coe�cients are, however, di�erent. Finally,we derive the conservation equation for the entropy and show that the source term ispositive and that it is compatible with Onsager's reciprocal relations.2 Theoretical frameworkIn this section we derive a theoretical framework for the kinetic chemical equilibriumregime. We �rst derive a generalized Boltzmann equation for chemically reactive mix-tures and present explicitly the form of the chemical source term for an arbitrary re-action mechanism. We then show that both nonreactive and reactive source terms arecompatible with the positivity of entropy production. We next present the collisionalinvariants for reactive mixtures at equilibrium, accounting for element, momentumand energy conservation. Finally, we investigate the Enskog expansion in the kineticchemical equilibrium regime.
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2.1 Generalized Boltzmann equationWe consider a dilute reactive mixture consisting of n chemical species having internaldegrees of freedom. We are concerned here with isotropic gas mixtures, thus excludingthe case of external magnetic or electric �elds. The starting point of our analysis isthe Boltzmann equation derived in [8] for polyatomic gas mixtures without chemicalreactions. This equation has been obtained in a semiclassical framework, i.e., thetranslational motion of the particules is treated classically and the internal degrees offreedom are treated quantum mechanically. It preaverages the collision cross-sectionsover all the magnetic quantum numbers and can be derived from the Waldmann-Sniderquantum mechanical Boltzmann equation [9,10].The state of the mixture is described by the species distribution functions denotedby fi(t;x; ci; I), where t is the time, x the three-dimensional spatial coordinate, ci thevelocity of the ith species and I the index for the internal energy state. For brevity,the dependence on (t;x) is made implicit. For a family of functions �i, i 2 S, where�i depends on ci and I, we introduce the compact notation � = (�i)i2S . The family ofspecies distribution functions f = (fi)i2S is the solution of a generalized Boltzmannequation written in the formDi(fi) = Bi(f) + Ci(f); i 2 S; (2:1)where S = [1; n] is the set of species indices. In the above equation, Di is the usualdi�erential operator Di(fi) = @tfi + (ci�@x)fi + (bi�@ci)fi; (2:2)where bi is the external force acting on the ith species, and Bi(f) and Ci(f) are, re-spectively, the nonreactive and reactive source terms. The nonreactive source term isgiven by [1,8] Bi(f) =Xj2S XJ;I0;J0 Z�f 0if 0j aiIajJaiI0ajJ0 � fifj�W IJI0J0ij dcjdc0idc0j ; (2:3)where I and J are the indices for the quantum energy states of the ith and jth speciesbefore collision, I0 and J0 the corresponding numbers after collision, aiI the degeneracyof the Ith quantum energy shell of the ith species and W IJI0J0ij the transition probabilityfor the nonreactive collision. Note that the transition probabilities have been preav-eraged over all the magnetic quantum numbers and satisfy the reciprocity relations[8] W IJI0J0ij aiIajJ = W I0J0IJij aiI0ajJ0 : (2:4)4



It is also possible to consider a formalism based on collision cross-sections rather thantransition probabilities, but the present formalism is more convenient for reactive col-lisions [2,6].The reactive source term Ci(f) results from chemical reactions between speciesin the mixture. We consider both bimolecular and trimolecular chemical reactions. Inparticular, although triple nonreactive collisions have been neglected in the nonreactivesource term (2.3), triple reactive collisions are retained since recombination reactionscannot often proceed otherwise [6,11]. Triple reactive collisions can also be viewed asa sequence of two bimolecular reactions proceeding extremely fast [2].Before giving the general form of the reactive source term, we present some exam-ples. Consider �rst a bimolecular reaction of the form�i + �j *) �k + �l; (2:5)with species indices i, j, k, l assumed to be distinct and with �i denoting the chemicalsymbol for the ith species. Let I, J, K, L denote the indices for the internal energystates of the species. The reactive source term then reads [1,2,6,11]Ci(f) = XJ;K;LZ�fkfl �kK�lL�iI�jJ � fifj�WIJKLijkl dcjdckdcl; (2:6)where the statistical weight �iI is given by�iI = h3PaiIm3i ; (2:7)and where hP is the Planck constant, mi the mass of the particules of the ith species andWIJKLijkl the transition probability for the forward reaction in (2.5). In (2.6), we haveused the reciprocity relation between the forward and reverse transition probabilitieswhich reads [1,2,6,11] WIJKLijkl�iI�jJ = WKLIJklij�kK�lL : (2:8)In the case where i and j are the same in reaction (2.5), i.e.,�i + �i *) �k + �l; (2:9)the forward and reverse reaction delete or produce, respectively, two molecules of theith species so that the reactive source term becomes [2,6,11]Ci(f) = 2 X~I;K;LZ�fkfl �kK�lL�iI�i~I � fi ~fi�WI~IKLiikl d~cidckdcl; (2:10)5



