
Automatically Proving Up-to BisimulationDaniel HirschkoffMars 1998No 98-123

Automatically Proving Up-to BisimulationDaniel HirschkoffCERMICS - ENPC/INRIA and Università di Roma �La Sapienza�RésuméNous développons diverses méthodes permettant d'automatiser despreuves de bisimulation �up-to� pour le �-calcul. Nous traitons lestechniques �à congruence structurelle près� (par l'intermédiaire de ladé�nition d'un algorithme calculant une forme normale unique pourla congruence structurelle), �à substitutions injectives sur les noms li-bres près�, �à restriction près�, et �à composition parallèle près�. Cestechniques permettent de réduire la taille des relations que l'on doit ex-hiber a�n de prouver un résultat de bisimilarité. Dans le cadre d'uneimplémentation, cela présente des avantages immédiats en termes degestion de la mémoire; en outre, sur le plan de l'expressivité de notresystème, la technique de preuve �à composition parallèle près� permetde prendre en compte certains termes comportant l'opérateur de répli-cation, et dont l'espace d'états est in�ni (chose que ne peuvent faire lesoutils existants pour le �-calcul). Nous illustrons les divers avantagesde ces méthodes sur une implémentation.
AbstractWe present a methodology for checking bisimilarities between �-calculus processes with the up-to techniques for bisimulation. Thesetechniques are used to reduce the size of the relation one has to exhibitto prove a bisimulation. Not only is this interesting in terms of spacemanagement, but it also increases dramatically the expressive power ofour system, by making in some cases the veri�cation of in�nite statesspace processes possible. Based on an algorithm to compute a uniquenormal form for structural congruence, we develop sound and completemethods to check bisimulation up to injective substitutions on freenames, up to restriction and up to parallel composition. We show theexpressiveness of our techniques on a prototype implementation.

IntroductionThe �-calculus has become a widely studied model of concurrency; the mostpopular notion of equivalence on �-calculus terms is bisimilarity. Existingtools for automatically checking bisimilarities between CCS or �-calculusprocesses can handle a restricted class of processes that have an in�nite be-haviour. Methods like the partition re�nement algorithm ([PT87], used forexample in [PS96]) are based on a preliminary step in which the unfoldingof the processes is computed, under the form of a Labelled Transition Sys-tem. Therefore, processes having an in�nite state space cannot be takeninto consideration by this approach. The Mobility Workbench [VM94] usesan �on the �y� method, that progressively builds the candidate bisimulationrelation as new pairs of related processes are discovered. This way, one canalso take into account two non terminating processes that show a di�erentbehaviour after a �nite number of steps, and prove that they are not bisim-ilar. However, two processes having an in�nite states space still cannot beproven bisimilar.In this paper, a di�erent approach, based on the so called up-to prooftechniques, is investigated, in order to de�ne some methods for checkingbisimilarities between processes. These techniques have been introduced asmeta-level tools for proving bisimulation relations [SM92, San95], and to ourknowledge have only been used in papers about the theory of �-calculus, toprove bisimilarity laws (e.g. [BS98, San96a]).The idea behind the up-to techniques is to reduce the size of the relationone has to exhibit to establish a bisimilarity property, by providing syntac-tical tools to manipulate pairs of processes before checking that these pairsbelong to the relation. For example, the classical proof of commutativity ofthe parallel composition operator exhibits a relation R de�ned as follows:R = f((�~x) (P jQ); (�~x) (QjP))g ;P and Q ranging over processes and ~x over (possibly empty) name lists (wehave to add the restriction on ~x because of possible name extrusions). The upto restriction proof technique makes it possible to cancel common restrictionsin pairs of related processes, and thus allows us to work with the simplerrelation R0 = f(P jQ;QjP)g. Similarly, the up to parallel compositionproof technique allows one to cut the common parallel components of a pairof processes, while the up to injective substitutions on names proof techniquequotientates the relations under such substitutions.In [San95], Sangiorgi gives a uniform presentation of the up-to tech-niques, and shows how they can be combined together to get powerful proof1

methods. An essential characteristic of these techniques is that they areused at a purely syntactical level. This has two important consequences: onone side, our algorithms will follow a syntactical approach (as opposed tothe methods where one �rst computes a semantical model of the processes),and the automatic proofs will be quite similar to �human� proofs, which canhelp tracing errors in the case where two processes are not bisimilar. Onthe other hand, the up-to parallel composition proof technique allows oneto work with replicated processes, i.e. processes that can have an in�nitebehaviour. This means that in some cases we can prove bisimilarities evenfor in�nite-states space processes, and hence treat more processes than theexisting algorithms.Since we are to work at a syntactical level, we have to be able to �dealwith syntax�, which in our setting can be expressed by the ability to workup to structural congruence1. Structural congruence (written �) has beenintroduced in [Mil91, Mil92]; it is probably the most immediate syntacticalequivalence that can be de�ned on processes, and basically says how the par-allel subcomponents and the restrictions of a term can be rearranged withoutchanging the process it actually represents. We work with a simple but ex-pressive syntax for processes, where replications are allowed only on pre�xedterms (akin to the normalised replications of [San95], although we do nothave the sum operator in our language); within this framework, a normalis-ing algorithm for structural congruence can be de�ned as a rewriting system,that guarantees uniqueness of normal form for structurally equivalent pro-cesses. This allows us to work systematically up to structural congruence,and to consider relations that contain only pairs of normal processes. We de-�ne sound and complete methods for three more up-to techniques, incremen-tally adding each time a new technique, namely up-to injective substitutionson free names, up-to restriction and up-to parallel composition.The plan of the paper is as follows: in the next Section, we de�ne thesyntax of processes and structural congruence; we then de�ne a rewritingsystem by orienting the structural congruence laws, obtaining a system thatenjoys the strong normalisation and local con�uence properties. This givesuniqueness of normal forms, for which we provide a syntactical description.We introduce semantics in Section 2, and develop the framework of the up-tobisimulation proof techniques. In Section 3, we discuss our up-to injectivesubstitutions, up-to restriction and up-to parallel composition proof meth-ods; Section 4 is devoted to the description of a prototype implementation1The Mobility WorkBench exploits the axiomatisation of open bisimulation [San96b],since it also needs to stay at the level of syntax, because of the �on the �y� method.2

