Automatically Proving Up-to Bisimulation
DANIEL HIRSCHKOFF
Mars 1998

N° 98-123

Automatically Proving Up-to Bisimulation

DaNIEL HIRSCHKOFF

CERMICS - ENPC/INRIA and Universita di Roma “La Sapienza”

Résumé

Nous développons diverses méthodes permettant d’automatiser des
preuves de bisimulation “up-to” pour le w-calcul. Nous traitons les
techniques “a congruence structurelle prés” (par I'intermédiaire de la
définition d’un algorithme calculant une forme normale unique pour
la congruence structurelle), “a substitutions injectives sur les noms li-
bres prés”, “a restriction prés”, et “a composition paralléle prés”. Ces
techniques permettent de réduire la taille des relations que ’on doit ex-
hiber afin de prouver un résultat de bisimilarité. Dans le cadre d’une
implémentation, cela présente des avantages immédiats en termes de
gestion de la mémoire; en outre, sur le plan de ’expressivité de notre
systéme, la technique de preuve “4 composition paralléle prés” permet
de prendre en compte certains termes comportant I’'opérateur de répli-
cation, et dont I'espace d’états est infini (chose que ne peuvent faire les
outils existants pour le w-calcul). Nous illustrons les divers avantages
de ces méthodes sur une implémentation.

Abstract

We present a methodology for checking bisimilarities between -
calculus processes with the up-to techniques for bisimulation. These
techniques are used to reduce the size of the relation one has to exhibit
to prove a bisimulation. Not only is this interesting in terms of space
management, but it also increases dramatically the expressive power of
our system, by making in some cases the verification of infinite states
space processes possible. Based on an algorithm to compute a unique
normal form for structural congruence, we develop sound and complete
methods to check bisimulation up to injective substitutions on free
names, up to restriction and up to parallel composition. We show the
expressiveness of our techniques on a prototype implementation.

Introduction

The w-calculus has become a widely studied model of concurrency; the most
popular notion of equivalence on w-calculus terms is bisimilarity. Existing
tools for automatically checking bisimilarities between CCS or m-calculus
processes can handle a restricted class of processes that have an infinite be-
haviour. Methods like the partition refinement algorithm (|[PT87], used for
example in [PS96]) are based on a preliminary step in which the unfolding
of the processes is computed, under the form of a Labelled Transition Sys-
tem. Therefore, processes having an infinite state space cannot be taken
into consideration by this approach. The Mobility Workbench [VM94| uses
an “on the fly” method, that progressively builds the candidate bisimulation
relation as new pairs of related processes are discovered. This way, one can
also take into account two non terminating processes that show a different
behaviour after a finite number of steps, and prove that they are not bisim-
ilar. However, two processes having an infinite states space still cannot be
proven bisimilar.

In this paper, a different approach, based on the so called up-to proof
techniques, is investigated, in order to define some methods for checking
bisimilarities between processes. These techniques have been introduced as
meta-level tools for proving bisimulation relations [SM92, San95], and to our
knowledge have only been used in papers about the theory of m-calculus, to
prove bisimilarity laws (e.g. [BS98, San96a]).

The idea behind the up-to techniques is to reduce the size of the relation
one has to exhibit to establish a bisimilarity property, by providing syntac-
tical tools to manipulate pairs of processes before checking that these pairs
belong to the relation. For example, the classical proof of commutativity of
the parallel composition operator exhibits a relation R defined as follows:

R = {((v2) (P|Q), (vT) (QIP))},

P and @ ranging over processes and & over (possibly empty) name lists (we
have to add the restriction on & because of possible name extrusions). The up
to restriction proof technique makes it possible to cancel common restrictions
in pairs of related processes, and thus allows us to work with the simpler
relation R' = {(P|Q,Q|P)}. Similarly, the up to parallel composition
proof technique allows one to cut the common parallel components of a pair
of processes, while the up to injective substitutions on names proof technique
quotientates the relations under such substitutions.

In [San95|, Sangiorgi gives a uniform presentation of the up-to tech-
niques, and shows how they can be combined together to get powerful proof

methods. An essential characteristic of these techniques is that they are
used at a purely syntactical level. This has two important consequences: on
one side, our algorithms will follow a syntactical approach (as opposed to
the methods where one first computes a semantical model of the processes),
and the automatic proofs will be quite similar to “human” proofs, which can
help tracing errors in the case where two processes are not bisimilar. On
the other hand, the up-to parallel composition proof technique allows one
to work with replicated processes, i.e. processes that can have an infinite
behaviour. This means that in some cases we can prove bisimilarities even
for infinite-states space processes, and hence treat more processes than the
existing algorithms.

Since we are to work at a syntactical level, we have to be able to “deal
with syntax”, which in our setting can be expressed by the ability to work
up to structural congruence!. Structural congruence (written =) has been
introduced in [Mil91, Mil92]; it is probably the most immediate syntactical
equivalence that can be defined on processes, and basically says how the par-
allel subcomponents and the restrictions of a term can be rearranged without
changing the process it actually represents. We work with a simple but ex-
pressive syntax for processes, where replications are allowed only on prefixed
terms (akin to the normalised replications of [San95|, although we do not
have the sum operator in our language); within this framework, a normalis-
ing algorithm for structural congruence can be defined as a rewriting system,
that guarantees uniqueness of normal form for structurally equivalent pro-
cesses. This allows us to work systematically up to structural congruence,
and to consider relations that contain only pairs of normal processes. We de-
fine sound and complete methods for three more up-to techniques, incremen-
tally adding each time a new technique, namely up-to injective substitutions
on free names, up-to restriction and up-to parallel composition.

The plan of the paper is as follows: in the next Section, we define the
syntax of processes and structural congruence; we then define a rewriting
system by orienting the structural congruence laws, obtaining a system that
enjoys the strong normalisation and local confluence properties. This gives
uniqueness of normal forms, for which we provide a syntactical description.
We introduce semantics in Section 2, and develop the framework of the up-to
bisimulation proof techniques. In Section 3, we discuss our up-to injective
substitutions, up-to restriction and up-to parallel composition proof meth-
ods; Section 4 is devoted to the description of a prototype implementation

!The Mobility WorkBench exploits the axiomatisation of open bisimulation [San96b],
since it also needs to stay at the level of syntax, because of the “on the fly” method.

of these algorithms, and illustrates the capacities of our system on several
examples. We finally conclude and discuss future extensions of this work.

1 Syntax

This Section is devoted to the syntactical manipulation of processes. We first
introduce the syntax of the language we study, and structural congruence;
we then define a term rewriting system that computes a unique representant
for every equivalence class for structural congruence, and give a syntactical
characterisation of this representant.

