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1 Introduction

This work deals with the mathematical study of a system of partial differ-
ential equations related to a magnetohydrodynamic (MHD) problem. The
MHD equations we consider modelize the behaviour of an homogeneous in-
compressible conducting viscous fluid subjected to a Lorentz force due to the
presence of a magnetic field. More precisely, we study a coupling between
the transient Navier-Stokes equations and the stationary Maxwell equations.
This model can be considered for example in industrial situations when the
magnetic phenomena are known to reach their steady state “infinitely” faster
than the hydrodynamics phenomena.

Many mathematical works have been devoted to the study of MHD prob-
lems. We only present here some of them briefly and we refer to J.-F. Ger-
beau, C. Le Bris [5] and A.J. Meir, P.G. Schmidt [9] for some more detailed
overviews.

The coupling between the transient Navier-Stokes equations and the tran-
sient Maxwell equations (without displacement current) has been studied in
G. Duvaut, J.-L. Lions [3] and in M. Sermange, R. Temam [11]. Numerical
methods conserving the dissipative properties of the continuum system in 2D
are presented in F. Armero, J.C. Simo [1|. Less numerous works have been
devoted to the fully stationnary MHD equations, namely a coupling between
two elliptic partial differential equations (see for example M.D. Gunzburger,
A.J. Meir, J.S. Peterson [6], J.-M. Domingez de la Rasilla [2]). Finally, let us
mention an interesting alternative viewpoint which consists in considering the
electrical current rather than the magnetic field as the main electromagnetic
unknown (see A.J. Meir, P.G. Schmidt (8, 9]).

In the present work, the equations related to the velocity field are the
transient Navier-Stokes equations whereas those related to the magnetic field
are elliptic (see (2.1)-(2.8)). The difficulty is that the ellipticity of the equa-



tion on B depends on the velocity field u. Briefly speaking, if the velocity
becomes too large, the system may become ill-posed.

Under restrictive assumptions upon the physical data, we can however
prove that a strong solution exists and is unique at least on a time interval
[0,T*] for some time 7™ depending on the data (see Section 4, Theorem 1).
For this purpose, we give in Section 2 a presentation of the equations and the
functional spaces, and we establish in Section 3 some preliminary existence
and regularity results upon the magnetic equation.

As soon as the magnetic operator is no longer invertible — which may
occur if the velocity becomes too large — we show in Section 5 that we can
construct two distincts solutions to the system.

This latter observation shows that the model we study here should be
used only with great care in numerical simulations.

2 Equations and function spaces

2.1 The transient/stationary model

Let © be a simply-connected, fixed bounded domain in R?® enclosed in a C*
boundary I'. We shall denote by n the outward-pointing normal to €2. The
transient /stationary problem we shall consider is the following : find two
vector-valued functions, the velocity « and the magnetic field b, and a scalar
function p, defined on Q x [0, 7], such that

ou+uNVu—nAu = f—Vp+curlbxb in Q, (2.1)
diveu = 0 in Q, (2.2)
1
—curl (curlb) = curl (u x b) in €, (2.3)
o
divb = 0 in Q, (2.4)
with the following initial and boundary conditions :
u = 0 on I (2.5)
bn = ¢q on I, (2.6)
curlbxn = kxn on T, (2.7)
Uli=o = 1w in €. (2.8)



2.2 Functional setting
For m > 0, we denote as usual by H™(£2) the Sobolev space
H™(Q) = {u € L*(Q); D"u € L*(Q),Y, |[y| < m},
where v = (71, 72,73) is a multi-index and |y| = 7 + 72 + 3. The norm
associated with H™(2) that we will use is :

1/2

ullgmy = | D 11D7ull30)
[v[=0

The subspace of H'(2) consisting of functions vanishing on 9 is denoted as
usual by H}(Q) .

We shall denote respectively (L?(€2))* and (H™(2))? by L? (©2) and H™ ()
or, when there is no ambiguity, by I’ and H™.