with ~fi denoting ~fi(t;x; ~ci;~I). In the case of a chemical reaction involving three prod-ucts, as in �i + �j *) �k + �l + �m; (2:11)with all the indices assumed to be distinct, the reactive source term reads [2,6,11]Ci(f) = XJ;K;L;M Z�fkflfm�kK�lL�mM�iI�jJ � fifj�WIJKLMijklm dcjdckdcldcm; (2:12)with obvious notation. Note that the Planck constant does no longer cancel out in(2.12). Finally, in the case where the ith species is present as reactant and product inreaction (2.5), i.e., �i + �j *) �i + �l; (2:13)the forward and reverse reactions do not account for the same statistical event regardingspecies i so that the source term reads [2,6,11]Ci(f) = XJ;~I;LZ� ~fifl �i~I�lL�iI�jJ � fifj�WIJ~ILijil dcjd~cidcl+XL;~I;J Z� ~fifj � �iI�lL�i~I�jJ fifl�W~IJILijil d~cidcjdcl: (2:14)Our goal is now to generalize the above expressions into a single formalism validfor arbitrary reaction mechanisms. The reactive source term for the ith species readsCi(f) =X(r) C(r)i (f): (2:15)Here, C(r)i (f) is the source term for the rth elementary reaction written in the formXj2R(r) �j *) Xk2P(r) �k; (2:16)where R(r) and P(r) are, respectively, the indices for reactants and products. Forinstance, for reaction (2.5), we have R(r) = f i; j g and P(r) = f k; l g, whereas forreaction (2.9), we have R(r) = f i; i g and P(r) = f k; l g. We denote by �R(r)i and�P(r)i the stoichiometric coe�cients of the ith species among reactants and products,respectively, and we also denote by R and P the indices of internal energy states forreactants and products, respectively. For a given species i 2 S, we denote by R(r)i theset of reactant indices where the index i has been removed only once. For example, for6



reaction (2.5), we have R(r)i = f j g and for reaction (2.9) we have R(r)i = f i g. Finally,we introduce a similar notation for P(r)i , RI and P I . With this notation, the sourceterm for the rth elementary reaction readsC(r)i (f) = �R(r)i XRI ;P Z�QP(r)fkQP(r) �kKQR(r) �jJ �QR(r)fj�WRPR(r)P(r)QR(r)i ;P(r)dcjdck+ �P(r)i XR;P I Z�QR(r)fj � QP(r) �kKQR(r) �jJ QP(r)fk�WRPR(r)P(r)QR(r);P(r)i dcjdck;(2:17)with, for instance, QR(r);P(r)i dcjdck standing for QR(r)dcjQP(r)i dck. In addition,WRPR(r)P(r) is the transition probability for a reactive collision in which the reactantsR(r) with internal energy states R are transformed into products P(r) with internalenergy states P . Note that the following reciprocity relation holds for the transitionprobabilities [2] WRPR(r)P(r)QR(r) �jJ = WPRP(r)R(r)QP(r) �kK : (2:18)2.2 Entropy productionWe now show that the nonreactive source term (2.3) and the reactive source term (2.17)are both compatible with the H-theorem or, in other words, that they yield a positiveentropy production. To this purpose, we introduce the kinetic entropy per unit volumegiven by S = �kBXi;I Z fi�log(�iIfi)� 1�dci: (2:19)Multiplying the Boltzmann equation (2.1) by log(�iIfi) � 1, integrating over dci andsumming over i and I yields the entropy conservation equation in the form@tS + @x�(Sv) + @x�Js = �; (2:20)where v is the mean average velocity de�ned later, Js the entropy di�usive ux givenby Js = �kBXi;I Z(ci � v)fi�log(�iIfi)� 1�dci; (2:21)and � the entropy source term. The entropy source term may be written� = �B + �C ; (2:22)7



