
Mathematical study of a coupled system arising inMagnetohydrodynamicsJ.-F. Gerbeau, C. Le BrisCERMICS, Ecole Nationale des Ponts et Chaussées. 6-8 av. Blaise PascalCité Descartes - Champs-sur-Marne 77455 Marne-La-Vallée (France)1 IntroductionThis work deals with the mathematical study of a system of partial di�er-ential equations related to a magnetohydrodynamic (MHD) problem. TheMHD equations we consider modelize the behaviour of an homogeneous in-compressible conducting viscous �uid subjected to a Lorentz force due to thepresence of a magnetic �eld. More precisely, we study a coupling betweenthe transient Navier-Stokes equations and the stationary Maxwell equations.This model can be considered for example in industrial situations when themagnetic phenomena are known to reach their steady state �in�nitely� fasterthan the hydrodynamics phenomena.Many mathematical works have been devoted to the study of MHD prob-lems. We only present here some of them brie�y and we refer to J.-F. Ger-beau, C. Le Bris [5] and A.J. Meir, P.G. Schmidt [9] for some more detailedoverviews.The coupling between the transient Navier-Stokes equations and the tran-sient Maxwell equations (without displacement current) has been studied inG. Duvaut, J.-L. Lions [3] and in M. Sermange, R. Temam [11]. Numericalmethods conserving the dissipative properties of the continuum system in 2Dare presented in F. Armero, J.C. Simo [1]. Less numerous works have beendevoted to the fully stationnary MHD equations, namely a coupling betweentwo elliptic partial di�erential equations (see for example M.D. Gunzburger,A.J. Meir, J.S. Peterson [6], J.-M. Domingez de la Rasilla [2]). Finally, let usmention an interesting alternative viewpoint which consists in considering theelectrical current rather than the magnetic �eld as the main electromagneticunknown (see A.J. Meir, P.G. Schmidt [8, 9]).In the present work, the equations related to the velocity �eld are thetransient Navier-Stokes equations whereas those related to the magnetic �eldare elliptic (see (2.1)-(2.8)). The di�culty is that the ellipticity of the equa-1



tion on B depends on the velocity �eld u. Brie�y speaking, if the velocitybecomes too large, the system may become ill-posed.Under restrictive assumptions upon the physical data, we can howeverprove that a strong solution exists and is unique at least on a time interval[0; T �] for some time T � depending on the data (see Section 4, Theorem 1).For this purpose, we give in Section 2 a presentation of the equations and thefunctional spaces, and we establish in Section 3 some preliminary existenceand regularity results upon the magnetic equation.As soon as the magnetic operator is no longer invertible � which mayoccur if the velocity becomes too large � we show in Section 5 that we canconstruct two distincts solutions to the system.This latter observation shows that the model we study here should beused only with great care in numerical simulations.2 Equations and function spaces2.1 The transient/stationary modelLet 