1.1 Definitions

We let a,b,...,z,y,... range over an infinite countable set of names, and
d,b, ... range over (possibly empty) name lists. Processes, ranged over by
P,Q,..., are defined by the following syntax:

=, -

a = a(b) | afb]
P = 0|aP|!laP | (vx)P | P|P;.
Prefixes (ranged over by «, (3,...) are either input: a(g), or output: 6[5].

0 is the inactive process; prefixed processes are either linear («.P) or repli-
cated (la.P);the other constructors are restriction () and parallel composi-
tion (|). The notion of bound name is defined by saying that restriction and
input prefix are binding operators: (vz) and z(%). bind respectively name
z and the names in ¢ in the process these operators are applied to. As
usual, free names are names that are not bound in a process, and we work
up to implicit a-conversion of bound names (at least until Section 3, where
a-conversion will be handled explicitly for the definition of our checking
methods).

Structural congruence, written =, is the smallest equivalence relation
that is a congruence and that satisfies the following rules:

TPO=P 2 PQ=QF 3 PIQIR = (PlQR
4 (vz)(vy) P = (vy)(vz) P

S wgfnlP) g fu(P)
(vz)P =P P|(vz) Q = (vz) (P|Q)
7 la.P|la.P =la.P 8 la.Plla.P =la.P

Rules 1-3 give properties about the parallel composition operator, rules
4-6 deal with restriction, and rules 7-8 with replication. Rule 8 is new with
respect to the traditional definition of structural congruence [Mil91], and can
be seen as the “limit” of infinitely many applications of Rule 7.

Conventions and notations: Rules 2 and 3 (for parallel composition)
and 4 (for restriction) will be used implicitly, which means that we work up
to commutativity and associativity of parallel composition, and up to per-
mutation of consecutive restrictions. This will allow us to use the notation
(P1]...[Pp) (sometimes abbreviated as [[;cp; %) for parallel composi-
tion, and (vZ) P for restriction, where Z is intended as having a set rather
than a vector structure (in order to allow silent applications of rule 4).

Whereas rules 1 and 5 are used to do some garbage collection; the rules
that will be really relevant in the definition of our notion of normal form are
rules 6, 7 and 8, as will be seen below. Remark that structural congruence
preserves free names, i.e if P = @, then fn(P) = fn(Q).

1.2 Normal Forms

In order to quotientate our syntax with respect to structural congruence, we
define a normalisation algorithm as a term rewriting system, by orienting the
laws of structural congruence (except laws 2, 3 and 4, that are used implicitly:
this amounts to suppose that we have some way to sort names and parallel
compositions of processes, typically using a lexicographical order; we will
come back to this point in Section 3). All these laws except one relate two
processes that do not have the same number of symbols, so it is natural to
orientate them from the “verbose form” to the more compact one, with the
aim of choosing the more succinct representation for normal forms. Only
law 6, that is used to move around restrictions among parallel compositions,
does not satisfy this property. Remember that it writes:

z & fn(P)
Pl(vz)Q = (vz) (P1Q)

It seems sensible to decide that the “right” place for the restriction on
x is as close as possible to its actual scope, which would mean choosing a
right-to-left orientation for the law. Unfortunately, this is not compatible
with our will to have a unique normal form for two structurally congruent
processes; consider for example three processes P, () and R, and two names
a and b such that a occurs free in P and) but not in R, and b occurs free
in @ and R but not in P. Then one could rewrite (va)(vb) (P|Q|R) in two
different ways, obtaining (va) (P|(vb) (Q|R)) and (vb) ((va) (P|Q)|R), that

would be different normal forms if P, @Q and R cannot be rewritten?. We
are therefore compelled to orientate law 6 from left to right, hence pulling
up all restrictions as much as possible in a term.

Definition 1.1 (Normalisation algorithm) The normalisation algorithm
1s defined as the rewriting system given by the five following rules:

R1 P|O— P R5 (z ¢ fn(P))= ((vz) P — P)

R6 (z ¢ fn(P)) = (Pllvz)Q = (vz) (P|Q))
R7 la.Pla.P — la.P R8 la.Plla.P — la.P

(we have kept the numbering of the rules consistent with the structural
laws)3. This rewriting system enjoys strong normalisation (a computation
always terminates) and local confluence (two one-step reducts of a term can
always be rewritten into a common term), which guarantees uniqueness of

normal forms:

Lemma 1.2 (Strong normalisation) Our rewriting system is strongly nor-
malising.

Proof. We want to define a measure on processes as a natural number
that strictly decreases each time a rewriting rule is triggered. As remarked
above, all rules except R6 make the number of symbols in the term decrease,
while an application of rule R6 make the number of symbols in the scope of
the restriction grow. We therefore define the measure m(P), given a process
P, as

m(P) = (#(P) + 1)« #V(P) = Y #V™(scope(v)),
vin P

where #%9™%(X) denotes the number of symbols in X, #” the number of
restrictions, and given a term of the form (vz) T, the scope of the restriction
on z, written scope(v), is T

2 A similar problem appears in [EG96], where normal forms do not enjoy the uniqueness
property; however, this is not problematic in the framework of Engelfriet and Gelsema be-
cause their multiset semantics makes the locations of restrictions disappear, which amounts
to quotientate with respect to law 6.

3Note that rules R5 and R6 are guarded by a condition; however, we can consider
our system as a usual Term Rewriting System (i.e. without conditions), for example by
adopting a De Bruijn notation for names, which intrinsically embeds the side conditions
when applying the structural congruence rules.

First note that m(P) is always positive. Each time a rewrite law dif-
ferent from R6 is applied, the number of symbols in P decreases, and so
does m(P) (the positive part decreases strictly more than the negative part
increases). When rule R6 is triggered, the positive part does not change,
and the negative part increases, which makes m(P) decrease. [J

Lemma 1.3 (Local confluence) Our rewriting system is locally confluent.

Proof. An easy inspection of the confluence for the critical pairs induced
by our rewriting rules. [

Notation: In the following, we write =,, to denote equality between
processes up to a-conversion, permutation of consecutive restrictions (struc-
tural congruence law 4), and commutativity and associativity of parallel com-
position. With this notation, we focus on the interplay between a-conversion
and permutation of consecutive restrictions, leaving the management of par-
allel compositions aside, as this is a somewhat orthogonal question. We will
return to this point in Section 3.