with the nonreactive source term given by�B = � kBXi;I Z Bi(f)�log(�iIfi)� 1�dci= 14kB Xi;j2S XI;J;I0;J0 Z fifj 
� f 0if 0jaiI0ajJ0 ; fifjaiIajJ �W IJI0J0ij dcidcjdc0idc0j ; (2:23)
and the reactive source term by�C = � kBXi;I Z Ci(f)�log(�iIfi)� 1�dci= kBX(r) XR;P Z �QR(r)fj� 
�QP(r)�kKfk;QR(r)�jJfj�WRPR(r)P(r)QR(r);P(r)dcjdck;(2:24)with 
(x; y) = log(x=y)(x � y). It is readily seen that both �B and �C are a sum ofpositive terms. In other words, all the collisions arising at the microscopic level, eithernonreactive or reactive, yield a positive contribution to the kinetic entropy production.The generalized Boltzmann equation (2.1) is thus compatible with the H-theorem andyields a dissipative structure. This property is particularly important in the modelingof reactive gas mixtures where special care should be taken so that all the terms arisingin the entropy production yield a positive contribution.2.3 Collisional invariants and macroscopic propertiesAs opposed to the nonreactive case where species, momentum and energy are conservedby any microscopic collision, in the reactive case only elements, momentum and energyare conserved. We denote by ne the number of elements in the mixture and by E =[1; ne] the set of element indices. The ne+4 collisional invariants are then given by l = 8><>: (Eil)i2S ; l 2 E ,(mic�i)i2S ; l = ne + �, � = 1; 2; 3,(12mici�ci +EiI)i2S ; l = ne + 4, (2:25)where Eil is the number of element l in the ith species, c�i the component of ci in the�th spatial coordinate, and EiI the total internal energy of the ith species in the Ithquantum energy shell, given by the sum of the energy of formation plus the internalenergy. For later convenience, we denote by I the space spanned by the collisionalinvariants. 8



For two families � = (�i)i2S and � = (�i)i2S , we introduce the scalar producthh�; �ii =Xi;I Z �i�idci: (2:26)The macroscopic properties are then given byhhf;  lii = 8><>:enl; l 2 E ,�v; l = ne + �, � = 1; 2; 3,12�v�v + E; l = ne + 4, (2:27)where enl denotes the number density for the lth element, � =Pl2E emlenl the density ofthe mixture, eml the molecular mass of the lth element, v the mean average velocity andE the total internal energy per unit volume of the mixture. We introduce the partitionfunction for internal energy Qinti for the ith speciesQinti =XI aiI exp(��EiI); (2:28)with � = 1=(kBT ), kB being the Boltzmann constant and T the temperature, as well asthe translational and full partition functionsQtri = �2�mi�h2P �3=2 ; Qi = Qtri Qinti : (2:29)The averaged internal energy of the ith species readsEi = 1Qinti XI aiIEiI exp(��EiI) = � dd� logQinti : (2:30)We also introduce the internal energy of the ith species and its enthalpy given byEi = 32kBT + Ei; Hi = 52kBT + Ei; i 2 S: (2:31)The species number densities are de�ned asni =XI Z fidci; i 2 S; (2:32)in such a way that enl =Xi2S niEil; l 2 E : (2:33)The total internal energy per unit volume of the mixture then readsE =Xi2S niEi: (2:34)9



2.4 The kinetic chemical equilibrium regimeIn this work we are concerned with the kinetic chemical equilibrium regime in whichboth the chemistry times and the relaxation times for translational and internal energyare much smaller than the characteristic times of the ow. An approximate solution tothe Boltzmann equation (2.1) is then obtained using an Enskog expansion. Rewriting(2.1) in the form Di(fi) = 1" (Bi(f) + Ci(f)) ; i 2 S; (2:35)where " is a formal expansion parameter, the species distribution functions are ex-panded as fi = f0i �1 + "�i +O("2)�; i 2 S: (2:36)The family of zeroth order distribution functions f0 = (f0i )i2S is the solution ofBi(f0) + Ci(f0) = 0; i 2 S: (2:37)In order to determine f0 uniquely, it is classical to impose that f0 yield the localmacroscopic properties hhf0;  lii = hhf;  lii;  l 2 I: (2:38)We will see in section 3 that (2.37) and (2.38) uniquely determine the zeroth orderdistribution functions f0 and give rise to the Euler equilibrium regime.The �rst order perturbations � = (�i)i2S are the solution of non-homogeneousintegral equations written in the form=i(�) = 	i; i 2 S; (2:39)where the right member 	i uniquely depends on f0 and reads	i = �Di(log f0i ); i 2 S: (2:40)In addition, =i denotes the linearized collision operator for the ith species, which reads=i(�) = =Bi (�) + =Ci (�); (2:41)where the nonreactive and reactive collision operators are given by=Bi (�) = � 1f0i h @fBi(f0); f0� i= Xj2S XJ;I0;J0 Z f0j (�i + �j � �0i � �0j)W IJI0J0ij dcjdc0idc0j ; (2:42)10