 be a simply-connected, �xed bounded domain in R3 enclosed in a C1boundary �. We shall denote by n the outward-pointing normal to 
. Thetransient/stationary problem we shall consider is the following : �nd twovector-valued functions, the velocity u and the magnetic �eld b, and a scalarfunction p, de�ned on 
� [0; T ], such that@tu+ u:ru� �4 u = f �rp + curl b� b in 
; (2.1)div u = 0 in 
; (2.2)1� curl (curl b) = curl (u� b) in 
; (2.3)div b = 0 in 
; (2.4)with the following initial and boundary conditions :u = 0 on �; (2.5)b:n = q on �; (2.6)curl b� n = k � n on �; (2.7)ujt=0 = u0 in 
: (2.8)2



2.2 Functional settingFor m � 0, we denote as usual by Hm(
) the Sobolev spaceHm(
) = fu 2 L2(
);Du 2 L2(
); 8; jj � mg;where  = (1; 2; 3) is a multi-index and jj = 1 + 2 + 3. The normassociated with Hm(
) that we will use is :jjujjHm(
) = 0@ mXjj=0 jjDujj2L2(
)1A1=2 :The subspace of H1(
) consisting of functions vanishing on @
 is denoted asusual by H10 (
) .We shall denote respectively (Lp(
))3 and (Hm(
))3 by Lp(
) and H m(
)or, when there is no ambiguity, by Lp and H m .We shall use the Sobolev inequality : for 2 � p � 6,jjf jjLp(
) � c0jjf jjH1 (
): (2.9)Let T > 0 and let X be a Banach space. The space Lp(0; T ;X), 1 � p �1 is the space of classes of Lp functions from [0; T ] into X. We recall thatthis is a Banach space for the norm�Z T0 jju(t)jjpX dt�1=p if 1 � p <1; ess supt2[0;T ] jju(t)jjX if p =1:The following trace spaces will also be needed :H1=2(�) = fvj�; v 2 H1(
)g;H 1=2(�) = fvj�; vi 2 H1=2(�); i = 1; ::; 3g;H �1=2(�) = (H 1=2(�))0:They are equipped with the normsjjqjjH1=2(�) = infw2H1(
);wj�=q jjwjjH1(
);jjgjjH1=2 (�) = infw2H1 (
);wj�=g jjwjjH1 ;3



jjkjjH�1=2 (�) = supg2H1=2 (�);g 6=0 < k; g >jjgjjH1=2 (�) :We denote by C1c (
) (resp. C1c (
)) the space of real functions in�nitelydi�erentiable with compact support in 
 (resp. 
). We introduce the spacesV = fv 2 (C1c (
))3; div v = 0g;V = fv 2 H 10(
); div v = 0g;W = fC 2 (C1c (
))3; divC = 0; C:nj@
 = 0g;W = fC 2 H 1(
); divC = 0; C:nj@
 = 0g;H = fv 2 L2(
); div v = 0; v:nj@
 = 0g:The space V (resp. W ) is the closure of V (resp. W) in H 10(
) (resp. H 1(
)).H is the closure of V (and W) in L2(
). Let us recall that u:n makes sensein H�1=2(@
) as soon as u 2 L2(
) satis�es divu = 0. For v 2 V and C 2 Wwe denote jjvjjV = �Z
 jrvj2 dx�1=2 ;jjCjjW = �Z
 jcurlCj2 dx�1=2 :One can establish that jj:jjV (resp. jj:jjW ) de�nes a norm (resp. W ) whichis equivalent to that induced by H 1(
) on V (resp. W ) (cf. G. Duvaut andJ.-L. Lions [4]). Thus we have for B 2 W :jjBjjH1 (
) � d1jjBjjW :For 2 � p � 6, this inequality together with the Sobolev imbedding (2.9)imply that, for B 2 W jjBjjLp(