We now come to the main property of our system:

Proposition 1.4 (Uniqueness of normal forms) For any process P, there
exists a unique process, written NR(P), obtained by application of our rewrit-
ing system to P , and that cannot be further rewritten. Moreover, given two
processes P and Q, P = Q if and only if NR(P)=,,NR(Q).

Proof. The fact that NR(P) is well defined and unique follows from
the two Lemmas above, using Newmann’s Lemma. It is obvious that the
rewriting system preserves structural congruence, hence the < direction.
The = direction follows from the uniqueness property. [

The normal form is the most “compact” representation of an equivalence
class for structural congruence, in that it minimises the number of symbols
in the term (see the proof of Lemma 1.2). Since our rewriting system is
strongly normalising and enjoys the Church-Rosser property, we can apply
whatever strategy we want to rewrite a process, yielding the following easy
result:

Lemma 1.5 For any process P and name list &, NR((vZ) P) = (V| t,,(p)) NR(P),
where Ty (p) denotes the list of names in T that occur free in P.

m times

e N
For m € N U {w}, define (a.N)™ = a.N|...|a.N if m € N and
(.N)¥ =la.N .

N =0
| (%) ((ar.N1)™ ... |(n-Np)™), n>1, m e NU{w}
{ Vi.z; € fn((ar.Npy)™ ... |(ap.Np)™)
Vi, j € [1,. .. ,TL]. (’L # j) = (Ozle # Ozj.Nj)

Figure 1: Syntax of normal forms

Proposition 1.6 (Syntactical description of normal forms) The terms
that are of the form NR(P), for some P, are exactly those described by the
syntaz defined in Figure 1.

Proof. A term of the form given in Figure 1 cannot be rewritten. Re-
ciprocally, we prove by induction over the structure of a process P that if
P cannot be further reduced, then P obeys the syntax above. If P = 0,
the result is immediate. If P = (va) P’, then either P’ can be reduced, in
which case P can also be reduced, and we get a contradiction, or P’ cannot
be further reduced, hence P’ is described by the syntax above. The case
P' = 0 is impossible, since one could reduce P; hence P’ is of the form
(v@) [1;(i.N;)™, and a € fn(P’), which shows that P is described by the
syntax above. If P = «.P’, then if P’ cannot be reduced, P’ is described
by the syntax above, which implies that a.P is also of that form (the same
holds for P =!a.P’). Finally, if P = Py|...|P,, then none of the P;s can be
reduced; we easily show that every P; is of the form (vz}) Hj(a;-.N;)m3‘, with
&; = (), since otherwise one could reduce P either using rule R1 or rule R6.
Then, since P cannot be rewritten, [, Hj(aé-.N;)m; satisfies the condition
given in the last line of Figure 1, and P is described by the syntax above. [

Example: NR((va) (laz.Z | 'ab) | (va) (laz.T | lac))
= (va)(vd') (lax.T | la'z.T | lab | lac) .

Let us comment on the shape of normal forms. The syntax of Figure
1 says that every process that is not equivalent to 0 can be viewed as an
agent with two components, its body and topmost restrictions. The body

is a parallel composition of prefixed processes, that, as will be seen in the
next Section, are the processes that are ready to commit. The topmost
restrictions define some kind of geometry among the prefixed processes, by
making some names private to subsets of the body.

Notations: Given a non-null process in normal form P = [[,(c;.N;)™,
we write P = (vZp)|P| to decompose P into its uppermost restrictions
(vZp) and its “body” [];(cy.N;)™, which consists of (possibly replicated)
prefixed processes. Note that bodies of normal forms are also normal forms.
We will range over such processes (i.e. non-null normal forms without top-
most restrictions) with the notation |P|,|Q|,.... We further decompose |P|
into an “infinite part”, written |P|,, and a “finite part”, written | P|xr, respec-
tively corresponding to the replicated and the non-replicated components,
e, |Plo = [Tim_o(@-N)™ and [Py = [T; (. No) ™

We introduce some machinery on processes of the form |P|, in order to
establish a result that will be useful for the treatment of the up to parallel

composition proof technique in Section 3: we let
) def)
[Li(es.P)™ \Hj(ﬁj‘Qj)w = Hi.Vj.ai.Pi;éBj.Qj(ai"Pi)ml
(note that the right hand side argument of \ is always of the form |P|,),
and, for two processes of the form |P| and |Q], we let

def

1PlolQ = [Pl | (1Qw\[Pl) [(1P \1Qlw) | (IQIA\ |Plw) -

Operator @ captures the transformation that is done in the normalisation
of a parallel composition of normal forms:

Lemma 1.7 NR(|P| | |Q]) = |P|®|Q|.

Corollary 1.8 Let (vZ)|P| and (vy) |Q]| be two processes in normal form.
Then

NR((vZ) [P | (vg)|QI) = (vzg) (IP|®|Q)) -

2 Semantics

We now introduce the semantical notions we need in order to reason about
processes, i.e. the labelled transition system and the behavioural equivalence
that we will use in the remainder of the paper, namely bisimilarity.

2.1 Operational Semantics and Bisimulation

We introduce a labelled transition system by defining a judgement of the
form P & P/ , meaning that process P is liable to perform action p and then

behave like process P’. Actions, ranged over by u, are of three kinds: inputs

a(b), bound outputs (vb') a[b] (w1th b C b - when ¥/ = the output is free),
and 7, denoting internal communication. Bound names in actions occur only
in bound output: the names in & are bound in (%) @[b]. The rules for early
transition semantics are given in Figure 2 (:: denotes the adjunction of an
element to a list; symmetrical versions of rules PAR; and CLOSE; have
been omitted; note the particular shape of rule BANG, in relation to our
syntax).

5 p 20 P p
INP a(z).P — P,._ = RES Tén
@) {@:=b} (vz) P & (vz) P! # nlu)
R (vi') alb]
ouT afl.p ™ p oPEN —_P——P { rEa
(I/.T) p (vt:b') alb) P, T € b\b
M, ! M, !
BANG —aP =P PAR, — L 2L Q) nbn(u) =0
la.P 55 10.P|P' Lo B e M@ N
p @, pr o DA,

CLOSE;

PlQ 5 (vb) (P'Q")

Figure 2: Early Transition Semantics

The derivations one can construct for normal forms are related to the
form of processes. Since all restrictions are brought on top, in some sense
name extrusion is performed “before” the transition, which implies that rule
CLOSE is always used with an empty list b of names, and that the side condi-
tion for rule PAR is always verified (since necessary a-conversion has already
been done as rewrite rule R6 is applied). These considerations are taken into
account for the definition of the function that computes the derivations of a
normal form in our implementation (see Section 4).