We shall use the Sobolev inequality : for 2 < p < 6,

1 flleo@) < col [f]lem (@) (2.9)

Let 7> 0 and let X be a Banach space. The space LP(0,7;X), 1 <p <
oo is the space of classes of LP functions from [0,7] into X. We recall that
this is a Banach space for the norm

T 1/p
(/ ||u(t)||§(dt> if 1 <p<oo, esssup |lu(t)|xif p= occ.
0 te[0,7T
The following trace spaces will also be needed :
H'Y*(T) = {v]r,v € H'(Q)},
HY*(T) = {v|r,v; € HY/*(T),i=1,..,3},
H'2(I) = (H'/*(D))"
They are equipped with the norms

- inf
llallzrrey we B () wlr—q el
—  inf
otz = it el
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<k, g>
||k||131—1/2(r) = sup T
gEML/2 (T),g#0 ||9||H1/2(r)

We denote by C2°(€2) (resp. C°(€2)) the space of real functions infinitely
differentiable with compact support in € (resp. €2). We introduce the spaces

YV ={ve (CXN)?> divy = 0},

V = {v e Hy(Q),dive = 0},
W ={C € (CX(Q))* divC = 0,C.n|sq = 0},
W = {C e H(Q),divC = 0,C.n|sq = 0},
H = {v e L*(Q),dive = 0,v.n|sq = 0}.

The space V (resp. W) is the closure of V (resp. W) in Hj;(Q) (resp. H' (Q2)).
H is the closure of V (and W) in L?(2). Let us recall that u.n makes sense
in H—'/2(0Q) as soon as u € L? (1) satisfies divu = 0. Forv € V and C € W

we denote
1/2
lolle = ([ 1veac)
Q

1/2
1]l = (/ |curlC|2dx> |
Q

One can establish that ||.||y (resp. ||.||w) defines a norm (resp. W) which
is equivalent to that induced by H' (Q2) on V' (resp. W) (cf. G. Duvaut and
J.-L. Lions [4]). Thus we have for B € W :

|1Bl[r2 ) < di|Bl|w-
For 2 < p < 6, this inequality together with the Sobolev imbedding (2.9)

imply that, for Be W
|1Bllir ) < da||Blw-

As well, Poincaré inequality and (2.9) imply that, for u € V

[lullLeo) < dsllullv-



2.3 Regularity of the data

We shall suppose in the sequel that

ug € H (Q) NH (), with divug = 0, (2.10)
q € C(0,T; H¥*(I)), (2.11)
ke c0,T;H/*(I)), (2.12)
f e L™®0,T;1L*(2)). (2.13)

From a physical viewpoint, it is natural to assume that k& is the trace on I'
of the gradient of the electrical potential :

k=oVolr. (2.14)

3 Preliminary results

First of all, we notice that we can split the magnetic field b(t) € H'(Q)
satisfying (2.6) and (4.14) into the sum of a function B¢(t) that satisfies
(2.6) and a function B(t) € W. Indeed, we have :

Lemma 3.1 Let ¢ € C(0,T; H*"Y2(Q)) for k = 1 or k = 2, there exist
B% e C(0,T;H*(2)) and a constant dy such that

B'n=q on[0,T]xT and ||Bd||c(0,T;Hk @) < d4||Q||C(0,T;Hk—1/2(Q))-
Moreover, we can impose that
div BY(t) = 0 and curl B4(t) = 0 fort €0,7].$

Proof. It suffices to define B? as follows : B%(t) = V¢(t) where ¢(t) is a
solution of the Neumann problem

{—Aqﬁ: 0 in €2

o6
= q(t) on I'.$



Let B(t) = b(t) — B4(t). We replace the original problem (2.1)-(2.8) with the
following one :

ou+uNu—nAu = f—Vp+curl Bx B+curl Bx B%in Q (3.1)
divu = 0 in Q, (3.2)

1
—curl (curl B) = curl (u x B) + curl (u x BY) in Q, (3.3

o
divB = 0  inQ, (3.4)

with the following initial and boundary conditions :

u = 0 on I, (3.5)
Bn = 0 on T, (3.6)
curlBxn = kxn on I, (3.7)
Ulmo = up in Q, (3.8)

We now proceed to establish a preliminary existence and uniqueness result
for the magnetic problem and two estimates which will be needed in the next
section.