) � d2jjBjjW :As well, Poincaré inequality and (2.9) imply that, for u 2 VjjujjLp(
) � d3jjujjV :
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2.3 Regularity of the dataWe shall suppose in the sequel thatu0 2 H 10(
) \ H 2(
); with divu0 = 0; (2.10)q 2 C(0; T ;H3=2(�)); (2.11)k 2 C(0; T ; H 1=2(�)); (2.12)f 2 L1(0; T ; L2(
)): (2.13)From a physical viewpoint, it is natural to assume that k is the trace on �of the gradient of the electrical potential :k = �r�j�: (2.14)3 Preliminary resultsFirst of all, we notice that we can split the magnetic �eld b(t) 2 H 1(
)satisfying (2.6) and (4.14) into the sum of a function Bd(t) that satis�es(2.6) and a function B(t) 2 W . Indeed, we have :Lemma 3.1 Let q 2 C(0; T ;Hk�1=2(
)) for k = 1 or k = 2, there existBd 2 C(0; T ; H k(
)) and a constant d4 such thatBd:n = q on [0; T ]� � and jjBdjjC(0;T ;Hk (
)) � d4jjqjjC(0;T ;Hk�1=2(
)):Moreover, we can impose thatdivBd(t) = 0 and curlBd(t) = 0 for t 2 [0; T ]:}Proof. It su�ces to de�ne Bd as follows : Bd(t) = r�(t) where �(t) is asolution of the Neumann problem( �4� = 0 in 
@�@n = q(t) on �:}
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Let B(t) = b(t)�Bd(t). We replace the original problem (2.1)-(2.8) with thefollowing one :@tu+ u:ru� �4 u = f �rp+ curlB �B + curlB � Bd in 
 (3.1)divu = 0 in 
; (3.2)1� curl (curlB) = curl (u� B) + curl (u� Bd) in 
; (3.3)divB = 0 in 
; (3.4)with the following initial and boundary conditions :u = 0 on �; (3.5)B:n = 0 on �; (3.6)curlB � n = k � n on �; (3.7)ujt=0 = u0 in 
; (3.8)We now proceed to establish a preliminary existence and uniqueness resultfor the magnetic problem and two estimates which will be needed in the nextsection.We de�ne the convex setK = fv 2 L2(0; T ;V ); supt2[0;T ] jjv(t)jjV �M;jjvjjL2(0;T ;H2 (
)) �M;jj@tvjjL2(0;T ;L2(
)) �Mg:The values of the constant M and T will be �xed later. We only supposehere that M < 1d2d3� : (3.9)Let us note that v 2 K implies v 2 C(0; T ;V ). For v 2 K, we consider thefollowing problem : �nd B 2 C(0; T ;W )1� curl (curlB) = curl (v �B) + curl (v �Bd) in 
� [0; T ]; (3.10)divB = 0 in 
� [O; T ]; (3.11)with the following boundary conditions :B:n = 0 on �� [0; T ]; (3.12)curlB � n = k � n on �� [0; T ]: (3.13)6



Proposition 1For v 2 K andM satisfying hypothesis (3.9), the problem (3.10)-(3.13) has aunique solution B 2 C(0; T ;W ). Moreover, we have the following estimate :supt2[0;T ] jjB(t)jjW � �1 + �1jjvjjL1(0;T ;V )1� 1jjvjjL1(0;T ;V ) ; (3.14)where �1, �1 and 1 are some constants de�ned below. }Proof.� Existence and uniqueness. We de�ne on W �W the bilinear formav(C1; C2) = 1� Z
 curlC1:curlC2 dx� Z
(v(t)� C1):curlC2 dxand hv(t) 2 W 0 such that, for C 2 W ,< hv(t); C >= Z
 v(t)� Bd(t):curlC dx+ < k(t)� n; C >�First, let us prove that problem (3.10)-(3.13) is equivalent to �nd B 2C(0; T ;W ) such that av(B(t); C) =< hv(t); C > (3.15)for all C 2 W .Let B 2 C(0; T ;W ) which satis�es (3.15). Integrating by part, we have :Z