of these algorithms, and illustrates the capacities of our system on severalexamples. We �nally conclude and discuss future extensions of this work.1 SyntaxThis Section is devoted to the syntactical manipulation of processes. We �rstintroduce the syntax of the language we study, and structural congruence;we then de�ne a term rewriting system that computes a unique representantfor every equivalence class for structural congruence, and give a syntacticalcharacterisation of this representant.1.1 De�nitionsWe let a; b; : : : ; x; y; : : : range over an in�nite countable set of names, and~a;~b; : : : range over (possibly empty) name lists. Processes, ranged over byP;Q; : : : , are de�ned by the following syntax:� = a(~b) j a[~b]P = 0 j �:P j !�:P j (�x)P j P1jP2 :Pre�xes (ranged over by �; �; : : :) are either input: a(~b), or output: a[~b].0 is the inactive process; pre�xed processes are either linear (�:P) or repli-cated (!�:P);the other constructors are restriction (�) and parallel composi-tion (j). The notion of bound name is de�ned by saying that restriction andinput pre�x are binding operators: (�x) and x(~y): bind respectively namex and the names in ~y in the process these operators are applied to. Asusual, free names are names that are not bound in a process, and we workup to implicit �-conversion of bound names (at least until Section 3, where�-conversion will be handled explicitly for the de�nition of our checkingmethods).Structural congruence, written �, is the smallest equivalence relationthat is a congruence and that satis�es the following rules:1 P j0 � P 2 P jQ � QjP 3 P j(QjR) � (P jQ)jR4 (�x)(�y)P � (�y)(�x)P5 x =2 fn(P)(�x)P � P 6 x =2 fn(P)P j(�x)Q � (�x) (P jQ)7 !�:P j�:P �!�:P 8 !�:P j!�:P �!�:P3

Rules 1-3 give properties about the parallel composition operator, rules4-6 deal with restriction, and rules 7-8 with replication. Rule 8 is new withrespect to the traditional de�nition of structural congruence [Mil91], and canbe seen as the �limit� of in�nitely many applications of Rule 7.Conventions and notations: Rules 2 and 3 (for parallel composition)and 4 (for restriction) will be used implicitly, which means that we work upto commutativity and associativity of parallel composition, and up to per-mutation of consecutive restrictions. This will allow us to use the notation(P1j : : : jPn) (sometimes abbreviated as Qi2[1;:::;n] Pi) for parallel composi-tion, and (�~x)P for restriction, where ~x is intended as having a set ratherthan a vector structure (in order to allow silent applications of rule 4).Whereas rules 1 and 5 are used to do some garbage collection; the rulesthat will be really relevant in the de�nition of our notion of normal form arerules 6, 7 and 8, as will be seen below. Remark that structural congruencepreserves free names, i.e if P � Q, then fn(P) = fn(Q).1.2 Normal FormsIn order to quotientate our syntax with respect to structural congruence, wede�ne a normalisation algorithm as a term rewriting system, by orienting thelaws of structural congruence (except laws 2, 3 and 4, that are used implicitly:this amounts to suppose that we have some way to sort names and parallelcompositions of processes, typically using a lexicographical order; we willcome back to this point in Section 3). All these laws except one relate twoprocesses that do not have the same number of symbols, so it is natural toorientate them from the �verbose form� to the more compact one, with theaim of choosing the more succinct representation for normal forms. Onlylaw 6, that is used to move around restrictions among parallel compositions,does not satisfy this property. Remember that it writes:6 x =2 fn(P)P j(�x)Q � (�x) (P jQ) :It seems sensible to decide that the �right� place for the restriction onx is as close as possible to its actual scope, which would mean choosing aright-to-left orientation for the law. Unfortunately, this is not compatiblewith our will to have a unique normal form for two structurally congruentprocesses; consider for example three processes P , Q and R, and two namesa and b such that a occurs free in P and Q but not in R, and b occurs freein Q and R but not in P . Then one could rewrite (�a)(�b) (P jQjR) in twodi�erent ways, obtaining (�a) (P j(�b) (QjR)) and (�b) ((�a) (P jQ)jR), that4

would be di�erent normal forms if P , Q and R cannot be rewritten2. Weare therefore compelled to orientate law 6 from left to right, hence pullingup all restrictions as much as possible in a term.De�nition 1.1 (Normalisation algorithm) The normalisation algorithmis de�ned as the rewriting system given by the �ve following rules:R1 P j0! P R5 (x =2 fn(P))) ((�x)P ! P)R6 (x =2 fn(P))) (P j(�x)Q! (�x) (P jQ))R7 !�:P j�:P ! !�:P R8 !�:P j!�:P ! !�:P(we have kept the numbering of the rules consistent with the structurallaws)3. This rewriting system enjoys strong normalisation (a computationalways terminates) and local con�uence (two one-step reducts of a term canalways be rewritten into a common term), which guarantees uniqueness ofnormal forms:Lemma 1.2 (Strong normalisation) Our rewriting system is strongly nor-malising.Proof. We want to de�ne a measure on processes as a natural numberthat strictly decreases each time a rewriting rule is triggered. As remarkedabove, all rules except R6 make the number of symbols in the term decrease,while an application of rule R6 make the number of symbols in the scope ofthe restriction grow. We therefore de�ne the measure m(P), given a processP , as m(P) = (#�(P) + 1) �#symb(P)� X� in P #symb(scope(�)) ;where #symb(X) denotes the number of symbols in X, #� the number ofrestrictions, and given a term of the form (�x)T , the scope of the restrictionon x, written scope(�), is T .2A similar problem appears in [EG96], where normal forms do not enjoy the uniquenessproperty; however, this is not problematic in the framework of Engelfriet and Gelsema be-cause their multiset semantics makes the locations of restrictions disappear, which amountsto quotientate with respect to law 6.3Note that rules R5 and R6 are guarded by a condition; however, we can considerour system as a usual Term Rewriting System (i.e. without conditions), for example byadopting a De Bruijn notation for names, which intrinsically embeds the side conditionswhen applying the structural congruence rules.5

First note that m(P) is always positive. Each time a rewrite law dif-ferent from R6 is applied, the number of symbols in P decreases, and sodoes m(P) (the positive part decreases strictly more than the negative partincreases). When rule R6 is triggered, the positive part does not change,and the negative part increases, which makes m(P) decrease. �Lemma 1.3 (Local con�uence) Our rewriting system is locally con�uent.Proof. An easy inspection of the con�uence for the critical pairs inducedby our rewriting rules. �Notation: In the following, we write =�� to denote equality betweenprocesses up to �-conversion, permutation of consecutive restrictions (struc-tural congruence law 4), and commutativity and associativity of parallel com-position. With this notation, we focus on the interplay between �-conversionand permutation of consecutive restrictions, leaving the management of par-allel compositions aside, as this is a somewhat orthogonal question. We willreturn to this point in Section 3.We now come to the main property of our system:Proposition 1.4 (Uniqueness of normal forms) For any process P , thereexists a unique process, written NR(P), obtained by application of our rewrit-ing system to P , and that cannot be further rewritten. Moreover, given twoprocesses P and Q, P � Q if and only if NR(P)=��NR(Q).Proof. The fact that NR(P) is well de�ned and unique follows fromthe two Lemmas above, using Newmann's Lemma. It is obvious that therewriting system preserves structural congruence, hence the (direction.The) direction follows from the uniqueness property. �The normal form is the most �compact� representation of an equivalenceclass for structural congruence, in that it minimises the number of symbolsin the term (see the proof of Lemma 1.2). Since our rewriting system isstrongly normalising and enjoys the Church-Rosser property, we can applywhatever strategy we want to rewrite a process, yielding the following easyresult:Lemma 1.5 For any process P and name list ~x, NR((�~x)P) = (�~xjfn(P))NR(P),where ~xjfn(P) denotes the list of names in ~x that occur free in P .6

