
Weak solutions for the exterior Stokes problem inweighted Sobolev spaces.F. Alliot, C. AmroucheRésumé - On donne ici des résultats d'existence et d'unicité pour le problème de Stokesextérieur en controlant le comportement à l'in�ni des solutions. On pose pour cela le problèmedans des espaces de Sobolev avec poids. On obtient aussi un développement asymptotique dessolutions qui décroissent su�sament.Abstract - We establish here some existence and uniqueness properties for the exteriorStokes problem with prescribed growth or decay at in�nity for the solutions. For this purpose,the problem is set in some suitable weighted Sobolev spaces. We also obtain an asymptoticexpansion for some well behaved solutions.Consider an open region 
 of Rn . In the sequel, we shall call this set anexterior domain if there exists a non-empty bounded open set 
0 with a �nitenumber of connected components having Lipschitz-continuous boundaries suchthat 
 = Rn � 
0. We shall also suppose for the sake of simplicity that eachconnected component of 
0 has a connected boundary (i.e. 
0 has no �holes�),which implies in particular that 
 is connected.This paper is devoted to the following Stokes problem in an exterior connecteddomain : (S) � ��u +r� = f in 
;� divu = g in 
;u = ' on @
;where � is a positive coe�cient.Existence, uniqueness and regularity properties of this problem are well-knownwhen the domain
 is bounded. In that case, the classical Sobolev spacesWm;p(
)provide a suitable functional framework (see [5, 2] for instance), in particularthanks to Poincaré's inequalities. Nevertheless, when 
 is an exterior domain,these inequalities are not satis�ed any more and it is necessary to introducea speci�c functional framework which takes into account the behaviour of thefunctions at in�nity.Among the many works devoted to the exterior problem, some of them intro-duce the homogeneous Sobolev spaces :1



Ĥ1;p0 (
) = D(
)kr kLp(
);which �t the case of homogeneous Dirichlet boundary conditions. In particular,when n=(n � 1) < p < n with n � 3, H. Kozono and H. Sohr consider in[12] data f that belong to Ĥ�1;p(
) (which space is the dual space of Ĥ1;p00 (
)with 1=p0 = 1 � 1=p), g 2 Lp(
) and ' = 0. Under such assumptions, theyprove existence of a unique solution (u ; �) to problem (S) with u 2 Ĥ1;p0 (
)and � 2 Lp(
). The same authors have later removed the restrictions on p in[13] and also treated the case n = 2. In particular, they conclude that whenp � n0 if n � 3 or p < 2 if n = 2, a solution exists if and only if the datasatisfy some compatibility conditions. On the other hand, when p � n � 3 orp > 2 if n = 2, they show that the solution is no longer unique and they give acharacterisation of the null-space of the problem. G. P. Galdi and C. G. Simaderobtain similar results in [7]. The case of more regular data is investigated in [18]by W. Varnhorn who gives conditions for the velocity �eld u and the pressure �to vanish at in�nity.In a more recent work, G. P. Galdi also considers the case where f = divFwith (1 + jx j2)F 2 L1(
) where 
 � R3 and proves the existence of a uniquesolution (u ; �) satifying (1 + jx j)u 2 L1(
) and � 2 Lp(
) with p > 3=2. Thisresult has in particular an interesting application to the steady-state Navier-Stokes equations.In this article, our approach consists in looking for solutions in weightedSobolev spaces of the type :W 1;p� (
) = fv=(1 + jx j)��1v 2 Lp(
); (1 + jx j)�rv 2 Lp(
)g; if n=p+ � 6= 1;for p 2]1;+1[; and � 2 R, and with an additional logarithmic weight whenn=p + � = 1 (see de�nition 1.1 below). These spaces are well adapted tothe Laplace and Stokes equations because they satisfy optimal Poincaré-typeweighted inequalities. Moreover, they provide an explicit description of the be-haviour of the functions at in�nity, which is not obvious from the de�nition ofĤ1;p0 (
). Even more important, they are much more general for, thanks to theparameter �, one may consider a much larger variety of behaviours at in�nitythan it is possible to do with the spaces Ĥ1;p0 (
).The investigation of the exterior problem (S) in such spaces has partially beenmade for n = 2 or 3, p = 2; � = 0 by A. Sequeira and V. Girault in [8]. M.Specovius-Neugebauer also gives in [16] more general results when n � 3 using2



integral equations techniques for strong solutions of (S). She has later extendedthese results to the bidimensional case in [17] but never used the logarithmicweight, therefore leaving the problem unsolved in several critical cases.In the present article, we prove the existence, uniqueness and regularity ofthe solutions of the problem (S) for very general data (See Theorem 3.16). Inparticular, we give a complete characterisation of the null space of the problem(S) in weighted spaces. Our approach is based on the ideas of J. Giroire developedin [9] and makes use of the principle that exterior linear problems can be solvedcombining their properties on the whole space Rn and on bounded domains.On the other hand, we take a special interest in the case of solutions going tozero at in�nity and prove a new explicit asymptotic expansion for such solutionswithin the framework of weighted spaces.Our paper is organised as follows : weighted Sobolev spaces, their fundamen-tal properties, and some preliminary results are described in section 1. Sections2 and 3 are devoted to the existence and uniqueness properties of the exteriorStokes problem (S). Regularity results are developed in section 4 as well as anapplication to the control of the second derivatives of u in the Lp norm whichimproves the results established by H. Kozono and T. Ogawa in [14] (see Theo-rem 4.3). At last, in section 5, we provide a precise description of the asymptoticbehaviour of the solutions in some interesting cases (see Theorems 5.4 and 5.5).1 Function spaces and preliminary resultsIn the sequel, n denotes an integer greater than or equal to 2 and p a real numberin the interval ]1;+1[. The dual exponent of p, denoted by p0, is de�ned by therelation 1=p + 1=p0 = 1. When p < n, we set the Sobolev exponent p� to be thereal number de�ned by 1=p� = 1=p � 1=n. We denote by BR the open ball ofradius R > 0 centered at the origin. Finally, if X is a Banach space, with dualspace X 0, and Y is a closed subspace of X, we denote by X 0?Y the subspace ofX 0 orthogonal to Y , that is :X 0?Y = fx 2 X 0; 8y 2 Y; < x; y >= 0g = (X=Y )0:Without loss of generality, we consider exterior domains 
 such that the originof Rn belongs to 
0. We introduce the weight function :�(x ) = 2 + jx j;and the following weighted Sobolev spaces.3



De�nition 1.1 For any real number �, we de�ne the spaces,W 0;p� (
) = fu 2 D0(
); ��u 2 Lp(
)g;W 1;p� (
) = fu 2 D0(
); ���1u 2 Lp(
); ��ru 2 Lp(
)g; if n=p+ � 6= 1;W 1;p� (
) = fu 2 D0(
); ���1(ln �)�1u 2 Lp(
); ��ru 2 Lp(
)g; if n=p+ � = 1:They are re�exive Banach spaces with respect to the norms :k u kW 0;p� (
) = k ��u kLp(
);k u kW 1;p� (
) = (k ���1u kpLp(
) + k ��ru kpLp(
))1=p if n=p+ � 6= 1;k u kW 1;p� (
) = (k ���1ln � u kpLp(
) + k ��ru kpLp(
))1=p if n=p+ � = 1:We also de�ne the semi-norm : j u jW 1;p� = k ��ru kLp(
):Let us point out that the logarithmic weight only appears for the so-calledcritical exponents (see also [15]) and they are an essential ingredient of thosespaces, which otherwise would have poor interest (see theorem 1.2 below).We �rst recall some elementary properties of these spaces. The space D(
)is dense in W 1;p� (
) whereas, like in bounded domains, this is not true for D(
).Moreover, the functions of W 1;p� (
) belong to W 1;p(O), for all bounded domainO contained in 
, and they satisfy the usual trace theorems on the boundary@
 which, we recall, is Lipschitz-continuous. Let us now introduce the space�W 1;p� (
) = D(
)k : kW1;p� (
) . It is easy to check that :�W 1;p� (
) = fv 2 W 1;p� (
); 
v = 0g;where 
v denotes the trace of v on the boundary @
. The dual space denoted byW�1;p0�� (
) is a subspace of D0(
). Recall that in the whole space, we also haveW�1;p0�� (Rn) = (W 1;p� (Rn))0.Let Pl denote the space of polynomials whose degree is not greater than l withthe convention that Pl = f0g in the case l < 0. One easily sees that the largerspace of polynomials contained in W 1;p� (
) is Pj withj = [1� (n=p+ �)]; if n=p+ � =2 fi 2 Z; i � 0gj = �(n=p + �); otherwise,and where [s] denotes the integer part of the real number s.4