 1� curl (curlB)�curl (v(t)�(B+Bd)):C dx =< 1� (k�n�curlB�n); C >�for all C 2 W . First we deduce that< curlB � n; C >�=< k(t)� n; C >�which yields (3.13).Moreover, since divC = 0, there exists p such that1� curl (curlB)� curl (v(t)� (B +Bd)) = rp:The function p satis�es :( �4 p = 0 in 
@p@n = 1� curl (curlB):n� curl (v(t)� (B +Bd)):n7



It is straightforward to check that the normal component of curl (v�(B+Bd))contains only tangential derivatives of v. Thus, using vj� = 0, curl (v� (B+Bd)):n = 0.Moreover, (curl curlB):n = �@t1((curlB � n):t2) � @t2((curlB � n):t1),where @t1 and @t2 denote the tangential derivatives. Then, hypothesis (2.14)yields (curl curlB):n = 0.Therefore @p@n = 0, which proves p = Cst and (3.10).Conversely, we easily check that a solution of (3.10)- (3.13) satis�es (3.15).Moreover, av(:; :) is continuous and coercive on W �W . Indeed :jav(C1; C2)j � 1� jjcurlC1jjL2(
)jjcurlC2jjL2(
)+jjv(t)jjL6(
)jjC1jjL3(
)jjcurlC2jjL2(
)� ( 1� + d2d3M)jjC1jjW jjC2jjWand jav(C;C)j � 1� jjcurlCjj2L2 � jjvjjL6 jjCjjL3 jjcurlCjjL2� ( 1� � d2d3jjvjjV )jjCjj2W� ( 1� � d2d3M)jjCjj2WTherefore, the Lax-Milgram Theorem implies that the variational prob-lem (3.15) has a unique solution B(t) 2 W .The continuity in time of Bd and v implies that B 2 C(0; T ;W ).� Estimate in L1(0; T ;W ). Taking C = B(t) in (3:15), we have1� Z
 jcurlBj2 dx = Z
 v � (B +Bd):curlB dx+ 1� < k � n;B > :� jjvjjL6 �jjBjjL3 + jjBdjjL3� jjBjjW + 1� jjkjjH�1=2 jjBjjH1=2 :Thus jjBjjW � d2d3�jjvjjV jjBjjW + c1�jjvjjV jjqjjH1=2 + d1jjkjjH�1=2 :We deduce the estimate :supt2[0;T ] jjB(t)jjW � c1�jjqjjL1(0;T ;H1=2)jjvjjL1(0;T ;V ) + d1jjkjjL1(0;T ;H�1=2 )(1� d2d3�jjvjjL1(0;T ;V )) :8



For simplicity, we introduce the constants�1 = d1jjkjjL1(0;T ;H�1=2 );�1 = c1�jjqjjL1(0;T ;H1=2);1 = d2d3�;which gives (3.14). }In the next section, the vector �eld B de�ned above will appear on theright hand side of the Navier-Stokes equation in the Lorentz force curlB�B.We see that we need an estimate on u in L1(0; T ; H 1(
)) in order to prove thecoercivity of problem (3.10)-(3.13). Such a control on u is typically obtainedwith strong solutions of Navier-Stokes equations. To de�ne strong solutions,the force term in Navier-Stokes equations has to belong to L1(0; T ; L2(
))(see R. Temam [12]). In this scope, the estimate on B in L1(0; T ;W ) is notsu�cient. That is why we establish now a �better� estimate on B. First, weneed the following proposition which is a straightforward extension (in thenon homogeneous case) of Proposition 2.1 of Saramito [10] (see also Lemma2.1 and Remark 2.3 of [10]).Proposition 2Let m be a nonegative integer and 1 < p < 1. Let g 2 W m;p(
), withdiv g = 0 and g:n = 0 on �, k 2 W m+1�1=p;p(�), q 2 W m+2�1=p;p(�).Then, there exists a unique B 2 W m+2;p(
) such that8>><>>: curl (curlB) = g in 
;divB = 0 in 