For m 2 N [f!g, de�ne (�:N)m = m timesz }| {�:N j : : : j�:N if m 2 N and(�:N)! =!�:N :N = 0j (�~x) ((�1:N1)m1 j : : : j(�n:Nn)mn) ; n � 1; mi 2 N [f!g� 8i: xi 2 fn((�1:N1)m1 j : : : j(�n:Nn)mn)8i; j 2 [1; : : : ; n]: (i 6= j)) (�i:Ni 6= �j :Nj)Figure 1: Syntax of normal formsProposition 1.6 (Syntactical description of normal forms) The termsthat are of the form NR(P), for some P , are exactly those described by thesyntax de�ned in Figure 1.Proof. A term of the form given in Figure 1 cannot be rewritten. Re-ciprocally, we prove by induction over the structure of a process P that ifP cannot be further reduced, then P obeys the syntax above. If P = 0,the result is immediate. If P = (�a)P 0, then either P 0 can be reduced, inwhich case P can also be reduced, and we get a contradiction, or P 0 cannotbe further reduced, hence P 0 is described by the syntax above. The caseP 0 = 0 is impossible, since one could reduce P ; hence P 0 is of the form(�~x) Qi(�i:Ni)mi , and a 2 fn(P 0), which shows that P is described by thesyntax above. If P = �:P 0, then if P 0 cannot be reduced, P 0 is describedby the syntax above, which implies that �:P is also of that form (the sameholds for P =!�:P 0). Finally, if P = P1j : : : jPn, then none of the Pis can bereduced; we easily show that every Pi is of the form (� ~xi) Qj(�ij :N ij)mij , with~xi = ;, since otherwise one could reduce P either using rule R1 or rule R6.Then, since P cannot be rewritten, QiQj(�ij :N ij)mij satis�es the conditiongiven in the last line of Figure 1, and P is described by the syntax above. �Example: NR((�a) (!ax:x j !ab) j (�a) (!ax:x j !ac))= (�a)(�a0) (!ax:x j !a0x:x j !ab j !ac) :Let us comment on the shape of normal forms. The syntax of Figure1 says that every process that is not equivalent to 0 can be viewed as anagent with two components, its body and topmost restrictions. The body7

is a parallel composition of pre�xed processes, that, as will be seen in thenext Section, are the processes that are ready to commit. The topmostrestrictions de�ne some kind of geometry among the pre�xed processes, bymaking some names private to subsets of the body.Notations: Given a non-null process in normal form P =Qi(�i:Ni)mi ,we write P = (�~xP) jP j to decompose P into its uppermost restrictions(�~xP) and its �body� Qi(�i:Ni)mi , which consists of (possibly replicated)pre�xed processes. Note that bodies of normal forms are also normal forms.We will range over such processes (i.e. non-null normal forms without top-most restrictions) with the notation jP j; jQj; : : : . We further decompose jP jinto an �in�nite part�, written jP j!, and a ��nite part�, written jP jN , respec-tively corresponding to the replicated and the non-replicated components,i.e. jP j! =Qi:mi=!(�i:Ni)mi and jP jN =Qi:mi2N (�i:Ni)mi .We introduce some machinery on processes of the form jP j, in order toestablish a result that will be useful for the treatment of the up to parallelcomposition proof technique in Section 3: we letQi(�i:Pi)mi nQj(�j :Qj)! def= Qi:8j:�i:Pi 6=�j :Qj (�i:Pi)mi(note that the right hand side argument of n is always of the form jP j!),and, for two processes of the form jP j and jQj, we letjP j�jQj def= jP j! j (jQj! n jP j!) j (jP jN n jQj!) j (jQjN n jP j!) :Operator � captures the transformation that is done in the normalisationof a parallel composition of normal forms:Lemma 1.7 NR(jP j j jQj) = jP j�jQj.Corollary 1.8 Let (�~x) jP j and (�~y) jQj be two processes in normal form.ThenNR((�~x) jP j j (�~y) jQj) = (�~x~y) (jP j�jQj) :2 SemanticsWe now introduce the semantical notions we need in order to reason aboutprocesses, i.e. the labelled transition system and the behavioural equivalencethat we will use in the remainder of the paper, namely bisimilarity.2.1 Operational Semantics and BisimulationWe introduce a labelled transition system by de�ning a judgement of theform P ��! P 0, meaning that process P is liable to perform action � and then8

behave like process P 0. Actions, ranged over by �, are of three kinds: inputsa(~b), bound outputs (�~b0) a[~b] (with ~b0 � ~b - when ~b0 = ; the output is free),and � , denoting internal communication. Bound names in actions occur onlyin bound output: the names in ~b0 are bound in (�~b0) a[~b]. The rules for earlytransition semantics are given in Figure 2 (:: denotes the adjunction of anelement to a list; symmetrical versions of rules PARl and CLOSE1 havebeen omitted; note the particular shape of rule BANG, in relation to oursyntax).INP a(~x):P a(~b)��! Pf~x:=~bg RES P ��! P 0(�x)P ��! (�x)P 0 x =2 n(�)OUT a[~b]:P a[~b]��! P OPEN P (�~b0) a[~b]�����! P 0(�x)P (�t::~b0) a[~b]������! P 0 � x 6= ax 2 ~b n ~b0BANG �:P ��! P 0!�:P ��! !�:P jP 0 PARl P ��! P 0QjP ��! QjP 0 fn(Q) \ bn(�) = ;CLOSE1 P a(~b)��! P 0 Q (�~b0) a[~b]�����! Q0P jQ ��! (�~b0) (P 0jQ0)Figure 2: Early Transition SemanticsThe derivations one can construct for normal forms are related to theform of processes. Since all restrictions are brought on top, in some sensename extrusion is performed �before� the transition, which implies that ruleCLOSE is always used with an empty list ~b0 of names, and that the side condi-tion for rule PAR is always veri�ed (since necessary �-conversion has alreadybeen done as rewrite rule R6 is applied). These considerations are taken intoaccount for the de�nition of the function that computes the derivations of anormal form in our implementation (see Section 4).The semantical equivalence on processes we use is bisimilarity, de�ned asfollows:De�nition 2.1 (Bisimulation, bisimilarity) A relation R is a bisimula-tion i� for every pair of processes (P;Q) such that PRQ, whenever P ��! P 0,there exists a process Q0 such that Q ��! Q0 and P 0RQ0, and the symmetri-cal condition on transitions performed by Q. Bisimilarity, written �, is thegreatest bisimulation. 9