We define the convex set

K={vel*0,T;V), supepmnllv®)lly <M,
vl 220w ()) < M,
O || L2(0,r51200)) < M}

The values of the constant M and 1" will be fixed later. We only suppose

here that 1

d2d30'.
Let us note that v € K implies v € C(0,T;V). For v € K, we consider the
following problem : find B € C(0,7; W)

M < (3.9)

1
—curl (curl B) = curl (v x B) + curl (v x BY) in Qx[0,7], (3.10)

o
divB=0 in Q x [0, T], (3.11)

with the following boundary conditions :
Bn=0 on I x [0,T], (3.12)
curl Bxn=Fkxn on I x [0,T7. (3.13)



Proposition 1
Forv € K and M satisfying hypothesis (3.9), the problem (3.10)-(3.13) has a
unique solution B € C(0,T;W). Moreover, we have the following estimate :

a1 + Bu||v]| L1y
sup ||B(t)||w < OIV)

, 3.14
tc[0,77] 1 - ’Yl||U||L°°(0,T;V) ( )

where a1, 1 and 7, are some constants defined below. {

Proof.
e Existence and uniqueness. We define on W x W the bilinear form

1
a,(Cy,Cq) = — / curl Cy.curl Cy dx — /(U(t) x Cy).curl Cy dx
g Ja Q
and h,(t) € W' such that, for C € W,
< hy(t),C >= / o(t) x BU(t).curl C dat < k(t) x n,C >r
Q
First, let us prove that problem (3.10)-(3.13) is equivalent to find B €
C(0,T; W) such that
a,(B(t),C) =< hy(t),C > (3.15)

forall C e W.
Let B € C(0,T; W) which satisfies (3.15). Integrating by part, we have :

o o

1
/ lcurl (curl B) —curl (v(t) x (B+B%)).C dz =< —(kxn—curl Bxn),C >
v

for all C' € W. First we deduce that
< curl B x n,C >p=< k(t) x n,C >r

which yields (3.13).
Moreover, since divC' = 0, there exists p such that

1
—curl (curl B) — curl (v(t) x (B + B%)) = Vp.
o

The function p satisfies :

{—Ap = 0in Q

1
% = gcurl (curl B).n — curl (v(t) x (B + Bd))-”



It is straightforward to check that the normal component of curl (vx (B+B?))
contains only tangential derivatives of v. Thus, using v|r = 0, curl (v x (B +
B%).n = 0.

Moreover, (curlcurl B).n = —0,, ((curl B x n).ty) — 0, ((curl B X n).ty),
where 0;, and 0y, denote the tangential derivatives. Then, hypothesis (2.14)
yields (curlcurl B).n = 0.

0
Therefore 8_p = 0, which proves p = C** and (3.10).
n

Conversely, we easily check that a solution of (3.10)- (3.13) satisfies (3.15).
Moreover, a,(.,.) is continuous and coercive on W x W. Indeed :

1
|CLU (01, Cg)| S ;HCHI’I Cl||L2(Q) | |CuI‘1 Cg”ﬂ}(g)
v s [|C1 L3 @) [eurl Col |20

<+ dads M) |Gl Callw
and 1
@(CO)| > Jlewrd C1R — [follssl Cllesl eurl €]l
> (2 = dds el lICIB
> (;_d2d3M)||C||12/V

Therefore, the Lax-Milgram Theorem implies that the variational prob-
lem (3.15) has a unique solution B(t) € .
The continuity in time of B¢ and v implies that B € C(0,T; W).

e Estimate in L*°(0,7;W). Taking C' = B(t) in (3.15), we have
1 1
—/ |curl B|? do = /U x (B+ BY.curl Bdr +— <k xn,B > .
O Jo Q g 1
< lollee (11Bes + 1B ) [1Bllw + —[ller2 |1 Bl /e
Thus
1Bllw < dadsol|v][v]|Bllw + crol|vllvllgl[ e + dal|k]la-v2-

We deduce the estimate :

sup B0 jw < 10 1q|| oo 0,112y ||V | Lo o,rvy + da[|K ]| Lo o sm-172)
te[0,7) W = (1 = dodso||v|| Lo o.1;v))
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For simplicity, we introduce the constants
a1 = d1||k||L°°(0,T;IHI*1/2)7

b= ClU||Q||Loo(0,T;H1/2)a
Y1 = dadso,
which gives (3.14).

