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The Kinetic Chemical Equilibrium Regime

Alexandre ERN and Vincent GIOVANGIGLI

1 Introduction

Extensive interest in the kinetic theory of gas mixtures with chemical reactions has
grown significantly over the past few years. The subject is indeed related to a wide
range of practical applications, including spacecraft flights, plasma physics, combustion
processes and chemical reactors. An attractive approach for modeling gas mixtures
with chemical reactions relies upon a generalized Boltzmann equation with chemical
source term and the Enskog expansion. With this approach, the collision term in
the Boltzmann equation is split into fast and slow processes, thus giving rise to a
formal expansion of the species distribution functions and the kinetic equations. Most
applications are concerned with the zeroth and first order terms in the expansion.

In this context, several kinetic regimes may arise for chemically reactive gas mix-
tures [1,2]. When the chemistry times are much larger than the relaxation times for
translational and internal energy exchange, the chemical source term in the Boltz-
mann equation accounts for slow processes while the nonreactive source term results
from fast processes. This regime has been studied extensively in the past and gives
rise, in particular, to the tempered and slow reaction regimes, for which expressions of
transport coefficients have been given [1,3-6]. On the other hand, when the chemical
characteristic times are of the same order of magnitude as the relaxation times of trans-
lational and internal energy, a kinetic chemical equilibirum regime arises. This regime
has been introduced formally by Ludwig and Heil [6] for dissociation and ionization of
gas mixtures, but these authors did not introduce the appropriate collisional invariants
associated with the chemical elements. The main goal of this work is now to derive
a general theoretical framework for gas mixtures in the kinetic chemical equilibrium
regime.

Our paper is organized as follows. In the next section we present the generalized
Boltzmann equation for chemically reactive mixtures in a semi-classical framework.
Our analysis is concerned with dilute, isotropic mixtures with fast relaxation of all

the internal energy modes, thus excluding cases such as external magnetic and electric
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fields or strong vibrational desequilibrium [7]. We discuss the form of the chemical
source term for arbitrary chemical reaction mechanisms and show that all nonreactive
and reactive collisions arising at the microscopic level yield a positive contribution to
the entropy production. We then introduce the collisional invariants associated with
chemical elements, momentum and energy and study the Enskog expansion in the
kinetic chemical equilibrium regime.

In Section 3 we investigate the FKuler regime corresponding to the zeroth order
Enskog expansion. In this regime, the species distribution functions are given by local
Maxwellian distribution functions, but the species number densities are constrained by
the chemical equilibrium conditions. We present the macroscopic equations expressing
conservation of element densities, momentum and energy.

Finally, in Section 4 we investigate the Navier-Stokes regime corresponding to the
first order Enskog expansion. The macroscopic equations for element densities, mo-
mentum and energy involve several transport fluxes: the element diffusion velocities,
the pressure tensor and the heat flux vector. We express these fluxes in terms of vari-
ous transport coefficients including, in particular, the element diffusion matrix. Upon
introducing the species diffusion velocities, we show that the first order kinetic equi-
librium regime is formally equivalent to the one obtained from a first order expansion
with nonequilibrium chemistry and then letting the chemical reactions approach equi-
librium. The actual values of the transport coefficients are, however, different. Finally,
we derive the conservation equation for the entropy and show that the source term is

positive and that it is compatible with Onsager’s reciprocal relations.

2 Theoretical framework

In this section we derive a theoretical framework for the kinetic chemical equilibrium
regime. We first derive a generalized Boltzmann equation for chemically reactive mix-
tures and present explicitly the form of the chemical source term for an arbitrary re-
action mechanism. We then show that both nonreactive and reactive source terms are
compatible with the positivity of entropy production. We next present the collisional
invariants for reactive mixtures at equilibrium, accounting for element, momentum
and energy conservation. Finally, we investigate the Enskog expansion in the kinetic

chemical equilibrium regime.



2.1 Generalized Boltzmann equation

We consider a dilute reactive mixture consisting of n chemical species having internal
degrees of freedom. We are concerned here with isotropic gas mixtures, thus excluding
the case of external magnetic or electric fields. The starting point of our analysis is
the Boltzmann equation derived in [8] for polyatomic gas mixtures without chemical
reactions. This equation has been obtained in a semiclassical framework, i.e., the
translational motion of the particules is treated classically and the internal degrees of
freedom are treated quantum mechanically. It preaverages the collision cross-sections
over all the magnetic quantum numbers and can be derived from the Waldmann-Snider
quantum mechanical Boltzmann equation [9,10].

