Weak solutions for the exterior Stokes problem in
weighted Sobolev spaces.

F'. Alliot, C. Amrouche

Résumeé - On donne ici des résultats d’existence et d’unicité pour le probléme de Stokes
extérieur en controlant le comportement & ’infini des solutions. On pose pour cela le probléme
dans des espaces de Sobolev avec poids. On obtient aussi un développement asymptotique des
solutions qui décroissent suffisament.

Abstract - We establish here some existence and uniqueness properties for the exterior
Stokes problem with prescribed growth or decay at infinity for the solutions. For this purpose,
the problem is set in some suitable weighted Sobolev spaces. We also obtain an asymptotic
expansion for some well behaved solutions.

Consider an open region €2 of R*. In the sequel, we shall call this set an
exterior domain if there exists a non-empty bounded open set €)' with a finite
number of connected components having Lipschitz-continuous boundaries such
that = R* — (. We shall also suppose for the sake of simplicity that each
connected component of {2’ has a connected boundary (i.e. €' has no “holes”),
which implies in particular that €2 is connected.

This paper is devoted to the following Stokes problem in an exterior connected

domain :
—vAu+Vr=f in
(S) —divu =g in ©Q,
U= on 0f),

where v is a positive coefficient.

Existence, uniqueness and regularity properties of this problem are well-known
when the domain €2 is bounded. In that case, the classical Sobolev spaces WP ()
provide a suitable functional framework (see [5, 2] for instance), in particular
thanks to Poincaré’s inequalities. Nevertheless, when €) is an exterior domain,
these inequalities are not satisfied any more and it is necessary to introduce
a specific functional framework which takes into account the behaviour of the
functions at infinity.

Among the many works devoted to the exterior problem, some of them intro-
duce the homogeneous Sobolev spaces :
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which fit the case of homogeneous Dirichlet boundary conditions. In particular,
when n/(n — 1) < p < n with n > 3, H. Kozono and H. Sohr consider in
[12] data f that belong to H -P(Q) (which space is the dual space of Ho? ()
with 1/p" = 1 —1/p), g € LP(Q) and ¢ = 0. Under such assumptions, they
prove existence of a unique solution (w,7) to problem (S) with uw € Hy?(Q)
and m € LP(2). The same authors have later removed the restrictions on p in
[13] and also treated the case n = 2. In particular, they conclude that when
p<nifn>3o0rp<2ifn =2 asolution exists if and only if the data
satisfy some compatibility conditions. On the other hand, when p > n > 3 or
p > 2 if n = 2, they show that the solution is no longer unique and they give a
characterisation of the null-space of the problem. G. P. Galdi and C. G. Simader
obtain similar results in |7]. The case of more regular data is investigated in [18]
by W. Varnhorn who gives conditions for the velocity field w and the pressure 7
to vanish at infinity.

In a more recent work, G. P. Galdi also considers the case where f = div F’
with (1 + |z|?)F € L*(Q) where Q C R® and proves the existence of a unique
solution (w, ) satifying (1 + |z|)u € L>(Q2) and 7 € LP(Q) with p > 3/2. This
result has in particular an interesting application to the steady-state Navier-
Stokes equations.

In this article, our approach consists in looking for solutions in weighted
Sobolev spaces of the type :

We(Q) = {v/(1+ |2))* v € LP(Q), (1 + |2|)*Vv € LP(Q)}, if n/p + a # 1,

for p €]1,400[, and @ € R, and with an additional logarithmic weight when
n/p + a = 1 (see definition 1.1 below). These spaces are well adapted to
the Laplace and Stokes equations because they satisfy optimal Poincaré-type
weighted inequalities. Moreover, they provide an explicit description of the be-
haviour of the functions at infinity, which is not obvious from the definition of
ﬁé’p(Q). Even more important, they are much more general for, thanks to the
parameter «, one may consider a much larger variety of behaviours at infinity
than it is possible to do with the spaces H,”(Q).

The investigation of the exterior problem (S) in such spaces has partially been
made for n = 2 or 3, p = 2, @ = 0 by A. Sequeira and V. Girault in [8]. M.
Specovius-Neugebauer also gives in [16] more general results when n > 3 using



integral equations techniques for strong solutions of (S). She has later extended
these results to the bidimensional case in [17] but never used the logarithmic
weight, therefore leaving the problem unsolved in several critical cases.

In the present article, we prove the existence, uniqueness and regularity of
the solutions of the problem (S) for very general data (See Theorem 3.16). In
particular, we give a complete characterisation of the null space of the problem
(S) in weighted spaces. Our approach is based on the ideas of J. Giroire developed
in [9] and makes use of the principle that exterior linear problems can be solved
combining their properties on the whole space R* and on bounded domains.

On the other hand, we take a special interest in the case of solutions going to
zero at infinity and prove a new explicit asymptotic expansion for such solutions
within the framework of weighted spaces.

Our paper is organised as follows : weighted Sobolev spaces, their fundamen-
tal properties, and some preliminary results are described in section 1. Sections
2 and 3 are devoted to the existence and uniqueness properties of the exterior
Stokes problem (S). Regularity results are developed in section 4 as well as an
application to the control of the second derivatives of w in the LP norm which
improves the results established by H. Kozono and T. Ogawa in [14] (see Theo-
rem 4.3). At last, in section 5, we provide a precise description of the asymptotic
behaviour of the solutions in some interesting cases (see Theorems 5.4 and 5.5).

1 Function spaces and preliminary results

In the sequel, n denotes an integer greater than or equal to 2 and p a real number
in the interval |1, +oc[. The dual exponent of p, denoted by p', is defined by the
relation 1/p + 1/p' = 1. When p < n, we set the Sobolev exponent px to be the
real number defined by 1/px = 1/p — 1/n. We denote by By the open ball of
radius R > 0 centered at the origin. Finally, if X is a Banach space, with dual
space X', and Y is a closed subspace of X, we denote by X’1Y the subspace of
X' orthogonal to Y, that is :

X'1Y={ze X', VWyeY,<zy>=0}=(X/Y)".

Without loss of generality, we consider exterior domains {2 such that the origin
of R" belongs to 2. We introduce the weight function :

plx) =2+ |z|,

and the following weighted Sobolev spaces.



Definition 1.1 For any real number «, we define the spaces,
WOP(Q) = {u e D(Q), p™u € L(Q)},
WiP(Q) = {u e D'(Q), p* tu € LP(Q), p*Vu e LP(Q)}, ifn/p+a#l,
WiP(Q) = {ueD(Q), p* *(Inp) 'u e LP(Q), p*Vu € LP(Q)}, if n/p+a=1.
They are reflexive Banach spaces with respect to the norms :

lullwory = Il p%w llr(e),
(€)

lullyso@y = (0% ullfp) + 1 2*Vu o) it n/p+a# 1,

pa—l N )
| u ||W,};1’(Q) = (|| In u ||I£p(n) + || p*Vu ||I£p(9))1/p ifn/p+a=1
We also define the semi-norm : |u |10 = || 0*Vu || 1o(e)-

Let us point out that the logarithmic weight only appears for the so-called
critical exponents (see also [15]) and they are an essential ingredient of those
spaces, which otherwise would have poor interest (see theorem 1.2 below).

We first recall some elementary properties of these spaces. The space D(f)
is dense in W1?(Q) whereas, like in bounded domains, this is not true for D(12).
Moreover, the functions of W1?(Q) belong to W?(0), for all bounded domain
O contained in €2, and they satisfy the usual trace theorems on the boundary

0f) which, we recall, is Lipschitz-continuous. Let us now introduce the space
Whr(Q) = D(Q)”'”Wolc’p(m. It is easy to check that :

WLe(Q) = {v e WH(Q), v = 0},

where yv denotes the trace of v on the boundary 0€2. The dual space denoted by
W=7 (Q) is a subspace of D'(€2). Recall that in the whole space, we also have
WP (RY) = (War(R™))'

Let P, denote the space of polynomials whose degree is not greater than [ with
the convention that P, = {0} in the case [ < 0. One easily sees that the larger

space of polynomials contained in W2P(2) is P; with

j=0-M/p+a)], if n/pta¢{i€Z,i<0}
j=—(n/p+a), otherwise,

and where [s| denotes the integer part of the real number s.