In the next section, the vector field B defined above will appear on the
right hand side of the Navier-Stokes equation in the Lorentz force curl B x B.
We see that we need an estimate on w in L*(0, T; H' (Q2)) in order to prove the
coercivity of problem (3.10)-(3.13). Such a control on u is typically obtained
with strong solutions of Navier-Stokes equations. To define strong solutions,
the force term in Navier-Stokes equations has to belong to L>°(0,7';1L%(2))
(see R. Temam [12]). In this scope, the estimate on B in L*°(0,7; W) is not
sufficient. That is why we establish now a “better” estimate on B. First, we
need the following proposition which is a straightforward extension (in the
non homogeneous case) of Proposition 2.1 of Saramito [10] (see also Lemma
2.1 and Remark 2.3 of [10]).

Proposition 2
Let m be a nonegative integer and 1 < p < oo. Let g € W™P(Q), with
divg=0and gn =0 onT, k€ Wrti=l/pr(T) ¢ € Wnt2-1/p2(T),

Then, there exists a unique B € W™2?(Q) such that

curl(curl B) = g in

divB = 0 in €,

Bn = ¢ on [
curlBxn = kxn on I,

and

|1 Bllwm+20 (@) < ca(llgllwmr @) + [[Ellwmri-1/mn 0y + llallwmsz-1700(r))- ¢



Proposition 3
Under hypothesis (3.9), the solution of problem (3.10)-(3.13) given by Propo-
sition 1 satisfies

a1 + B ||| o,r5v

L — ||| m;v)

L+ Bol|0]| o1
(3.16)

|| B| oo 0,513 () < @2 +Y2|v|| Lo 0,157

where «, (2 and v, are some constants defined below. {

Proof.
Let g be defined by

g = ocurl (v x (B + B%) = ¢(B.Vv —v.VB + B“.Vv — v.VB%).

We have divg = 0, gn = 0 on ' (because v = 0 on I' and the normal
component of curl (v x B) contains only tangential derivatives of v, as said
above). Moreover :

lllesr: < o ([IBlls + 1B ) IIV;)IILZ +0ol[vlles (VB2 + IIVBdIIH(;Z?)
ol[ollv(da||Blw + di||B|m o)) + ods|[v]lv (di]| Bllw + || B[z ()

<
< acs|lollv([Bllw + llalmr2r))

Thus, Proposition 2 with m = 0,p = 3/2 yields

1Bllwesrz) < eallgllusrz + [1Ellwnrssrz oy + llallwassra)
< & [ocs|[vllv(|Bllw + gl )
HE sz 0y + Nl lwarsarn ]

We deduce :

sup || Bllyearz (@) < Collkllpooommwirsarz) + a0 [v]|oeo.rvy ( sup [|Blw+
te[0,T] te[0,T]

+| |q| |L°°(0,T;H1/2)) +co | |Q| |L°°(0,T;W4/313/2) .
Finally, we use (3.14) and the Sobolev inequality
||f||W13(Q) < d5||f||wz,3/2(9),
and we introduce some constants for ease of notation :
Gz = 02d5(| |Q| |L°°(0,T;W4/3a3/2) + | |k| |L°°(0,T;W1/3,3/2))7
B2 = cads0|q]] oo o112y,
T2 = C4d50| |q| |L°°(0,T;H1/2)7

which gives (3.16). ¢
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4 An existence and uniqueness result for small
data

Let M > 0, we define

aq + ﬂlM (0%} + ﬂlM
O(M) = M——— M 1+ ———
(M) CY0+C5<C¥2+72 1= M + B2 )( +1—71M ;
where ag = ||f||L=(0r12(0)) and the constants «;, 3; and 7; are defined in

the previous section. We also define the functions py, po and ps by

2 _ 2 2 2
(012 = (1l 500177 (4.1)
2 & unl 2 E 2 3
(! = & (|| f + 2001 + (1) ) (42)
ps(M) = cg + copia(M) + cropn (M) p2(M). (4.3)

The constants cs,...,c1p appear in the following proof and do not depend on
the physical data.