A fundamental property of the weighted Sobolev spaces W 1;p� (
) is that theirelements satisfy Poincaré-type inequalities (see [3]). This property strongly de-pends on the introduction of the logarithmic weight for critical exponents and isnot satis�ed in the cases p = 1 and p = +1.Theorem 1.2 (Amrouche-Girault-Giroire,[3]) Let 
 be an exterior domain,and � a real number.i) The semi-norm j : jW 1;p� (
) de�nes on W 1;p� (
)=Pj0 a norm which is equiva-lent to the quotient norm, where j 0 = min(j; 0).ii) The semi-norm j : jW 1;p� (
) de�nes on �W 1;p� (
) a norm which is equivalentto the full norm k : kW 1;p� (
).Remark 1.3 Thanks to the latter property, it is straightforward to prove that :�W 1;p0 (
) = Ĥ1;p0 (
); 8 p 2 ]1;+1[;so that weighted Sobolev spaces are a generalisation of the spaces Ĥ1;p0 .We conclude this short review of weighted Sobolev spaces with more detailedasymptotic properties (see the proofs in [1]).Proposition 1.4 (Alliot-Amrouche,[1]) Let � be a real number and p suchthat n=p + � 6= 1 and R > 0 such that 
0 � BR. Then, every function u in thespace W 1;p� (
) satis�es :i) For all x with jx j > R,ku(jx j; : )kLp(�) � Cjx j1�n=p��k u kW 1;p� and jx j�+n=p�1ku(jx j; : )kLp(�) jx j!1�! 0;where � denotes the unit sphere fjx j = 1g in Rn .ii) If p > n : for all x such that jx j > R, ju(x )j � Cjx j1�n=p��kukW 1;p� .Moreover, jx j�+n=p�1j u(x)j jx j!1�! 0:Finally, if n=p + � = 1, the same properties hold if one replaces the functionjx j1�n=p�� by ln(2 + jx j).2 First results : the case p = 2Let us �rst brie�y recall the result by V. Girault and A. Sequeira which statesthe existence of a solution to problem (S) with u 2W1;20 (
) and � 2 L2(
), and5



its uniqueness in this space. The proof of this result is detailed in [8] for n = 2or 3, but remains valid for all higher dimensions.Theorem 2.1 (Girault-Sequeira,[8]) Let 
 be an exterior domain having aLipschitz-continuous boundary. For any distribution f in W�1;20 (
), for any g inL2(
) and ' in H1=2(@
), problem (S) has a solution (u ; �) 2W1;20 (
)�L2(
).In this space, the solution is unique and there exists a constant C > 0 such that :ku kW1;20 (
) + k � kL2(
) � C(k f kW�1;20 (
) + k g kL2(
) + k' kH1=2;2(@
)):Remark 2.2 Note that in this case, existence of solutions does not require anycompatibility conditions on the data whereas, in a bounded domain O, the exis-tence of u 2 H1(O) requires thatZO g(x)dx + Z@O ':nds = 0 :Moreover, the pressure � is unique in L2(
) which is not the case in a boundeddomain.We still consider the case p = 2 but we choose more general data :f 2W�1;2l (
); g 2 W 0;2l (
); ' 2 H1=2(@
);where l is an integer. In this context, we wonder if we still have existence anduniqueness of a solution to problem (S) such that :(u ; �) 2W1;2l (
)�W 0;2l (
):In order to address the uniqueness of the solutions, we introduce the spaces :N pl (
) = f(u ; �) 2 �W 1;pl (
)�W 0;pl (
);���u +r� = 0; divu = 0; in 
g:(2.1)When l � 0, as a consequence of Theorem 2.1 and of the imbedding�W 1;2l (
)�W 0;2l (
) � �W 1;20 (
)� L2(
);we have N 2l (
) = f(0; 0)g. However, the situation is di�erent when l < 0. Letus recall what occurs when the Stokes problem is set in Rn . In that case, theelements of the space :N pl (Rn) = f(u ; �) 2W1;pl (Rn)�W 0;pl (Rn);���u +r� = 0; divu = 0; in Rng;6



are polyharmonic tempered distributions on Rn and therefore polynomials. Hence,the space N pl (Rn) equals the space :Nk = f(�; �) 2 Pk � Pk�1; div� = 0;���� +r� = 0g; (2.2)with k = [1� n=p� l] if n=p+ l =2 fi 2 Z; i � 0g and k = �(n=p + l) otherwise.We can adapt this characterisation to N 2l (
) when n � 3.Proposition 2.3 If n � 3 and l is an integer such as n=2 =2 f1; : : : ; jljg, then :N 2l (
) = f(u ; �); u = v(�)� �; � = �(�)� �; (�; �) 2 Nkg;with k = [1� n=2� l] if n=2 + l =2 fi 2 Z; i � 0g and k = �(n=2 + l) otherwise,and where (v(�); �(�)) is the unique solution in W1;20 (
)� L2(
) of problem(S�) � ��v +r� = 0 in 
;� div v = 0 in 
;v = � on @
:Proof : We have already proved the case l � 0, so we now consider the case l < 0.Let us �rst note that each pair (u ; �) in N 2l (
) satis�es the Green's formula : forall pairs ( ; �) in D(
)�D(
),Z
[(��� +r�):u � � div ]dx =<  ; (�ru � �I):n >@
; (2.3)where n denotes the unit normal vector to @
 pointing outside 
, where I is thesecond order identity tensor, and < :; : >@
 denotes the duality pairing betweenW1=p;p0(@
) and its dual space W�1=p;p(@
).In particular, if we extend u and � by zero in 
0, the extended functions, stilldenoted by u and �, respectively belong to W1;2l (Rn) and W 0;2l (Rn). Moreover,thanks to (2:3), we have the equalities :���u +r� = h ; divu = 0; in D0(Rn); (2.4)with 8 2 D(Rn); < h ; > = < (�ru � �I):n ; >@
 : (2.5)By construction, h belongs to W�1;20 (Rn) so that, since n � 3, Stokes problem(2:4) has a unique solution (v ; �) 2W1;20 (Rn)� L2(Rn) (see [1], Theorem 3.3, orthe more general Theorem 2.6 below). Then, the di�erence (v�u ; ���) belongstoW1;2l (Rn)�W 0;2l (Rn) and to N 2l (Rn). Thus, in view of characterisation (2:2),7



v = u + � and � = � + �;where (�; �) belongs to Nk and k = [1� n=2� l] if n=2 + l =2 fi 2 Z; i � 0g andk = �(n=2+l) otherwise. Hence, for h is supported in @
, one immediately checksthat (v ; �), restricted to 
, provides a solution in W1;20 (
) � L2(
) to problem(S�). But, since � is a polynomial, it also belongs to H1=2(@
) and consideringTheorem 2.2, for each �, the problem (S�) has a solution in W1;20 (
) � L2(
)which is unique in this space. Hence, (v ; �) actually equals (v(�); �(�)). }Remark 2.4 As a consequence of Theorem 2.1, the mapping :(�; �) 7! (v(�)� �; �(�)� �);is linear and injective. Thereby, N 2l (
) is isomorphic to N 2l (Rn) when n � 3 andboth spaces have the same �nite dimension. However, when n = 2, this is notnecessarily the case. For instance, Theorem 2.1 shows that N 20 (
) = f(0; 0)g,but N 20 (R2) = N0 = P0 � f0g. More generally, we shall see in the sequel that ifn = 2, then N pl (
) has a di�erent structure than the one it has if n � 3.We now establish, in the case ' = 0, and when l < 0, the existence of asolution (u ; �) 2W1;2l (
)�W 0;2l (
) to the problem (S). In the sequel, we agreethat the set f1; : : : ; kg is empty if the integer k is not positive.Proposition 2.5 Let n � 3, and l < 0 such that n=2 =2 f1; : : : ; jljg. Then forany (f ; g) in W�1;2l (
)�W 0;2l (
) and ' = 0, problem (S) has a solution (u ; �)with u 2W1;2l (
) and � 2 W 0;2l (
).In order to prove this property, we shall use the analogous existence resultfor the Stokes problem set in Rn which we quote here in the general case (see[1],Theorems 3.3, 3.5 and Corollary 3.6).Theorem 2.6 (Alliot-Amrouche,[1]) Let l be an integer, n � 2 and p satify-ing : (H) n=p0 =2 f1; : : : ; lg and n=p =2 f1; : : : ;�lgIf f 2 W�1;pl (Rn) and g 2 W 0;pl (Rn), problem (S) has a solution (u ; �) withu 2W1;pl (Rn) and � 2 W 0;pl (Rn) if and only if f and g satisfy :8(�; �) 2 N[l+1�n=p0]; < f ;� >W�1;pl �W1;p0�l + < g; � >W 0;pl �W 0;p0�l = 0: (2.6)In W1;pl (Rn)�W 0;pl (Rn), this solution is unique up to an element of N[1�l�n=p].8