and=Ci (�) = � 1f0i h @fCi(f0); f0� i= �R(r)i XRI ;P Z QR(r)i f0j �XR(r) �j �XP(r) �k�WRPR(r)P(r)QR(r)i ;P(r)dcjdck+ �P(r)i XR;P I Z QP(r)i f0k �XP(r) �k �XR(r) �j�WRPR(r)P(r)QR(r);P(r)i dcjdck: (2:43)
Note that the linearized collision operator has important structure properties whichgeneralize those discussed in [12] for nonreactive mixtures. Indeed, upon introducingthe bracket operator [[�; �]] = hhf0�;=(�)ii; (2:44)it is readily seen from (2.42) and (2.43) that the bracket operator has the followingfundamental properties.(i) it is symmetic: [[�; �]] = [[�; �]],(ii) it is positive semi-de�nite: [[�; �]] � 0,(iii) its kernel is spanned by the collisional invariants: [[�; �]] = 0() � 2 I.In order to determine uniquely the perturbation �, the integral equations (2.39) arecompleted with the ne + 4 constraintshhf0�;  lii = 0;  l 2 I: (2:45)The �rst order species distribution functions f1 = (f1i )i2S given byf1i = f0i (1 + �i); i 2 S; (2:46)are then such that hhf1;  lii = hhf0;  lii = hhf;  lii;  l 2 I; (2:47)and give rise to the Navier-Stokes equilibrium regime discussed in Section 4.3 The Euler equilibrium regimeIn this section we discuss the Euler equilibrium regime for reactive mixtures in kineticchemical equilibrium. This regime results from the zeroth order Enskog expansiondiscussed in Section 2.4. 11



3.1 Generalized Maxwellian distribution functionsThe zeroth order distribution functions f0 are generalized Maxwellian distributionfunctions. Indeed, we have seen in Section 2.4 that they satisfy Eqs. (2.37) and (2.38).Using (2.37), we �rst deduce that�0 = �kBXi;I Z�Bi(f0) + Ci(f0)��log(�iIf0i )� 1�dci = 0; (3:1)and hence the entropy production corresponding to f0 is zero. Since �0 is a sumof nonnegative terms, it is readily seen from (2.23) and (2.24) that �0 can vanish ifand only if the vector �log(�iIf0i )�i2S is conserved in both nonreactive and reactivecollisions. We may therefore write�log(�iIf0i )�i2S 2 I: (3:2)Using (2.25) we obtain thatlog(�iIf0i ) =Xl2E �lEil �w�mici � (12mici�ci + EiI); (3:3)for i 2 S. The constants �l for l 2 E, w 2 R3 and  in (3.3) are determined fromthe macroscopic constraints (2.38). After some algebra we get w = �v,  = � and thefollowing expression for the zeroth order species distribution functionsf0i = aiIm3ih3P niQi exp��mi�2 (ci � v)2 � �EiI�= �mi�2� �3=2 aiIniQinti exp��mi�2 (ci � v)2 � �EiI� : (3:4)These expressions are similar to those obtained for ows in both tempered and slowreaction regimes, except that the species number densities are now constrained by therelations �log niQi�i2S 2 E ; (3:5)where we have introduced the element spaceE = Vect(E1; : : : ; Ene); (3:6)where El = (Eil)i2S for l 2 E . 12



It is important to point out that the constraints (3.5) actually yield the usual chem-ical equilibrium conditions for the species number densities. Indeed, upon introducingthe zeroth order entropyS0 = �kBXi;I Z f0i �log(�iIf0i )� 1�dci; (3:7)we obtain after some algebra that S0 =Xi2S niS0i ; (3:8)with the zeroth order molecular entropies S0i given byS0i = HiT � kB log niQi ; i 2 S: (3:9)At the zeroth order, the species chemical potentials read�0i = 1mi (Hi � TS0i ) = kBTmi log niQi ; (3:10)and it is readily seen from (3.5) that the vector M�0 with components mi�0i is in theelement space M�0 = (mi�0i )i2S 2 E : (3:11)This relation simply states the usual equilibrium conditions for the chemical reactions,as detailed for instance in [13,14]. In addition, the resulting equilibrium constant isexactly the same as would be obtained using the rules of statistical mechanics [1,15].3.2 Macroscopic conservation equationsThe macroscopic conservation equations in the Euler regime are obtained from therelations hh l;D(f0)ii = 0;  l 2 I; (3:12)where we have introduced the family D(f0) =�Di(f0i )�i2S . After some algebra, weobtain @tenl + @x�(enlv) = 0; l 2 E ; (3:13)@t(�v) + @x�(�v
v) = @xp+Xi2S �ibi; (3:14)@t( 12�v2 +E) + @x��(12�v2 +E)v� = � @x�(pv) +Xi2S �ibi�v; (3:15)13