A fundamental property of the weighted Sobolev spaces W!?(() is that their
elements satisfy Poincaré-type inequalities (see [3|). This property strongly de-
pends on the introduction of the logarithmic weight for critical exponents and is
not satisfied in the cases p =1 and p = 4oc.

Theorem 1.2 (Amrouche-Girault-Giroire,[3]) Let Q be an exterior domain,
and o a real number.

i) The semi-norm | .|y 10, defines on WiP(Q)/Pj a norm which is equiva-
lent to the quotient norm, where j' = min(j,0).

it) The semi-norm | . |y10 o) defines on V({/ép(Q) a norm which is equivalent
to the full norm || [lyy10(q)-

Remark 1.3 Thanks to the latter property, it is straightforward to prove that :
Wy"(Q) = Hy (), Vp el +ool,
so that weighted Sobolev spaces are a generalisation of the spaces f{(} P,

We conclude this short review of weighted Sobolev spaces with more detailed
asymptotic properties (see the proofs in [1]).

Proposition 1.4 (Alliot-Amrouche,[1]) Let a be a real number and p such
that n/p +a # 1 and R > 0 such that Q' C Bg. Then, every function u in the
space WP (Q) satisfies :

i) For all © with |x| > R,

—nfp - |00
lu(], Hlere) < Ol ullyzo and [P fu(z], )| — 0,

where ¥ denotes the unit sphere {|x| =1} in R".
it) If p>n : for all x such that || > R, |u(z)| < C’|m|1*”/p*a||u||wa1,p.

Moreover, ||/~ u(x)| i o))

Finally, if n/p + a = 1, the same properties hold if one replaces the function
|2|' /P~ by In(2 + |z]).
2  First results : the case p =2

Let us first briefly recall the result by V. Girault and A. Sequeira which states
the existence of a solution to problem (S) with w € W?(Q) and 7 € L*(Q), and



its uniqueness in this space. The proof of this result is detailed in [8] for n = 2
or 3, but remains valid for all higher dimensions.

Theorem 2.1 (Girault-Sequeira,[8]) Let Q2 be an exterior domain having a
Lipschitz-continuous boundary. For any distribution f in Wal’Q(Q), for any g in

L2(Q) and ¢ in H/2(0Q), problem (S) has a solution (u,7) € Wy (Q) x L?().
In this space, the solution is unique and there exists a constant C' > 0 such that :

I [wez) + 17 2@ < CULF g2 + 19 2@ + 1| @ l22(00))-

Remark 2.2 Note that in this case, existence of solutions does not require any
compatibility conditions on the data whereas, in a bounded domain O, the exis-
tence of u € H'(O) requires that

/ g(x)dr +/ p.nds =0 .
o 20

Moreover, the pressure 7 is unique in L?*(2) which is not the case in a bounded
domain.

We still consider the case p = 2 but we choose more general data :
feW, (Q), geW*(Q), ¢eH*0Q),

where [ is an integer. In this context, we wonder if we still have existence and
uniqueness of a solution to problem () such that :

(u, ) € W, 2(Q) x W*(Q).
In order to address the uniqueness of the solutions, we introduce the spaces :

NP(Q) = {(u,7) € WIP(Q) x WPP(), —vAu + Vi = 0, divu = 0, in Q}.
(2.1)
When [ > 0, as a consequence of Theorem 2.1 and of the imbedding

W 2(Q) x WPA(Q) € WH(Q) x L¥(9),

we have N?(Q) = {(0,0)}. However, the situation is different when [ < 0. Let
us recall what occurs when the Stokes problem is set in R”. In that case, the
elements of the space :

NP(RY) = {(u,7) € W P(R") x WP (R"), —vAu + Vr =0, dive = 0, in R"},



are polyharmonic tempered distributions on R and therefore polynomials. Hence,
the space N (R") equals the space :

N ={(A, 1) € P, X Py, divAd =0, —vAX+ Vu = 0}, (2.2)
withk=[1—n/p—1iftn/p+1¢{i€Z,i<0} and k = —(n/p + ) otherwise.
We can adapt this characterisation to N?(2) when n > 3.

Proposition 2.3 Ifn > 3 and [ is an integer such as n/2 ¢ {1,...,|l|}, then :
NAQ) = {(u,m), u=v(X) = A, 7 =n(A) =, (A 1) € Ny},

with k =[1—n/2—=1ifn/2+1¢ {i€Z,i <0} and k = —(n/2 + 1) otherwise,
and where (v(X),n(X)) is the unique solution in W*(Q) x L*(Q) of problem

—vAv+Vn=0 in €,
(Sx) —dive =0 in Q,
v=A on Of.

Proof : We have already proved the case [ > 0, so we now consider the case [ < 0.
Let us first note that each pair (u, ) in N7?(2) satisfies the Green’s formula : for

all pairs (¢,&) in D(Q2) x D(Q),
/[(—ymp + VO — rdivlds =< %, (VU —7l)n g0, (2.3)
Q

where n denotes the unit normal vector to 02 pointing outside €2, where I is the
second order identity tensor, and < .,. >gq denotes the duality pairing between
WP (9Q) and its dual space W=/P2(9Q).

In particular, if we extend w and 7 by zero in €', the extended functions, still
denoted by u and m, respectively belong to W;’2(R”) and I/Vlo’z(]R”). Moreover,
thanks to (2.3), we have the equalities :

—vAu+Vr=h, divu =0, inD'(R"), (2.4)

with Vip € D(R"), <h,v¥» > = < @wVu—7nl)n, ¢ >y, . (2.5)

By construction, h belongs to W0_1’2(R") so that, since n > 3, Stokes problem
(2.4) has a unique solution (v,7) € Wy*(R") x L*(R") (see [1], Theorem 3.3, or
the more general Theorem 2.6 below). Then, the difference (v —w,n— ) belongs
to W, ?(R*) x W*(R") and to N?(R*). Thus, in view of characterisation (2.2),



v=u+A and n=7m+ p,

where (X, p) belongs to N and k=[1 —n/2—1]ifn/2+1¢ {i € Z,i <0} and
k = —(n/2+1) otherwise. Hence, for h is supported in 02, one immediately checks
that (v,7), restricted to Q, provides a solution in Wy(Q) x L*(€) to problem
(Sx). But, since X is a polynomial, it also belongs to H'/?(052) and considering
Theorem 2.2, for each A, the problem (Sy) has a solution in W*(Q2) x L?(Q)
which is unique in this space. Hence, (v,n) actually equals (v(A),n(X)). <&

Remark 2.4 As a consequence of Theorem 2.1, the mapping :

(A ) = (v(A) = A n(A) — p),

is linear and injective. Thereby, N?(Q) is isomorphic to N?(R") when n > 3 and
both spaces have the same finite dimension. However, when n = 2, this is not
necessarily the case. For instance, Theorem 2.1 shows that NZ(Q) = {(0,0)},
but NZ(R?) = Ny = Py x {0}. More generally, we shall see in the sequel that if
n =2, then N} (Q) has a different structure than the one it has if n > 3.

We now establish, in the case ¢ = 0, and when [ < 0, the existence of a
solution (u,7) € W,(Q) x W,?(Q) to the problem (S). In the sequel, we agree
that the set {1,...,k} is empty if the integer k is not positive.

Proposition 2.5 Let n > 3, and | < 0 such that n/2 ¢ {1,...,|l|}. Then for
any (£,9) in W;72(Q) x W(Q) and ¢ = 0, problem (S) has a solution (u,T)
with w € W,?(Q) and = € W)*().

In order to prove this property, we shall use the analogous existence result
for the Stokes problem set in R” which we quote here in the general case (see[1],
Theorems 3.3, 3.5 and Corollary 3.6).