Remark 2.7 i) We have also proved in [1] the continuous dependence of thesolution with respect to the the data but we shall not use this property here.ii) In the sequel, we shall often use the assumption (H) which already appearswith p = 2 in Proposition 2.5. In particular, let us point out that this conditionis empty if l = 0 and reads otherwisen=p =2 f1; : : : ;�lg if l < 0 and n=p0 =2 f1; : : : ; lg if l > 0:Moreover, when (H) is satis�ed, one has N pl (Rn) = N[1�l�n=p].iii) Problem (S) can be solved even if condition (H) is no longer satis�ed. It isthen necessary to work in slightly di�erent weighted Sobolev spaces.We now come to theProof of Proposition 2.5 : We �rst solve the problem in Rn by extendingthe data. Indeed, it results from Theorem 1.2-(ii) and from the Closed RangeTheorem of Banach that there exists a second order tensor F 2 W 0;2l (
) such thatdivF = f . In particular, extending F by zero in 
0, we get a continuous extensionof f inW�1;2l (Rn). We also extend g by zero in 
0 and still denote by (f ; g) thepair of extended distributions which obviously belongs toW�1;2l (Rn)�W 0;2l (Rn).Now, since l + 1� n=2 < 0 and considering Theorem 2.6, there exists a pair(w ; �) 2W1;2l (Rn)�W 0;2l (Rn) satisfying :���w +r� = f ; � divw = g in Rn :Moreover, in view of Theorem 2.2, the problem (S�) introduced in Proposition2.3, with � = w , has, in W1;20 (
) � L2(
), one and only one solution (v ; �).But l < 0, so that (v ; �) also belongs to W1;2l (
) � W 0;2l (
). Thus, the pair(w � v ; � � �) restricted to 
 solves problem (S) with ' = 0 and belongs to thedesired space. }We can now conclude with a full existence and uniqueness result in the casep = 2 with homogeneous Dirichlet boundary conditions.Theorem 2.8 Let n � 3 and l an integer such that n=2 =2 f1; : : : ; jljg. Whenf 2 W�1;2l (
), g 2 W 0;2l (
) and ' = 0, problem (S) has a solution satisfying(u ; �) 2W1;2l (
)�W 0;2l (
) if and only if f and g satisfy :8(v ; �) 2 N 2�l(
); < f ; v >W�1;2l � �W1;2�l + < g; � >W 0;2l �W 0;2�l = 0: (2.7)9



This solution is unique in W1;2l (
)�W 0;2l (
), up to an element of N 2l (
) and itsatis�es the estimate :inf(v ;�)2N 2l (
)(ku + v kW1;2l + k � + � kW 0;2l ) � C(k f kW�1;2l + k g kW 0;2l );where C > 0 only depends on �; n; l and 
.Proof : Recall that the case l = 0 is proved in Theorem 2.1. More generally, theresult amounts to proving that the operator :T : ( �W 1;2l (
)�W 0;2l (
))=N 2l (
) �! (W�1;2l (
)�W 0;2l (
))?N 2�l(
); (2.8)(u ; �) 7�! (���u +r�; � divu); (2.9)is an isomorphism. The operator T is obviously injective in the quotient space.Moreover, if l < 0, then N 2�l(
) = f(0; 0)g, and T is therefore surjective thanksto Proposition 2.6 . Since T is obviously continuous, it is an isomorphism. Now,set k = �l > 0, then the adjoint of T ,T � : �W 1;2k (
)�W 0;2k (
) �! (W�1;2k (
)�W 0;2k (
))?N 2�k(
);is also an isomorphism and one can prove making use of a generalised Green'sformula that T �(u ; �) = (���u +r�;� div u) which concludes the proof. }Remark 2.9 The restrictions made so far on the value of the integer l haveexcluded to have existence and uniqueness properties when n = 2 unless l = 0.We shall treat this case in the next section when p 6= 2. We shall also extendTheorem 2.8 to non-homogeneous Dirichlet boundary conditions.3 Existence and uniqueness in the general caseWe now complete the latter Theorem 2.8 by treating the case p 6= 2. Moreover,we thoroughly investigate the speci�cities of the case n = 2. We �rst establishregularity properties for solutions of problem (S) with homogeneous Dirichletboundary conditions given by Theorem 2.1, when data have compact support.Lemma 3.1 Let 
 be a C1;1 exterior domain and let l be an integer. Assumethat p > 2 satis�es both (H) and n=p0 > l + 1. Then, for any pair (f ; g) in10



W�1;p0 (
)�Lp(
) with compact supports in 
 and ' = 0, problem (S) has a oneand only one solution satisfying :u 2 �W 1;20 (
) \ �W 1;pl (
); � 2 L2(
) \W 0;pl (
): (3.1)We are going to derive this result from regularity properties of the Stokesproblem in bounded domains and in Rn . In particular, we establish some similarregularity properties for the Stokes problem in Rn without assuming p > 2.Proposition 3.2 Let l and p satisfy (H) and n=p0 > l + 1. Then, for any pair(f ; g) with f 2 W�1;20 (Rn) \W�1;pl (Rn); g 2 L2(Rn) \W 0;pl (Rn), problem (S)has a solution (u ; �) with :u 2W1;20 (Rn) \W1;pl (Rn); � 2 L2(Rn) \W 0;pl (Rn); (3.2)if and only if < f ;� >W�1;20 �W1;20 = 0; 8� 2 P0; when n = 2; (3.3)This solution is the only one satisfying (3:2) if n � 3, but up to an element of N0if n = 2.Proof : As a consequence of Theorem 2.6, problem (S) has solutions :(u1; �1) 2W1;20 (Rn)� L2(Rn) and (u2; �2) 2W1;pl (Rn)�W 0;pl (Rn):In particular, (u1�u2; �1� �2) = (�; �) has to belong to Nk for some integer k.Moreover, considering Proposition 1.4-(i), and sincek�(jx j; :)kLp(�) � ku1(jx j; :)kLp(�) + ku2(jx j; :)kLp(�);a simple integration argument shows that the degree of � cannot exceed the valuemax(1 � n=2; 1 � n=p � l). Hence, one can assign this value to k and thereforeprove that Nk � W1;20 (Rn) � L2(Rn) or Nk � W1;pl (Rn) � W 0;pl (Rn). Bothproperties imply that at least one of the (u i; �i); i = 1; 2 belongs to the desiredintersection. Finally, the uniqueness properties are a straightforward consequenceof the polynomial form of solutions of problem (S) with zero data in Rn . }Before giving the proof of Lemma 3.1, we also recall the result proved in [2]for bounded domains. 11