Theorem 1

As soon as the physical data ug, 1/n, o, f, ¢, k, are “small enough” (in
a sense made precise below), there exists a time T* > 0 such that the
MHD problem (2.1)-(2.8) has a unique solution on [0,7*]. This solution
satisfies u € L*(0,T* H?(Q)) N L*°(0, 7% H () and b € C(0,T*;H' (2)) N
L>(0, T+ H?(L2)).

Proof.

e Existence.

In the previous Theorem, “small enough” means that the data are such
that the following property holds :

There exists 0 < M < 1/7; such that p;(M) < M,i=1,2,3. (4.4)

Note that it is indeed possible to choose the physical data such that (4.4)
is satisfied : a straightforward calculus shows that

0'(0) = ¢5(1 + o) (12 + B2) + csaa(oqyy + Br),

11



thus, ¢, £ and o can be set small enough such that 0 < ©'(0) < 1 and
therefore one can choose M > 0 small enough such that ©(M) < M. In view
of definitions (4.1)-(4.3) of p;, t = 1,2, 3, it is a simple matter to check by an
analogous calculus that (4.4) holds as soon as ug, f, 1/n are small enough
too.

We define the time T* by T* = min(T, 3/(4cspi(M))), we choose M > 0
such that (4.4) holds and we define KC by

K ={veL*0,TV), Supepo,r V()] lv < M,
V]| L20,0+m2 () < M,
||8t'U||L2(0,T*;]L2(Q)) S M}

The set K is clearly convex. Moreover, in view of a classical compactness
result (see for instance R. Temam [12], Theorem 2.1), K is a compact set of
the Banach space L?(0,T*; V). For u € K, we use Proposition 1 to define B
as the unique solution of

1
—curl (curl B) = curl (u x B) + curl (u x BY) in ,

o
divB = 0 in €2, (4.5)

Bn = 0 on I,

curl Bxn = k on I'.

According to the estimates (3.14) and (3.16), we have

|leurl B X B|pooor+12) < [|curl B[ oo o,+503 ) || Bl| oo (0,715 (0))
< 5Bl oo,z || Bl| L 0.0+ w)

a1+51M CY1+51M
< M— M _
_C5<042+'Y2 1= 0 + By ><1—71M )

and

||CUI'IB X Bd||Loo(07T*;]L2) S ||CurlB||Loo(0,T*;]L3(Q))||Bd||Loo(07T*;L6(Q))

S C5||B||L°°(0,T*;W1’3)||Bd||L°°(0,T*;IHI1)

+ 1M
S cs | ao + ’}/QMial 61 + ﬁgM
1-— ’)’1M

Therefore, the force term F = f + (curl B) x (B + B%) is in L>(0,T*;1L?(9))
and

sup [|[F(t)|lz) < |[f]lzeeoriL2 @)
te[0,7T
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ap + M

a; + M
1-— ’}/1M

M 1
+ P >< * IL—mM

+cs <O[2 + ’)’QM
< o(M).

Then, it is proved in R. Temam [12, 13] that there exists a unique solution
u € L?(0,T*;H?(Q2)) N L*°(0, T*; H} () to the Navier-Stokes equations

ou—+uVu—nAu+Vp = F in €,
divu = 0 in Q, (4.6)
u = 0 on [,

satisfying moreover

sup ||u(t)[[3 < (M) < M2,
te[0,77%]

Cg 2 -
0l ooy < ;(||uo||2v+5 / ||F(t)||2dt+u1(M)3>
< pa(M)* < MP.

We then deduce from the Navier-Stokes equations that

Orull 20,0502y < mcol|ull L2062 (0)) + Crol|ul| Lo (o |l | 2022 ()
FIf 120,752 (52))
< ps(M) < M.