The state of the mixture is described by the species distribution functions denoted
by fi(t,x, c;, 1), where t is the time, & the three-dimensional spatial coordinate, ¢; the
velocity of the i*" species and r the index for the internal energy state. For brevity,
the dependence on (¢,x) is made implicit. For a family of functions &;, i € S, where
&; depends on ¢; and 1, we introduce the compact notation £ = (§;);cs. The family of
species distribution functions f = (f;)i;cs is the solution of a generalized Boltzmann

equation written in the form

Di(fi) = Bi(f) + Ci(f), i€, (2.1)
where & = [1,n] is the set of species indices. In the above equation, D; is the usual
differential operator

Di(fi) = Ocfi + (¢i°0z) fi + (bi-0¢,) fi (2.2)

where b; is the external force acting on the i*" species, and B;(f) and C;(f) are, re-
spectively, the nonreactive and reactive source terms. The nonreactive source term is
given by [1,8]
a;;Q; [
B =3 3 [Uir 2 gy Wy desdelde, (2:3)

J
Qirr Qg gt
JES 4,15’ vy

where 1 and s are the indices for the quantum energy states of the i*® and j*® species
before collision, 1’ and J’ the corresponding numbers after collision, a;; the degeneracy
of the 1*" quantum energy shell of the i*" species and Wi ' the transition probability
for the nonreactive collision. Note that the transition probabilities have been preav-
eraged over all the magnetic quantum numbers and satisfy the reciprocity relations
[8]

117" 171
Wz’j Qi G5, = Wz’j Qi Qg (2.4)

4



It is also possible to consider a formalism based on collision cross-sections rather than
transition probabilities, but the present formalism is more convenient for reactive col-
lisions [2,6].

The reactive source term C;(f) results from chemical reactions between species
in the mixture. We consider both bimolecular and trimolecular chemical reactions. In
particular, although triple nonreactive collisions have been neglected in the nonreactive
source term (2.3), triple reactive collisions are retained since recombination reactions
cannot often proceed otherwise [6,11]. Triple reactive collisions can also be viewed as
a sequence of two bimolecular reactions proceeding extremely fast [2].

Before giving the general form of the reactive source term, we present some exam-

ples. Consider first a bimolecular reaction of the form

Xi T Xj = Xk + Xt (2.5)

with species indices 7, 7, k, [ assumed to be distinct and with x; denoting the chemical
symbol for the i*® species. Let 1, J, K, L denote the indices for the internal energy

states of the species. The reactive source term then reads [1,2,6,11]

Ci(f)=> /(fkflﬂ;K[flL — fif))Wijiitdejderde, (2.6)
J,K,L eIEg g
where the statistical weight f3;; is given by
h3
/31'1 - L ;’LB, (27)
i1l

and where h, is the Planck constant, m; the mass of the particules of the i* species and

i - the transition probability for the forward reaction in (2.5). In (2.6), we have

used the reciprocity relation between the forward and reverse transition probabilities
which reads [1,2,6,11]

.I:’kfl(L If:(l'L'”
HE = = (2.8)
ﬂi[ﬂjJ /ng/@lL

In the case where i and j are the same in reaction (2.5), i.e.,

Xi +Xi = Xk + Xt (2.9)

the forward and reverse reaction delete or produce, respectively, two molecules of the

i species so that the reactive source term becomes [2,6,11]

Cz(f) =2 Z /(fkfl ﬂﬂk:gzl; - f,fz)W;EkIl(Ldédedel, (2.10)

1,K,L



with fZ denoting fZ (t,x,¢;, 1). In the case of a chemical reaction involving three prod-

ucts, as in

Xi +Xj = Xk + Xt + Xm> (2.11)

with all the indices assumed to be distinct, the reactive source term reads [2,6,11]

= > / (fifofo Db Orr s ’“f’gﬂw_ il YWEEEY dejdeydeden, (2.12)
vIMgy T

J,K,L,M

with obvious notation. Note that the Planck constant does no longer cancel out in
(2.12). Finally, in the case where the i*" species is present as reactant and product in

reaction (2.5), i.e

Xi + X5 = Xi + Xt (2.13)

the forward and reverse reactions do not account for the same statistical event regarding

species ¢ so that the source term reads [2,6,11]

Z/fzflﬂﬁﬂ“ fzfj) fj‘;decjdéidcl

7,50 ﬂiIBjJ
(2.14)
B’LIB!L ”IL ~
+ Z fzf] fzfl) igil dcidcjdcl.
L.I.J B’I.I/@]J

Our goal is now to generalize the above expressions into a single formalism valid

for arbitrary reaction mechanisms. The reactive source term for the i*® species reads

ci(f) =S¢ (). (2.15)
(r)

Here, Ci(r)( f) is the source term for the 7" elementary reaction written in the form

Yooxi= Y Xk (2.16)