Remark: bisimilarity contains structural congruence, i.e. ���.2.2 The Up-to Proof Techniques for BisimulationTo rephrase De�nition 2.1 above, proving bisimilarity of two processes re-duces to exhibiting a bisimulation relation that contains these processes.The property �to be a bisimulation relation� can be depicted by the diagramon the left side of Figure 3: R is a bisimulation if any pair of processes inR evolves to pairs of processes that are also in R. In other words, R con-tains the whole �future� of all the processes it relates.P R Q# � # �P 0 R Q0 P R Q# � # �P 0 F(R) Q0Figure 3: From bisimulation to up-to bisimulationIn [San95], Sangiorgi introduces a general framework for the study ofthe up-to techniques, which can be used to reduce the size of the relationsone has to exhibit in order to prove bisimulation. Each such a technique isrepresented by a functional from relations to relations (ranged over by F);the property of being a bisimulation up-to F is de�ned as follows:De�nition 2.2 (Bisimulation up to F) Given a functional F over re-lations, we say that a relation R is a bisimulation up to F i�, for every Pand Q such that PRQ, whenever P ��! P 0, there exists Q0 s.t. Q ��! Q0 andP 0F(R)Q0, and the symmetrical condition on transitions performed by Q.A functional F is sound if (R is a bisimulation up to F) implies (R ��),i.e. in some way, F helps building the �future� of a relation: to prove thatR is a bisimulation relation, it is enough to prove that any pair of processesin R can only evolve to pairs of processes that are contained in F(R) (asshown on the right part of Figure 3). [San95] introduces a su�cient con-dition for soundness of functionals, called respectfulness. All the techniqueswe are using in the remainder of the paper (up to injective substitutions onfree names, up to structural congruence, up to restrictions, up to parallelcomposition) are respectful, and hence induce correct proof techniques for10

bisimulation. Moreover, respectful functions enjoy nice compositional prop-erties, and can indeed be viewed as tools to compute the closure of a relation,that can be combined together for the task of proving bisimulations.3 Automatising the Up-to TechniquesIn this Section, we de�ne sound and complete methods to decide, given arelation R, if a pair of processes belongs to F(R), for some function F cor-responding to a correct proof technique. As hinted before, we systematicallyuse the up to structural congruence proof technique, which amounts to workonly with processes in normal form; this technique will be �rst used in con-junction with the up to injective substitutions proof method, and then wewill incrementally add the up to restrictions and the up to parallel com-position proof techniques, yielding our most powerful tool for bisimulationproofs. To work with normal forms will allow us to decompose any processinto its body and topmost restrictions, which, as will be seen, will be our�canonical way� to reason about processes.3.1 Up to Injective Substitutions on Free NamesAs names are the only basic entity on which processes are de�ned, the de�-nition of up-to techniques to work with them will be crucial in bisimulationproofs. Two methods are directly related to the management of names,namely the up-to injective substitutions on free names and the up-to restric-tion proof techniques. As will be seen below, their treatment will be quiteuniform, the up-to restrictions checking method being in some way a gener-alisation of the up-to injective substitutions on free names checking method,which in turn can also be seen as an extension of the �-conversion check-ing method. To this end, we shall work with the decomposition of normalprocesses into their topmost restrictions and bodies, and study the applica-tion of (injective) substitutions to the bodies. Let us �rst introduce somebackground on substitutions.Substitutions: We work with substitutions on names, that are functionsfrom names to names, ranged over by �, �0, �00. We de�ne dom(�), thedomain of �, as the set of names n such that �(n) 6= n, and the codomaincodom(�) of � as �(dom(�)). � is injective if �(i) = �(j) implies i = j. Inthe following, we are interested, given a process P , in substitutions � thatare injective on the free names of P , and such that applying � to P doesnot capture bound names of P , i.e. codom(�) \ bn(P) = ; (this is alwayspossible modulo �-conversion). An injective substitution � whose domain is11

�nite de�nes a bijective mapping between dom(�) and codom(�); we shallwrite ��1 for the inverse of �. Given a set of names E, we say that twosubstitutions � and �0 coincide on E i� for any name n in E, �(n) = �0(n).We can remark that since NR preserves free names, we have, for a processP and a substitution � injective on the free names of P , NR(P�) = NR(P)�.We are now ready to de�ne our proof techniques using injective sub-stitutions on free names. Let us start with an obvious characterisation of�-convertibility:Fact 3.1 Given two processes P and Q in normal form, write P = (�~x) jP jand Q = (�~y) jQj. Then (�~x) jP j=��(�~y) jQj i� there exists a substitution �,injective on fn(jQj), s.t. jP j=�� jQj�, dom(�) = ~y and �(~y) = ~x.A direct consequence of the above result:Lemma 3.2 Write as above P = (�~x) jP j and Q = (�~y) jQj, for two normalprocesses P and Q. Then, for any substitution � injective on the free namesof jQj, (�~x) jP j=��(�~y) (jQj�) i� there exists a substitution �0 injective onfn(jQj) s.t. (i) jP j=�� jQj�0, (ii) �0(��1(~y)) = ~x, and (iii) �0 = � onfn(jQj) n ��1(~y).We can now consider the closure under structural congruence and injec-tive substitutions on free names of a relation:De�nition 3.3 Given a relation R, we de�ne the closure under structuralcongruence and injective substitutions on free names of R, written �Ri�,as follows:�Ri� def= f(P;Q);9(P0; Q0) 2 R;9� injective on fn(P0) [fn(Q0)s.t. P � P0� ^Q � Q0�g :Proposition 3.4 (Characterisation of �Ri�) (P;Q) 2�Ri� i� thereexist processes P0, Q0, and substitutions �0 �00, injective on fn(jP0j) andfn(jQ0j) respectively, such that, if we write P0 = (�~xP0) jP0j, Q0 = (�~xQ0) jQ0j,NR(P) = (�~xP) jNR(P)j and NR(Q) = (�~xQ) jNR(Q)j, we have P0RQ0,jNR(P)j=�� jP0j�0, jNR(Q)j=�� jQ0j�00, �0(~xP0) = ~xP , �00(~xQ0) = ~xQ, and, ifwe write E = fn(jP0j) \ fn(jQ0j) n ~xP0~xQ0 , �0 = �00 on E.Proof. By de�nition, (P;Q) 2�Ri� i� there exist (P0; Q0) 2 R and �injective s.t. P � P0� and Q � Q0�, which is equivalent, using Proposition12