Theorem 3.3 (Amrouche,Girault,[2]) Let O be a bounded domain in Rn ,with n � 2, and with a C1;1 boundary. Then, when f 2W�1;p(O); g 2 Lp(O) and' 2 W 1=p0;p(@O), problem (S) has a unique solution (u ; �) in W1;p(O)� Lp(O)with RO �dx = 0 if and only if :ZO g(x )dx + Z@O ':nds = 0 : (3.4)Moreover, there exists C > 0, depending only on O; p; n and �, such that :ku kW1;p(O) + k � kLp(O) � C(k f kW�1;p(O) + k g kLp(O) + k' kW1=p0;p(@O)):Proof of Lemma 3.1 : As the pair (f ; g) has bounded support, it also belongstoW�1;20 (
)� L2(
). In particular, problem (S) has a unique solution (u ; �) in�W 1;20 (
)� L2(
). Once we have extended u and � by zero in 
0, we de�ne thedistributions over the whole space Rn :~f = ��u +r� and ~g = � divu ;and (~f ; ~g) belongs by construction toW�1;20 (Rn)�L2(Rn) and also satis�es (3:3)if n = 2 (see theorem 2.6 with p = n = 2 and l = 0).We are going to prove that u and � are in fact more regular in 
R0 = 
\BR0 ,that is : (u ; �) 2W1;p(
R0)� Lp(
R0); (3.5)if R0 is such that both 
0 and the support of (f ; g) are contained in BR0 . Indeed,if (3:5) is ful�lled, then the pair (~f ; ~g) belongs to W�1;p(
R0) � Lp(
R0) but,considering its compact support, also belongs to W�1;pl (Rn)�W 0;pl (Rn). Hence,(u ; �) is anything else but the solution satisfying (3:1) given by Proposition 3.2and therefore satis�es the desired regularity on 
.We now conclude by proving (3:5). Let us de�ne, for all R > R0, the cut-o�functions : R 2 D(BR); 0 <  R � 1 in BR; and  R = 1 in BR0 :Then, the pair (wR; �R) = (u R; � R) belongs to �W 1;20 (
) � L2(
) and hascompact support in BR. Elementary calculations on distributions show that itsatis�es for all R > R0 :��wR +r�R = f  R + FR in 
R;� divwR = g R +GR in 
R;wR = 0 on @
R;12



with FR = �2rur R + �r R � u� R and GR = �u :r R. In particular,one easily checks that (FR; GR) belongs to L2(
R)�H1(
R).i) We �rst assume that n = 2 and we consider a real number R1 > R0. Then,thanks to Sobolev imbeddings,(FR1 ; GR1) 2W�1;q(
R1)� Lq(
R1); 8q > 2; (3.6)and in particular if q = p. Then, Theorem 1.7 shows that (wR1; �R1) belongs toW1;p(
R1)� Lp(
R1).ii) Suppose now that n � 3, then the property (3:6) remains true for q in [2; 2�].Thus, if p � 2�, we can apply the preceding argument and the result is straight-forward. If p > 2� and R1 > R0, one can still prove that (wR1; �R1) belongsfor instance to W1;2�(
R1) � L2�(
R1) because the pair (f  R1 ; g R1) belongsto W�1;2�(
R1) � L2�(
R1). As a consequence, for any real number R2 withR0 < R2 < R1, the pair (u ; �) belongs toW1;2�(
R2)� L2�(
R2).Thus, (FR2 ; GR2) belongs to L2�(
R2) � W 1;2�(
R2) and we can apply thesame argument with 2� instead of 2 and R2 instead of R1. From then on, it iseasy to see that repeating at most [n=2] times this argument permits to reachany value of p > 2. }Corollary 3.4 Under the assumptions of Lemma 3.1, and if � 2 W1=p0;p(@
),problem (S�) has one and only one solution (u ; �) in the class de�ned by (3:1).Proof : One can lift ' by a �eld w 2W1;p0 (
) with compact support in 
 (thesolution w 2W1;p(
R) of problem ��w = 0 in 
R, w = ' on @
, w = 0 on@BR, extended by zero out of BR provides such a lifting if R is large enough).Then, problem (S�) is equivalent to problem :(S 0�) ��v +r� = �w in 
;� div v = divw in 
;v = 0 on @
;where the pair (�w ; divw ) belongs toW�1;p0 (
)� Lp(
) and has compact sup-port. Let (v ; �) be the solution of problem (S 0�) given by Lemma 3.1 then thepair (v +w ; �) solves problem (S�) and satis�es the desired regularity. Besides,its uniqueness follows from Theorem 2.2 . }Remark 3.5 Note that in Lemma 3.1 and Corollary 3.4, we have assumed that@
 isC1;1 which was not the case in section 2. This assumption is made neccessary13



because we use Theorem 3.3 in the proof. Hence, if Theorem 3.3 remains truewith weaker regularity of the boundary, so does Lemma 3.1.The next result characterises the kernels N pl (
) under the assumptions ofLemma 3.1. To this end, we shall use for the case n = 2 the bidimensionalfundamental solution (U;Q) of Stokes problem given by :Uij(x ) = 14�� (��ij ln jx j+ xixjjx j2 ); Qi(x ) = 12� xijx j2 ; i; j = 1; : : : ; n: (3.7)Proposition 3.6 Under the assumptions of Lemma 3.1, one has :i) If n � 3, N pl (
) = f(v(�)� �; �(�)� �); (�; �) 2 N[1�n=p�l]g; (3.8)where (v(�); �(�)) denotes the solution of problem (S�) satisfying (3:1) given byCorollary 3.4.ii) If n = 2,N pl (
) = f (v(�+U�(0))���U�(0); �(�+U�(0))���Q:�(0));(�; �) 2 N[1�2=p�l] g; (3.9)where (v(�+ U�(0)); �(�+ U�(0))) denotes the solution of problem (S�+U�(0))satisfying (3:1) given by Corollary 3.4.Proof : When n � 3, the proof is very similar to that of Proposition 2.3 . Indeed,let us extend (u ; �) 2 N pl (
) by zero in 
0. Then, the distribution h de�ned by(2:5) belongs to W�1;p0 (Rn) and has compact support. Hence, since n � 3 andn=p0 > l + 1, problem (2:4) has a unique solution (v ; �) with :v 2W1;20 (Rn) \W1;pl (Rn); � 2 L2(Rn) \W 0;pl (Rn);as a consequence of Proposition 3.2. Thus, we obtain like above thatv = u + � and � = � + �;where (�; �) belongs to N[1�l�n=p]. Then, by construction, the restriction of (v ; �)to 
 is the solution given by Corollary 3.2 of the problem (S�).We still have to treat the case n = 2 which is rather di�erent. Indeed, to solveproblem (2:4) with Proposition 3.2 requires the vector h given by :hi =< hi; 1 >W�1;20 (R2)�W 1;20 (R2); i = 1; 2 (3.10)14



to be the null-vector, which is not generally true. We can nevertheless solvea slightly modi�ed equivalent problem. To this end, we introduce for R > 0,a function  R 2 D([0;+1[), with  R � 0, that equals 1 on [0; R=2] and 0 in[R;+1[. Setting �R = 1�  R, we de�ne the truncated fundamental solution :UR(x ) = �R(jx j)U(x ) and QR(x ) = �R(jx j)Q(x );which is no longer singular at the origin. On the one hand, one easily provesthat UR 2 W 1;qk (R2) and QR 2W0;qk (R2) if and only if 1 � 2=q � k > 0, that is2=q0 > k + 1. On the other hand, the functionsF = ���UR +rQR and G = � divUR;have compact supports and respectively belong to W�1;20 (R2) and L2(R2). More-over, using symmetry properties of (U;Q), one shows by some elementary tediouscalculations that, < Fij; 1 >W�1;20 (R2)�W 1;20 (R2)= �ij; i; j = 1; 2:Therefore, thanks to Proposition 3.2, the problem :��v +r� = h � Fh ; div v = �G:h in Rn ;has a unique solution (v ; �) satisfying (3:1). Then, we can show as above that :v � u + URh = � and � � � +QR:h = �;where (�; �) belongs to N[1�n=p�l]. In particular, if we choose R small enough,then BR � 
0 and we have the equalities in 
 :u = v � �+ Uh and � = � � ��Q:h ; (3.11)where (v ; �) is indeed the solution (v(� + Uh); �(�+ Uh)) of problem (S�+Uh)given by Corollary 3.4. Finally, note that if a is a constant vector, the solution of(Sa) given by Corollary 3.4 is (a; 0). In particular, the functions u and � de�nedby (3:11) do not depend on the constant coe�cient �(0) of the polynomial � sothat we can choose �(0) = h , which completes the proof. }Remark 3.7 Proposition 3.3 implies again that N pl (
) and N[1�l�n=p] are iso-morphic (see Remark 2.4) when n � 2; p > 2 and n=p0 > l + 1.15