The semantical equivalence on processes we use is bisimilarity, defined as
follows:

Definition 2.1 (Bisimulation, bisimilarity) A relation R is a bisimula-
tion iff for every pair of processes (P, Q) such that PRQ, whenever P LN P,
there ezists a process Q' such that Q % Q' and P'RQ', and the symmetri-
cal condition on transitions performed by Q. Bisimilarity, written ~, is the
greatest bisimulation.

Remark: bisimilarity contains structural congruence, i.e. =C~.

2.2 The Up-to Proof Techniques for Bisimulation

To rephrase Definition 2.1 above, proving bisimilarity of two processes re-
duces to exhibiting a bisimulation relation that contains these processes.
The property “to be a bisimulation relation” can be depicted by the diagram
on the left side of Figure 3: R is a bisimulation if any pair of processes in
R evolves to pairs of processes that are also in R. In other words, R con-
tains the whole “future” of all the processes it relates.

P R Q p R Q
L L L b
P R Q P F(R) Q

Figure 3: From bisimulation to up-to bisimulation

In [San95|, Sangiorgi introduces a general framework for the study of
the up-to techniques, which can be used to reduce the size of the relations
one has to exhibit in order to prove bisimulation. Each such a technique is
represented by a functional from relations to relations (ranged over by F);
the property of being a bisimulation up-to F is defined as follows:

Definition 2.2 (Bisimulation up to F) Given a functional F over re-
lations, we say that a relation R s a bisimulation up to F iff, for every P
and Q such that PRQ, whenever P % P, there exists Q' s.t. Q % Q' and
P'F(R)Q', and the symmetrical condition on transitions performed by Q.

A functional F is sound if (R is a bisimulation up to F) implies (R C~),
i.e. in some way, F helps building the “future” of a relation: to prove that
‘R is a bisimulation relation, it is enough to prove that any pair of processes
in R can only evolve to pairs of processes that are contained in F(R) (as
shown on the right part of Figure 3). [San95| introduces a sufficient con-
dition for soundness of functionals, called respectfulness. All the techniques
we are using in the remainder of the paper (up to injective substitutions on
free names, up to structural congruence, up to restrictions, up to parallel
composition) are respectful, and hence induce correct proof techniques for

10

bisimulation. Moreover, respectful functions enjoy nice compositional prop-
erties, and can indeed be viewed as tools to compute the closure of a relation,
that can be combined together for the task of proving bisimulations.

3 Automatising the Up-to Techniques

In this Section, we define sound and complete methods to decide, given a
relation R, if a pair of processes belongs to F(R), for some function F cor-
responding to a correct proof technique. As hinted before, we systematically
use the up to structural congruence proof technique, which amounts to work
only with processes in normal form; this technique will be first used in con-
junction with the up to injective substitutions proof method, and then we
will incrementally add the up to restrictions and the up to parallel com-
position proof techniques, yielding our most powerful tool for bisimulation
proofs. To work with normal forms will allow us to decompose any process
into its body and topmost restrictions, which, as will be seen, will be our
“canonical way” to reason about processes.

3.1 Up to Injective Substitutions on Free Names

As names are the only basic entity on which processes are defined, the defi-
nition of up-to techniques to work with them will be crucial in bisimulation
proofs. Two methods are directly related to the management of names,
namely the up-to injective substitutions on free names and the up-to restric-
tion proof techniques. As will be seen below, their treatment will be quite
uniform, the up-to restrictions checking method being in some way a gener-
alisation of the up-to injective substitutions on free names checking method,
which in turn can also be seen as an extension of the a-conversion check-
ing method. To this end, we shall work with the decomposition of normal
processes into their topmost restrictions and bodies, and study the applica-
tion of (injective) substitutions to the bodies. Let us first introduce some
background on substitutions.

Substitutions: We work with substitutions on names, that are functions
from names to names, ranged over by o, o', . We define dom(o), the
domain of o, as the set of names n such that o(n) # n, and the codomain
codom(o) of o as o(dom(0)). o is injective if o(i) = o(j) implies i = j. In
the following, we are interested, given a process P, in substitutions ¢ that
are injective on the free names of P, and such that applying o to P does
not capture bound names of P, i.e. codom(c) Nbn(P) = 0 (this is always
possible modulo a-conversion). An injective substitution o whose domain is

11

finite defines a bijective mapping between dom(c) and codom/(o); we shall
write o~! for the inverse of 0. Given a set of names E, we say that two
substitutions o and o’ coincide on E iff for any name n in E, o(n) = o'(n).

We can remark that since NR preserves free names, we have, for a process
P and a substitution o injective on the free names of P, NR(Po) = NR(P)o.

We are now ready to define our proof techniques using injective sub-
stitutions on free names. Let us start with an obvious characterisation of
a-convertibility:

Fact 3.1 Given two processes P and Q in normal form, write P = (vZ) | P|
and Q = (vy) |Q|. Then (vZ)|P|=u (vy) |Q| iff there exists a substitution o,
injective on fn(|Q)), s.t. |P|l=a|Qlo, dom(o) = ¢ and o(j) = Z.

A direct consequence of the above result:

Lemma 3.2 Write as above P = (vZ) |P| and Q = (vy) |Q|, for two normal
processes P and Q). Then, for any substitution o injective on the free names
of |Q|, (VZ)|P|=av(v¥) (|Q|o) iff there exists a substitution o' injective on
n(Q) s.t. (i) |Pl=a|Qlo’, (ii) o' (™1 (§)) = &, and (iii) o' = o on
QN \ o™ ()

We can now consider the closure under structural congruence and injec-
tive substitutions on free names of a relation:

Definition 3.3 Given a relation R, we define the closure under structural
congruence and injective substitutions on free names of R, written =R"'=,
as follows:
—Ri= {(P,Q); 3(Po, Qo) € R,To injective on fn(Py) U fn(Qo)
s.t. P=PyoNQ = Qyo}.

Proposition 3.4 (Characterisation of =R'=) (P,Q) € =R'= iff there
exist processes Py, Qo, and substitutions o' o, injective on fn(|Py|) and
In(|Qol) respectively, such that, if we write Py = (vZp,) | Py, Qo = (¥Zq,) |Qol,
NR(P) = (vZp) |[NR(P)| and NR(Q) = (vZq) |INR(Q)|, we have PyRQo,
INR(P)|=av|Polo”, INR(Q)|=av|Qol0”, o' (Zr,) = Zp, 0"(Zq,) = Tq, and, if
we write E = fn(|Py]) N frn(|Qol) \ £p,Zg,, o' = 0" on E.