where �i = nimi is the density of the ith species. These equations express conservationof element densities, momentum and energy.An equation for the temperature is easily recovered from the energy equation(3.15). Upon introduing the particular derivative Dt = @t + v�@x, a straightforwardcalculation yieldscmolDtT = (�(p+ E) +Xl2E�enlXi2S @ni@enlEi�) @x�v: (3:16)The molecular heat capacity cmol which appears in (3.16) consists of three contributionscmol = 32k +Xi2S nicint;moli +Xi2S nicchem;moli : (3:17)The �rst term accounts for the translational heat capacity, while cint;moli and cchem;moliare, respectively the internal and chemical molecular heat capacity of the ith speciesgiven by cint;moli = dEidT ; cchem;moli = 1ni @ni@T Ei: (3:18)4 The Navier-Stokes equilibrium regimeIn this section we discuss the Navier-Stokes equilibrium regime for reactive mixtures inkinetic chemical equilibrium. This regime results from the �rst order Enskog expansiondiscussed in Section 2.4.4.1 Linearized Boltzmann equationsWe restate that the species perturbed distribution functions � = (�i)i2S are the so-lution of the integral equations (2.39) completed by the constraints (2.45). The rightmember 	i in (2.39) may now be evaluated using the zeroth order macroscopic con-servation equations derived in Section 3.2. For convenience, we introduce the partialpressure of the lth element and the partial pressure of the ith species given byepl = enlkBT; l 2 E ; pi = nikBT; i 2 S: (4:1)With the ne + 4 macroscopic variables �l given by�l = 8<: epl; l 2 E ,v� ; l = ne + �, � = 1; 2; 3,�; l = ne + 4 (4:2)14



we obtain 	i = ne+4Xl=1 �li�Dt�l + (ci � v)�@x�l��mi�(ci � v)�bi; (4:3)with�li = 1f0i @f0i@�l = 8>>><>>>: 1pi @pi@epl ; l 2 E ,mi�(ci� � v�); l = ne + �, � = 1; 2; 3,Hi � kBT 2pi @pi@T � 12mi(ci � v)2 � EiI ; l = ne + 4, (4:4)for i 2 S. Using the relations presented in the appendix, it is easily veri�ed that for alll = 1; : : : ; ne+4, the vector ��li�i2S is a linear combination of the collisional invariants(2.25). After some lengthy calculations, we obtain the following expansion for 	i interms of the macroscopic variable gradients	i = �	�i : @xv � 13	�i @x�v �Xl2E 	 eDli � @xepl � 	�0i � @x� +Xj2S	Dji � (�jbj); (4:5)with	�i = mi� �(ci � v)
(ci � v)� 13(ci � v)2I	 ;	�i = 13mi�(ci � v)2 �Xl2E eplpi @pi@epl + 1kBT 2cmol 8<:p+Xj2S�nj �Xl2E enl @nj@enl �Ej9=;�(Hi � kBT 2pi @pi@T �Xl2E kBT eplpi @pi@epl � 12mi(ci � v)2 � EiI) ;	 eDli = 1pi 8<:@pi@epl � YiXj2S @pj@epl9=; (ci � v);	�0i = 8<:Hi � kBT 2pi �@pi@T � YiXj2S @pj@T �� 12mi(ci � v)2 �EiI9=; (ci � v);	Dji = 1pi��ij � Yi�(ci � v); (4:6)where I is the identity matrix. Letting � = �, �, eDl for l 2 E , �0, or Dj for j 2 S, wededuce from the expansion (4.5) for 	i a similar expansion for �i, namely�i = ���i : @xv � 13��i @x�v �Xl2E �eDli � @xepl � ��0i � @x� +Xj2S�Dji � (�jbj); (4:7)15



and each of the expansion coe�cients �� = (��i )i2S in (4.7) is the solution of theconstrained integral equations( =i(��) = 	�i ; i 2 S;hhf0��;  lii = 0;  l 2 I: (4:8)It is easily veri�ed that the above systems are well posed for all �, i.e., the right member	�i is in the range of the operator =i and the solution �� is unique.4.2 Macroscopic conservation equationsThe macroscopic equations in the Navier-Stokes regime are obtained from the relationshh l;D�f1�ii = 0;  l 2 I; (4:9)where we have introduced the family D(f1) =�Di(f1i )�i2S . We introduce two types ofdi�usion uxes, the classical species di�usion uxes given byniVi =XI Z (ci � v)f0i �idci; i 2 S; (4:10)and the element di�usion uxes de�ned asenl eVl =Xi;I Z Eil(ci � v)f0i �idci; l 2 E ; (4:11)in such a way that enl eVl =Xi2S EilniVi; l 2 E : (4:12)After some algebra, we obtain the macroscopic conservation equations in the followingform @tenl + @x�(enlv) + @x�(enl eVl) = 0; l 2 E ; (4:13)@t(�v) + @x�(�v
v) + @x�P = Xi2S �ibi; (4:14)@t( 12�v2 + E) + @x��(12�v2 +E)v�+ @x�(q + P �v) = Xi2S �ibi�(v + Vi): (4:15)These equations express conservation of element densities, momentum and energy.With the element di�usion velocities given by (4.12), we still need to specify thespecies di�usion velocities Vi for i 2 S, the heat ux vector q and the pressure tensor16