JER( keP(r)

where R and P are, respectively, the indices for reactants and products. For
instance, for reaction (2.5), we have R(" = {4 5} and P = {k,1}, whereas for
reaction (2.9), we have R(") = {i,i} and P") = {k,1}. We denote by l/iR(T) and
VZ) ™ the stoichiometric coefficients of the b species among reactants and products,
respectively, and we also denote by r and p the indices of internal energy states for
reactants and products, respectively. For a given species ¢ € S, we denote by RET) the

set of reactant indices where the index ¢ has been removed only once. For example, for
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reaction (2.5), we have Rgr) = {j } and for reaction (2.9) we have Rzm = {i}. Finally,
we introduce a similar notation for Pi(r), RrR; and p;. With this notation, the source

term for the r*® elementary reaction reads

, () [lpo B
() =" Y /HP”’fk HZ( >ﬂj}; ~ T Fi)WrGrper Tt pens dejdes

R17

pm [Ipo Brx
+v Z /HR(T) f] ] HP(T) fk) 7};,I(DT)’]D(T) HR(T),P_(T) dcjdck7
[Ix Bjs i

R,Py
(2.17)

with, for instance, HR(T) P decjdey, standing for Hn(r) dchP(r) deg. In addition,
WR(T)P(,,) is the transition probability for a reactive collision in which the reactants
R() with internal energy states r are transformed into products P(") with internal
energy states p. Note that the following reciprocity relation holds for the transition
probabilities [2]

RP PR
ROPpr  YVpmyRrm (2.18)

[Tro Bis  Tlpe Bex

2.2 Entropy production

We now show that the nonreactive source term (2.3) and the reactive source term (2.17)
are both compatible with the H-theorem or, in other words, that they yield a positive
entropy production. To this purpose, we introduce the kinetic entropy per unit volume

given by
S=-k Y /f,- (log(Bir fi) — 1)de;. (2.19)

Multiplying the Boltzmann equation (2.1) by log(f;, fi) — 1, integrating over de; and

summing over ¢ and I yields the entropy conservation equation in the form
S + 0 (Sv) + 0 Js = 0, (2.20)

where v is the mean average velocity defined later, Js the entropy diffusive flux given
by

= —ky Z/ —v fz log(/@ufz) - 1)dcia (221)

and o the entropy source term. The entropy source term may be written

o=0o"+40°, (2.22)
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with the nonreactive source term given by

o= —k Z/Bi(f)(log(ﬂizfi) —1)de;
" (2.23)

:ilﬁa Z Z /fifj Q( Jols | Jil )W{j"”"’dcidcjdc;dc;,

Y
Qi Qg0 Qi Qg
4,J€S 1,J,1',J' vy Ly

and the reactive source term by

o= kY / Ci(f) (1og(Bir ) — 1)de;

=k D / (Tren /3) @ Lper B Fii T Bisf3) Witk pior Tlens i deide

(r) R,P

(2.24)
with Q(z;y) = log(z/y)(x — y). It is readily seen that both ¢® and ¢¢ are a sum of
positive terms. In other words, all the collisions arising at the microscopic level, either
nonreactive or reactive, yield a positive contribution to the kinetic entropy production.
The generalized Boltzmann equation (2.1) is thus compatible with the H-theorem and
yields a dissipative structure. This property is particularly important in the modeling
of reactive gas mixtures where special care should be taken so that all the terms arising

in the entropy production yield a positive contribution.

2.8 Collisional invariants and macroscopic properties

As opposed to the nonreactive case where species, momentum and energy are conserved
by any microscopic collision, in the reactive case only elements, momentum and energy
are conserved. We denote by n. the number of elements in the mixture and by & =

[1,n.] the set of element indices. The n.+4 collisional invariants are then given by

(gil)iE$7 l e 87
Y=< (micui)ies, l=n.+v,v=1,23, (2.25)
(%mici-ci +Ei1)ie$; [ =n,+4,

where £;; is the number of element [ in the i*" species, ¢,; the component of ¢; in the
vt spatial coordinate, and F;, the total internal energy of the it species in the r*h
quantum energy shell, given by the sum of the energy of formation plus the internal
energy. For later convenience, we denote by Z the space spanned by the collisional

invariants.



For two families £ = (&;)ies and ¢ = ((;)ies, we introduce the scalar product

(6.0 =3 [eden (2.26)

i,
The macroscopic properties are then given by
ﬁla l e 8;
<<f7 wl» = P, [ = Ne +v, V= 1;273; (227)
%pv'v+E7 l:ne+47
lth

where n; denotes the number density for the
lth

element, p =, myn; the density of
the mixture, m; the molecular mass of the ["" element, v the mean average velocity and
E the total internal energy per unit volume of the mixture. We introduce the partition

function for internal energy Q*® for the i*" species
Q' = ay exp(—BE;,), (2.28)
I

with 8 = 1/(kT), ks being the Boltzmann constant and 7' the temperature, as well as

the translational and full partition functions

tr 27rm’i i tr int
Q; = Bh2 ) Q;, = Q; Q™. (2-29)
P
The averaged internal energy of the i*® species reads
_ 1 d .
E; = o Zai,Ei, exp(—pE;;) = T log Q™. (2.30)
i 7