We now apply the preceding results in order to solve homogeneous Dirichletproblem (S).Theorem 3.8 Let 
 be an exterior domain with a C1;1 boundary.i) Let l be an integer and let p > 2 satisfy both (H) and n=p0 > l + 1. If fin W�1;pl (
), g in W 0;pl (
) and ' = 0, then problem (S) has a solution (u ; �)in W1;pl (
)�W 0;pl (
). In this space, the solution is unique up to an element ofN pl (
) and satis�es the estimate :inf(v ;�)2N pl (
)(ku + v kW1;pl + k � + � kW 0;pl ) � C(k f kW�1;pl + k g kW 0;pl );where C > 0 only depends on �; p; n; l and 
.ii) Let l be an integer and let p < 2 satisfy both (H) and n=p > 1 � l. Forf in W�1;pl (
), g in W 0;pl (
) and ' = 0, then problem (S) has a solution inW1;pl (
)�W 0;pl (
) if and only if :8(v ; �) 2 N p0�l(
); < f ; v >W�1;pl � �W1;p0�l + < g; � >W 0;pl �W 0;p0�l = 0:Such a solution (u ; �) is unique and satis�es the estimate :ku kW1;pl + k � kW 0;pl � C(k f kW�1;pl + k g kW 0;pl );where C > 0 only depends on �; p; n; l and 
.Proof : Statement i) is equivalent to prove that the operator :T : ( �W 1;pl (
)�W 0;pl (
))=N pl (
) �!W�1;pl (
)�W 0;pl (
);de�ned by (2:9), is an isomorphism. This operator is obviously injective in thequotient space and continuous. Hence, we only have to prove that T is alsosurjective, that is, to prove existence of a solution in W1;pl (
) � W 0;pl (
) toproblem (S) with (f ; g) inW�1;pl (
)�W 0;pl (
):We proceed as in Proposition 2.5. We extend by the same means the data andthen the extended distributions (f ; g) belong to W�1;pl (Rn) � W 0;pl (Rn). Sincen=p0 > l + 1, Theorem 2.6 provides a solution (w ; �) inW1;pl (Rn)�W 0;pl (Rn) toproblem : ���w +r� = f ; divw = g in Rn :Moreover, problem (S�) with � = w has a solution (v ; �) 2W1;pl (
)�W 0;pl (
),thanks to Corollary 3.4. Then, (w � v ; � � �) solves homogeneous Dirichletproblem (S) and belongs to W1;pl (
) �W 0;pl (
). Finally, statement ii) followsfrom i) by duality (see also the proof of Theorem 2.8) }16



Remark 3.9 Theorem 3.8, ii) proves in particular that N pl (
) = f (0; 0) g when-ever p < 2 and l < 1� n=p. Hence, both characterisations established in Propo-sition 3.6 remain true with such assumptionsLet us now give a generalisation of Theorem 3.8 which is speci�c to thebidimensional case. Assume n = 2 and consider for any p the real number�(p) = 1 � 2=p (note that �(p) is an integer if and only if p = 2) then one canshow that both Theorem 2.6 and Proposition 3.2 remain true if the integer l isreplaced by �(p). As a consequence, we have the following result :Theorem 3.10 Let 
 � R2 be an exterior domain with a C1;1 boundary. Forf in W�1;p�(p) (
), g in W 0;p�(p)(
) and ' = 0, problem (S) has a solution (u ; �)in W1;p�(p)(
) � W 0;p�(p)(
). In this space, the solution is unique and satis�es theestimate : ku kW1;p�(p) + k � kW 0;p�(p) � C(k f kW�1;p�(p) + k g kW 0;p�(p));where C > 0 only depends on �; p and 
.Proof : When p > 2, the proofs of both Lemma 3.1 an Corollary 3.4 can beadapted replacing the integer l by �(p). Moreover, one can prove, following theideas of Proposition 3.6 that N p�(p)(
) = f(0; 0)g because in this case the vectorh de�ned by (3:10) necessarily equals zero. Then, the existence of solutions isobtained as in Theorem 3.8, up to minor modi�cations. Finally, since one checksthat �(p0) = ��(p) for any p, the case p < 2 follows from the case p > 2 byduality. }Remark 3.11 This result covers all the cases when some logarithmic weightappears in the de�nition ofW 1;p� and n = 2. It also proves thatN p�(p)(
) is reducedto f (0; 0) g and thus has not the same dimension as N p�(p)(R2) = P0 � f0g.We now consider the cases left untreated by Theorem 3.8 . The method issimilar : it is also based on an adequate existence result for the problem (S�),namelyLemma 3.12 i) Let n � 3, p < 2 and l0 de�ned by :l0 = �1 if p < n=2 or l0 = 0 if n=2 � p < 2: (3.12)If � 2W1=p0;p(@
), problem (S�) has, in W1;pl0 (
)�W 0;pl0 (
), a unique solution.ii) Let n = 2 and �(p) = 1 � 2=p. If � in W1=p0;p(@
), problem (S�) has inW1;p�(p)(
)�W 0;p�(p)(
), a unique solution.17



Proof : In both cases, the proof looks like that of Corollary 3.4. We solve theequivalent problem (S 0�) where the �eld w 2 W1;p0 (
) has compact support,and equals ' on @
. On the one hand, if n � 3, this problem has a solution(u ; �) 2 W1;pl0 (
) �W 0;pl0 (
) in view of Theorem 3.8-(ii) (it is a simple matterof check to see that n=p > 1� l0) and when n = 2, problem (S 0�) is solved withTheorem 3.10. }We now give a complete characterisation of the spaces N pl (
).Theorem 3.13 Let l be an integer and p satisfy (H). Then, if n � 3 then (3:8)holds. If n = 2, (3:9) holds unless p = 2 and l = 0.Proof : We have already treated the case p > 2 and n=p0 > l + 1 in Proposition3.6 and the case p = 2 in Proposition 2.3. We now assume that p < 2 andn=p0 > l + 1, and we proceed like in Proposition 3.6. Indeed, let (u ; �) 2 N pl (
)and h be the distribution de�ned by (2:5). Then, h has compact support inRn and thus belongs to W�1;pl0 (Rn) where l0 is de�ned by (3:12). Therefore, ifn � 3, one can show using theorem 2.6 that problem (2:4) has a solution (v ; �)inW1;pl0 (Rn)�W 0;pl0 (Rn) that is unique in this space. Thus, since l0 � l,(v � u ; � � �) = (�; �) 2 N[1�n=p�l];so that the restriction of (v ; �) to 
 is the only solution inW1;pl0 (
)�W 0;pl0 (
) ofproblem (S�) given by Lemma 3.12. Now, since it is a polynomial, � also belongsto H1=2(@
). Finally, a regularity argument similar to the one developed in theproof of Lemma 3.1, proves that (v ; �) also belongs to W1;20 (
) � L2(
). Whenn = 2 and 2=p0 > l + 1, we can proceed similarly if we replace l0 by the realexponent �(p) = 1� 2=p.When n=p0 � l + 1, elementary calculations show that l � l0 if n � 3, andl > �(p) if n = 2. Therefore, N pl (
) = f(0; 0)g as a consequence of Remarks 3.9,3.11 and of obvious imbeddings, which concludes the proof. }The next result speci�es the asymptotic behaviour of the elements of N pl (
).Corollary 3.14 In characterisation (3:8) (resp. (3:9) ), the vector �eld v(�)(resp. v(� + U�(0)) ) is negligible compared to � (resp. � � �(0) + U�(0)) atin�nity.Proof : i) Assume that n � 3. If � is a polynomial function then it belongs toall spaces W1=q0;q(@
) with q 2 ]1;+1[. In particular, Corollary 3.4 shows thatv(�) belongs to all spacesW1;qk (
) with q > n and k such that n=q0 > k+1 (i.e.18



1 � n=q � k > 2 � n). If we choose k = n � 2 and make p vary in the interval]n;+1[, Proposition 1.4 then yields :v(�)(x ) = o(jx j
); 8
 > 2� n as jx j �! +1:ii) Similarly, when n = 2, Lemma 3.11-(ii) proves that v(�+U�(0)) 2 W1;q�0 (
)for all q > 2. In this case, Proposition 1.4 states that :v(�+ U�(0))(x ) = o(ln jx j); as jx j �! +1; (3.13)and is therefore negligible compared to �� �(0) + U�(0). }Remark 3.15 These properties can be related to the well-known Stokes Para-dox. This paradox arising from the modelling of viscous �uids �ows originallystates the following property : if 
 is the exterior of a disk of R2 , problem (S)with zero data has no classical solution (u ; �) such that u tends to a prescribednon-zero vector at in�nity. This property may be generalised to arbitrary exteriordomains of R2 with smooth boundary and to a wider class of solutions (see forinstance [10]).Corollary 3.14 provides another proof of this generalisation : let 
 be anexterior domain with a C1;1 boundary, and let (u ; �) solve problem (S) with null-data. Then, u and � are locally smooth functions. Let us now assume that u and� are tempered distributions. Then, it is not di�cult to see that (u ; �) necessarilybelongs to N pl (
) for some p and integer l . Therefore, the vector �eld u is of theform �+U�(0)�v(�+U�(0)) for some polynomial �. Thus, because of (3:13),the �eld u cannot behave like o(ln jx j) at in�nity unless � = 0 which enlargesthe original statement of the paradox since, in particular, u cannot tend to aprescribed non-zero constant vector (see [6], theorem V.3.5 for a similar result).We conclude this section with a general existence and uniqueness result forproblem (S) in weighted Sobolev spaces.Theorem 3.16 Let 
 be an exterior domain with a Lipschitz-continuous bound-ary if p = 2 and a C1;1 boundary otherwise and let l be an integer satisfying (H).Then, for f in W�1;pl (
), g in W 0;pl (
) and ' in W1=p0;p(@
), problem (S) hasa solution in W1;pl (
)�W 0;pl (
) if and only if8(v ; �) 2 N p0�l(
); < f ; v > + < g; � > + < '; (�rv��I):n >@
= 0: (3.14)19