Theorem 2.6 (Alliot-Amrouche,[1]) Let [ be an integer, n > 2 and p satify-
ing :

(H) n/p'¢{1,...;1} andn/p ¢ {1,...,—1}
If f € W,/ "P(R*) and g € WP (R"), problem (S) has a solution (w,T) with
u € WP (R") and 7 € W,"(R*) if and only if f and g satisfy :

V(A7 ,LL) S N[H‘lfn/p,]’ < f7 A >W;1’p><wl_’f’ + < g, 1 >W101PXWE,IPIZ 0. (26)

In W, P(R") x WP(R™), this solution is unique up to an element of Nj_i /-



Remark 2.7 i) We have also proved in [1] the continuous dependence of the
solution with respect to the the data but we shall not use this property here.

it) In the sequel, we shall often use the assumption (H) which already appears
with p = 2 in Proposition 2.5. In particular, let us point out that this condition
is empty if [ = 0 and reads otherwise

n/pé¢{l,...,=1}if <0 and n/p" ¢ {1,...,l}if [ > 0.

Moreover, when (H) is satisfied, one has N(R") = Njy_i_p/p)-
i1i) Problem (S) can be solved even if condition (H) is no longer satisfied. It is
then necessary to work in slightly different weighted Sobolev spaces.

We now come to the

Proof of Proposition 2.5 : We first solve the problem in R" by extending
the data. Indeed, it results from Theorem 1.2-(ii) and from the Closed Range
Theorem of Banach that there exists a second order tensor F' € I/Vlo’z(Q) such that
div F' = f. In particular, extending F' by zero in €)', we get a continuous extension
of f in W, "*(R"). We also extend g by zero in ' and still denote by (f, g) the
pair of extended distributions which obviously belongs to W, *(R") x W, (R").

Now, since [ + 1 —n/2 < 0 and considering Theorem 2.6, there exists a pair
(w,7) € W2 (R?) x W*(R) satisfying :

—vAw+Vr=f, —divw =g in R".

Moreover, in view of Theorem 2.2, the problem (S,) introduced in Proposition
2.3, with A = w, has, in Wy*(Q) x L*(Q), one and only one solution (w,n).
But [ < 0, so that (v,7) also belongs to W,*(Q) x W?(Q). Thus, the pair
(w — v, 7 — n) restricted to € solves problem (S) with ¢ = 0 and belongs to the
desired space. <

We can now conclude with a full existence and uniqueness result in the case
p = 2 with homogeneous Dirichlet boundary conditions.

Theorem 2.8 Let n > 3 and | an integer such that n/2 ¢ {1,...,|l|}. When
f e W), g € WQ) and ¢ = 0, problem (S) has a solution satisfying
(w,m) € WQ) x W) if and only if £ and g satisfy :

V(o.n) ENZ(Q), <F 0> g+ <90 > ppagy0p=0. (2.7)

! -1



This solution is unique in W,*(Q) x W,"*(Q), up to an element of N?() and it
satisfies the estimate :

inf u+v 2+ || T+ 2) < C L1+ 2),
(v,Tl)ENIQ(Q)(H ||Wll2 ||7T 77||W102) = (“fHWl 1,2 ||g||Wl02)

where C > 0 only depends on v,n,l and 2.

Proof : Recall that the case [ = 0 is proved in Theorem 2.1. More generally, the
result amounts to proving that the operator :

T - (WH(Q) x WP(Q))/NZ(Q) — (W H4(Q) x WP2(Q) LA?(Q), (28)
(u,7) — (—vAu + V7, — divu), (2.9)

is an isomorphism. The operator 71" is obviously injective in the quotient space.
Moreover, if [ < 0, then A%, (Q) = {(0,0)}, and T is therefore surjective thanks
to Proposition 2.6. Since 7' is obviously continuous, it is an isomorphism. Now,
set k = —[ > 0, then the adjoint of T,

T* : WEQ) x WPH(Q) — (W (Q) x WP (Q)) LN?,(2),

is also an isomorphism and one can prove making use of a generalised Green’s
formula that T*(u,7) = (—vAw + V7, — divu) which concludes the proof. <

Remark 2.9 The restrictions made so far on the value of the integer [ have
excluded to have existence and uniqueness properties when n = 2 unless [ = 0.
We shall treat this case in the next section when p # 2. We shall also extend
Theorem 2.8 to non-homogeneous Dirichlet boundary conditions.

3 Existence and uniqueness in the general case

We now complete the latter Theorem 2.8 by treating the case p # 2. Moreover,
we thoroughly investigate the specificities of the case n = 2. We first establish
regularity properties for solutions of problem (S) with homogeneous Dirichlet
boundary conditions given by Theorem 2.1, when data have compact support.

Lemma 3.1 Let Q be a CY exterior domain and let | be an integer. Assume
that p > 2 satisfies both (H) and n/p" > | + 1. Then, for any pair (f,g) in
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W, '7(Q) x LP(Q) with compact supports in Q and ¢ = 0, problem (S) has a one

and only one solution satisfying :
we WH(Q) NW(Q), e L2(Q) nWir(Q). (3.1)

We are going to derive this result from regularity properties of the Stokes
problem in bounded domains and in R". In particular, we establish some similar
regularity properties for the Stokes problem in R" without assuming p > 2.

Proposition 3.2 Let | and p satisfy (H) and n/p’ > 1+ 1. Then, for any pair
(f,9) with f € Wy *(R") N W, "P(R"), g € L*(R*) n WP (R"), problem (S)
has a solution (w,m) with :

u € W (R") N W P(RY), 7€ L*(R") N WP(R), (3.2)
iof and only of
<f,A >t Wl = 0, VA € Py, when n =2, (3.3)

This solution is the only one satisfying (3.2) if n > 3, but up to an element of Ny
ifn=2.

Proof : As a consequence of Theorem 2.6, problem (S) has solutions :
(u', ') € W (R") x L*(R") and (u? 7?) € W, P(RY) x W)P(RM).

In particular, (u! — u?, 7! — 7%) = (A, p) has to belong to N for some integer .
Moreover, considering Proposition 1.4-(), and since

IA(], Mlzeesy < N (2] lzees) + 1w (2], )l

a simple integration argument shows that the degree of A cannot exceed the value
max(1l —n/2,1 —n/p —[). Hence, one can assign this value to k and therefore
prove that Ny C W *(R") x L*(R") or N, ¢ W,?(R*) x W”’(R*). Both
properties imply that at least one of the (u’,7*),i = 1,2 belongs to the desired
intersection. Finally, the uniqueness properties are a straightforward consequence
of the polynomial form of solutions of problem (S) with zero data in R*. <

Before giving the proof of Lemma 3.1, we also recall the result proved in [2]
for bounded domains.

11



Theorem 3.3 (Amrouche,Girault,[2]) Let O be a bounded domain in R,
with n > 2, and with a CY* boundary. Then, when f € W= (0), g € LP(O) and
@ € WYP'P(90O), problem (S) has a unique solution (u,w) in WP(Q) x LP(O)
with fo wde = 0 if and only if :

/Og(a:)dich/ onds =0 . (3.4)

00

Moreover, there exists C' > 0, depending only on O,p,n and v, such that :

| llwoo) + 17 l[zoio) < CUIF lw-12(0) + 1 9 |22(0) + | € llwrrs p(90))-

Proof of Lemma 3.1 : As the pair (f, g) has bounded support, it also belongs
to W, "%(Q) x L?*(Q). In particular, problem (S) has a unique solution (u,7) in
VOV'}]Q(Q) x L*(2). Once we have extended w and 7 by zero in €', we define the
distributions over the whole space R" :

f=—-Au+Vr and §j=—divu,

and (f, §) belongs by construction to W, *(R") x L?(R") and also satisfies (3.3)
if n =2 (see theorem 2.6 with p =n =2 and [ = 0).
We are going to prove that w and 7 are in fact more regular in Qp, = QN Bg,,
that is :
(u,7) € WH(Qp,) x LP(Qg,), (3.5)

if Ry is such that both €’ and the support of (f, g) are contained in Bg,. Indeed,
if (3.5) is fulfilled, then the pair (f,§) belongs to W 17(Qg,) x L?(Qg,) but,
considering its compact support, also belongs to W, "*(R*) x W, ?(R"). Hence,
(u, ) is anything else but the solution satisfying (3.1) given by Proposition 3.2
and therefore satisfies the desired regularity on €2.