We also introduce the internal energy of the i*" species and its enthalpy given by

Ei=3kT+E;, H=3kT+E, icS. (2.31)

The species number densities are defined as

n; = Z/fzdcz, 1 €8, (2.32)

in such a way that

=Y miful €E. (2.33)
€S

The total internal energy per unit volume of the mixture then reads

E=) nE;. (2.34)



2.4 The kinetic chemical equilibrium regime

In this work we are concerned with the kinetic chemical equilibrium regime in which
both the chemistry times and the relaxation times for translational and internal energy
are much smaller than the characteristic times of the flow. An approximate solution to
the Boltzmann equation (2.1) is then obtained using an Enskog expansion. Rewriting
(2.1) in the form

D)= L (Bip)+Clf).  ies, (2.35)

€

where ¢ is a formal expansion parameter, the species distribution functions are ex-
panded as
fi= (1 +ep +0(?)), i € 8. (2.36)

The family of zeroth order distribution functions f° = (f?);cs is the solution of
Bi(f)+C(f° =0, ieS. (2.37)

In order to determine f° uniquely, it is classical to impose that f© yield the local

macroscopic properties

(o9 = (e, el (2.38)

We will see in section 3 that (2.37) and (2.38) uniquely determine the zeroth order
distribution functions f° and give rise to the Euler equilibrium regime.
The first order perturbations ¢ = (¢;);cs are the solution of non-homogeneous

integral equations written in the form
Si(d) = 1€S, (2.39)
where the right member ¥; uniquely depends on f° and reads
¥; = -D;(log ), i€S. (2.40)
In addition, 3; denotes the linearized collision operator for the i*" species, which reads
3i(9) = 3T (9) + 37 (), (2.41)

where the nonreactive and reactive collision operators are given by

3B(4) = — %wf&(f"), %)
i N (2.42)
=3 Y [50ik y — di- Wy desdeide,
JES J, 1,5’
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1
300 = — 7l 0sCi(f7), 1°9)
)
= Z /HRY) fJQ(Z $j — Z ¢k)W7§€T>P(T)HRET),P(r) dejdey, (2.43)
R;,P R(T) Pp(r)
(r)
+vf Z /Hp.(” flg(z Pr — Z ¢j)W7I§1(DT>P(T> Hnm,p@ dejdcey,.
R,P; ‘ P(r) R(r) ‘

Note that the linearized collision operator has important structure properties which
generalize those discussed in [12] for nonreactive mixtures. Indeed, upon introducing

the bracket operator

[€. ¢l = (7, (O, (2.44)

it is readily seen from (2.42) and (2.43) that the bracket operator has the following

fundamental properties.

(i) it is symmetic: [§, (] = [, €],
(ii) it is positive semi-definite: [£,&] > 0,
(iii) its kernel is spanned by the collisional invariants: [€,£] =0 <= £ € 7.

In order to determine uniquely the perturbation ¢, the integral equations (2.39) are

completed with the n, + 4 constraints
(¢ 9" =0, el (2.45)
The first order species distribution functions f! = (f});cs given by
fl=R0+¢), €S, (2.46)
are then such that
(FLh =09 = (e, Y el (2.47)

and give rise to the Navier-Stokes equilibrium regime discussed in Section 4.

3 The Euler equilibrium regime

In this section we discuss the Euler equilibrium regime for reactive mixtures in kinetic
chemical equilibrium. This regime results from the zeroth order Enskog expansion

discussed in Section 2.4.
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3.1 Generalized Maxwellian distribution functions

The zeroth order distribution functions f° are generalized Maxwellian distribution
functions. Indeed, we have seen in Section 2.4 that they satisfy Eqgs. (2.37) and (2.38).
Using (2.37), we first deduce that

7" =<k 3 [(Br) +Cil£°)) Qo ) ~ 1)des =0, 3.)

0 is a sum

and hence the entropy production corresponding to f° is zero. Since o
of nonnegative terms, it is readily seen from (2.23) and (2.24) that ¢° can vanish if
and ounly if the vector (log(s;, fio))i cs 18 conserved in both nonreactive and reactive
collisions. We may therefore write

(log(Bir 1)) ;cs € T- (3.2)

Using (2.25) we obtain that

log(ﬂilfio) = Zal&-l — w-m;Cc; — ’y(%mici-ci + Ei[); (33)
le&

for i € S. The constants oy for [ € E, w € R® and v in (3.3) are determined from
the macroscopic constraints (2.38). After some algebra we get w = v, v =  and the

following expression for the zeroth order species distribution functions

jo= ML oy {—"“ﬂ (c; — v)? - BE}

B Q; 2
3.4
miB\*"? aim, mif3 ) .