We deduce that u € K. Let us check the continuity in L?(0,T;V) of
u — u. Let W, be a sequence that goes to u in L*(0,T;V), it defines a
sequence B, solution of (4.5). The force term corresponding to B, in the
Navier-Stokes equations has the required regularity to define a sequence u,,
bounded in L?(0,7; H?(2)) and such that d,u,, is bounded in L?(0, T; L ().
The sequence u,, is therefore compact in L?(0,T;H' (2). The uniqueness of
the solution yields that wu, goes to u corresponding to u.

Thus the application @ — u maps continuously the convex compact set
KC into himself. Therefore, the Schauder theorem ensures that the existence
of a fixed point. This yields the existence result.

e Regularity of b.

We have just proved that B € C(0,7*;W). We show as in Propo-
sition 3 that B € C(0,7*;W'3(Q)) and therefore we have in particular
B € L*(0,T*L?(Q)),Vq > 0. Using for example that B € L>(0, T*;L%(Q2)),
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we easily check that the right-hand side of (4.5) belongs to L>(0, T*; L%/*(Q)).
Using Proposition 2, we deduce that B € L>(0,T*; W?8/5(Q)), which im-
plies that B € L*(0,7*;L>*(2)). The right-hand side of (4.5) is then in
L>(0,T;1L%(2)). Applying one more time the regularity result of Propo-
sition 2, we finally conclude that B € L*(0,7*H?(Q2)). In view of the
regularity of B?, we deduce that b € L>(0,T*; H? ().

e Uniqueness.

Let (u1,p1, B1) and (ug, pa, Bs) two solutions of problem (3.1)-(3.8). We
define v = uy — uy, B = By — By;. Combining the equations satisfied by
(u1, By) and (ug, By), we have

Opu 4+ u.Vuy +ug.Vu —nAu+ Vp=curl Bx By +curl By, x B, (4.7)

1
—curl (curl B) = curl (u x By) + curl (ug x B) + curl (u x B%), (4.8)
o

with u =0, B.n = 0 and curl B x n = 0 on the boundary.
Multiplying (4.7) by u, (4.8) by B and integrating we obtain :

1
i/ |u|2dx+/77|Vu|2dx+/—|curlB|2dx§/|u.Vu.u1|dx+
dt Jo Q Q0 Q

+/ |curl By x B.u|dx +/ |ug x B.curl B| dx +/ lu x B%.curl B| dx.
0 " Q

(4.9)
We estimate the right-hand side of this inequality as follows :

/Q|U-VU-U1| dr < Ce||“l||ioo(9)||u||12L2(Q) + 5||VU||[2L2(Q)7
where C. and ¢ are some constant, with ¢ arbitrarily small.

/|CUI'IBQXB.U,|d.’L’ < ||eurl By||a oy ||B||uayl [u] 2@
Q

< CoIBo|[fe oy llul () + ellcurl B[ q),
/ ju x Bl.curl Bl do < Col|BY P o ll1l[22(gy + €llentl B2 g,
Q

/Q|u2 x B.curl B|dx < C’E||uQ||%Hl(Q)||6urlB||E2(Q) + 8||CurlB||i2(Q).

In this last inequality, we estimate curl B with equation (4.8) :

1
g/ |curlB|2dx < (||Bl||]Loo+||Bd||]Loo)||CurlB||]L2||u||]L2+d2d3||u2||Hl(Q)||CurlB||i2.
Q
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Using supepo.r+) |[uz|lm < M and the coercivity assumption 0 < M < 1/7
with v, = dydso, we deduce that

ag
Jeurt Bllr < 7= (Bl + 1Bl (410

Thus,

2
o
/ uz x B.curl Bldz < C. | ————=) (|| Bullzee + [|B|L )|z [ [|ul[2-+
Q l=—mM
+&||curl B||2,.