1.4 and decomposing the normal forms into their topmost restrictions andbodies, to (�~xP) jNR(P)j=��((�~xP0) jP0j)� and (�~xQ) jNR(Q)j=��((�~xQ0) jQ0j)�.� being de�ned on the free names of P0 and Q0, dom(�) \ ~xP0 = dom(�) \~xQ0 = ;, hence �(~xP0) = ~xP0 and �(~xQ0) = ~xQ0 . Furthermore, we cansuppose that sets fn(P0), fn(Q0), ~xP0 and ~xQ0 are pairwise distinct. Wethus have: (P;Q) 2� Ri � i� there exist (P0; Q0) 2 R and an injectivesubstitution � s.t.� �(~xP0) = ~xP0�(~xQ0) = ~xQ0 and � (�~xP) jNR(P)j=��(�~xP0) (jP0j�)(�~xQ) jNR(Q)j=��(�~xQ0) (jQ0j�) :We now prove the equivalence between the latter statement and the charac-terisation given in the Proposition.): Using Lemma 3.2, we can exhibit a substitution �0, injective onfn(jP0j), and s.t. jNR(P)j = jP0j�0, �0(��1(~xP0)) = ~xP and �0 = � onfn(jP0j)n��1(~xP0). But we know from above that ��1(~xP0) = �(~xP0) = ~xP0 ,and hence we have �0(~xP0) = ~xP , and, since fn(jP0j)n~xP0 � E = fn(jP0j)\fn(jQ0j) n ~xP0~xQ0 , we also have �0 = � on E. We proceed similarly for Qand Q0, exhibiting �00 s.t. jNR(Q)j = jQ0j�00, �00(~xQ0) = ~xQ and �00 = � onE (hence �, �0 and �00 coincide on E).(: write fn(jP0j) [fn(jQ0j) as the disjoint union:~xP0 [~xQ0 [(fn(jP0j)n(fn(jQ0j)[~xP0)) [(fn(jQ0j)n(fn(jP0j)[~xQ0)) [E :We de�ne a substitution � over this set as follows:� = �0 (= �00) on E; � = �0 on fn(jP0j) n (~xP0 [fn(jQ0j));�(~xP0) = ~xP0 and �(~xQ0) = ~xQ0 ; � = �00 on fn(jQ0j) n (~xQ0 [fn(jP0j)).By de�nition, � is injective on fn(jP0j)[fn(jQ0j), � and �0 coincide onfn(jP0j) n ~xP0 = (fn(jP0j) n (~xP0 [fn(jQ0j))) [E, and since �(~xP0) = ~xP0 ,�0(��1(~xP0)) = �0(~xP0) = ~xP . This allows us to show, using Lemma 3.2,that (�~xP) jNR(P)j=��(�~xP0) (jP0j�). We prove similarly that(�~xQ) jNR(Q)j=��(�~xQ0)(jQ0j�), which concludes the proof. �This characterisation of the up to structural congruence, up to injectivesubstitutions closure gives us a method to check that given P , Q and R,we have (P;Q) 2�Ri �: compute NR(P) and NR(Q), and, for (P0; Q0) 2R, compute the substitutions �0 and �00, and check for the conditions ofProposition 3.4; if the conditions are satis�ed, succeed, otherwise chooseanother pair in R. 13

3.2 Up to RestrictionDe�nition 3.5 We write � (Ri)� � to denote the closure under injectivesubstitutions, structural congruence and restrictions of a relation R, de�nedas follows:�(Ri)�� def= f(P;Q);9P0; Q0;9~v;9� injective on fn(P0):((P0; Q0) 2 R) ^ (P � (�~v) (P0�)) ^ (Q � (�~v) (Q0�))g :Proposition 3.6 (Characterisation of the closure up to restrictions)Given two processes P and Q and a relation R, write NR(P) = (�~xP) jNR(P)jand NR(Q) = (�~xQ) jNR(Q)j. Then (P;Q) 2� (Ri)� � i� there exist twosubstitutions �0 and �00 injective on fn(jP0j) and fn(jQ0j) respectively, pro-cesses P0 and Q0 and a name list ~V � fn(P0) [fn(Q0) such that, if wewrite P0 = (�~xP0) jP0j, Q0 = (�~xQ0) jQ0j, ~V1 = ~Vjfn(P0)) and ~V2 = ~Vjfn(Q0):(i) jNR(P)j=�� jP0j�0 and jNR(Q)j=�� jQ0j�00(ii) �0(~V1~xP0) = ~xP and �00(~V2~xQ0) = ~xQ(iii) �0 = �00 on E = fn(jP0j) \ fn(jQ0j) n (~V ~xP0~xQ0) :Proof. The proof is quite similar to the proof of Proposition 3.4. Firstremark that in the de�nition of the closure under restrictions of a relation, wecan restrict ourselves to name lists ~v that are included in fn(P0) [fn(Q0),since for every x =2 fn(P0) [fn(Q0), ~v �ts to the de�nition of the closureunder restrictions if and only if (x :: ~v) �ts.As above, we �rst give an intermediate characterisation of � (Ri)� �,and then prove its equivalence with the conditions of the statement of theProposition. By applying Proposition 1.4, we compute the normal forms ofP and Q, which are then simpli�ed using Lemma 1.5. Supposing as abovethat fn(P0), ~xP0 , fn(Q0) and ~xQ0 are pairwise disjoint sets, we �nally havethe following characterisation: (P;Q) 2� (Ri)� � i� there exist (P0; Q0) 2R, a substitution � injective on fn(jP0j) [fn(jQ0j), and a name list ~v ��(fn(P0) [fn(Q0)) s.t.� �(~xP0) = ~xP0�(~xQ0) = ~xQ0 and � (�~xP) jNR(P)j=��(�~vj�(fn(P0))) (�~xP0) (jP0j�)(�~xQ) jNR(Q)j=��(�~vj�(fn(Q0))) (�~xQ0) (jQ0j�) :): write ~v1 = ~vj�(fn(P0)) and ~v2 = ~vj�(fn(Q0)). Lemma 3.2 gives us asubstitution �0 s.t. jNR(P)j=�� jP0j�0, �0(��1(~v1~xP0)) = ~xP , and �0 = � onfn(jP0j)n��1(~v1~xP0). Since � is injective, ��1(~v1~xP0) = ��1(~v1)��1(~xP0) =��1(~v1)~xP0 . Write ~V1 = ��1(~v1), then �(~V1~xP0) = ~xP , and � and �0 coincide14