;B:n = q on �;curlB � n = k � n on �;andjjBjjWm+2;p (
) � c2(jjgjjWm;p (
) + jjkjjWm+1�1=p;p (�) + jjqjjWm+2�1=p;p(�)):}
9



Proposition 3Under hypothesis (3.9), the solution of problem (3.10)-(3.13) given by Propo-sition 1 satis�esjjBjjL1(0;T ;W1;3 (
)) � �2+2jjvjjL1(0;T ;V )�1 + �1jjvjjL1(0;T ;V )1� 1jjvjjL1(0;T ;V ) +�2jjvjjL1(0;T ;V )(3.16)where �2, �2 and 2 are some constants de�ned below.}Proof.Let g be de�ned byg = �curl (v � (B +Bd)) = �(B:rv � v:rB +Bd:rv � v:rBd):We have div g = 0, g:n = 0 on � (because v = 0 on � and the normalcomponent of curl (v � B) contains only tangential derivatives of v, as saidabove). Moreover :jjgjjL3=2 � � �jjBjjL6 + jjBdjjL6� jjrvjjL2 + �jjvjjL6 �jjrBjjL2 + jjrBdjjL2�� �jjvjjV (d2jjBjjW + d1jjBdjjH1 (
)) + �d3jjvjjV (d1jjBjjW + jjBdjjH1 (
))� �c3jjvjjV (jjBjjW + jjqjjH1=2(�))Thus, Proposition 2 with m = 0; p = 3=2 yieldsjjBjjW2;3=2 (
) � c2(jjgjjL3=2 + jjkjjW1=3;3=2 (�) + jjqjjW 4=3;3=2(�))� c2 ��c3jjvjjV (jjBjjW + jjqjjH1=2(�))+jjkjjW1=3;3=2 (�) + jjqjjW 4=3;3=2(�)�We deduce :supt2[0;T ]jjBjjW2;3=2 (
) � c2jjkjjL1(0;T ;W 1=3;3=2) + c4�jjvjjL1(0;T ;V )( supt2[0;T ] jjBjjW++jjqjjL1(0;T ;H1=2)) + c2jjqjjL1(0;T ;W 4=3;3=2):Finally, we use (3.14) and the Sobolev inequalityjjf jjW1;3 (
) � d5jjf jjW2;3=2 (
);and we introduce some constants for ease of notation :�2 = c2d5(jjqjjL1(0;T ;W 4=3;3=2) + jjkjjL1(0;T ;W 1=3;3=2));�2 = c4d5�jjqjjL1(0;T ;H1=2);2 = c4d5�jjqjjL1(0;T ;H1=2);which gives (3.16). } 10



4 An existence and uniqueness result for smalldataLet M > 0, we de�ne�(M) = �0 + c5��2 + 2M�1 + �1M1� 1M + �2M��1 + �1 + �1M1� 1M � ;where �0 = jjf jjL1(0;T ;L2(
)) and the constants �i, �i and i are de�ned inthe previous section. We also de�ne the functions �1, �2 and �3 by�1(M)2 = 4max�jju0jj2V ; 2c7�2�(M)2� ; (4.1)�2(M)2 = c8� �jju0jj2V + 2T� �(M)2 + �1(M)3� ; (4.2)�3(M) = �0 + c9�2(M) + c10�1(M)�2(M): (4.3)The constants c5,...,c10 appear in the following proof and do not depend onthe physical data.Theorem 1As soon as the physical data u0, 1=�, �, f , q, k, are �small enough� (ina sense made precise below), there exists a time T � > 0 such that theMHD problem (2.1)-(2.8) has a unique solution on [0; T �]. This solutionsatis�es u 2 L2(0; T �; H 2(
)) \ L1(0; T �; H 10(
)) and b 2 C(0; T �; H 1(
)) \L1(0; T �; H 2(
)).Proof.� Existence.In the previous Theorem, �small enough� means that the data are suchthat the following property holds :There exists 0 < M < 1=1 such that �i(M) �M; i = 1; 2; 3: (4.4)Note that it is indeed possible to choose the physical data such that (4.4)is satis�ed : a straightforward calculus shows that�0(0) = c5(1 + �1)(�12 + �2) + c5�2(�11 + �1);11