P . These transport uxes are expressed in terms of the species perturbed distributionfunctions as followsVi = 1� hh	Di ; f0�ii; i 2 S; (4:16)P = pI +�; � = 1� hh	�; f0�ii+ 13� hh	�; f0�iiI; (4:17)q = � hh	�0 ; f0�ii+Xi2S�Hi � kBT 2pi @pi@T �niVi; (4:18)where � is the viscous stress tensor. In the next section we express the transportuxes (4.16){(4.18) in terms of various transport coe�cients.4.3 Transport coe�cientsWe �rst consider the viscous stress tensor �. We introduce the shear viscosity � andthe volume viscosity � given by 8>><>>: � = kBT10 [[��;��]];� = kBT9 [[��; ��]]; (4:19)and the viscous stress tensor then reads� = �� �@xv + (@xv)t � 23(@x�v)I�� � (@x�v)I: (4:20)We next turn to the species di�usion velocities Vi, i 2 S, and the heat ux vectorq. We de�ne the species multicomponent and the thermal di�usion coe�cients as8>><>>:Dij = p3� [[�Di ;�Dj ]]; i; j 2 S;�i = � 13[[��0 ;�Di ]]; i 2 S; (4:21)the partial thermal conductivity as�0 = 13kBT 2 [[��0 ;��0 ]]; (4:22)and the di�usion driving forces asdj = 1p  Xl2E @pj@epl @xepl � �jbj! ; j 2 S: (4:23)17



The species di�usion velocities may then be written asVi = �Xj2SDijdj � �i@x log T; i 2 S; (4:24)and the heat ux vector asq = ��0@xT � pXi2S �idi +Xi2S�Hi � kBT 2pi @pi@T �niVi: (4:25)It is also possible to use a formalism identical to the one arising for mixtures withnonequilibrium chemistry. We �rst notice that	 eDl =Xj2S	Dj @pj@epl : (4:26)Thus, by linearity, the corresponding solutions of the integral Boltzmann equations(4.8) are such that �eDl =Xj2S�Dj @pj@epl : (4:27)We also introduce the quantitiesb	�0i = �Hi � 12mi(ci � v)2 �EiI�(ci � v); i 2 S; (4:28)in such a way that 	�0 = b	�0 � kBT 2Xj2S	Dj @pj@T : (4:29)Upon introducing the integral equations( =i(b��0) = b	�0i ; i 2 S;hhf0b��0 ;  lii = 0;  l 2 I; (4:30)we obtain by linearity that ��0 = b��0 � kBT 2Xj2S�Dj @pj@T : (4:31)We then de�ne the thermal di�usion coe�cients asb�i = �13 [[b��0 ;�Di ]] = �i � Tp Xj2SDij @pj@T ; i 2 S; (4:32)the partial thermal conductivity asb�0 = 13kBT 2 [[b��0 ; b��0 ]]; (4:33)18



and the species di�usion driving forces asbdj = 1p  Xl2E @pj@epl @xepl + @pj@T @xT � �jbj! ; j 2 S: (4:34)The species di�usion velocities Vi are then given byVi = �Xj2SDijbdj � b�i@x log T; i 2 S; (4:35)and the heat ux vector byq = �b�0@xT � pXi2S b�ibdi +Xi2S HiniVi: (4:36)It is possible to rewrite the species di�usion velocities and the heat ux vector interms of the thermal di�usion ratios and the thermal conductivity [16]. The thermaldi�usion ratios b�i, for i 2 S, are the unique solution of the constrained singular system8>>><>>>:Xj2SDij b�j = b�i; i 2 S;Xj2S b�j = 0; (4:37)while the thermal conductivity readsb� = b�0 � pT Xj2S b�j b�j : (4:38)Upon introducing b�� = b��0 + pkBTXj2S b�j�Dj ; (4:39)we may write 8>><>>: b� = 13kBT 2 [[b��; b��]];b�i = mi3pkBT [[�i; b��]]; i 2 S; (4:40)with �i = �(ci�v)�ij�i2S , and we recover the formalism derived in [16] for nonreactivemixtures. Using the thermal conductivity and the thermal di�usion ratios, the speciesdi�usion velocities and the heat ux vector read8>>><>>>:Vi = �Xj2SDij(bdj + b�j@x logT ); i 2 S;q = � b�@xT � pXi2S b�iVi +Xi2S HiniVi: (4:41)19