on fn(jP0j) n ~V1~xP0 . Similarly, we write ~V2 = ��1(~v2), and we can exhibit�00 such that jNR(Q)j=�� jQ0j�00, �00(~V2~xQ0) = ~xQ and � and �00 coincide onfn(jQ0j)n ~V2~xQ0 . Let ~V = ~V1[~V2, then E = (fn(jP0j)n ~V1~xP0) \ (fn(jQ0j)n~V2~xQ0), and �, �0 and �00 coincide on E.(: write ~V = [V1; : : : ; Vn], pick n new names ~v = [v1; : : : ; vn], and de�ne�(Vi) = vi. Decompose fn(jP0j) [fn(jQ0j) into the disjoint union:~xP0 [~xQ0 [~V [(fn(jP0j) n (fn(jQ0j) [~V ~xP0))[(fn(jQ0j) n (fn(jP0j) [~V ~xQ0)) [E ;and de�ne� = �0 (= �00) on E; � = �0 on fn(jP0j) n (fn(jQ0j) [~xP0 ~V);�(~xP0) = ~xP0 and �(~xQ0) = ~xQ0 ; � = �00 on fn(jQ0j) n (fn(jP0j) [~xQ0 ~V);�(Vi) = vi as seen above.As in the previous proof, use Lemma 3.2 to conclude. �The characterisation given in Proposition 3.6 can be seen as an enlarge-ment of the characterisation of the up-to injective substitutions case: theup-to restrictions technique compels �0 and �00 to coincide on a smaller setE of names, or in other words more names in fn(P0) and fn(Q0) can bemapped to di�erent names by �0 and �00.Here again, the method given by the characterisation is the following:to check if (P;Q) 2� (Ri)� �, compute NR(P) and NR(Q), and look for(P0; Q0) 2 R such that the conditions of the characterisation hold.About the lexicographical order on processes: The two checkingmethods above (as well as the characterisation of the next proof techniquewe study) rely on the ability, given jNR(P)j and jP0j, to infer a substitution�0, injective on fn(jP0j), and such that jNR(P)j=�� jP0j�0 (and similarly for�00). This question is related to the de�nition of a lexicographical order onprocesses: consider for example jNR(P)j =!x j !y j x and jP0j =!y j !x j x.Then, to infer a substitution matching jNR(P)j and jP0j, we should look fora canonical way to present !x j !y, which has to be invariant under injectivesubstitutions on names, and thus cannot depend on an order on names.In general, we have not been able to de�ne such a canonical orderingon processes, which means that we have to introduce some combinatoricsand sometimes generate several substitutions, according on how normal pro-cesses having the same structure are ordered (by �processes having the samestructure�, we mean processes that are equal up to some (non necessarily15

injective) renaming). We shall not enter here the details of our treatmentof this problem; let us just say that the more powerful our technique is,the more permutations of �structurally equal processes� we have to take intoaccount to apply our methods (i.e. the less narrow is the equivalence classassociated to our order relation).3.3 Up to Parallel CompositionTo reason with both the up to restriction and the up to parallel compositionproof techniques, we introduce the notion of context : a context (ranged overby C;C 0) is a term that contains a hole, written []. If we want to combinethe up to restriction and up to parallel composition proof techniques, wehave to work with contexts that are described by the following syntax:C = [] j (�x)C j CjP ;where P ranges over processes and x ranges over names. Given a context Cand a process P , we construct the process C[P] by replacing the hole withP .De�nition 3.7 The closure under contexts of a relation R is written RCand de�ned byRC def= f(P;Q);9C;P0; Q0: P = C[P0]; Q = C[Q0]; P0RQ0g :As usual, we will work up to structural congruence, and consider �(RC) �, which is de�ned by replacing �=� with ��� in the de�nition ofRC (this actually justi�es the fact that we authorise parallel composition ofprocesses only at the right in the de�nition of contexts).To work up to structural congruence will actually allow us to adopt asimpler form for contexts, ranged over by C, and de�ned by the followingsyntax (we de�ne RC analogously as above.):C = (�~x) ([]jT) T =Yi (�i:Ni)mi ; T in normal form :Indeed, we have the following property:Lemma 3.8 For any relation R, we have �(RC)� = �(RC)�.16

Proof. The inclusion � is obvious. For the other direction, consider(P;Q) 2 � (RC)�, and show (P;Q) 2 � (RC) �. This means proving thatfor any context C and processes P;Q; P0; Q0 such that P0RQ0, P � C[P0]and Q � C[Q0], there exist a context C and processes P1; Q1 such thatP1RQ1, P � C[P1] and Q � C[Q1]. We proceed by induction over thestructure of C; if C = [] or C = (�x)C 0, the property is easy.Consider the case where C = C 0jT0, with NR(T0) = (� ~x0) jU j, for somejU j; by induction hypothesis, we know that there exist C 0, P2 and Q2such that P2RQ2, C 0[P2] � C 0[P2] and C 0[Q2] � C 0[Q2]. Write C 0 =(�~x) ([] j jV j), for some jV j, then we have thatC[P2] = (�~x) (P2 j jV j) j (� ~x0) jU j� (�~x ~x0) (P2 j jV j j jU j)� (�~x ~x0) (P2 j (jV j�jU j)) (Lemma 1.7);which shows, reasoning along the same lines with Q2, that C, de�ned byC = (�~x ~x0) ([] j (jV j�jU j)) satis�es the required property (with processesP2 and Q2 satisfying P2RQ2), and this concludes the proof. �Proposition 3.9 (Characterisation of �(Ri)C �) Given a relation R andtwo processes P and Q, (P;Q) 2� (Ri)C � i� there exist (P0; Q0) 2 R,a process jT j, two substitutions �0 and �00 injective on fn(jP0j j jT j) andfn(jQ0j j jT j) respectively, and a name list ~V � fn(P0) [fn(Q0) [fn(jT j)such that, if we write NR(P) = (�~xP) jNR(P)j; P0 = (�~xP0) jP0j; ~V1 =~Vjfn(P0); jT1j!=�� jT j! n jP0j!; jT1jN=�� jT jN n jP0j!, and similarly for Q,Q0, ~xQ0, ~V2 and jT2j, we have:(i) � jNR(P)j!=��(jP0j! j jT1j!)�0jNR(Q)j!=��(jQ0j! j jT2j!)�00and (i0) � jNR(P)jN=��(jP0jN n jT1j! j jT1jN)�0jNR(Q)jN=��(jQ0jN n jT2j! j jT2jN)�00(ii) �0(~V1~xP0) = ~xP and �00(~V2~xQ0) = ~xQ(iii) �0 = �00 on E = fn(jP0j�jT j) \ fn(jQ0j�jT j) n (~V ~xP0~xQ0) :The proof of this result follows the lines of the proofs of Propositions 3.4and 3.6. With respect to the latter proof, the novelty comes from the factthat we have to do some reasoning about the bodies of the processes as we17