Gathering these inequalities, estimate (4.9) yields

d
ZllullE: < o) [ullz:

2
with ¢ = Co(|[uillfe () + |1 Ballfe ) + 1B ey + (17;1\4) (1 B1llLe +
1B )?[|uz| 2 (). Note that ¢ € L'(0,7%). Therefore, by Gronwall
lemma, u = 0, and using again (4.10), B = 0. This proves the uniqueness of
a strong solution (u, b) of (2.1)-(2.8). ¢

Remark 4.1 We now sketch an alternative proof of Theorem 1. We only give
the main ideas and manipulate the equations in a formal way. We suppose
for the sake of simplicity that curl B x n = 0 on the boundary and f = 0.
The MHD system we are studying may be seen as the singular limit when
e—0 of

Opue + u”.Vu® —nAu® = —Vp+ curl B° x B® in 0,  (4.11)
divu® = 0 in €, (4.12)
1
£0yB* + —curl(curl B°) = curl(u® x B) in €, (4.13)
o
divB® = 0 in S (4.14)

This system has been studied in M. Sermange, R. Temam [11] with ¢ = 1.
The first energy estimate is :

d 1
— (/ |u€|2da:+6/ |B€|2dx> +/77|Vu6|2+—|curlBg|2dx:O.
dt Q Q Q o
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Unfortunately, the bound on 0,B* is not uniform in € which prevents us to
infer any compactness on BE in order to treat the non linear term curl B¢ x
B#. We therefore argue as follows.

Deriwating with respect to the time, multiplying the Mazwell equation by
0, B® and integrating yield :

th/ 0,B°|* do + — /|curl8tB€|2da;—

:/atu X B*.curl 0,B° + /u X 0B .curl0,B° dx
Q Q

1
< 5/ |curl 0B | da + C*!(|[0u. B7I|L2 + ||| |10.3°||Ls),
Q

and thus

2dt

which shows that we have V9,B° bounded in L*(0,T;H') uniformly with
respect to € as soon as ||uf||y is small enough. This gives some compactness
on B® and thus allows us to complete this proof.{

/|8tB5|2d:c+( —ot||uf||y) /|curl(9tBE|2 do < |V 0,uF | P | curd B 2.

5 Remark on the non-uniqueness

It has been proven in the previous section that the MHD problem (3.1)-(3.8)
has a unique solution for small data, at least on an interval [0, T*], T* > 0.
The idea of the proof has been to ensure the coercivity of equation (3.3)
by controlling the H'(Q) norm of u on [0,7*]. We exhibit in this section
an example (due to P.-L. Lions |7]) of non uniqueness in the case when the
operator T, : B — curl (curl B) — curl (u x B) is not invertible.

From now on, we assume for simplicity that £ = 0, ¢ = 0, thus we deal
with the homogeneous boundary conditions on I :

u = 0,
Bn = 0,
curlBxn = 0.

Let us assume that for some ¢, and some @ = u(to,z) the operator T,
B — curl (curl B) — curl (u x B) is not invertible. There exists a divergence-
free field B # 0 satisfying

curl (curl B) = curl (@ x B).
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Note that such a @ is necessarilly “large enough”, otherwise, 7; would be
coercive. If we consider the force f = @.Va —nA @ — curl B x B, then (@, B)
is a (stationary) solution to

du+uNVu—nAu+Vp = f+curl Bx B,
divu 0,
curl (curl B) = curl(u x B),
divB = 0.

(5.1)

Next, we define u’ as the solution of

ou+u.Vu—nAu+Vp = 1,
divu = 0.
with the “initial” condition u'(to,.) = a(to, .)-
We finally observe that (@, B) and (u/,0) are different (since B # 0) while
they both satisfy (5.1) on [ty, +00).
Thus, we have two different solutions of the MHD problem with homoge-
neous boundary conditions.

6 Conclusion

We have proved that the MHD system (2.1)-(2.8) has a unique solution on
an interval [0, 7*] as soon as the physical data are regular and small enough,
with 7" > 0 depending on the data. Note that the proof may probably be
extended to the case of multifluid equations in two dimensions with constant
viscosity and conductivity.

Moreover, we have shown that a solution is not unique if the operator
B — curl (curl B) — curl (u x B) is not invertible. This may occur as soon as
the velocity becomes too large, but it is an open question to show that the
operator do indeed become not invertible.

The practical conclusion of this study is the following : even if the model
presented here seems well-suited in some physical situations and even if it
is mathematicaly well-posed under restrictive assumptions, it should be very
carefuly used in numerical simulations since it could be ill-posed as soon as
the velocity becomes too large.
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