Proof. By definition, (P, Q) € =R'= iff there exist (P, Qo) € R and o
injective s.t. P = Pyo and () = Qgo, which is equivalent, using Proposition

12

1.4 and decomposing the normal forms into their topmost restrictions and
bodies, €0 (v7p) INR(P) [=au (#Zp,) | Pol)or and (v7q) INR(Q) |=av (v7q,) |Qol)or
o being defined on the free names of Py and Qq, dom(o) N Zp, = dom(o) N
Zg, = 0, hence o(Zp,) = Zp, and o(Zg,) = #g,. Furthermore, we can
suppose that sets fn(Py), fn(Qo), £p, and Zg, are pairwise distinct. We
thus have: (P,Q) € = R' = iff there exist (Py,Qy) € R and an injective
substitution o s.t.

{ o(Zp,) =

U(fQo) =

B { (vp) INR(P) =0 (v, (| Po]0)
(v70) INR(Q)|=aw (70, (|Qol)

We now prove the equivalence between the latter statement and the charac-
terisation given in the Proposition.

=: Using Lemma 3.2, we can exhibit a substitution o', injective on
fn(|PR]), and s.t. |NR(P)| = |Pylo’, o' (6= (Fp,)) = Tp and o' = o on
fn(|Ps])\o 1(Zp,). But we know from above that o~ }(Zp,) = o(Fp,) = Zp,,
and hence we have ¢/(Zp,) = Zp, and, since fn(|Py|)\Zp, C E = fn(|Py])N
In(|Qol) \ Zp,Zq,, we also have ¢’ = o on E. We proceed similarly for @
and Qp, exhibiting ¢” s.t. [NR(Q)| = |Qo|0”, 0" (Z¢,) = Zg and ¢” = ¢ on
E (hence o, ¢/ and ¢” coincide on E).

<: write fn(|Py|) U fn(|Qo|) as the disjoint union:

Tpy UZqe U (f(|[Po)\ (fn(|Qol)UTr,)) U (fn(|QoD\ (fr(|Po])UZq,)) U E.

We define a substitution o over this set as follows:

oc=0 (=0¢")on E; o=0c on fn(|P])\ (Zp, U fn(|Qol));
o(Zp,) = Tp, and 0(Lg,) = Zq,; o =" on fn(|Qol) \ (Zg, U fr(|F])).

By definition, o is injective on fn(|Py|) U fn(|Qo|), o and ¢’ coincide on
Fr(IPo)\ 7, = (fl|Po) \ (@, U QD)) U E, and since o(in,) = .
o'(c7Y(#p,)) = o'(Zp,) = #p. This allows us to show, using Lemma 3.2,
that (vZp) INR(P)|=av (vZp,) (|Po|o). We prove similarly that
(vZq) INR(Q)|=av (¥Zq,)(|Qo|o), which concludes the proof. O

This characterisation of the up to structural congruence, up to injective
substitutions closure gives us a method to check that given P, Q and R,
we have (P,Q) € =R'=: compute NR(P) and NR(Q), and, for (P, Qo) €
R, compute the substitutions ¢’ and ¢”, and check for the conditions of
Proposition 3.4; if the conditions are satisfied, succeed, otherwise choose
another pair in R.

13

3.2 Up to Restriction

Definition 3.5 We write = (R%)” = to denote the closure under injective
substitutions, structural congruence and restrictions of a relation R, defined
as follows:

=(RY) = def {(P,Q); 3Py, Qo, 3V, Jo ingective on fn(Fp).

((Po, Qo) € R) A (P = (v) (Pyo)) A (Q = (v7) (Qoo)) } -

Proposition 3.6 (Characterisation of the closure up to restrictions)
Given two processes P and Q and a relation R, write NR(P) = (vZp) |NR(P)|
and NR(Q) = (vZg)|NR(Q)|. Then (P,Q) €= (R = iff there exist two
substitutions o’ and o" injective on fn(|Py|) and fn(|Qo|) respectively, pro-
cesses Py and Qy and a name list V. C fZl(P[))_'U fn(Qo) such that, if we
write P() = (I/fpo) |P0|, Qo = (I/fQO) |Q0|, V1 = V\fn(Po)) and VQ = V|fn(Qo)"

(1) INR(P)|=av|Polo’ and |NR(Q)|=av|Qolo”
(ii) o' (Viitp,) = Zp and o' (Vaig,) = Zg
(iii) o' = 0" on B = fn(|Po]) N fn(|Qo|) \ (VEr,Zq,) -

Proof. The proof is quite similar to the proof of Proposition 3.4. First
remark that in the definition of the closure under restrictions of a relation, we
can restrict ourselves to name lists ¥ that are included in fn(Py) U fn(Qo),
since for every = ¢ fn(Py) U fn(Qo), ¥ fits to the definition of the closure
under restrictions if and only if (x :: ¥) fits.

As above, we first give an intermediate characterisation of = (R')” =,
and then prove its equivalence with the conditions of the statement of the
Proposition. By applying Proposition 1.4, we compute the normal forms of
P and @, which are then simplified using Lemma 1.5. Supposing as above
that fn(FR), Zp,, fn(Qo) and £, are pairwise disjoint sets, we finally have
the following characterisation: (P, Q) € =(R")” = iff there exist (P, Qq) €
R, a substitution o injective on fn(|P|) U fn(|Qo|), and a name list ¢ C

o(fn(Po) U fn(Qo)) s-t.

{ o(Tp) =ap 4 { (vZp) INR(P)|=aw (V0o (n(ry))) (VT R,) (| Polo)
o(Zq,) = Zq, (vZq) INR(Q)|=av (VT)o(fn(qs))) (¥TQ,) (|Qol0)

=: write U1 = Ujg(fn(py)) and U2 = Ujs(fn(Q,))- Lemma 3.2 gives us a
substitution o’ s.t. |NR(P)|=qv|Po|0’, o' (e~ (#17p,)) = Zp, and o/ = o on
fn(|P])\ o~ (#1%p,). Since o is injective, o~ (1 7p,) = o~ (7)o~ (Zp,) =

=5

o L (#h)Zp,. Write Vi = o 1(#), then 0(‘7150'1:0) = #p, and o and ¢’ coincide

14

on fn(|Py|) \ ViZp,. Similarly, we write Vo = 0~1(%,), and we can exhibit
0" such that |NR(Q)|=av|Qol0”, 0" (Vaiig,) = Zo and ¢ and ¢ coincide on
Fr(1Qo)\Vaiiay. Let 7 = VyUTh, then E = (fn(|Ro)\Viin,) 1 (fn(1Qol)\
%f@o), and o, o' and ¢ coincide on E.