We now conclude by proving (3.5). Let us define, for all R > Ry, the cut-off
functions

wRED(B—R), 0<1[)R§11H Bg, and ’l[)R:l in BRO-

Then, the pair (wg,7r) = (uthr, 7r) belongs to W (Q) x L*(Q) and has
compact support in Bgr. Elementary calculations on distributions show that it
satisfies for all R > Ry :

—AwR+VTR:f1/)R+FR in QR,
—divwg = gYr + G in Qp,
’IURZO on OQR,

12



with Fr = -2VuVyYr +7Vyp — ulAyyr and Gr = —u.Viyg. In particular,
one easily checks that (Fp, Gg) belongs to L?(Qg) x H'(Qp).

i) We first assume that n = 2 and we consider a real number R; > Ry. Then,
thanks to Sobolev imbeddings,

(FR17GR1) S W_l’q(QRl) X Lq(QR1)7 \V/q > 27 (36)

and in particular if ¢ = p. Then, Theorem 1.7 shows that (wg,, 7g,) belongs to
W2 (Qr,) x LP(Qg,)-

i) Suppose now that n > 3, then the property (3.6) remains true for ¢ in [2, 2*].
Thus, if p < 2%, we can apply the preceding argument and the result is straight-
forward. If p > 2* and R, > Ry, one can still prove that (wg,,7g,) belongs
for instance to W2 (Qg,) x L* (Qg,) because the pair (fir,,g¥r,) belongs
to W12 (Qr,) x L¥ (Qg,). As a consequence, for any real number R, with
Ry < Ry < Ry, the pair (u, ) belongs to W2 (Qr,) x L? (Qg,).

Thus, (Fg,,Gg,) belongs to L2 (Qg,) x WH?" (Qg,) and we can apply the
same argument with 2* instead of 2 and R, instead of R;. From then on, it is
easy to see that repeating at most [n/2] times this argument permits to reach
any value of p > 2. &

Corollary 3.4 Under the assumptions of Lemma 3.1, and if A € W'/P'?(9Q),
problem (Sx) has one and only one solution (w,w) in the class defined by (3.1).

Proof : One can lift ¢ by a field w € W{*(Q) with compact support in Q (the
solution w € WHP(Qy) of problem —Aw = 0 in Qp, w = ¢ on IQ, w = 0 on
O0Bpg, extended by zero out of Bg provides such a lifting if R is large enough).
Then, problem (S}) is equivalent to problem :

—Av+Vn=Aw in
(SY) —dive = divw in Q,
v=0 on 0f2,
where the pair (Aw, div w) belongs to W, '?(Q) x L?(€) and has compact sup-
port. Let (v,n) be the solution of problem (S) given by Lemma 3.1 then the

pair (v + w,n) solves problem (Sy) and satisfies the desired regularity. Besides,
its uniqueness follows from Theorem 2.2 .

Remark 3.5 Note that in Lemma 3.1 and Corollary 3.4, we have assumed that
0 is C1! which was not the case in section 2. This assumption is made neccessary
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because we use Theorem 3.3 in the proof. Hence, if Theorem 3.3 remains true
with weaker regularity of the boundary, so does Lemma 3.1.

The next result characterises the kernels AP (€2) under the assumptions of
Lemma 3.1. To this end, we shall use for the case n = 2 the bidimensional
fundamental solution (U, Q) of Stokes problem given by :

- 2m ||’

1 T;T;
Ul(iﬁ):m(—éwln|$|—|— J

), Qi(z) hi=1,...,n.  (3.7)

|22

Proposition 3.6 Under the assumptions of Lemma 3.1, one has :
i) If n > 3,

NLQ) = {(v(X) = A n(A) = ), (A ) € Nonjpy} (3.8)

where (v(A),n(N)) denotes the solution of problem (Sy) satisfying (3.1) given by
Corollary 3.4.
i) If n =2,

N/ () = { (v(A+TUA(0)) =A=UA(0), n(A+UA(0)) —1—Q.A(0)),

(A, 1) € Nj—ajp-iy 1, (3.9)

where (v (X + UAX(0)),n(A 4+ UX(0))) denotes the solution of problem (Sxiua(o))
satisfying (3.1) given by Corollary 8.4.

Proof : When n > 3, the proof is very similar to that of Proposition 2.3. Indeed,
let us extend (w,7) € N(Q) by zero in €2'. Then, the distribution h defined by
(2.5) belongs to W, ""(R") and has compact support. Hence, since n > 3 and
n/p’ > 1+ 1, problem (2.4) has a unique solution (v,7n) with :

v € W (R") N W, P(R"), ne L*R")nNW PR,
as a consequence of Proposition 3.2. Thus, we obtain like above that
v=u+A and n=7m+ p,

where (X, ;1) belongs to Nji_;_pn/p. Then, by construction, the restriction of (v,7)
to € is the solution given by Corollary 3.2 of the problem (.Sy).

We still have to treat the case n = 2 which is rather different. Indeed, to solve
problem (2.4) with Proposition 3.2 requires the vector h given by :

hi =< hi, 1 >Wo_1’2(R2)><W01’2(R2)’ 1=1,2 (3.10)
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to be the null-vector, which is not generally true. We can nevertheless solve
a slightly modified equivalent problem. To this end, we introduce for R > 0,
a function ¢ € D([0,+o0]), with ¢ > 0, that equals 1 on [0, R/2] and 0 in
[R,400|. Setting xg = 1 — ¢k, we define the truncated fundamental solution :

U (@) = xr(|z|)U(x) and Q%(z) = xr(|z|)Q(=),

which is no longer singular at the origin. On the one hand, one easily proves
that U® € W,Y(R?) and Q* € W)*(R?) if and only if 1 —2/¢ — k > 0, that is
2/¢' > k+ 1. On the other hand, the functions

F=—-vAU®+VQF and G = —divU¥,

have compact supports and respectively belong to Wy "*(R?) and L*(R?). More-
over, using symmetry properties of (U, Q), one shows by some elementary tedious
calculations that,

< Fijpy 1 >yt2e) i@ = Oy 6] =1, 2.
Therefore, thanks to Proposition 3.2, the problem :
—Av+Vnp=h-Fh, divv= —-G.h inR",
has a unique solution (v, n) satisfying (3.1). Then, we can show as above that :
v—u+Ufh =X and n—7+Q%h =y,

where (X, ;) belongs to Nji_y/p—y. In particular, if we choose R small enough,
then Br C Q' and we have the equalities in € :

u=v—A+Uh and 7=1n—p— Q.h, (3.11)

where (v,n) is indeed the solution (v(X+ Uh),n(A + Uh)) of problem (S, ;3)
given by Corollary 3.4. Finally, note that if a is a constant vector, the solution of
(Sa) given by Corollary 3.4 is (a,0). In particular, the functions w and 7 defined
by (3.11) do not depend on the constant coefficient A(0) of the polynomial A so

that we can choose A(0) = h, which completes the proof. O

Remark 3.7 Proposition 3.3 implies again that N"(Q) and Njj_;_p /) are iso-
morphic (see Remark 2.4) when n > 2,p > 2 and n/p’ > [+ 1.
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We now apply the preceding results in order to solve homogeneous Dirichlet
problem (S5).