normalise them, instead of taking them as they are; this is easily done usingLemma 1.7. We will not enter here the details of this proof, but instead givea description of the checking method induced by the result above.Given two processes P and Q, and a relation R, to check if (P;Q) 2�(Ri)C �:1. compute NR(P) and NR(Q), yielding NR(P) = (�~xP) jNR(P)j andNR(Q) = (�~xQ) jNR(Q)j;2. pick (P0; Q0) 2 R, and write P0 = (�~xP0) jP0j and Q0 = (�~xQ0) jQ0j;3. use (i) to compute jT1j! and �0, and jT2j! and �00, and check that wecan de�ne jT j! s.t. jT1j! = jT j! n jP0j! and jT2j! = jT j! n jQ0j!;4. proceed similarly with (i0) to compute jT1jN , jT2jN and jT jN , possi-bly extending the domains of �0 and �00;5. check conditions (ii) and (iii) on �0 and �00.As hinted above, the generation of �0 and �00 can involve some combinatoricsthat heavily rely on the de�nition of a lexicographical order on processes.4 An Implementation4.1 The ToolWe present a prototype implementation of the methods described in thelatter Section, under the form of a tool for checking bisimulation using theup to techniques. This tool, written in O'Caml, allows the user to de�nea pair of processes, choose an up-to technique among those studied above,and try to prove bisimilarity using this technique. In the case where theproof succeeds, the corresponding bisimulation relation is displayed; if theprocesses are not bisimilar, some kind of diagnostic information is given tothe user to justify the failure (and hopefully help him make another attempt).Other features, like the computation of the normal form of a process and theinteractive simulation of the behaviour of a process, are also provided.Note that the tool allows the user to check also weak bisimilarity (written�), that is de�ned by replacing Q ��! Q0 with Q �) Q0 if � = � , withQ �) ��! �) Q0 if � 6= � , in De�nition 2.1, where �) denotes the re�exive,transitive closure of ��! . All the up-to techniques we have studied, as wellas our results, extend directly to the weak case.Algorithm To each proof technique F we have seen in Section 3 cor-responds a decision procedure decideF , given by the characterisations ofPropositions 3.4, 3.6 and 3.9. Our �bisimulation up-to F � checking functionbisimF takes three arguments, namely a relation R and two processes P18

and Q, and returns an up-to F bisimulation relation extending R thatcontains P and Q. It basically sticks to the de�nition of an up-to bisimula-tion given in De�nition 2.2, trying to build up an up-to bisimulation until itreaches a �xpoint.To compute bisimF (R; P;Q):� (parameter: R) pick a transition P ��! P 0 of P , and compute Q� =fQ0: Q ��! Q0g;- use decideF to check if any of the elements of Q� satis�esP 0F(R)Q0. If such an element can be found, loop to another transition ofP , leaving R unchanged;- otherwise, pick a Q0 2 Q� and make the recursive callbisimF ((P 0; Q0) :: R; P 0; Q0); if this call succeeds, yielding R', loop to an-other transition of P with R', otherwise pick another Q0 2 Q�; if all therecursive calls to bisimF fail, fail;� proceed similarly with the transitions of Q.Figure 4: The checking algorithmOur checking algorithm is informally described on Figure 4. Its correct-ness follows from the soundness of the closure functions we apply to relations,as proved in [San95]. Of course, our algorithm is not complete, since in thecase where the candidate bisimulation relation we generate keeps growingeven up to the techniques we use, the program enters an in�nite loop.4.2 ExamplesWe give here a few simple examples to illustrate the way our tool works.� (�b)(!b:a(x):x j !a(t):t j !b) � !a(x):x j (�c) (!c j !c): in the proof ofthis result, the normalisation algorithm erases each copy of a(x):x that isgenerated after a communication over b takes place in the left hand sideprocess. We show a simple session, where the user de�nes the left and rightprocesses (commands L and R), asks the system to print the pair of processes(command P), and checks bisimilarity (command C):> L (^b) (!b.a(x).x[] | !a(t).t[] | !b[])> R !a(x).x[] | (^c)(!c[] | !c)> PThe pair is((^b)(!b.a(x).x[] | !a(t).t[] | !b[]) , (!a(x).x[] | (^c)(!c[] | !c)))> CYes, size of the relation is 1 19

((^b)(!b.a(x).x[] | !a(t).t[] | !b[]),(^c)(!c | !a(x).x[] | !c[]));Both these processes are weakly bisimilar to !a(x):x; here the user usescommand S to toggle the bisimilarity checking mode (from strong to weak):> PThe pair is((^b)(!b.a(x).x[] | !a(t).t[] | !b[]) , !a(x).x[])> SChecking mode is weak, verbose mode is on.> CYes, size of the relation is 1((^b)(!b.a(x).x[] | !a(t).t[] | !b[]),!a(x).x[]);� (�a) (!ab j !a(x):x) � (�c) (!c j !c:b): here, when both processes performa � action, a copy of b is liberated on each side, and can be immediatelyerased; without the up to parallel composition proof technique, the relationwould keep growing, generating copies of b.> CYes, size of the relation is 1((^a)(!a(x).x[] | !a[b]),(^c)(!c.b[] | !c[]));� Another law, which is a straightforward instantiation of the so-calledreplication theorems, that express the distributivity of private resources:(�a) (!a(x):x j !ab j !ac) � (�a) (!a(x):x j !ab) j (�a) (!a(x):x j !ab) (processes!ab and !ac can either share a common resource !a(x):x - that sends a signalon the name it receives on a -, or have their own copy of this resource; notethe shape of the normal form for the right hand side process):> CYes, size of the relation is 1((^a)(!a(x).x[] | !a[c] | !a[b]),(^e')(^a)(!a(x).x[] | !e'(x).x[] | !a[c] | !e'[b]));ConclusionWe have developed some methods to automatically check bisimilarities be-tween �-calculus processes, and shown their expressive power on a prototypeimplementation4 .4A beta version of the tool is available at http://cermics.enpc.fr/�dh/pi/20