<: write V = Vi,...,V,], pick n new names ¢ = [vy,...,v,], and define
o(V;) = v;. Decompose fn(|Py|) U fn(|Qo|) into the disjoint union:

Tp, U g, UV U (fu(Po])\ (fr(|Qol) U VZR,))
U (fn(|Qol) \ (frn(lB]) UVZg,)) U E,
and define

o=0 (=0")on E; o

o' on fr(|Po)) \ (fn(|Qo]) UZR,V);
0" on fr(|Qol) \ (fr(|Pol) U, V);

—

o(Zp,) = Zp, and U(fQo) =IQy; O
o(V;) = v; as seen above.

As in the previous proof, use Lemma 3.2 to conclude. [

The characterisation given in Proposition 3.6 can be seen as an enlarge-
ment of the characterisation of the up-to injective substitutions case: the
up-to restrictions technique compels ¢’ and ¢” to coincide on a smaller set
E of names, or in other words more names in fn(Py) and fn(Qg) can be
mapped to different names by o’ and o”.

Here again, the method given by the characterisation is the following:
to check if (P,Q) €= (R')” =, compute NR(P) and NR(Q), and look for
(Py, Qo) € R such that the conditions of the characterisation hold.

About the lexicographical order on processes: The two checking
methods above (as well as the characterisation of the next proof technique
we study) rely on the ability, given |NR(P)| and |P|, to infer a substitution
o', injective on fn(|Py|), and such that |NR(P)|=q,|FPo|c’ (and similarly for
o). This question is related to the definition of a lexicographical order on
processes: consider for example [INR(P)| =lz | ly | T and |Py| =ly | Iz | =.
Then, to infer a substitution matching |[NR(P)| and |FPy|, we should look for
a canonical way to present !z | ly, which has to be invariant under injective
substitutions on names, and thus cannot depend on an order on names.

In general, we have not been able to define such a canonical ordering
on processes, which means that we have to introduce some combinatorics
and sometimes generate several substitutions, according on how normal pro-
cesses having the same structure are ordered (by “processes having the same
structure”, we mean processes that are equal up to some (non necessarily

15

injective) renaming). We shall not enter here the details of our treatment
of this problem; let us just say that the more powerful our technique is,
the more permutations of “structurally equal processes” we have to take into
account to apply our methods (i.e. the less narrow is the equivalence class
associated to our order relation).

3.3 Up to Parallel Composition

To reason with both the up to restriction and the up to parallel composition
proof techniques, we introduce the notion of context: a context (ranged over
by C,C") is a term that contains a hole, written []. If we want to combine
the up to restriction and up to parallel composition proof techniques, we
have to work with contexts that are described by the following syntax:

¢ =1[lw)C|clp,

where P ranges over processes and z ranges over names. Given a context C'
and a process P, we construct the process C[P] by replacing the hole with
P.

Definition 3.7 The closure under contexts of a relation R is written RrC
and defined by

RC Y {(P,Q);3C, Py, Qo. P = C[R],Q = C[Qo], ARQo} .

As usual, we will work up to structural congruence, and consider =
(RC) =, which is defined by replacing “=" with “=”" in the definition of
RrC (this actually justifies the fact that we authorise parallel composition of
processes only at the right in the definition of contexts).

To work up to structural congruence will actually allow us to adopt a
simpler form for contexts, ranged over by C, and defined by the following
syntax (we define RrC analogously as above.):

C = (@) ([]IT) T = H(ai.Ni)mi, T in normal form.

i

Indeed, we have the following property:

Lemma 3.8 For any relation R, we have E(RC) = = (RQ)E.

16

Proof. The inclusion D is obvious. For the other direction, consider
(P,Q) e = (RC) =, and show (P,Q) € = (RQ) =. This means proving that
for any context C' and processes P, Q, Py, Qy such that PyRQo, P = C[P]
and Q = C[Qy], there exist a context C' and processes P, (Q; such that
PRQy, P = C[P,] and Q@ = C[Q:1]. We proceed by induction over the
structure of C; if C'=[] or C' = (vz) C’, the property is easy.

Counsider the case where C' = C'|T, with NR(Tp) = (vp) |U|, for some
|U|; by induction hypothesis, we know that there exist C', P, and Q2
such that PyRQs, C'[P] = C'[Py] and C'[Q2] = C'[Q2]. Write C' =
(vZ) ([] | V), for some |V, then we have that

OlP) = &) (P2 | |V]) | () |U]
= (vaw) (P] [V] | |U)
= (wiw) (P | (V]©|U]) (Lemma 1.7),

which shows, reasoning along the same lines with @2, that C, defined by
C = (vZzy) ([] | ([V|®|U|)) satisfies the required property (with processes
P, and Q9 satisfying PyR()2), and this concludes the proof. O

Proposition 3.9 (Characterisation of E(Ri)gz) Given a relation R and
two processes P and @Q, (P,Q) €= (RZ)Q = iff there exist (Py, Qo) € R,
a process |T|, two substitutions o' and o” injective on fn(|Py| | |T']) and
Fn(|Qo| | |T|) respectively, and a name list V C fn(Py) U fn(Qo) U fn(|T))
such that, if we write NR(P) = (vZp) INR(P)|, Py = (vZp,) |, Vi =

\fn Po)» |T1|w av|Tlw \ [Polw, |T1|N aV|T|N\ |Polw, and similarly for Q,
Qo, Zq,, Vs and |T2|, we have:

@ { OB | (L)
|NR(Q)|w:au(|Q0|w | |T2|w)0"

and (i) { INR(P) | xr=av(|Po|n \ [T1]w | [T1|ar)o’
INR(Q)| N =av (IQo|N \ | T2lw | [T2|ar)0”

(44) U'(‘—/lfpo) =Zp and a”(%fQO) =Zg
(it3) o' =" on E = fn(|Py|®|T|) N frn(|Qol®|T) \ (Vgpogg@o)_

The proof of this result follows the lines of the proofs of Propositions 3.4
and 3.6. With respect to the latter proof, the novelty comes from the fact
that we have to do some reasoning about the bodies of the processes as we

17

normalise them, instead of taking them as they are; this is easily done using
Lemma 1.7. We will not enter here the details of this proof, but instead give
a description of the checking method induced by the result above.