Theorem 3.8 Let Q be an exterior domain with a C*' boundary.

i) Let | be an integer and let p > 2 satisfy both (H) and n/p’ > 1+ 1. If f
in W, (), g in W'P(Q) and ¢ = 0, then problem (S) has a solution (u,)
in Wll’p(Q) X I/Vlo’p(Q). In this space, the solution is unique up to an element of
N/ (Q) and satisfies the estimate :

inf + » T+ + ») < C -1p + p),
i 0 gt 411750 o) < COLS Do+ 1 )

where C' > 0 only depends on v,p,n,l and Q.

it) Let | be an integer and let p < 2 satisfy both (H) and n/p > 1 — 1. For
fin W;P(Q), g in WP(Q) and ¢ = 0, then problem (S) has a solution in
W, P(Q) x WPP(Q) if and only if :

V(v,n) e N')(Q), <f,v> S+ <g,n> 0.

o 0 0,p' —
-1, 1, woP 0P
Wl vav_f XW

Such a solution (w, ) is unique and satisfies the estimate :

gt + 17 lyor < CUIF gy, 0+ g o).
where C' > 0 only depends on v,p,n,l and €.

Proof : Statement i) is equivalent to prove that the operator :
T+ (WP(Q) x WPP(9) /AP (@) — Wi (9) x W?(9),

defined by (2.9), is an isomorphism. This operator is obviously injective in the
quotient space and continuous. Hence, we only have to prove that T is also
surjective, that is, to prove existence of a solution in W,”(Q) x W ?(Q) to
problem (S) with (f,g) in W, "() x W, ?(Q).

We proceed as in Proposition 2.5. We extend by the same means the data and
then the extended distributions (f,g) belong to W, "*(R*) x W ?(R"). Since
n/p' > 14 1, Theorem 2.6 provides a solution (w,7) in W, ”(R*) x W ?(R") to
problem :

—vAw +Vr=f, divw =g inR".

Moreover, problem (Sx) with A = w has a solution (v,1) € W,*(Q) x W,?(Q),
thanks to Corollary 3.4. Then, (w — v,7 — 1) solves homogeneous Dirichlet
problem (S) and belongs to W;*(Q) x W,”?(Q). Finally, statement i) follows
from i) by duality (see also the proof of Theorem 2.8)
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Remark 3.9 Theorem 3.8, i) proves in particular that A/”(€2) = { (0,0) } when-
ever p < 2 and [ < 1 — n/p. Hence, both characterisations established in Propo-
sition 3.6 remain true with such assumptions

Let us now give a generalisation of Theorem 3.8 which is specific to the
bidimensional case. Assume n = 2 and consider for any p the real number
a(p) =1 —2/p (note that «(p) is an integer if and only if p = 2) then one can
show that both Theorem 2.6 and Proposition 3.2 remain true if the integer [ is
replaced by a(p). As a consequence, we have the following result :

Theorem 3.10 Let Q C R? be an exterior domain with a CY' boundary. For
f in W;(lpjf(Q), g in WS&(Q) and ¢ = 0, problem (S) has a solution (u,T)
in Wi’(’;)(ﬂ) X WSE’;)(Q). In this space, the solution is unique and satisfies the
estimate :

lwlhwrs + 17 s < CULE lg=te + 1o )
where C > 0 only depends on v,p and €.

Proof : When p > 2, the proofs of both Lemma 3.1 an Corollary 3.4 can be
adapted replacing the integer [ by «(p). Moreover, one can prove, following the
ideas of Proposition 3.6 that N (€2) = {(0,0)} because in this case the vector
h defined by (3.10) necessarily equals zero. Then, the existence of solutions is
obtained as in Theorem 3.8, up to minor modifications. Finally, since one checks
that a(p') = —a(p) for any p, the case p < 2 follows from the case p > 2 by
duality. <

Remark 3.11 This result covers all the cases when some logarithmic weight
appears in the definition of W, ? and n = 2. It also proves that N7, (2) is reduced
to {(0,0) } and thus has not the same dimension as N, (R?) = Py x {0}.

We now consider the cases left untreated by Theorem 3.8. The method is
similar : it is also based on an adequate existence result for the problem (Sy),
namely

Lemma 3.12 i) Let n > 3, p < 2 and ly defined by :
lo=—=1 ifp<n/2 or lpy=0 if n/2<p<2 (3.12)

If X € WYP'2(9Q), problem (Sy) has, in W,P(Q) x W,)P(Q), a unique solution.
i) Let n = 2 and a(p) = 1 — 2/p. If X in WYP'P(9Q), problem (Sx) has in
Wl’p)(Q) X WSE’;)(Q), a unique solution.

a(p
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Proof : In both cases, the proof looks like that of Corollary 3.4. We solve the
equivalent problem (S%) where the field w € W7(Q) has compact support,
and equals ¢ on 0€2. On the one hand, if n > 3, this problem has a solution
(u,m) € Wllo’p(Q) X Wl?)’p(Q) in view of Theorem 3.8-(i7) (it is a simple matter
of check to see that n/p > 1 — ) and when n = 2, problem (S}) is solved with
Theorem 3.10. <

We now give a complete characterisation of the spaces N/ (€2).

Theorem 3.13 Let | be an integer and p satisfy (H). Then, if n > 3 then (3.8)
holds. If n =2, (3.9) holds unless p =2 and | = 0.

Proof : We have already treated the case p > 2 and n/p’ > [ + 1 in Proposition
3.6 and the case p = 2 in Proposition 2.3. We now assume that p < 2 and
n/p" > 1+ 1, and we proceed like in Proposition 3.6. Indeed, let (u, ) € NF(Q2)
and h be the distribution defined by (2.5). Then, h has compact support in
R™ and thus belongs to Wl_ol’p(R") where [y is defined by (3.12). Therefore, if
n > 3, one can show using theorem 2.6 that problem (2.4) has a solution (v, )
in Wllo’p(]R”) X I/Vl?)’p(]R”) that is unique in this space. Thus, since ly > [,

(’U - u,n— 7T) = ()‘7 /u) € N[l—n/p—l]7

so that the restriction of (v, 7) to Q is the only solution in Wllo’p(Q) X Wl?)’p(Q) of
problem (Sy) given by Lemma 3.12. Now, since it is a polynomial, A also belongs
to H'/2(9Q). Finally, a regularity argument similar to the one developed in the
proof of Lemma 3.1, proves that (v,7) also belongs to W*(Q) x L*(€2). When
n =2 and 2/p’ > [+ 1, we can proceed similarly if we replace [y by the real
exponent «(p) =1 —2/p.

When n/p’ < 1+ 1, elementary calculations show that [ > [y if n > 3, and
[ > a(p) if n = 2. Therefore, N7 (Q) = {(0,0)} as a consequence of Remarks 3.9,
3.11 and of obvious imbeddings, which concludes the proof. <

The next result specifies the asymptotic behaviour of the elements of N(€).

Corollary 3.14 In characterisation (3.8) (resp. (3.9) ), the vector field v(\)
(resp. v(A+ UX(0)) ) is negligible compared to X (resp. A — A(0) + UX(0)) at
infinity.

Proof : i) Assume that n > 3. If A is a polynomial function then it belongs to
all spaces W44(9Q) with ¢ €]1, +oc[. In particular, Corollary 3.4 shows that
v(A) belongs to all spaces W,%(Q) with ¢ > n and k such that n/q¢' > k+1 (i.e.
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1 —n/q—Fk>2—n). If we choose k = n — 2 and make p vary in the interval
|n, +o00], Proposition 1.4 then yields :

v(A)(x) =o(|z]|”), Vy>2—n as |g] — +oo.

i) Similarly, when n = 2, Lemma 3.11-(44) proves that v(A+UX(0)) € W31(Q)
for all ¢ > 2. In this case, Proposition 1.4 states that :

v( A+ UX0))(xz) = o(In|x|), as |x|] — +oo, (3.13)
and is therefore negligible compared to A — A(0) + UA(0). <

Remark 3.15 These properties can be related to the well-known Stokes Para-
dox. This paradox arising from the modelling of viscous fluids flows originally
states the following property : if Q is the exterior of a disk of R?, problem (.5)
with zero data has no classical solution (u,7) such that u tends to a prescribed
non-zero vector at infinity. This property may be generalised to arbitrary exterior
domains of R? with smooth boundary and to a wider class of solutions (see for
instance [10]).