thus, q, k and � can be set small enough such that 0 < �0(0) < 1 andtherefore one can choose M > 0 small enough such that �(M) < M . In viewof de�nitions (4.1)-(4.3) of �i, i = 1; 2; 3, it is a simple matter to check by ananalogous calculus that (4.4) holds as soon as u0, f , 1=� are small enoughtoo.We de�ne the time T � by T � = min(T; 3=(4c6�21(M))), we choose M > 0such that (4.4) holds and we de�ne K byK = fv 2 L2(0; T �;V ); supt2[0;T �] jjv(t)jjV � M;jjvjjL2(0;T �;H2 (
)) �M;jj@tvjjL2(0;T �;L2(
)) �Mg:The set K is clearly convex. Moreover, in view of a classical compactnessresult (see for instance R. Temam [12], Theorem 2.1), K is a compact set ofthe Banach space L2(0; T �;V ). For u 2 K, we use Proposition 1 to de�ne Bas the unique solution of8>>><>>>: 1� curl (curlB) = curl (u� B) + curl (u� Bd) in 
;divB = 0 in 
;B:n = 0 on �;curlB � n = k on �: (4.5)According to the estimates (3.14) and (3.16), we havejjcurlB � BjjL1(0;T �;L2) � jjcurlBjjL1(0;T �;L3(
))jjBjjL1(0;T �;L6(
))� c5jjBjjL1(0;T �;W1;3 )jjBjjL1(0;T �;W )� c5��2 + 2M�1 + �1M1� 1M + �2M���1 + �1M1� 1M � ;and jjcurlB � BdjjL1(0;T �;L2) � jjcurlBjjL1(0;T �;L3(
))jjBdjjL1(0;T �;L6(
))� c5jjBjjL1(0;T �;W1;3 )jjBdjjL1(0;T �;H1 )� c5��2 + 2M�1 + �1M1� 1M + �2M� :Therefore, the force term F = f +(curlB)� (B+Bd) is in L1(0; T �; L2(
))andsupt2[0;T ] jjF (t)jjL2(
) � jjf jjL1(0;T �;L2(
))12



+c5��2 + 2M�1 + �1M1� 1M + �2M��1 + �1 + �1M1� 1M �� �(M):Then, it is proved in R. Temam [12, 13] that there exists a unique solutionu 2 L2(0; T �; H 2(
)) \ L1(0; T �; H 10(
)) to the Navier-Stokes equations8<: @tu+ u:ru� �4 u+rp = F in 
;divu = 0 in 
;u = 0 on �; (4.6)satisfying moreover supt2[0;T �] jju(t)jj2V � �1(M)2 �M2;jjujj2L2(0;T �;H2 (
)) � c8� �jju0jj2V + 2� Z T �0 jjF (t)jj2 dt+ �1(M)3�� �2(M)2 �M2:We then deduce from the Navier-Stokes equations thatjj@tujjL2(0;T �;L2(
)) � �c9jjujjL2(0;T �;H2 (
)) + c10jjujjL1(0;T �;H1 (
))jjujjL2(0;T �;H2 (
))+jjf jjL1(0;T ;L2(
))� �3(M) �M:We deduce that u 2 K. Let us check the continuity in L2(0; T ;V ) ofu �! u. Let un be a sequence that goes to u in L2(0; T ;V ), it de�nes asequence Bn, solution of (4.5). The force term corresponding to Bn in theNavier-Stokes equations has the required regularity to de�ne a sequence unbounded in L2(0; T ; H 2(
)) and such that @tun is bounded in L2(0; T ; L2(
).The sequence un is therefore compact in L2(0; T ; H 1(
). The uniqueness ofthe solution yields that un goes to u corresponding to u.Thus the application u �! u maps continuously the convex compact setK into himself. Therefore, the Schauder theorem ensures that the existenceof a �xed point. This yields the existence result.� Regularity of b.We have just proved that B 2 C(0; T �;W ). We show as in Propo-sition 3 that B 2 C(0; T �;W 1;3(
)) and therefore we have in particularB 2 L1(0; T �; Lq (
)); 8q > 0. Using for example that B 2 L1(0; T �; L8(
)),13



we easily check that the right-hand side of (4.5) belongs to L1(0; T �; L8=5(
)).Using Proposition 2, we deduce that B 2 L1(0; T �;W 2;8=5(
)), which im-plies that B 2 L1(0; T �; L1(