In this space, a solution (u ; �) is unique up to an element of N pl (
) and satis�esthe estimate :inf(v ;�)2N pl (
)(ku + v kW1;pl + k �+ � kW 0;pl ) � C(k f kW�1;pl + k g kW 0;pl + k' kW1=p0;p);where C > 0 only depends on 
; p; n; � and l.Proof : i) We �rst complete the proof of the case ' = 0. In the cases untreatedso far, that is, p < 2; n=p0 > l + 1; or p > 2; n=p < 1� l;the proof is similar to that of Theorem 3.8, but uses Lemma 3.12 instead ofCorollary 3.4.ii) Suppose now that ' 6= 0, then we can lift it by a function w that belongs toW1;pl (
), has compact support and satis�es the estimate :kw kW1;pl (
) � Ck'kW1=p0;p(@
): (3.15)In particular, setting ~u = u �w , problem (S) is equivalent to the problem :(S 0) � ��~u +r� = f + ��w in 
;� div ~u = g + divw in 
;~u = 0 on @
;Now, problem (S 0) has a solution in �W 1;pl (
)�W 0;pl (
) if and only if :8 (v ; �) 2 N p0�l(
); < f + ��w ; v > + < g + divw ; � >= 0:But the latter condition is equivalent to (3:14). Indeed, for any (v ; �) be-longing to N p0�l(
), Green's formula (2:3) holds by density for any pair ( ; �) inW1;pl (
)�W 0;pl (
). In particular, we have for the pair (w ; 0) :< ��w ; v > + < divw ; � >= � < '; (�rv � �I):n >@
 :Finally, estimate (3:15) and the one satis�ed by (~u ; �) immediately provide theappropriate estimate. }Remark 3.17 In view of Proposition 1.4, u vanishes at in�nity when p > n and1 � n=p � l < 0, which is the case for instance as soon as l � 1. When n = 2,such conditions imply that N p0�l(
) is not reduced to zero and that the data mustsatisfy some compatibility conditions, which is not necessary when n � 3.20



4 Regularity resultsAs in the case of a bounded domain, one can establish that the local regularity ofthe solutions of the problem (S) increases with that of the data. The next resultsets such a property in weighted Sobolev spaces and thus also takes into accountthe asymptotic behaviour of solutions and their derivatives. In particular, assumek is an integer, set l = k + 1 and assume that p satisfy (H), we introduce thespaces :W 2;pk+1(
) = f u 2 W 1;pk (
); �k+1r2u 2 Lp(
) g; if n=p+ (k + 1) 6= 1;and if n=p+ (k + 1) = 1 :W 2;pk+1(
) = f u= �k�1(ln �)�1ru 2 Lp(
); �k(ln �)�1u 2 Lp(
); �k+1r2u 2 Lp(
) g:Let us recall then a regularity result established in [1] for problem (S) in Rn .Theorem 4.1 (Alliot-Amrouche,[1]) Let k be an integer and p satisfy (H)with l = k + 1. Then, for f in W0;pk+1(Rn), g in W 1;pk+1(Rn), problem (S) has asolution in W2;pk+1(Rn) �W 1;pk+1(Rn) if and only if f and g satisfy (2:6). Such asolution is unique up to an element of N[1�k�n=p] and satis�es the estimate :inf(v ;�)2N[1�k�n=p](ku + v kW2;pk+1 + k � + � kW 1;pk+1) � C(k f kW0;pk+1 + k g kW 1;pk+1); (4.1)where C > 0 only depends on p; n; k and �.Owing to this result, it is not di�cult to adapt the arguments developedabove in order to prove Theorem 3.16 . In particular, one can show that underthe assumptions of Theorem 4.1, N pk (
) �W2;pk+1(
)�W 1;pk+1(
) and �nally obtainthe regularity result :Theorem 4.2 Let 
 be an exterior domain with C1;1 boundary and k an integersuch that p satis�es (H) with l = k + 1. For f in W0;pk+1(
), g in W 1;pk+1(
) and' in W1+1=p0;p(@
), problem (S) has a solution (u ; �) in W2;pk+1(
)�W 1;pk+1(
) ifand only if f ; g and ' satisfy (3:14). Such a solution is unique up to an elementof N pk (
) and satis�es the estimate :inf(v ;�)2N pk (
)(ku+v kW2;pk+1+k �+� kW 1;pk+1) � C(k f kW0;pk+1+k g kW 1;pk+1+k' kW1+1=p0;p);where C > 0 depends only on 
; p; n; � and k.21



Let us recall that if we take k = �1 in Theorem 4.1, then :1� k � n=p = 2� n=p < 2;and N[2�n=p] only contains a�ne functions. In particular, estimate (4:1) impliesthat the second derivatives of a solution u are controlled in Lp(Rn) by the data,that is : kr2u kLp(Rn) + kr� kLp(Rn) � C(k f kLp(Rn) + k g kW 1;p0 (Rn)):More generally, this estimate holds true for any solution (v ; �) of problem (S)with D2v and r� in Lp(
). Indeed, such a solution di�ers from the solution(u ; �) given by Theorem 4.2 by (�; �) 2 N1, so that in particular r2u = r2vand r� = r�.However, it is a well-known fact that the situation is di�erent in exteriordomains. For instance, when f 2 Lp(
), and g;' vanish, W. Borchers and T.Miyakawa prove in [4] that every solution of problem (S) with u 2W2;p(
) and� 2 W 1;p(
) satis�es :kr2u kLp(
) + kr� kLp(
) � Ck f kLp(
) i� n � 3 and p < n=2: (4.2)In the other cases, H. Kozono and T. Ogawa prove in [14](Theorem 1.1) thefollowing general a priori estimate (see also [11] for the case p = 2) :kr2u kLp(
) � C(k f kLp(
) + kru kLr(
)) if r � p � n=2: (4.3)Note that if n=2 � p < n, then any solution given by Theorem 4.2 satis�esru 2 Lp�(
) thanks to Sobolev imbeddings. On the contrary, if p � n, rudoes not necessarily belong to some Lr space so that the right-hand side of theestimate may not be de�ned.The next result improves estimates (4:3) and (4:6) and naturally links thecontrol of r2u in Lp with the uniqueness of the solution of problem (S) inW2;p0 (
)�W 1;p0 (
). Let us beforehand introduce the �nite dimensional space :E = fv 2W2;p0 (
); 9�; (v ; �) 2 N p�1(
)g; (4.4)and denote by k : kE a �xed norm on E. We also introduce a continuous linearprojection operator : P : W2;p0 (
) �! E; (4.5)whose existence follows from Hahn-Banach Theorem. Then, we have22