Corollary 3.14 provides another proof of this generalisation : let €2 be an
exterior domain with a C'"! boundary, and let (w, 7) solve problem (S) with null-
data. Then, u and 7 are locally smooth functions. Let us now assume that w and
7 are tempered distributions. Then, it is not difficult to see that (w, 7) necessarily
belongs to NP (Q) for some p and integer [ . Therefore, the vector field u is of the
form A+ UA(0) — v(A+UA(0)) for some polynomial A. Thus, because of (3.13),
the field u cannot behave like o(In|x|) at infinity unless A = 0 which enlarges
the original statement of the paradox since, in particular, w cannot tend to a
prescribed non-zero constant vector (see |6, theorem V.3.5 for a similar result).

We conclude this section with a general existence and uniqueness result for

problem (S) in weighted Sobolev spaces.

Theorem 3.16 Let €2 be an exterior domain with a Lipschitz-continuous bound-
ary if p =2 and a CH' boundary otherwise and let | be an integer satisfying (H).
Then, for f in W, "P(Q), g in W'P(Q) and @ in WP?(9Q), problem (S) has
a solution in W, (Q) x WP(Q) if and only if

V(v,n) E/\/'_p,l(Q), <f,v>+ <g,n>+<p WVv—nl).n >s=0. (3.14)
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In this space, a solution (w, ) is unique up to an element of N(Q) and satisfies
the estimate :

B g #1750 ps) < OO g+ 119 s 11 i),

where C' > 0 only depends on 2, p,n,v and [.

Proof : i) We first complete the proof of the case ¢ = 0. In the cases untreated
so far, that is,
p<2,n/p>1+1, or p>2,n/p<1-—I,

the proof is similar to that of Theorem 3.8, but uses Lemma 3.12 instead of
Corollary 3.4.

i1) Suppose now that ¢ # 0, then we can lift it by a function w that belongs to
Wll’p(Q), has compact support and satisfies the estimate :

[w [lwirq) < Cliellwimpo)- (3.15)
In particular, setting @ = u — w, problem (S) is equivalent to the problem :

—vAu+Vr=f+vAw in €,
(S —diva =g+ divw in Q,
u=0 on 0f),

Now, problem (S’) has a solution in VOVllp(Q) x W?(Q) if and only if :
V(v,n) e NP,(Q), <f+vAw,v>+ <g+ divw,n>=0.

But the latter condition is equivalent to (3.14). Indeed, for any (v,n) be-
longing to N”,(R), Green’s formula (2.3) holds by density for any pair (3, 6) in
W, P(Q) x WP(). In particular, we have for the pair (w,0) :

<vAw,v > + < divw,n>= — < ¢, (vVv —nl).n > .

Finally, estimate (3.15) and the one satisfied by (@, 7) immediately provide the
appropriate estimate.

Remark 3.17 In view of Proposition 1.4, u vanishes at infinity when p > n and
1 —n/p—1 <0, which is the case for instance as soon as [ > 1. When n = 2,
such conditions imply that ./\/'_p,l(Q) is not reduced to zero and that the data must
satisfy some compatibility conditions, which is not necessary when n > 3.
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4 Regularity results

As in the case of a bounded domain, one can establish that the local regularity of
the solutions of the problem () increases with that of the data. The next result
sets such a property in weighted Sobolev spaces and thus also takes into account
the asymptotic behaviour of solutions and their derivatives. In particular, assume
k is an integer, set [ = k + 1 and assume that p satisfy (H), we introduce the
spaces :

WP (Q) = {ue WP(Q), )" 'V e LP(Q) }, ifn/p+ (k+1) #1,
and if n/p+(k+1)=1:
WP (Q) = {u/ P (Inp)~'Vu € LP(Q), p*(Inp)~'u € LP(Q), pFTV2u € LP(Q) }.
Let us recall then a regularity result established in [1] for problem (S) in R".

Theorem 4.1 (Alliot-Amrouche,[1]) Let k be an integer and p satisfy (H)
with | = k+ 1. Then, for f in W,g’fl(R”), g in Wkl_’fl(R”), problem (S) has a
solution in Wz’fl(R”) X Wkl_’fl(R”) if and only if f and g satisfy (2.6). Such a
solution is unique up to an element of Nji_g_n/p and satisfies the estimate :

gl (et gz, ) < COLS gy, + 19 ) (4)

where C' > 0 only depends on p,n, k and v.

Owing to this result, it is not difficult to adapt the arguments developed
above in order to prove Theorem 3.16. In particular, one can show that under
the assumptions of Theorem 4.1, N7 (Q) € WP (Q) x W7, () and finally obtain
the regularity result :

Theorem 4.2 Let Q be an exterior domain with CY' boundary and k an integer
such that p satisfies (H) with | = k + 1. For f in WP (Q), g in W22, (Q) and
@ in WHP'2(0Q), problem (S) has a solution (w,w) in WP, (Q) x WP (Q) if
and only if f, g and @ satisfy (3.14). Such a solution is unique up to an element
of NE(Q) and satisfies the estimate :

B 0 e 1700 ) < CULS e, 419 s 41 i)

where C > 0 depends only on Q,p,n,v and k.
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Let us recall that if we take £ = —1 in Theorem 4.1, then :
l—k—n/p=2—-—n/p<2,

and Njp_p/p only contains affine functions. In particular, estimate (4.1) implies
that the second derivatives of a solution w are controlled in L?(R™) by the data,
that is :

V20 || oeny + | VT [|o@ny < CULF lwogn) + 11 9 llwtogen)-

More generally, this estimate holds true for any solution (v,7n) of problem (S)
with D*v and Vn in LP(€2). Indeed, such a solution differs from the solution
(u,m) given by Theorem 4.2 by (X, 1) € Ny, so that in particular Viu = VZv
and Vr = Vn.

However, it is a well-known fact that the situation is different in exterior
domains. For instance, when f € L?(2), and g, ¢ vanish, W. Borchers and T.
Miyakawa prove in [4] that every solution of problem (S) with w € W2?(Q) and
T € WHP(Q) satisfies :

|| VZ’U, ||Lp(Q) + || Vr ||Lp(Q) S CHf ||Lp(Q) iff n Z 3 and p < n/2. (42)

In the other cases, H. Kozono and T. Ogawa prove in [14|(Theorem 1.1) the
following general a priori estimate (see also [11] for the case p = 2) :

V2% o) < CUIf @ + | Ve llr@) i r>p>n/2. (4.3)

Note that if n/2 < p < n, then any solution given by Theorem 4.2 satisfies
Vu € LP*(Q) thanks to Sobolev imbeddings. On the contrary, if p > n, Vu
does not necessarily belong to some L" space so that the right-hand side of the
estimate may not be defined.