These expressions are similar to those obtained for flows in both tempered and slow

reaction regimes, except that the species number densities are now constrained by the

<10g %) € E, (3.5)
i/ eS8

where we have introduced the element space

relations

E = Vect(&1,...,En,), (3.6)

where & = (gil)ies forl € &.
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It is important to point out that the constraints (3.5) actually yield the usual chem-
ical equilibrium conditions for the species number densities. Indeed, upon introducing

the zeroth order entropy
= kY / 70 (log (65, £0) — 1)des, (3.7)
2,1

we obtain after some algebra that

SO=> "n;SY, (3.8)

1ES

with the zeroth order molecular entropies S? given by

S?:?—kBlogg—i, i€S. (3.9)
At the zeroth order, the species chemical potentials read
1 kT n;
0 0 A
)= —(H; —TS;) = — log —, 3.10
= (=TS = o (3.10)

and it is readily seen from (3.5) that the vector M u® with components m;u? is in the

element space
Mp® = (mip)ics € E. (3.11)

This relation simply states the usual equilibrium conditions for the chemical reactions,
as detailed for instance in [13,14]. In addition, the resulting equilibrium constant is

exactly the same as would be obtained using the rules of statistical mechanics [1,15].

3.2 Macroscopic conservation equations

The macroscopic conservation equations in the Euler regime are obtained from the

relations
(", D)) =0, 'eT (3.12)
where we have introduced the family D(f°) =(D;( fz-o))i cs- After some algebra, we
obtain
Oiny + Og-(nyv) = 0, leg, (3.13)
0(pv) + O+ (pv@V) = pp + > _ pibi, (3.14)
1ES
0i(300° + E) + 05 ((300% + E)v) = — 0y (pv) + Y _ pibi-v, (3.15)
i€ES
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where p; = n;m; is the density of the i*® species. These equations express conservation
of element densities, momentum and energy.

An equation for the temperature is easily recovered from the energy equation
(3.15). Upon introduing the particular derivative Dy = 0y + v-0,, a straightforward

calculation yields

™o D, T = {—(p +E)+ Z(ﬁ, > g—ngi) } Og-v. (3.16)

leg €S

The molecular heat capacity ¢™°' which appears in (3.16) consists of three contributions

cmol — gk_ + Z niciint,mol + Z nicghem,mol- (3_17)
ieS €S
The first term accounts for the translational heat capacity, while "™ and ¢"emme!

are, respectively the internal and chemical molecular heat capacity of the i*" species

given by

; dFE; 1 On;

int,mol 7 chem,mol A

nt,mol _ chemomol _ — “Z4 . 1
i dT’ i n; 0T (3.18)

4 The Navier-Stokes equilibrium regime

In this section we discuss the Navier-Stokes equilibrium regime for reactive mixtures in
kinetic chemical equilibrium. This regime results from the first order Enskog expansion

discussed in Section 2.4.

4.1 Linearized Boltzmann equations

We restate that the species perturbed distribution functions ¢ = (¢;);cs are the so-
lution of the integral equations (2.39) completed by the constraints (2.45). The right
member ¥; in (2.39) may now be evaluated using the zeroth order macroscopic con-
servation equations derived in Section 3.2. For convenience, we introduce the partial

pressure of the [*! element and the partial pressure of the i*® species given by
ﬁl = ﬁlkBT, leé&, pi = niksT, © € S. (4.1)

With the n. 4+ 4 macroscopic variables 8! given by

ﬁb lega
= v, l=n.+v,v=1,23, (4.2)
/37 [ =mne+4
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we obtain

Ne+4
v; = Z Ti (Dtﬂl + (¢; — ’v)-ﬁmﬂl) m;f(c; — v)-b;, (4.3)
=1
with
1 Op; I
Di D c&
1 3f0 Pi opy’ ’
T = =9 maiB(cw — ) l=ng+v,v=1,273
(2 fo a/@l (2 (1% v) e , y 2,90,
T2 Op;
H; — —kBpi %—%mi(ci—v)z—Ei,, l =ne + 4,

(4.4)
for + € S. Using the relations presented in the appendix, it is easily verified that for all
[=1,...,n.+4, the vector (Ti)Z cs is a linear combination of the collisional invariants
(2.25). After some lengthy calculations, we obtain the following expansion for ¥; in

terms of the macroscopic variable gradients
Uy = — W 0pv — LU Opv — Y BP0upy — ) 0.0+ W - (pjby),  (4.5)
le€ JES
with
' =m;B{(c; —v)®(c; —v) — :(c; —v)*I},
3 popi 1 ~ On,
UASS mzﬁ Z kBTzcmol p+ Z( nla—ﬁl)Ej

i 0D
e Pi P JES lcE

kT2 3pz pz dp; 4 9
H; — ks T —gmi(c; —v)" — Ey 0,
Di ; Di 0Dy 31 ) !

sI/.Blpl{ap’ Yzapj (ci —v),

v — {H T2 (90 y, 30 90 (e~ o) — B (e~ )
1

(4.6)
where I is the identity matrix. Letting u = n, &, D, forl € E, N, or Dj for j €S, we

deduce from the expansion (4.5) for ¥; a similar expansion for ¢;, namely

¢; = —gl')y D 0pv — %(/57 Ozv — Zﬁb;ﬁl Ol — ¢z>\’ 0z 8+ quzDJ ) (pjbj)’ (4'7)

le€ jes
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and each of the expansion coefficients ¢* = (¢');cs in (4.7) is the solution of the

constrained integral equations

(o) =Wk, QeS,
{ ws)

(foo vy =0, el

It is easily verified that the above systems are well posed for all y, i.e., the right member

! is in the range of the operator ¥; and the solution ¢# is unique.