The transport coe�cients introduced above satisfy several important propertieswhich result from those of the bracket operator [[ ; ]]. First, the matrix of order n+ 1 1T 2 b�0 pT (b�i)i2SpT (b�i)i2S pT (Dij)i;j2S ! ; (4:42)is symmetric positive semi-de�nite with kernel spanned by the vector (0; Y1; : : : ; Yn).Equivalently, we may state that the thermal conductivity b� is positive and that thedi�usion matrixD = (Dij)i;j2S is symmetric positive semi-de�nite with kernel spannedby the mass fraction vector (Y1; : : : ; Yn). On the other hand, the shear vicosity � ispositive and the volume viscosity � is nonnegative, the latter being zero only if thereare no polyatomic species in the mixture.Finally, we point out that it is possible to de�ne multicomponent and thermaldi�usion coe�cients for the elements. Indeed, we may write the element di�usionvelocities eVk, k 2 E , as followseVk = �Xl2E eDkl 1p@xepl � e�k@x logT + Xi;j2S nienk EikDijp �jbj ; (4:43)where we have introduced the element multicomponent di�usion coe�cientseDkl = Xi;j2S nienkDij @pj@epl Eik; k; l 2 E ; (4:44)and the thermal di�usion coe�cients for the elementse�k =Xi2S nienk �iEik; k 2 E : (4:45)Note also that when all the species external forces are equal, i.e., bi = b for i 2 S, thelast term in (4.43) vanishes. Introducing the matrix (lm)l;m2E de�ned in the appendix,the element multicomponent di�usion coe�cients may be expressed aseDkl = Xm2E kBTlm Xi;j2S 1enkDij niEik njEjm: (4:46)As opposed to the di�usion matrix D, the element di�usion matrix eD = ( eDkl)k;l2Edoes not appear to have any simple structure properties, such as symmetry or positivede�niteness. We will see in the next section that this matrix does not appear directlyin the framework of Onsager's reciprocal relations. As a result, it is more convenientto use the species di�usion matrix D rather than the element di�usion matrix eD.20



4.4 Entropy production and Onsager's reciprocal relationsIt is well-known that at the �rst order in the Enskog expansion, the entropy may beevaluated using the zeroth order Maxwellian distribution functions. The �rst orderentropy per unit volume S1 then readsS1 = � kBXi;I Z f1i �log(�iIf1i )� 1�dci= Xi2S niS0i +O("2); (4:47)where the zeroth order molecular entropies are given by (3.9). The Gibbs free energyper unit volume of the speciesGi = Hi � TS0i = kBT log niQi ; (4:48)has several important properties. First, as a result of the chemical equilibrium condi-tions (3.5) we have (Gi)i2S 2 E : (4:49)In addition, as a direct consequence of the �rst relation in (A.2), we obtain the orthog-onality property Xi2S Gi @ni@T = 0: (4:50)We then de�ne the Gibbs free energy per unit volume for the elements aseGl =Xi2S Gi @pi@epl ; l 2 E ; (4:51)as well as the enthalpy per unit volume for the elementseHl =Xi2S Hi @pi@epl ; l 2 E : (4:52)Using the relations given in the appendix, one can easily show thatG =Xi2S niGi =Xl2E enl eGl; (4:53)and that H =Xi2S niHi =Xl2E enl eHl + T � @p@T �epl : (4:54)21



Using the above relations, we deduce that the di�erential of the volumetric entropyin the kinetic chemical equilibrium regime is given by the relationTdS = dE �Xl2E eGldenl: (4:55)This relation generalizes the Gibbs di�erential relation to the kinetic chemical equilib-rium regime. A conservation equation for S is then easily obtained from (4.55) and themacroscopic conservation equations stated in Section 4.2. This equation can be alsodirectly obtained from the Boltzmann equation satis�ed by f1 and proceeding as inSection 2.2. A straightforward calculation yields that@tS + @x�(vS) + @x�J1s = �1; (4:56)where J1s is the entropy ux vector given byJ1s = 1T (q �Xl2E eGlenl eVl); (4:57)and the entropy source term �1 reads�1 = �q�@xTT 2 � �:@xvT + 1T Xi2S �iVi�bi �Xl2E enl eVl�@x� eGlT �: (4:58)For the sake of simplicity, we assume that all the external forces are equal, bi = b fori 2 S, so that the third term in the right member of (4.58) vanishes.In order to expand the last term in (4.58), we use the following relations@@T  eGlT !epl = � eHlT 2 ; l 2 E ; (4:59)and @@epk  eGlT !T; epm;m 6= k = kBkl; k; l 2 E ; (4:60)where the matrix (kl)k;l2E is symmetric and given explicitly in the appendix. Theentropy source term may now be written as�1 = �q �Pl2E eHlenl eVlT 2 � @xT � �:@xvT � Xk;l2E kBklenl eVl � @xepl: (4:61)Using the expressions for the transport uxes obtained in the previous section, we maywrite q �Xl2E eHlenl eVl = ��0;0 @xTT 2 �Xk2E �0;k@xepk; (4:62)22