The next result improves estimates (4.3) and (4.6) and naturally links the
control of V2w in L? with the uniqueness of the solution of problem (S) in
WeP(Q) x WyP(Q2). Let us beforehand introduce the finite dimensional space :

E = {ve Wi"(Q), 3, (v,1) € N7, (Q)}, (4.4)

and denote by ||.||g a fixed norm on E. We also introduce a continuous linear

projection operator :
P : W2*(Q) — E, (4.5)

whose existence follows from Hahn-Banach Theorem. Then, we have
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Theorem 4.3 Let f € LP(Q) and assume that g and ¢ wvanish. Then, any
solution (u, ) of the problem (S) in WP (Q) x W, *(Q) satisfies the estimate :

1 V2% [ 1o) < C(| £ o) + || Pu|s), (4.6)
where C' > 0 s independent of f and w.

Proof : The estimate provided by Theorem 4.2 with k¥ = —1 easily implies that :
inf |4+ 0l < CIF oo (*7)

Moreover, since E is a finite dimensional subspace of Wg’p (2), one can easily
show the following equivalence of norms on W3*(Q)/E :

il [ 0 oy ~ o~ Po oo (48)
Thus, we can deduce from (4.7) and (4.8) the estimate :
ID*(w = Pu) [[r) < CIf Lo,
and therefore :
ID%u @) < C(If e + [ D*(Pw) ||oe)-

This concludes the proof since the quantity || D?.||» defines a norm on E which
is necessarily equivalent to [|. ||g. <

Remark 4.4 This estimate is more general than (4.2) and (4.3) in many aspects.
i) When p < n/2, the class of solutions to which the estimate (4.6) applies is much
larger since W2P(€) is strictly imbedded in W§”(Q).

i) When n/2 < p < n, we recall that if u € W3”(Q) then Vu belongs to L™ (Q).
Anyway (4.6) is still sharper than (4.3) since one can prove that if r > p :

[ Pulle < Cf| V|l @),

(assume this is false and use the fact that P is a compact operator) whereas the
reverse inequality is not satisfied. Indeed, if it was, then the kernel of P would be
reduced to zero and therefore one would have Wi?(Q) = E, which is obviously
impossible.

i17) When p > n, estimate (4.6) applies to a larger class of solutions than (4.3),
since we need not to assume that Vu belongs to some L" space. Moreover, any
solution of problem (S) with VZu € L?(Q) in fact belongs to Wy (Q) (we omit
here the proof of this property). Hence, in this case, all solutions (v, ) to problem
(S) with D?v € L?(Q) satisfies (4.6).
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Let us finally point out that estimate (4.6) readily extends when g and ¢
do not vanish any more. Moreover, one can also generalise such estimates in
weighted spaces W, (Q) provided (H) is satisfied.

5 Asymptotic properties

Let us investigate the asymptotic behaviour of some of the solutions we have
constructed above. In most of the existing literature, the authors give sufficient
conditions for the velocity field to behave like a given polynomial at infinity or to
tend to 0. A few other works give more accurate results consisting in asymptotic
representation formulae such as :

u(z) = P(z) +U(z)c + o(z),

where P is a polynomial, ¢ is a constant vector and the remainder o is negli-
gible compared to each of the other terms. We recall that (U, Q) denotes the
fundamental solution of Stokes problem and is defined by (3.7) if n = 2, but by

Vi) = 0, T8 0 () = 26y (n) e ifn > 3.

7|2 || ||’
C.G. Galdi proves such a property in the case where f € LP(Q) has compact
support, g = 0, and ¢ = 0 (see [6],theorem V.3.2) and obtains that :

c:/Qfda:—/m(Vu—WI).nds.

Note that the functional frame we used in Theorem 3.11 seems not to suit «
priori the preceding formula. For instance, in general, if f € Wfl’p(Q), one
cannot define its integral. Nevertheless, we prove that w has a similar expansion
with much weaker assumptions. Moreover, we show that the constant vector c
only depends on f,g,¢ and 2, so that the representation formula becomes a
real asymptotic expansion. On the other hand, we do not assume that (f, g) has
compact support but that it belongs to appropriate weighted Sobolev spaces.
We recall that the vector f is defined by :

fZ:<fl71>7 izl,...,n,

where the duality is understood between W, "*(R") and Wi’lp, (R™) with [ such
that Py C Wi’lp , (R™). Then, in the whole space, we have the following expansion
result.
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Proposition 5.1 Assume (f,g) € W, "P(R*) x L?(R") has compact support K.
Then, problem (S) has a solution (w,m) such that for some R > 0, depending
only on K, w and 7 are indefinitely differentiable out of the ball Br. Moreover,
for all & such that |x| > R :

u(z) =U(z)f +o(z), 7(z)=Qx).f +n(z), (5.1)
with forall o = (o, . .., ),
0%0(@)| + |2]|0%n(z)] < Crallfllw;re + gl 1 (5.2)

i) When n > 3, this solution belongs to W} P(R*) x W P(R*) if I < n/p' — 1 and
is unique in this space if moreover l > 1 —n/p.

it) When n = 2, (u,7) belongs to Wi’é) (R?) x WSE’;) (R?) and is unique in this
space up to an element of Ny = Py x {0}.

Proof : The existence of a solution (u,7) satisfying (5.1) and (5.2) is proved in
[1](Proposition 4.10). Such a solution necessarily belongs to W, ”(R") x L?. (R").
Moreover, the decay properties (5.2) readily implies that u and 7 belong to the
desired spaces. Finally, uniqueness follows from the polynomial characterisation

of N2(R™) given in section 2. ¢

We now prove a similar expansion for an exterior domain when n > 3. For
this purpose, we introduce the canonical basis (ey, ..., e,) of Py and, with the
notations of (3.8), the family :

(Vlanl) :(ei_v(ei)a_n(ei))a 7;:]-7"'7”7
which is a basis of N}/(2) provided 0 <1 —% —n/q < 1 (see Remarks 2.4 and
3.7). We also introduce the constant vector F defined by :
Fi=<f,Vi>+<glIl;> i=1,...,n (5.3)

Theorem 5.2 Let Q be a CY' exterior domain of R*,n > 3, | be an integer and
p such that
l—-n/p<l<n/p —1. (5.4)

For (f,g) € W, "P(Q) x LP(Q) with compact support K in Q and @ = 0, the only
solution (u, ) in W, P(Q) x W,"*(Q) of problem (S) is indefinitely differentiable
out of a ball Bg, for some R > 0 depending only on K. Moreover, for all  such
that || > R :
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where v and n satisfy (5.2).

Proof : Recall that the existence and uniqueness in W, 7 (Q) x W*(Q2) of (u, 7)
follows from Theorem 3.16 since (5.4) implies that (H) is satisfied and since the

data have compact supports. Moreover, in this case, both spaces N/ (Q2) and
NT/(Q) are reduced to {(0,0)}.

i) We extend once again u,7,f and g by zero in 2. Then, with the same
notations, the extended distributions satisfy the relations in D'(R") :

—vAu+Vr=Ff+h, —divu=yg,
where b € W, "?(R") has compact support and satisfies

| R ||W0_1’I’(R") < Ck(llf ||W0_1’p(Q) + 119 lze())- (5.5)

Hence, as a consequence of Proposition 5.1, (u, 7) has the asymptotic expansion :

u(z) = U(z)(f+h) +v(z), 7(z)=Q(z).(f+h)+n(=)

where v and 7 satisfy (5.2).

ii) We now prove that f+h = F and we first assume that (f,g) belongs to
D(Q2) x D(2). In this case, since V; and II;, j = 1,...,n, are smooth, the
components of F can be written as integrals :

F,=<f,V;>+<gll >:/fjdm+/77(ej)divudm
Q Q

— /Q(—I/Au + Vr).v(ej)dz.

But, since f and g are smooth, (u, ) also belongs W%, (Q) x Wi (Q) in view of

Theorem 4.2. In particular, the traces of Vu and 7 exist in W'/?'?(9Q). Then,
extending a classical Green’s formula by density, it is not difficult to prove that :

/(—VAu + Vr).v(ej)dx — / n(e;)divude = — < (vVu —nl)n, ej >pq,
Q Q
and therefore that :

Fj:< i, 1>+ < (wVu—nl)n, e >y .
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On the other hand, h is defined by :

Vip € D(R"), < h, ¢ >:—y/

Q

u. APdr — /ﬂdivwdm— <f,¥>.

Q

If we operate two integrations by parts on the first integral and only one on the
second, we finally obtain :

Vip e D(R"), < h,yp >=< (vVu —nl)n, ¢ >y .
Hence, since h has compact support, one has :
< h,e; >=< (vVu —7nl)n, e; >sq,

and so we prove the desired equality for smooth f and ¢g. Finally, the general
case follows from the latter by density. Indeed, consider (f,,, gm) € D(2) x D(2)
tends to (f,g) in Wy ' x L?(Q). Assume without loss of generality that the
support of (f,,,gm) is contained in a compact set which is independent of m,
then Fp, = f,, + h,, for all m. Thus, by continuity of the duality pairing and
owing to (5.5) :

Foo "25°F, Fo+hym —5°F+h,
sothat F=f+h <

When n = 2, the situation is slightly different, and solutions in exterior do-
mains have faster decay than those in the whole space. We also define the family,

(Vi, Hz) = (Uel — ’U(Uei), Q.ei — 77(U6l)), 1= 1, 2

which is still a basis of the space N(Q2) provided 0 <1 —1—2/p < 1.