4.2 Macroscopic conservation equations

The macroscopic equations in the Navier-Stokes regime are obtained from the relations

(W', D(f))=0, y'eL (4.9)

where we have introduced the family D(f') =(D;(f})), - We introduce two types of

diffusion fluxes, the classical species diffusion fluxes given by
n;Vi = Z/ v)flpide;,  i€S, (4.10)

and the element diffusion fluxes defined as

mV, = Z/a, v)flpide;, 1€, (4.11)
in such a way that
ﬁlﬁ = Z&szz, lef. (4.12)
1ES

After some algebra, we obtain the macroscopic conservation equations in the following

form

047ty + O (V) + 0+ ( V) =0,  LE€E, (4.13)

O0(pv) + 0g-(pv@V) + 0P = > pib;, (4.14)
IES

0u(3p0° + E) + 0+ ((3p0° + E)v) + 0p-(q+ P-v) = Y pibs-(v + V;). (4.15)
1ES

These equations express conservation of element densities, momentum and energy.
With the element diffusion velocities given by (4.12), we still need to specify the

species diffusion velocities V; for ¢ € S, the heat flux vector g and the pressure tensor
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P. These transport fluxes are expressed in terms of the species perturbed distribution

functions as follows

1

V; = E((JIDi, o), i €S, (4.16)

P=pl+I,  IT= (", °)+ (0" /"), (4.17)
B ' ke T? Op;

g=— (@, fo%) + ;(H - Fama (4.18)

where IT is the viscous stress tensor. In the next section we express the transport

fluxes (4.16)—(4.18) in terms of various transport coefficients.

4.3 Transport coefficients

We first consider the viscous stress tensor II. We introduce the shear viscosity n and

the volume viscosity « given by

_&T
n= 1_0[[¢"77 ¢"7]],

T (4.19)
R = T [[¢H7 ¢H]]7
and the viscous stress tensor then reads
=y (&cv + (950)t — g(am-v)l) ~ ki (9y0)I. (4.20)

We next turn to the species diffusion velocities V;, ¢ € S, and the heat flux vector

g- We define the species multicomponent and the thermal diffusion coefficients as

D = %WW’%]}, ijeSs,

. (4.21)
912: _§H¢A’7¢Di]]7 ’iGS,
the partial thermal conductivity as
-t [, o] (4.22)
3]<IBT2 ) ’
and the diffusion driving forces as
1 op; . -
d: =— —L Ot — pibi |, € S. 4.23
j p(%@plml pyy) J ( )
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The species diffusion velocities may then be written as
Vi=-> Did;—0;0;logT, i€S, (4.24)
JES

and the heat flux vector as

ks T2 Op;
q=-N0gT—p) 0;di+ ) (Hi— n;V;. (4.25)

It is also possible to use a formalism identical to the one arising for mixtures with

nonequilibrium chemistry. We first notice that

EIE Y 22 a%j' (4.26)
JES

Thus, by linearity, the corresponding solutions of the integral Boltzmann equations
(4.8) are such that

D Op;
Pr = Pi =L 4.27
o7 =D 6752 (4.27)
JES
We also introduce the quantities
) = (H; — imi(c; —v)? — Ei))(ci —v), €S, (4.28)
in such a way that 5
oY =N T2y WP 4.29
ks Jze;s o7 (4.29)

Upon introducing the integral equations

%1, aA’ — {if", 7/ G S,
{ 0’\>\’( l ) l (4.30)
(f7e™,v") =0, Y e,
we obtain by linearity that
o = KTy P (4.31)
‘ oT ’
jES
We then define the thermal diffusion coefficients as
~ 1~y _ T op; .
0, = —— A D =0, — — E DZ"—J eS 4.32
3 [[(:b 9 d) ]] p ‘ J 3T ’ ? Y ( )
jES
the partial thermal conductivity as
1 AN ST
/ A A
= 4.33
el (4.3



and the species diffusion driving forces as
0 _ 0 .
(Z i 9y p”aT pﬂ)), jeS. (4.34)
leg

The species diffusion velocities V; are then given by

V,=— ZD,Jd — 0;0,log T, i€S, (4.35)

and the heat flux vector by
€S 1ES
It is possible to rewrite the species diffusion velocities and the heat flux vector in

terms of the thermal diffusion ratios and the thermal conductivity [16]. The thermal

diffusion ratios x;, for i € S, are the unique solution of the constrained singular system