Theorem 4.3 Let f 2 Lp(
) and assume that g and ' vanish. Then, anysolution (u ; �) of the problem (S) in W2;p0 (
)�W 1;p0 (
) satis�es the estimate :kr2u kLp(
) � C(k f kLp(
) + kPu kE); (4.6)where C > 0 is independent of f and u.Proof : The estimate provided by Theorem 4.2 with k = �1 easily implies that :infv2E ku + v kW2;p0 (
) � Ck f kLp(
): (4.7)Moreover, since E is a �nite dimensional subspace ofW2;p0 (
), one can easilyshow the following equivalence of norms on W2;p0 (
)=E :infv2E ku + v kW2;p0 (
) � ku � Pu kW2;p0 (
): (4.8)Thus, we can deduce from (4:7) and (4:8) the estimate :kD2(u � Pu) kLp(
) � Ck f kLp(
);and therefore : kD2u kLp(
) � C(k f kLp + kD2(Pu) kLp(
)):This concludes the proof since the quantity kD2 : kLp de�nes a norm on E whichis necessarily equivalent to k : kE. }Remark 4.4 This estimate is more general than (4:2) and (4:3) in many aspects.i)When p < n=2, the class of solutions to which the estimate (4:6) applies is muchlarger since W2;p(
) is strictly imbedded inW2;p0 (
).ii) When n=2 � p < n, we recall that if u 2W2;p0 (
) then ru belongs to Lp�(
).Anyway (4:6) is still sharper than (4:3) since one can prove that if r � p :kPu kE � Ckru kLr(
);(assume this is false and use the fact that P is a compact operator) whereas thereverse inequality is not satis�ed. Indeed, if it was, then the kernel of P would bereduced to zero and therefore one would have W2;p0 (
) = E, which is obviouslyimpossible.iii) When p � n, estimate (4:6) applies to a larger class of solutions than (4:3),since we need not to assume that ru belongs to some Lr space. Moreover, anysolution of problem (S) with r2u 2 Lp(
) in fact belongs to W2;p0 (
) (we omithere the proof of this property). Hence, in this case, all solutions (v ; �) to problem(S) with D2v 2 Lp(
) satis�es (4:6). 23



Let us �nally point out that estimate (4:6) readily extends when g and 'do not vanish any more. Moreover, one can also generalise such estimates inweighted spaces W0;pl (
) provided (H) is satis�ed.5 Asymptotic propertiesLet us investigate the asymptotic behaviour of some of the solutions we haveconstructed above. In most of the existing literature, the authors give su�cientconditions for the velocity �eld to behave like a given polynomial at in�nity or totend to 0. A few other works give more accurate results consisting in asymptoticrepresentation formulae such as :u(x ) = P(x ) + U(x )c+ �(x );where P is a polynomial, c is a constant vector and the remainder � is negli-gible compared to each of the other terms. We recall that (U;Q) denotes thefundamental solution of Stokes problem and is de�ned by (3:7) if n = 2, but byUij(x ) = �ij c1(n)jx jn�2 � c2(n)xixjjx jn ; Qi(x ) = �2c2(n) xijx jn ; if n � 3:C.G. Galdi proves such a property in the case where f 2 Lp(
) has compactsupport, g = 0, and ' = 0 (see [6],theorem V.3.2) and obtains that :c = Z
 f dx � Z@
(ru � �I):nds:Note that the functional frame we used in Theorem 3.11 seems not to suit apriori the preceding formula. For instance, in general, if f 2 W�1;pl (
), onecannot de�ne its integral. Nevertheless, we prove that u has a similar expansionwith much weaker assumptions. Moreover, we show that the constant vector conly depends on f ; g;' and 
, so that the representation formula becomes areal asymptotic expansion. On the other hand, we do not assume that (f ; g) hascompact support but that it belongs to appropriate weighted Sobolev spaces.We recall that the vector f is de�ned by :f i =< fi; 1 >; i = 1; : : : ; n;where the duality is understood between W�1;pl (Rn) and W 1;p0�l (Rn) with l suchthat P0 � W 1;p0�l (Rn). Then, in the whole space, we have the following expansionresult. 24



Proposition 5.1 Assume (f ; g) 2W�1;p0 (Rn)�Lp(Rn) has compact support K.Then, problem (S) has a solution (u ; �) such that for some R > 0, dependingonly on K, u and � are inde�nitely di�erentiable out of the ball BR. Moreover,for all x such that jx j > R :u(x ) = U(x )f + v(x ); �(x ) = Q(x ):f + �(x ); (5.1)with forall � = (�1; : : : ; �n),j@�v(x )j+ jx jj@��(x )j � CK;�(kf kW�1;p0 + kgkLp)jx j1�n�j�j: (5.2)i) When n � 3, this solution belongs to W1;pl (Rn)�W 0;pl (Rn) if l < n=p0� 1 andis unique in this space if moreover l > 1� n=p.ii) When n = 2, (u ; �) belongs to W1;p�(p)(R2) �W 0;p�(p)(R2) and is unique in thisspace up to an element of N0 = P0 � f0g.Proof : The existence of a solution (u ; �) satisfying (5:1) and (5:2) is proved in[1](Proposition 4.10). Such a solution necessarily belongs toW1;ploc(Rn)�Lploc(Rn).Moreover, the decay properties (5:2) readily implies that u and � belong to thedesired spaces. Finally, uniqueness follows from the polynomial characterisationof N p�(Rn) given in section 2. }We now prove a similar expansion for an exterior domain when n � 3. Forthis purpose, we introduce the canonical basis (e1; : : : ; en) of P0 and, with thenotations of (3:8), the family :(Vi;�i) = (e i � v(e i);��(e i)); i = 1; : : : ; n;which is a basis of N qk (
) provided 0 � 1 � k � n=q < 1 (see Remarks 2.4 and3.7). We also introduce the constant vector F de�ned by :F i =< f ;Vi > + < g;�i >; i = 1; : : : ; n: (5.3)Theorem 5.2 Let 
 be a C1;1 exterior domain of Rn ; n � 3, l be an integer andp such that 1� n=p < l < n=p0 � 1: (5.4)For (f ; g) 2W�1;p0 (
)�Lp(
) with compact support K in 
 and ' = 0, the onlysolution (u ; �) in W1;pl (
)�W 0;pl (
) of problem (S) is inde�nitely di�erentiableout of a ball BR, for some R > 0 depending only on K. Moreover, for all x suchthat jx j > R : 25



u(x ) = U(x )F + v(x ); �(x ) = Q(x ):F + �(x );where v and � satisfy (5:2).Proof : Recall that the existence and uniqueness in �W 1;pl (
)�W 0;pl (
) of (u ; �)follows from Theorem 3.16 since (5:4) implies that (H) is satis�ed and since thedata have compact supports. Moreover, in this case, both spaces N pl (
) andN p0�l(
) are reduced to f(0; 0)g.i) We extend once again u ; �; f and g by zero in 
0. Then, with the samenotations, the extended distributions satisfy the relations in D0(Rn) :���u +r� = f + h ; � divu = g;where h 2W�1;p0 (Rn) has compact support and satis�eskh kW�1;p0 (Rn) � CK(k f kW�1;p0 (
) + k g kLp(
)): (5.5)Hence, as a consequence of Proposition 5.1, (u ; �) has the asymptotic expansion :u(x ) = U(x )(f +h) + v(x ); �(x ) = Q(x ):(f +h) + �(x );where v and � satisfy (5:2).ii) We now prove that f +h = F and we �rst assume that (f ; g) belongs toD(
) � D(
). In this case, since Vj and �j; j = 1; : : : ; n, are smooth, thecomponents of F can be written as integrals :F j =< f ;Vj > + < g;�j >= Z
fjdx + Z
�(ej) divudx� Z
(���u +r�):v(e j)dx :But, since f and g are smooth, (u ; �) also belongsW2;pl+1(
)�W 1;pl+1(
) in view ofTheorem 4.2. In particular, the traces of ru and � exist in W 1=p0;p(@
). Then,extending a classical Green's formula by density, it is not di�cult to prove that :Z
(���u +r�):v(e j)dx � Z
 �(ej) divudx = � < (�ru � �I)n ; ej >@
;and therefore that :F j =< fj; 1 > + < (�ru � �I)n ; ej >@
 :26



On the other hand, h is de�ned by :8 2 D(Rn); < h ; >= ��Z
u :� dx � Z
� div dx� < f ; > :If we operate two integrations by parts on the �rst integral and only one on thesecond, we �nally obtain :8 2 D(Rn); < h ; >=< (�ru � �I)n ; >@
 :Hence, since h has compact support, one has :< h ; e j >=< (�ru � �I)n ; ej >@
;and so we prove the desired equality for smooth f and g. Finally, the generalcase follows from the latter by density. Indeed, consider (f m; gm) 2 D(
)�D(
)tends to (f ; g) in W�1;p0 � Lp(
). Assume without loss of generality that thesupport of (f m; gm) is contained in a compact set which is independent of m,then Fm = f m + hm for all m. Thus, by continuity of the duality pairing andowing to (5:5) : Fm m!+1�! F; f m + hm m!+1�! f + h ;so that F = f + h }When n = 2, the situation is slightly di�erent, and solutions in exterior do-mains have faster decay than those in the whole space. We also de�ne the family,(Vi;�i) = (Ue i � v(Ue i);Q:e i � �(Ue i)); i = 1; 2which is still a basis of the space N pl (
) provided 0 < 1� l � 2=p < 1.Theorem 5.3 Let 
 be a C1;1 exterior domain of R2 , (f ; g) 2W�1;p0 (
)�Lp(
)with compact support K in 
 and ' = 0. Then, the only solution (u ; �) 2W1;p�(p)(
)�W 0;p�(p)(
) of problem (S) is inde�nitely di�erentiable out of a ball BRfor some R > 0 depending only on K. Moreover, for all x such that jx j > R :u(x ) = A:F + v(x ); �(x ) = �(x );where v and � satisfy (5:2) and A = (Aij) is an inversible 2 � 2 matrix withconstant coe�cients depending only on 
.
27