Theorem 5.3 Let Q be a CB' esterior domain of R?, (f,g) € W5 () x LP(Q)
with compact support K in Q and @ = 0. Then, the only solution (u,7) €
W' (Q) x WS&(Q) of problem (S) is indefinitely differentiable out of a ball By

a(p)
for some R > 0 depending only on K. Moreover, for all  such that |x| > R :

u(z) = AF +v(z), n(z)=rn(z),

where v and 1 satisfy (5.2) and A = (A;;) is an inversible 2 x 2 matriz with
constant coefficients depending only on €.
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Proof : The existence and uniqueness of (u,7) follows from Theorem 3.10 be-
cause data have compact support. We extend again the solution (u,7) and the
data by zero in €2'. Thus, the extended distributions still denoted by w, 7, f and
g satisfy the relations in D'(R?) :

—Au+Vr=f+h, —divu=y,

where h has compact support. Since (u, ) belongs to Wi?(R?) x W2?(R?) then,
(f +h,g) € W, IP(R?) x W2P(R?) but also satisfies :

<fj+h;,1>=0, j=1,2.
Therefore, the expansion given by Proposition 5.1 reads in this case :
u(x) =a+o(x), w(z)=mn(z),

where v and 7 satisfy (5.2) and a belongs to Py. Let us explicit the link between
vector a and the data.
i) We first establish that the decomposition a + v is unique for each pair (f, g).
Indeed, if u = a; + v; = ay + vy are two decompositions of such type, then
w = v; — v, satisfies :

—vAw =0, divw =0in 2, and w = ay — a; on 0.

But, the only solution of this problem in W;’(’;)(Q) is v; — v9 = a; — ay. Since
v, — vo vanishes at infinity, we finally get that a; = a; and v, = vs.
i1) By extension, we can introduce the linear mapping :

(£,9) —a(f.9),
and study its kernel. Thanks to (5.2), it is not difficult to prove that
(v,1) € W,P(Q) x WP(Q), with a(p) <1< 2/p.

On the contrary, a(f, ) ¢ W,?(22) unless a(f, g) = 0 and considering Theorem
3.10, we have

(u,m) € WP (Q) x WPP(Q) <= (F,9) € (W, P (Q) x W(Q)) LN, (Q).
So we obtain the equivalence :

a(f,g)=0 <<= F,=<f,V;>+<gl;>=0, j=1,2. (5.6)
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i11) We now conclude thanks to an appropriate decomposition of the data.
Consider a non-empty compact set K C €2, and the closed subspace E(K) of
W, '7(Q) x LP(Q2) of pairs (f,g) with support in K. Then, E(K) is a Banach
space and thanks to Hahn-Banach Theorem, we introduce the decomposition :

E(K) = E(K)" @ R(H',h") & R(H?, h?),

where E(K)* = {(f,9) € E(K),< f,V; > + < g,Il; >=0, j =1,2} and
(H', h') € E(K) satisfies forall 4,5 = 1,2 :

<H',V; >+ < I, >=d;;. (5.7)

Hence, any pair (f,g) € E(K) has a unique decomposition of the form :

(f.9) = (f.9)" +ca(H, R + o (H?, 1?),

where (f, g)* belongs to E(K)*. In particular, the vector ¢ necessarily equals F.
Finally, the kernel of the linear mapping from E(K) into R? :

(f,9) —alf,9),

is E(K)* thanks to (5.6). Therefore, its restriction to R(H', h') & R(H?, h?) is
injective. Moreover, both spaces R? and R(H', h') & R(H?, h*) have the same
finite dimension, so that the restriction is in fact bijective. Thus, it can be
represented by an invertible 2 x 2 matrix transforming the base (H', h'), (H?, h?)
into the canonical base of R2. At last, it is not difficult to prove that the matrix
A is independant of the compact K. <

We now investigate asymptotic properties of the solutions of the problem (S)
when the data no longer have compact support. Even in this case, one still have
some asymptotic expansion of solutions if the data have fast enough decay at
infinity.

Theorem 5.4 Let Q be a CY! esterior domain and p > n > 3. For (f,g) in
W P(Q) x WP (Q) and ¢ = 0, problem (S) has a unique solution (w,T) in

n

WP (Q) x WPP,(Q). Moreover, w has the asymptotic expansion :
n—2 n—2

where v =2 —n —n/p satisfies 1 —n <y <2—n.
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Proof : The proof is once again based on an adequate decomposition of the data.
Indeed, as in the previous theorem, Hahn-Banach Theorem implies that each pair
(f,9) € W, "P(Q) x WP, (Q) decomposes as follows :

(f.9) =" 9h) + (297,

where (f', g') belongs to (W, "7(Q) x W (Q)) LNP_ () and :

(f2792) - ZF](Hja h])a
7j=1
where the distributions

(H,hY) € W, P(Q) x WP(Q), i=1,...,n,

have compact support and satisfy (5.7). Then, on the one hand, since p > n and
[ = n — 2 satisfy (5.4), we can apply Theorem 5.2 to (f,, g2) that has compact
support. Hence the associated problem (S) with ¢ = 0 has a solution (u?,7?) in
WP, (Q) x WIP,(Q) that satisfies :

w(z) =U(x)F + O(|=|" ).

On the other hand, thanks to Theorem 3.16, problem (S) associated with
(f',¢") and ¢ = 0 has a unique solution (u', 7') in W-? () x W7 (). More-
over, since p > n, Proposition 1.4 yields

u'(2) = of|a[*" ")
Thus, since 1 —n < 2 —n — n/p, the pair (u, ) = (u' + u?, 7! + 72) obviously
satisfies all the required properties. <

We now give the analogous result when the dimension equals 2. We shall not
develop the proof of this result because it is very similar to the preceding one.

Theorem 5.5 Let Let Q be a CY' exterior domain and p > n = 2. For (f,g)
in W P(Q) x W)P(Q) and @ = 0, problem (S) has a unique solution (w, =) in
w.?

alp) (§2) X Wg’p)(Q). Moreover, w has the following asymptotic expansion :

(p
ui(x) = AF + o(|z]),

where v = —2/p satisfies —1 < v < 0 and A is given in theorem 5.2.
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Remark 5.6 i) The last two theorems are optimal because the expansions does
not always hold as soon as p < n or (f,g) € W, "?(Q) x W,*(Q) with [ <n— 1.
They can nevertheless be refined considering data in W (Q) x W2?(Q) where
p>n and « is a real number such that a« +1 —n/p" > 0.

ii) As we chose non-smooth data in Theorems 5.4 and 5.5, the pressure m does
not admit any particular expansion. Nevertheless, if (f,g) € W22(Q) x WP((Q)
then, the pressure writes :

m(z) = Q(z).F+o(|z|" ), ifn>3,
m(x) = o]z 1), if n=2.

Under the same assumptions, Vu has the following expansion :

Vu(z) = V(U(z)F) + o(|z|"71), ifn >3,
Vu(z) =o(jz|"™), if n = 2.

iii) All the results in this section readily extends to non homogeneous boundary
data ¢ if we replace the quantity < f,V; > + < g,II; > by

<f,Vi>+<gll; >+ <@, (VV; =ILI)n > .

In particular, one can improve the results of Corollary 3.14 to prove that the
functions introduced in characterisations (3.8) and (3.9) satisfy the asymptotic
representation formulae : forall > 1 —n,

v(A)(z) = U(z)F + o(|z|®), ifn >3,
v A+ UX0))(x) = AF + o(|z|?), ifn =2,
where F; =< X, (VV; — [;I)n >sq.
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