)). The right-hand side of (4.5) is then inL1(0; T ; L2(
)). Applying one more time the regularity result of Propo-sition 2, we �nally conclude that B 2 L1(0; T �; H 2(
)). In view of theregularity of Bd, we deduce that b 2 L1(0; T �; H 2(
).� Uniqueness.Let (u1; p1; B1) and (u2; p2; B2) two solutions of problem (3.1)-(3.8). Wede�ne u = u1 � u2, B = B1 � B2. Combining the equations satis�ed by(u1; B1) and (u2; B2), we have@tu+ u:ru1 + u2:ru� �4 u+rp = curlB �B1 + curlB2 �B; (4.7)1� curl (curlB) = curl (u� B1) + curl (u2 � B) + curl (u� Bd); (4.8)with u = 0, B:n = 0 and curlB � n = 0 on the boundary.Multiplying (4.7) by u, (4.8) by B and integrating we obtain :ddt Z
 juj2 dx+ Z
 �jruj2 dx+ Z
 1� jcurlBj2 dx � Z
 ju:ru:u1j dx++Z
 jcurlB2 �B:uj dx+ Z
 ju2 � B:curlBj dx+ Z
 ju�Bd:curlBj dx:(4.9)We estimate the right-hand side of this inequality as follows :Z
 ju:ru:u1j dx � C"jju1jj2L1(
)jjujj2L2(
) + "jjrujj2L2(
);where C" and " are some constant, with " arbitrarily small.Z
 jcurlB2 � B:uj dx � jjcurlB2jjL4(
)jjBjjL4(
)jjujjL2(
)� C"jjB2jj2H2 (
)jjujj2L2(
) + "jjcurlBjj2L2(
);Z
 ju� Bd:curlBj dx � C"jjBdjj2L1(
)jjujj2L2(
) + "jjcurlBjj2L2(
);Z
 ju2 � B:curlBj dx � C"jju2jj2H1 (
)jjcurlBjj2L2(
) + "jjcurlBjj2L2(
):In this last inequality, we estimate curlB with equation (4.8) :1� Z
 jcurlBj2 dx � (jjB1jjL1+jjBdjjL1)jjcurlBjjL2 jjujjL2+d2d3jju2jjH1 (
)jjcurlBjj2L2 :14



Using supt2[0;T �] jju2jjH1 � M and the coercivity assumption 0 < M < 1=1with 1 = d2d3�, we deduce thatjjcurlBjjL2 � �1� 1M (jjB1jjL1 + jjBdjjL1)jjujjL2 : (4.10)Thus,Z
 ju2 � B:curlBj dx � C"� �1� 1M�2 (jjB1jjL1 + jjBdjjL1)2jju2jj2H1 jjujj2L2++"jjcurlBjj2L2 :Gathering these inequalities, estimate (4.9) yieldsddt jjujj2L2 � �(t)jjujj2L2with � = C"(jju1jj2L1(
) + jjB2jj2H2 (
) + jjBdjj2L1(
) + � �1�1M�2 (jjB1jjL1 +jjBdjjL1)2jju2jj2H1 (
)). Note that � 2 L1(0; T �). Therefore, by Gronwalllemma, u = 0, and using again (4.10), B = 0. This proves the uniqueness ofa strong solution (u; b) of (2.1)-(2.8). }Remark 4.1 We now sketch an alternative proof of Theorem 1. We only givethe main ideas and manipulate the equations in a formal way. We supposefor the sake of simplicity that curlB � n = 0 on the boundary and f = 0.The MHD system we are studying may be seen as the singular limit when"! 0 of @tu" + u":ru" � �4 u" = �rp + curlB" �B" in 
; (4.11)divu" = 0 in 
; (4.12)"@tB" + 1� curl (curlB") = curl (u" � B") in 
; (4.13)divB" = 0 in 
: (4.14)This system has been studied in M. Sermange, R. Temam [11] with " = 1.The �rst energy estimate is :ddt �Z
 ju"j2 dx+ " Z
 jB"j2 dx�+ Z
 �jru"j2 + 1� jcurlB"j2 dx = 0:15



Unfortunately, the bound on @tB" is not uniform in " which prevents us toinfer any compactness on B" in order to treat the non linear term curlB" �B". We therefore argue as follows.Derivating with respect to the time, multiplying the Maxwell equation by@tB" and integrating yield :"2 ddt Z