Given two processes P and @, and a relation R, to check if (P, Q) €=
(Ri)QE:

1. compute NR(P) and NR(Q), yielding NR(P) = (vZp) |NR(P)| and
NR(Q) = (vZq) INR(Q)];

2. pick (P(), QO) € 'R, and write Py = (I/fpo) |P0| and Qo = (I/fQO) |Q0|;

3. use (i) to compute |T1|, and o', and |Ts|, and ¢”, and check that we
can define |T|, s.t. |Ti|y = |T|w \ |Polw and |T2|y = |T'|w \ |Qolw;

4. proceed similarly with (i') to compute |Ti|pr, |T2|p and |T'| s, possi-
bly extending the domains of ¢’ and o”;

5. check conditions (i) and (7ii) on o’ and o”.
As hinted above, the generation of ¢’ and ¢” can involve some combinatorics
that heavily rely on the definition of a lexicographical order on processes.

4 An Implementation

4.1 The Tool

We present a prototype implementation of the methods described in the
latter Section, under the form of a tool for checking bisimulation using the
up to techniques. This tool, written in O’Caml, allows the user to define
a pair of processes, choose an up-to technique among those studied above,
and try to prove bisimilarity using this technique. In the case where the
proof succeeds, the corresponding bisimulation relation is displayed; if the
processes are not bisimilar, some kind of diagnostic information is given to
the user to justify the failure (and hopefully help him make another attempt).
Other features, like the computation of the normal form of a process and the
interactive simulation of the behaviour of a process, are also provided.

Note that the tool allows the user to check also weak bisimilarity (written
~), that is defined by replacing Q = Q' with Q = Q' if u = 7, with
Q SN Q' if u # 7, in Definition 2.1, where = denotes the reflexive,
transitive closure of — . All the up-to techniques we have studied, as well
as our results, extend directly to the weak case.

Algorithm To each proof technique F we have seen in Section 3 cor-
responds a decision procedure decider, given by the characterisations of
Propositions 3.4, 3.6 and 3.9. Our “bisimulation up-to F” checking function
bisimr takes three arguments, namely a relation R and two processes P

18

and @, and returns an up-to F bisimulation relation extending R that
contains P and . It basically sticks to the definition of an up-to bisimula-
tion given in Definition 2.2, trying to build up an up-to bisimulation until it
reaches a fixpoint.

To compute bisimr(R, P, Q):
e (parameter: R) pick a transition P £ p of P, and compute @, =
{Q.Q 5 Q'

- use decider to check if any of the elements of @, satisfies
P'F(R)Q'. If such an element can be found, loop to another transition of
P, leaving R unchanged;

- otherwise, pick a Q' € Q, and make the recursive call
bisimp((P', Q') = R, P',Q"); if this call succeeds, yielding R’, loop to an-
other transition of P with R’, otherwise pick another Q' € Q; if all the
recursive calls to bisimr fail, fail;

e proceed similarly with the transitions of Q.

Figure 4: The checking algorithm

Our checking algorithm is informally described on Figure 4. Its correct-
ness follows from the soundness of the closure functions we apply to relations,
as proved in [San95|. Of course, our algorithm is not complete, since in the
case where the candidate bisimulation relation we generate keeps growing
even up to the techniques we use, the program enters an infinite loop.

4.2 Examples

We give here a few simple examples to illustrate the way our tool works.

o (vb)("b.a(x)T | la(t).t |) ~ la(x).7 | (vc) ('€ | !¢): in the proof of
this result, the normalisation algorithm erases each copy of a(z).Z that is
generated after a communication over b takes place in the left hand side
process. We show a simple session, where the user defines the left and right
processes (commands L and R), asks the system to print the pair of processes
(command P), and checks bisimilarity (command C):

>L (*b) (!b.a(x).x[] | ra(t).t[1 | bl)

>R ta(x).x[1 | (Ce)(tcll | te)

> P

The pair is

(L) (Mb.alx).x[1 | tale).t0d | ') , Cax).x[0 | (Ce)Ctcll | tc)))
> C

Yes, size of the relation is 1

19

(Cp) (*b.alx).x[1 | tale).tll | '),) (e | ta(x).x[1 | !'cll));

Both these processes are weakly bisimilar to !a(x).Z; here the user uses
command S to toggle the bisimilarity checking mode (from strong to weak):

> P

The pair is

(Cb)(Mboalx).x[1 | tale).t1 | 'p01) , talx).x[1)
> 8

Checking mode is weak, verbose mode is on.

> C

Yes, size of the relation is 1

() ('b.alx).x[0 | talt).t[1 | 'bll),'alx).x[1);

e (va) (@b |'a(x).T) ~ (vc) ('€ | lc.b): here, when both processes perform
a T action, a copy of b is liberated on each side, and can be immediately
erased; without the up to parallel composition proof technique, the relation
would keep growing, generating copies of b.

> C
Yes, size of the relation is 1

((Ca) (ta(x).x[1 | tal®l),(Cc)(lc.bll | 'cll));

e Another law, which is a straightforward instantiation of the so-called
replication theorems, that express the distributivity of private resources:
(va) (la(z).z | tab | lac) ~ (va) (la(z).z | 'adb) | (va) (la(z).z | lab) (processes
lab and 'ac can either share a common resource la(x).T - that sends a signal
on the name it receives on a -, or have their own copy of this resource; note
the shape of the normal form for the right hand side process):

> C

Yes, size of the relation is 1

((Ca)(ta(x).x[1 | talc] | talbl),

(te?) (Ca) (ta(x) .x[0 | e’ (x).x[] | 'alc] | te’[bl));

Conclusion

We have developed some methods to automatically check bisimilarities be-
tween m-calculus processes, and shown their expressive power on a prototype
implementation?.

A beta version of the tool is available at http://cermics.enpc.fr/~dh/pi/

20

Related work The Mobility Workbench [VM94] is the system that is
probably the closest to ours, and has already been discussed above. Other
tools for checking bisimulations over process algebra terms include Cesar/Aldebaran
[JCFS96], the Jack Toolkit [S.G94], and the FC2tools package [Sim96]. These
systems are robust and include techniques to increase efficiency (such as Bi-
nary Decision Diagrams), as well as visual interfaces for the representation of
complex systems. The methods they use (partition refinement algorithm, on
the fly proof method, compositional reductions and abstraction) are based
on a semantical representation that is computed from the process terms (like
Labelled Transition Systems or automata), and can thus handle only finite
states processes; on the contrary, our tool remains at the level of syntax,
and should be seen as a first step towards a promising direction regarding
the study of infinite states processes, rather than as a challenger for these
systems in terms of efficiency.