JES
(4.37)
2 % =0,
JES
while the thermal conductivity reads
X=X 2N 0% (4.38)
T X .
JES
Upon introducing
ot =N +phT Y X077, (4.39)
JjES
we may write
N A A
)\_ 3kBT2[[¢ 7¢ ]]7
(4.40)
~ = A .
P = i) €S,
X 3pk‘BT[[ 2l

with =; = ((Ci_v)(sij)ies’

mixtures. Using the thermal conductivity and the thermal diffusion ratios, the species

and we recover the formalism derived in [16] for nonreactive

diffusion velocities and the heat flux vector read

ZD’J i+ X0z logT), 1 €8,
JES

q= - 20T —pY Vit Y HinV;
1ES 1ES

(4.41)
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The transport coefficients introduced above satisfy several important properties

which result from those of the bracket operator [,]. First, the matrix of order n + 1
AN (6,
( T r(fiies ) (4.42)

is symmetric positive semi-definite with kernel spanned by the vector (0,Y7,...,Y},).
Equivalently, we may state that the thermal conductivity 2\ is positive and that the
diffusion matrix D = (D;;) jes is symmetric positive semi-definite with kernel spanned
by the mass fraction vector (Y7,...,Y,). On the other hand, the shear vicosity 7 is
positive and the volume viscosity x is nonnegative, the latter being zero only if there
are no polyatomic species in the mixture.

Finally, we point out that it is possible to define multicomponent and thermal
diffusion coefficients for the elements. Indeed, we may write the element diffusion

velocities Vk, k € &, as follows

-1~ ni . Dy
—  D=0ap1 — OkOplogT + Y = Ex—Lp;bj, (4.43)
le€ p i,jES Nk p

where we have introduced the element multicomponent diffusion coefficients
Dy — ni g, Pig kile& 4.44
kl—.zfv 'L]a~ ik Lec, ( )
1,JES
and the thermal diffusion coefficients for the elements
0 = —0;&; . .
K Zﬁk iy k€& (4.45)
1€S
Note also that when all the species external forces are equal, i.e., b; = b for + € S, the

last term in (4.43) vanishes. Introducing the matrix (Vi )i mee defined in the appendix,

the element multicomponent diffusion coefficients may be expressed as

. 1

As opposed to the diffusion matrix D, the element diffusion matrix D = (ﬁkl)k,,eg
does not appear to have any simple structure properties, such as symmetry or positive
definiteness. We will see in the next section that this matrix does not appear directly
in the framework of Onsager’s reciprocal relations. As a result, it is more convenient

to use the species diffusion matrix D rather than the element diffusion matrix D.
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4.4 FEntropy production and Onsager’s reciprocal relations

It is well-known that at the first order in the Enskog expansion, the entropy may be
evaluated using the zeroth order Maxwellian distribution functions. The first order

entropy per unit volume S* then reads
S, Z/f log (B f1) — 1)de

= Zn,50+(’)

1€ES

(4.47)

where the zeroth order molecular entropies are given by (3.9). The Gibbs free energy

per unit volume of the species

Gi=H; — TS® = kT log = (4.48)

Qz

has several important properties. First, as a result of the chemical equilibrium condi-
tions (3.5) we have
(Gi)ies € E. (4.49)

In addition, as a direct consequence of the first relation in (A.2), we obtain the orthog-

onality property

8ni .
> Gigg =0. (4.50)

€S

We then define the Gibbs free energy per unit volume for the elements as

=3 a; gp, leé, (4.51)
IES P

as well as the enthalpy per unit volume for the elements
opi
= ap le&. (4.52)
€S b
Using the relations given in the appendix, one can easily show that
G = anGz = Zﬁléla (453)
i€S le€

and that

H=Y nH = Zn,Hl+T<g§> (4.54)

1€S leg
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Using the above relations, we deduce that the differential of the volumetric entropy

in the kinetic chemical equilibrium regime is given by the relation
TdS = dE - Gydn. (4.55)
leg
This relation generalizes the Gibbs differential relation to the kinetic chemical equilib-
rium regime. A conservation equation for S is then easily obtained from (4.55) and the
macroscopic conservation equations stated in Section 4.2. This equation can be also
directly obtained from the Boltzmann equation satisfied by f! and proceeding as in

Section 2.2. A straightforward calculation yields that
OtS + 0+ (vS) + 0g-J! = o, (4.56)
where J! is the entropy flux vector given by

-G, (457)

leg
and the entropy source term o! reads
q0,T II. a v G
ot =T - —Zp,V b= T Vi-da ( ) (4.58)

leg
For the sake of simplicity, we assume that all the external forces are equal, b; = b for
i € S, so that the third term in the right member of (4.58) vanishes.