and Xl2E kBklenl eVl = ��k;0 @xTT 2 � Xm2E �k;m@xepm; k 2 E ; (4:63)and the coe�cients �k;m, 0 � k;m � ne, read8>>>>>>>><>>>>>>>>:
�0;0 = T 2�0;�0;k = �k;0 =Xi2S �i @pi@epk ; k 2 E ;�k;m = 1pT Xi;j2SDij @pi@epk @pj@epm ; k;m 2 E : (4:64)

The above relations show that the entropy source term in the Navier-Stokes equilibriumregime is compatible with Onsager's reciprocal relations.Finally, we point out that the entropy source term may also be written using thesame formalism as for gas mixtures in chemical nonequilibrium. After some algebra,we get�1 = b�@xT � @xTT 2 + pT Xi;j2SDij(bdi + b�i@x log T )�(bdj + b�j@x logT ) + �T (@x�v)2+�2T �@xv + (@xv)t � 23 (@x�v)I�:�@xv + (@xv)t � 23 (@x�v)I�: (4:65)From the properties of the transport coe�cients stated in Section 4.3, we readily obtainthat the entropy production term �1 is a sum of positive terms.4.5 Concluding remarksIn this paper we have derived a theoretical framework for the kinetic chemical equilib-rium regime introduced formally by Ludwig and Heil and we have presented a detailedinvestigation of the associated Euler and Navier-Stokes regimes. As a conclusion, it isinteresting to consider the following points.(1) The preceeding sections show that the underlying structure of the governing equa-tions for gas mixtures in the kinetic chemical equilibrium regime is formally iden-tical to the one obtained for gas mixtures in chemical nonequilibrium and thenletting the chemical reactions approach equilibrium. This remark is valid for boththe transport uxes and the entropy production. It is important to notice, however,that the actual value of the transport coe�cients is di�erent in each case. Indeed,in the kinetic chemical equilibrium regime, the linearized Boltzmann operator =23



contains terms accounting for reactive collisions, as opposed to the linearized Boltz-mann operator that would be obtained if the chemical reactions were consideredas a slow process.(2) It is also interesting to point out that although the macroscopic governing equa-tions in the kinetic equilibrium regime express conservation of element densitiesinstead of species densities, the simplest structure in these equations is recoveredby introducing species di�usion velocities. It is actually impossible to eliminatecompletely the species from the governing equations since the volumetric energyof the mixture cannot be expressed as a combination of quantities only dependingon the elements.
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Appendix. Di�erential relationsIn this appendix, we present some useful di�erential relations needed in this work. Werestate that in the kinetic chemical equilibrium regime the macroscopic independentvariables are the element number densities, the mean average ow velocity, and thetemperature. As a result, the species number densities ni, i 2 S, are functions of theelement number densities enl, l 2 E , and the temperature T . They are given by8>>><>>>:Xi2S niEil = enl;�log niQi�i2S 2 E ; (A:1)recalling that E is the element space de�ned by (3.6). Di�erentiating (A.1) with respectto T �rst yields 8>>><>>>: �@ni@T �i2S 2 E ?;�Ei � kBT 2ni @ni@T �i2S 2 E ; (A:2)while di�erentiating (A.1) with respect to nm, for m 2 E , yields8>>>><>>>>:Xi2S @ni@enm Eil = �lm; m 2 E ;� 1ni @ni@enm�i2S 2 E ; m 2 E : (A:3)Rather than number densities, it is also possible to consider partial pressures forthe elements and the species, as given by (4.1). With the macroscopic variables (4.2),the species partial pressures are functions of the element partial pressures epl, l 2 E ,and the temperature T . Eqs. (A.1) now read8>>><>>>:Xi2S piEil = epl;�log pikBTQi�i2S 2 E ; (A:4)and di�erentiating (A.4) with respect to T and epm, for m 2 E , yields8>>><>>>: �@pi@T �i2S 2 E?;�Hi � kBT 2pi @pi@T �i2S 2 E ; (A:5)25



and 8>>>><>>>>:Xi2S @pi@epm Eil = �lm; m 2 E ;� 1pi @pi@epm�i2S 2 E ; m 2 E : (A:6)From the second relation in (A.6) we deduce that there exist a matrix  = (kl)k;l2Esuch that 1pi @pi@epl =Xl2E klEil; i 2 S; l 2 E ; (A:7)and a straightforward calculation shows thatkl = lk =Xi2S 1pi @pi@epk @pi@epl : (A:8)
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