The notion of normal form appears in the literature through aziomatisa-
tions; axiomatisations of finite control processes have been given for example
for open bisimulation [San96b| (this axiomatisation is used in the Mobility
WorkBench), as well as for the fusion calculus [PV98], that is a promising
language for the task of the implementation of verification methods. For
replicated terms in the general case, [EG96] proves decidability for an ex-
tended version of structural congruence; in this work, any form of process
can be replicated; we have chosen a smaller language to keep the reasoning
about the up-to techniques more clear.

Future work A key theoretical issue that has to be studied regarding
our techniques is completeness. Our procedure is not complete: even for
terms that can be proved bisimilar using a finite up-to relation, we may
in some cases enter an infinite loop, because of “‘blind” recursive calls to
the bisimulation checking function. One could avoid this by modifying the
algorithm of Figure 4 to adopt a breadth-first strategy, thus reaching some
form of computational completeness. More significantly, one is interested in
finding a non-trivial class of processes (containing infinite-state terms) for
which the up-to bisimulation proof framework gives a decision procedure.

Our system can be enhanced in many ways:

The syntax of processes could be enriched by adding the choice construct
(4) and recursive definitions to our language; this would require the adaption
of our methods to the extended language. We may alternatively choose to
use well-known encodings [Nes97, Mil91], which would compel the user to
work only with weak bisimilarity.

The size of the relations could be reduced by enriching structural con-
gruence with additional laws (e.g. (z ¢ n(a)) = (vz) a.P = a.(vz) P), and

21

adapting our normalisation algorithm, as well as by considering other up-to
techniques.

Some amount of interaction in the bisimilarity proofs could also be in-
troduced, by allowing the definition of breakpoints in the construction of
the bisimulation relation, in order to “help” the tool avoiding infinite loops
(for example by applying bisimilarity laws that do not belong to structural
congruence).

Another interesting direction could be to adapt our methods to open
terms, in order to be able to prove not only bisimilarity results, but also
general bisimilarity laws. To this aim, relevant works include [Ren97| and
[Sim85].

Finally, the proofs of this paper could be mechanised reusing the work of
[Hir97], which could allow one, using reflection [Bou97|, to extract a certified
bisimilarity checker. It seems sensible to think, however, that some more
work has to be done in order to make these proofs tractable for the purpose
of a theorem prover formalisation.

Acknowledgements Many thanks go to Michele Boreale for constant help
during this study, as well as to Davide Sangiorgi for introducing the theo-
retical basis of it, and for insightful discussions.

References

[Bou97] S. Boutin. Using reflection to build efficient and certified decision
procedures. In Martin Abadi and Takahashi Ito, editors, TACS’97,
volume 1281. LNCS, Springer-Verlag, 1997.

[BS98] M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi
without matching. In Proceedings of LICS ’98 - to appear, 1998.

[EG96] J. Engelfriet and T. Gelsema. Multisets and structural congruence
of the m-calculus with replication. Report 2/95, Leiden University,
1996.

[Hir97] D. Hirschkoff. A full formalisation of m-calculus theory in the
Calculus of Constructions. In Proceedings of TPHOL’97, volume
1275, pages 153-169. LNCS, Springer Verlag, 1997.

[JCFS96] A. Kerbrat R. Mateescu L. Mounier J.-C. Fernandez, H. Garavel
and M. Sighireanu. Cadp (caesar/aldebaran development pack-
age): A protocol validation and verification toolbox. In Proceed-

22

[Mil91]

[Mil92]

[Nes97]

[PS96]

[PT87]

[PVOS]

[Ren97]

[San95]

[San96a|

[San96b]

ings of CAV’ 96, volume 1102 of LNCS - Springer Verlag, pages
437-440, 1996.

R. Milner. The polyadic w-calculus: a tutorial. Technical Report
ECS-LFCS-91-180, October 1991. Also in Logic and Algebra of
Specification, ed. F. L. Bauer, W. Brauer and H. Schwichtenberg,
Springer-Verlag, 1993.

R. Milner. Functions as processes. Journal of Mathematical Struc-
tures in Computer Science, 2(2):119-141, 1992.

U. Nestmann. What is a ‘good’ encoding of guarded choice? In
Proceedings of EXPRESS’97, volume 7 of ENTCS, 19997.

M. Pistore and D. Sangiorgi. A partition refinement algorithm for
the w-calculus. In Rajeev Alur, editor, Proceedings of CAV 96,
volume 1102 of Lecture Notes in Computer Science, 1996.

R. Paige and R. E. Tarjan. Three partition refinement algorithms.
SIAM Journal on Computing, 16(6):973-989, 1987.

J. Parrow and B. Victor. The fusion calculus: Expressiveness and
symmetry in mobile processes. In Proceedings of LICS’ 98, 1998.
to appear.

A. Rensink. Bisimilarity of open terms. In C. Palamidessi and
J. Parrow, editors, Ezpressiveness in Concurrency, 1997. also
available as technical report 5/97, University of Hildesheim, may
1997.

D. Sangiorgi. On the bisimulation proof method. Revised version
of Technical Report ECS-LFCS-94-299, University of Edinburgh,
1994. An extended abstract can be found in Proc. of MFCS’95,
LNCS 969, 1995.

D. Sangiorgi. An interpretation of typed objects into typed -
calculus. Technical Report RR-3000, INRIA, 1996. to appear in
Information and Computation.

D. Sangiorgi. A theory of bisimulation for the w-calculus. Acta
Informatica, 33:69-97, 1996. Earlier version published as Report
ECS-LFCS-93-270, University of Edinburgh. An extended abstract
appeared in the Proceedings of CONCUR ’93, LNCS 715.

23

S.G94]

[Sim85]

[Sim96]

[SM92]

[VMO4]

A Bouali S.Larosa S.Gnesi. The integration project in the JACK
Environement. FATCS Bulletin, (54), 1994.

R. De Simone. Higher-level synchronising devices in Meije-SCCS.
Theoretical Computer Science, (37):245-267, 1985.

A .Bouali A.Ressouche V.Roy R.de Simone. The fc2 toolset. demo
presentation at TACAS'96, AMAST’96 and CAV’96, 1996.

D. Sangiorgi and R. Milner. Techniques of “weak bisimulation up
to”. In CONCUR ’92, number 630 in LNCS, 1992.

B. Victor and F. Moller. The Mobility Workbench — a tool for the
m-calculus. In D. Dill, editor, Proceedings of CAV’94, volume 818

of Lecture Notes in Computer Science, pages 428-440. Springer-
Verlag, 1994.

24