Proof : The existence and uniqueness of (u ; �) follows from Theorem 3.10 be-cause data have compact support. We extend again the solution (u ; �) and thedata by zero in 
0. Thus, the extended distributions still denoted by u ; �; f andg satisfy the relations in D0(R2) :��u +r� = f + h ; � divu = g;where h has compact support. Since (u ; �) belongs toW1;p�0 (R2)�W 0;p�0 (R2) then,(f + h ; g) 2W�1;p�0 (R2)�W 0;p�0 (R2) but also satis�es :< fj + hj; 1 >= 0; j = 1; 2:Therefore, the expansion given by Proposition 5.1 reads in this case :u(x ) = a + v(x ); �(x ) = �(x );where v and � satisfy (5:2) and a belongs to P0. Let us explicit the link betweenvector a and the data.i) We �rst establish that the decomposition a + v is unique for each pair (f ; g).Indeed, if u = a1 + v 1 = a2 + v 2 are two decompositions of such type, thenw = v 1 � v 2 satis�es :���w = 0; divw = 0 in 
; and w = a2 � a1 on @
:But, the only solution of this problem in W1;p�(p)(
) is v 1 � v 2 = a1 � a2. Sincev 1 � v 2 vanishes at in�nity, we �nally get that a1 = a2 and v 1 = v 2.ii) By extension, we can introduce the linear mapping :(f ; g) 7! a(f ; g);and study its kernel. Thanks to (5:2), it is not di�cult to prove that(v ; �) 2W1;pl (
)�W 0;pl (
); with �(p) < l < 2=p0:On the contrary, a(f ; g) =2W1;pl (
) unless a(f ; g) = 0 and considering Theorem3.10, we have(u ; �) 2 �W 1;pl (
)�W 0;pl (
)() (f ; g) 2 (W�1;pl (
)�W 0;pl (
))?N p0�l(
):So we obtain the equivalence :a(f ; g) = 0 () F j =< f ;Vj > + < g;�j >= 0; j = 1; 2: (5.6)28



iii) We now conclude thanks to an appropriate decomposition of the data.Consider a non-empty compact set K � 
, and the closed subspace E(K) ofW�1;p0 (
) � Lp(
) of pairs (f ; g) with support in K. Then, E(K) is a Banachspace and thanks to Hahn-Banach Theorem, we introduce the decomposition :E(K) = E(K)? � R(H1 ; h1)� R(H2 ; h2);where E(K)? = f(f ; g) 2 E(K); < f ;Vj > + < g;�j >= 0; j = 1; 2g and(Hi; hi) 2 E(K) satis�es forall i; j = 1; 2 :< Hi;Vj > + < hi;�j >= �ij: (5.7)Hence, any pair (f ; g) 2 E(K) has a unique decomposition of the form :(f ; g) = (f ; g)? + c1(H1; h1) + c2(H2; h2);where (f ; g)? belongs to E(K)?. In particular, the vector c necessarily equals F.Finally, the kernel of the linear mapping from E(K) into R2 :(f ; g) 7�! a(f ; g);is E(K)? thanks to (5:6). Therefore, its restriction to R(H1 ; h1) � R(H2 ; h2) isinjective. Moreover, both spaces R2 and R(H1 ; h1) � R(H2 ; h2) have the same�nite dimension, so that the restriction is in fact bijective. Thus, it can berepresented by an invertible 2�2 matrix transforming the base (H1; h1); (H2; h2)into the canonical base of R2 . At last, it is not di�cult to prove that the matrixA is independant of the compact K. }We now investigate asymptotic properties of the solutions of the problem (S)when the data no longer have compact support. Even in this case, one still havesome asymptotic expansion of solutions if the data have fast enough decay atin�nity.Theorem 5.4 Let 
 be a C1;1 exterior domain and p > n � 3. For (f ; g) inW�1;pn�1 (
) � W 0;pn�1(
) and ' = 0, problem (S) has a unique solution (u ; �) inW1;pn�2(
)�W 0;pn�2(
). Moreover, u has the asymptotic expansion :u(x ) = U(x )F + o(jx j
);where 
 = 2� n� n=p satis�es 1� n < 
 < 2� n.29



Proof : The proof is once again based on an adequate decomposition of the data.Indeed, as in the previous theorem, Hahn-Banach Theorem implies that each pair(f ; g) 2W�1;pn�1 (
)�W 0;pn�1(
) decomposes as follows :(f ; g) = (f 1; g1) + (f 2; g2);where (f 1; g1) belongs to (W�1;pn�1 (
)�W 0;pn�1(
))?N p01�n(
) and :(f 2; g2) = nXj=1 F j(Hj; hj);where the distributions(Hi; hi) 2W�1;pl (
)�W 0;pl (
); i = 1; : : : ; n;have compact support and satisfy (5:7). Then, on the one hand, since p > n andl = n � 2 satisfy (5:4), we can apply Theorem 5.2 to (f 2; g2) that has compactsupport. Hence the associated problem (S) with ' = 0 has a solution (u2; �2) inW1;pn�2(
)�W 0;pn�2(
) that satis�es :u2(x ) = U(x )F +O(jx j1�n):On the other hand, thanks to Theorem 3.16, problem (S) associated with(f 1; g1) and ' = 0 has a unique solution (u1; �1) inW1;pn�1(
)�W 0;pn�1(
). More-over, since p > n, Proposition 1.4 yieldsu1(x ) = o(jx j2�n�n=p):Thus, since 1� n < 2� n� n=p, the pair (u ; �) = (u1 + u2; �1 + �2) obviouslysatis�es all the required properties. }We now give the analogous result when the dimension equals 2. We shall notdevelop the proof of this result because it is very similar to the preceding one.Theorem 5.5 Let Let 
 be a C1;1 exterior domain and p > n = 2. For (f ; g)in W�1;p1 (
)�W 0;p1 (
) and ' = 0, problem (S) has a unique solution (u ; �) inW1;p�(p)(
)�W 0;p�(p)(
). Moreover, u has the following asymptotic expansion :ui(x ) = AF + o(jx j
);where 
 = �2=p satis�es �1 < 
 < 0 and A is given in theorem 5.2.30



Remark 5.6 i) The last two theorems are optimal because the expansions doesnot always hold as soon as p � n or (f ; g) 2W�1;pl (
)�W 0;pl (
) with l < n� 1.They can nevertheless be re�ned considering data inW�1;p� (
)�W 0;p� (
) wherep > n and � is a real number such that � + 1� n=p0 > 0.ii) As we chose non-smooth data in Theorems 5.4 and 5.5, the pressure � doesnot admit any particular expansion. Nevertheless, if (f ; g) 2W0;pn (
)�W 0;pn (
)then, the pressure writes :�(x ) = Q(x ):F+ o(jx j
�1); if n � 3;�(x ) = o(jx j
�1); if n = 2:Under the same assumptions, ru has the following expansion :ru(x ) = r(U(x )F) + o(jx j
�1); if n � 3;ru(x ) = o(jx j
�1); if n = 2:iii) All the results in this section readily extends to non homogeneous boundarydata ' if we replace the quantity < f ;Vj > + < g;�j > by< f ;Vj > + < g;�j > + < '; (rVj � �jI)n >@
 :In particular, one can improve the results of Corollary 3.14 to prove that thefunctions introduced in characterisations (3:8) and (3:9) satisfy the asymptoticrepresentation formulae : forall � > 1� n,v(�)(x ) = U(x )F + o(jx j�); if n � 3;v(�+ U�(0))(x ) = AF + o(jx j�); if n = 2;where F j =< �; (rVj � �jI)n >@
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