In order to expand the last term in (4.58), we use the following relations

o (G\ _ H
8T< >~_ T2 lef, (4.59)

2

and

38 (Gl) - k'B’Yklv kvl € 57 (460)
bk T, Py m # k

where the matrix (yxi)kice is symmetric and given explicitly in the appendix. The

entropy source term may now be written as

— H,m,V, :
oo 1 Diee Hinu l-amT_Ha"""

T2 T > ks Yt Vi - O (4.61)

k€€

Using the expressions for the transport fluxes obtained in the previous section, we may

write

~ = 3 T
q- Y HiuVi=—a""0 = " a"*0,p, (4.62)
le€ kee
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and

- = 0T ~
Zkar}’klnlw = _ak,O% - Z ak’mampma keé&, (463)
le€ me&

and the coefficients o®™, 0 < k, m < n,, read
( a0,0 — T2)\/,

ao’k:ak’():ZOia}ji, keé,

{ per O (4.64)
1 Op; Op;
k,m ? J
T = — E DZ — = k, e€.
“ pT S g apk apm "
L 1,JES

The above relations show that the entropy source term in the Navier-Stokes equilibrium
regime is compatible with Onsager’s reciprocal relations.
Finally, we point out that the entropy source term may also be written using the

same formalism as for gas mixtures in chemical nonequilibrium. After some algebra,

we get
~0zT - 0T ~ ~
A % > Dij(di + Xi0s log T)-(d; + X0z log T) + %(am-v)%
i,JES
n
o (020 + (02v)" — 2(050)I): (050 + (050)" — 2(0pv)I).

(4.65)
From the properties of the transport coefficients stated in Section 4.3, we readily obtain

1

that the entropy production term ¢ is a sum of positive terms.

4.5 Concluding remarks

In this paper we have derived a theoretical framework for the kinetic chemical equilib-
rium regime introduced formally by Ludwig and Heil and we have presented a detailed
investigation of the associated Euler and Navier-Stokes regimes. As a conclusion, it is
interesting to consider the following points.

(1) The preceeding sections show that the underlying structure of the governing equa-
tions for gas mixtures in the kinetic chemical equilibrium regime is formally iden-
tical to the one obtained for gas mixtures in chemical nonequilibrium and then
letting the chemical reactions approach equilibrium. This remark is valid for both
the transport fluxes and the entropy production. It is important to notice, however,
that the actual value of the transport coeflicients is different in each case. Indeed,

in the kinetic chemical equilibrium regime, the linearized Boltzmann operator &
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contains terms accounting for reactive collisions, as opposed to the linearized Boltz-
mann operator that would be obtained if the chemical reactions were considered
as a slow process.

It is also interesting to point out that although the macroscopic governing equa-
tions in the kinetic equilibrium regime express conservation of element densities
instead of species densities, the simplest structure in these equations is recovered
by introducing species diffusion velocities. It is actually impossible to eliminate
completely the species from the governing equations since the volumetric energy
of the mixture cannot be expressed as a combination of quantities only depending

on the elements.
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Appendix. Differential relations

In this appendix, we present some useful differential relations needed in this work. We
restate that in the kinetic chemical equilibrium regime the macroscopic independent
variables are the element number densities, the mean average flow velocity, and the
temperature. As a result, the species number densities n;, 1 € S, are functions of the
element number densities n;, [ € £, and the temperature T'. They are given by

E ni&y = ny,

1ES

N
log —z> ek,
< Qi i€S

recalling that E is the element space defined by (3.6). Differentiating (A.1) with respect

to T first yields
ek,
<8T 1ES

(A.1)

, (A.2)
E,L- . kBT 3nz c E,
nig 0T ) cs
while differentiating (A.1) with respect to n,,, for m € &, yields
on;
i = Gm,s m € &,
i€s Oty
(A.3)

(i@> ek, m € £.
i O ) e

Rather than number densities, it is also possible to consider partial pressures for
the elements and the species, as given by (4.1). With the macroscopic variables (4.2),
the species partial pressures are functions of the element partial pressures p;, [ € &,
and the temperature T. Eqs. (A.1) now read

> pia =i,

€S

(A.4)
bi
log > ek,
( ks TQi i€S
and differentiating (A.4) with respect to T and p,,, for m € &, yields

Opi cEL,

or 1ES
(A.5)

T2 Op;
<H, — s D ) ek,
pi 0T ) s
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and
Op;

—E&i1 = Oim, €g,
O "

1ES

1 Op;
<— f ) € E, m e €&.
Pi OPm =

From the second relation in (A.6) we deduce that there exist a matrix v = (yr)r, 1€

such that

(A.6)

1 Op; .
— ——E Eil, 1€8,1e€eé, A7
i Oy < YkiCil ( )

and a straightforward calculation shows that

1 Op; Op;
’Ykz:’nkzz— — . (A.8)
‘=% Pi Opr, Opi
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