Related work The Mobility Workbench [VM94] is the system that isprobably the closest to ours, and has already been discussed above. Othertools for checking bisimulations over process algebra terms include Cesar/Aldebaran[JCFS96], the Jack Toolkit [S.G94], and the FC2tools package [Sim96]. Thesesystems are robust and include techniques to increase e�ciency (such as Bi-nary Decision Diagrams), as well as visual interfaces for the representation ofcomplex systems. The methods they use (partition re�nement algorithm, onthe �y proof method, compositional reductions and abstraction) are basedon a semantical representation that is computed from the process terms (likeLabelled Transition Systems or automata), and can thus handle only �nitestates processes; on the contrary, our tool remains at the level of syntax,and should be seen as a �rst step towards a promising direction regardingthe study of in�nite states processes, rather than as a challenger for thesesystems in terms of e�ciency.The notion of normal form appears in the literature through axiomatisa-tions; axiomatisations of �nite control processes have been given for examplefor open bisimulation [San96b] (this axiomatisation is used in the MobilityWorkBench), as well as for the fusion calculus [PV98], that is a promisinglanguage for the task of the implementation of veri�cation methods. Forreplicated terms in the general case, [EG96] proves decidability for an ex-tended version of structural congruence; in this work, any form of processcan be replicated; we have chosen a smaller language to keep the reasoningabout the up-to techniques more clear.Future work A key theoretical issue that has to be studied regardingour techniques is completeness. Our procedure is not complete: even forterms that can be proved bisimilar using a �nite up-to relation, we mayin some cases enter an in�nite loop, because of � `blind� recursive calls tothe bisimulation checking function. One could avoid this by modifying thealgorithm of Figure 4 to adopt a breadth-�rst strategy, thus reaching someform of computational completeness. More signi�cantly, one is interested in�nding a non-trivial class of processes (containing in�nite-state terms) forwhich the up-to bisimulation proof framework gives a decision procedure.Our system can be enhanced in many ways:The syntax of processes could be enriched by adding the choice construct(+) and recursive de�nitions to our language; this would require the adaptionof our methods to the extended language. We may alternatively choose touse well-known encodings [Nes97, Mil91], which would compel the user towork only with weak bisimilarity.The size of the relations could be reduced by enriching structural con-gruence with additional laws (e.g. (x =2 n(�))) (�x)�:P � �:(�x)P), and21

adapting our normalisation algorithm, as well as by considering other up-totechniques.Some amount of interaction in the bisimilarity proofs could also be in-troduced, by allowing the de�nition of breakpoints in the construction ofthe bisimulation relation, in order to �help� the tool avoiding in�nite loops(for example by applying bisimilarity laws that do not belong to structuralcongruence).Another interesting direction could be to adapt our methods to openterms, in order to be able to prove not only bisimilarity results, but alsogeneral bisimilarity laws. To this aim, relevant works include [Ren97] and[Sim85].Finally, the proofs of this paper could be mechanised reusing the work of[Hir97], which could allow one, using re�ection [Bou97], to extract a certi�edbisimilarity checker. It seems sensible to think, however, that some morework has to be done in order to make these proofs tractable for the purposeof a theorem prover formalisation.Acknowledgements Many thanks go to Michele Boreale for constant helpduring this study, as well as to Davide Sangiorgi for introducing the theo-retical basis of it, and for insightful discussions.References[Bou97] S. Boutin. Using re�ection to build e�cient and certi�ed decisionprocedures. In Martin Abadi and Takahashi Ito, editors, TACS'97,volume 1281. LNCS, Springer-Verlag, 1997.[BS98] M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculiwithout matching. In Proceedings of LICS '98 - to appear, 1998.[EG96] J. Engelfriet and T. Gelsema. Multisets and structural congruenceof the �-calculus with replication. Report 2/95, Leiden University,1996.[Hir97] D. Hirschko�. A full formalisation of �-calculus theory in theCalculus of Constructions. In Proceedings of TPHOL'97, volume1275, pages 153�169. LNCS, Springer Verlag, 1997.[JCFS96] A. Kerbrat R. Mateescu L. Mounier J.-C. Fernandez, H. Garaveland M. Sighireanu. Cadp (caesar/aldebaran development pack-age): A protocol validation and veri�cation toolbox. In Proceed-22

ings of CAV' 96, volume 1102 of LNCS - Springer Verlag, pages437�440, 1996.[Mil91] R. Milner. The polyadic �-calculus: a tutorial. Technical ReportECS-LFCS-91-180, October 1991. Also in Logic and Algebra ofSpeci�cation, ed. F. L. Bauer, W. Brauer and H. Schwichtenberg,Springer-Verlag, 1993.[Mil92] R. Milner. Functions as processes. Journal of Mathematical Struc-tures in Computer Science, 2(2):119�141, 1992.[Nes97] U. Nestmann. What is a `good' encoding of guarded choice? InProceedings of EXPRESS'97, volume 7 of ENTCS, 19997.[PS96] M. Pistore and D. Sangiorgi. A partition re�nement algorithm forthe �-calculus. In Rajeev Alur, editor, Proceedings of CAV '96,volume 1102 of Lecture Notes in Computer Science, 1996.[PT87] R. Paige and R. E. Tarjan. Three partition re�nement algorithms.SIAM Journal on Computing, 16(6):973�989, 1987.[PV98] J. Parrow and B. Victor. The fusion calculus: Expressiveness andsymmetry in mobile processes. In Proceedings of LICS' 98, 1998.to appear.[Ren97] A. Rensink. Bisimilarity of open terms. In C. Palamidessi andJ. Parrow, editors, Expressiveness in Concurrency, 1997. alsoavailable as technical report 5/97, University of Hildesheim, may1997.[San95] D. Sangiorgi. On the bisimulation proof method. Revised versionof Technical Report ECS�LFCS�94�299, University of Edinburgh,1994. An extended abstract can be found in Proc. of MFCS'95,LNCS 969, 1995.[San96a] D. Sangiorgi. An interpretation of typed objects into typed �-calculus. Technical Report RR-3000, INRIA, 1996. to appear inInformation and Computation.[San96b] D. Sangiorgi. A theory of bisimulation for the �-calculus. ActaInformatica, 33:69�97, 1996. Earlier version published as ReportECS-LFCS-93-270, University of Edinburgh. An extended abstractappeared in the Proceedings of CONCUR '93, LNCS 715.23

[S.G94] A.Bouali S.Larosa S.Gnesi. The integration project in the JACKEnvironement. EATCS Bulletin, (54), 1994.[Sim85] R. De Simone. Higher-level synchronising devices in Meije-SCCS.Theoretical Computer Science, (37):245�267, 1985.[Sim96] A.Bouali A.Ressouche V.Roy R.de Simone. The fc2 toolset. demopresentation at TACAS'96, AMAST'96 and CAV'96, 1996.[SM92] D. Sangiorgi and R. Milner. Techniques of �weak bisimulation upto�. In CONCUR '92, number 630 in LNCS, 1992.[VM94] B. Victor and F. Moller. The Mobility Workbench � a tool for the�-calculus. In D. Dill, editor, Proceedings of CAV'94, volume 818of Lecture Notes in Computer Science, pages 428�440. Springer-Verlag, 1994.

24