 j@tB"j2 dx+ 1� Z
 jcurl @tB"j2 dx == Z
 @tu" �B":curl @tB" + Z
 u" � @tB":curl @tB" dx� 12 Z
 jcurl @tB"j2 dx+ Cst(jj@tu":B"jj2L2 + jju"jj2L3 jj@tB"jj2L6);and thus"2 ddt Z
 j@tB"j2 dx+ (1� � Cstjju"jjV ) Z
 jcurl @tB"j2 dx � Cstjjr@tu"jj2L2 jjcurlB"jj2L2 :which shows that we have r@tB" bounded in L2(0; T ; H 1) uniformly withrespect to " as soon as jju"jjV is small enough. This gives some compactnesson B" and thus allows us to complete this proof.}5 Remark on the non-uniquenessIt has been proven in the previous section that the MHD problem (3.1)-(3.8)has a unique solution for small data, at least on an interval [0; T �], T � > 0.The idea of the proof has been to ensure the coercivity of equation (3.3)by controlling the H1(
) norm of u on [0; T �]. We exhibit in this sectionan example (due to P.-L. Lions [7]) of non uniqueness in the case when theoperator Tu : B ! curl (curlB)� curl (u�B) is not invertible.From now on, we assume for simplicity that k = 0, q = 0, thus we dealwith the homogeneous boundary conditions on � :8<: u = 0;B:n = 0;curlB � n = 0:Let us assume that for some t0 and some ~u = ~u(t0; x) the operator Tu :B ! curl (curlB)� curl (u�B) is not invertible. There exists a divergence-free �eld ~B 6� 0 satisfyingcurl (curl ~B) = curl (~u� ~B):16



Note that such a ~u is necessarilly �large enough�, otherwise, T~u would becoercive. If we consider the force ~f = ~u:r~u� �4 ~u� curl ~B� ~B, then (~u; ~B)is a (stationary) solution to8>><>>: @tu+ u:ru� �4 u+rp = ~f + curlB �B;divu = 0;curl (curlB) = curl (u� B);divB = 0: (5.1)Next, we de�ne u0 as the solution of� @tu+ u:ru� �4 u+rp = ~f;div u = 0:with the �initial� condition u0(t0; :) = ~u(t0; :).We �nally observe that (~u; ~B) and (u0; 0) are di�erent (since ~B 6� 0) whilethey both satisfy (5.1) on [t0;+1).Thus, we have two di�erent solutions of the MHD problem with homoge-neous boundary conditions.6 ConclusionWe have proved that the MHD system (2.1)-(2.8) has a unique solution onan interval [0; T �] as soon as the physical data are regular and small enough,with T � > 0 depending on the data. Note that the proof may probably beextended to the case of multi�uid equations in two dimensions with constantviscosity and conductivity.Moreover, we have shown that a solution is not unique if the operatorB ! curl (curlB)� curl (u�B) is not invertible. This may occur as soon asthe velocity becomes too large, but it is an open question to show that theoperator do indeed become not invertible.The practical conclusion of this study is the following : even if the modelpresented here seems well-suited in some physical situations and even if itis mathematicaly well-posed under restrictive assumptions, it should be verycarefuly used in numerical simulations since it could be ill-posed as soon asthe velocity becomes too large.
17
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