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Abstract

In this paper, we estimate the star-diaphony and the diaphony of
the Roth sequence and the Zaremba sequence using their L?-discrepancy
formula given by Halton and Zaremba (see [3]), and White (see [17]).
The optimal estimates and the exact asymptotic behaviours of the star-
diaphony and the diaphony of both sequences are given. Moreover, the
exact asymptotic behaviours of the star-diaphony are the same for both
sequences, and the same is true for the diaphony.
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1 Introduction

Let 0 = ({u)n>0 be a finite or infinite sequence of points in the unit cube
I* =]0,1]° and let it contain at least N terms. For each x = (z1,...,z,) in
I, An(x,0) denotes the number of index n such that 0 < n < N —1 and
&n € [15-1]0,z;) and En(x,0) the remainder to ideal distributon:

En(x,0) = Ay(x,0) —x1...zsN.

An infinite sequence o is called uniformly distributed in I°® if for each
x € I®, we have
lim ZN(.0)
N—oco N
There are various quantitative measures for the irregularity of the dis-
tribution based on different point of view of uniform distribution (see, for

=0.



example [8]). A classical measure for the irregularity of the distribution of
a sequence o in I° is the L2-discrepancy T (o) which is defined for every
positive integer N by,

1

Ty(o) = 5 ([, 1 Extxo) Pax)"

Another measure for the irregularity of the distribution of a sequence o
in ¢ is the diaphony Fy (o) which is defined for every positive integer N by,

2

) LN
Fy(o) = ( > (h)2 | N Y erminhin |2) ,
n=0

hezs {0}

where h = (hy,...,hs), h-x =377, hjz; and
() =TI, masc{1, [}

The diaphony Fy (o) was originaly introduced by Zinterhof (see [20])
for numerical integration of regular periodic functions and was defined in
the following equivalent form. For x = (z1,...,z5) € R, denote H(x) =

2

h(z1) ... h(zs) — 1 where h(t) = 1 — = 4 (1 — 2{t})? with {¢} the fraction
part of a real ¢. Then

1

N-1 L
Nz > H(& —&n))2.

k,n=0

Fy(o) = (

It is well known that the infinite sequence o = ({,)n>0 is uniformly
distributed is equivalent to both limy_ ;0 Tn(0) = 0 and limy_, o Fy(0) =
0.

In 1954, Roth [13] established a general lower bound on the L2-discrepancy
Tn, that is, for any N points in ¥ we have

(log N)*7

TN>CS N

(1)
with a positive constant C only depending on s. According to [6] we may

take Cy = 27%5((s — 1) log 2)1=%)/2 for s > 2.
The lower bound (1) for Ty is best possible as far as the order of magni-

s—1

tude is concerned since there exist finite sequences with Ty = O(W)



and we can see these from the Zaremba sequences for s = 2 in the following
and the results of Roth (see [14] and [15]) for s > 3.

For the diaphony Fl, Proinov [11] proved that for any N points in I°
with s > 2 we have

(log N)*z

Fyn > o4 N

(2)
with a positive constant o, = 793°/2272573((35 — 1)((n? + 6)° — 72%)((s —
1)log 2)(=1)=1/2 only depending on s. For s = 1, we have from the result
of Stegbuchner [16]

™

Fy>——,

it is best possible since the lower bounded is reached by the van der Corput
finite sequence, see below.
For s = 2, the exactness of the lower bound (2) was shown in [5], in the
1

sense that a net of N points S in [0, 1]? exists for which Fy = O(%).
In this paper we will show that the lower bound (2) is also reached by the
Roth sequence and the Zaremba sequence. Moreover, both sequences have
the same asymptotic behaviou.

Also for numerical integration purpose, we have introduced in [10] a new
version of diaphony, the so-called star-diaphony, which is defined, for every
positive integer N, by

S
F;\(I(U) _ (2;) ( Z |/ EN(X,U)627rih'XdX|2)%.
nezs—{o} *1°

For s =1, Fy = Fy.
The Fy is related naturally with 7'y by the following so-called Koksma
formula (cf. [4]),

1

T(0) = I3 (0) + o (Fi ()
where
1 N s j 1
InGo) = (5 S TI0-€D) — 50)

Thus F3 (o) < (2m)*Tn (o).



We can show that F; is also a measure for the irregularity of the distri-
bution of a sequence in I* (see [19]).

In this paper, we will estimate the diaphony and the star-diaphony of
the Roth sequences and the Zaremba sequences. The results show that they
are nearly the same for these two measures. In §2, we will give the principal
results and the proof of Theorem 2.3 is completed in §4 using some lemmas
in §3. We end with some remarks in §5.

2 The Roth sequence and the Zaremba sequence
and their diaphonies

We will first give the definition of the Roth sequence and the Zaremba
sequence. Let b > 2 be a positive integer. Let n = 322 a;(n)b* be the b-
adic expansion of the nonnegative integer n and let ¢p(n) = >.5°, a;(n)b~""*
be the van der Corput sequence in base b. For m € N¥, denote 1, =
(¥b,m (1)) o<n<tm 1.

Definition 2.1 For any positive integer m, the Roth sequence and Zaremba
sequence in base b of b points are defined respectively by

Rom = (¥b,m(n), dp(n))o<n<om 1 (3)

and

Zym = (Yo,m(n), $(1))o<n<tm—1 (4)

where ¢f(n) = S20(ai(n) ® wi)b™ "t with p; = 0 if i > m else 0 < p; <
b—1 such that p; =1 (mod b) or p; =i+ 1 (mod 2) for the original
Zaremba sequence in base 2. The @ denotes  (mod b) addition component-
by-component.

Then, if we put €,, = 0 when m is even and 1 when m is odd, we have
the following results.

Theorem 2.2 For the star-diaphony,

T 2
P (By) = 00

(b2 —1)(36 + 13) 1 1
72002 m+g O

[SIE




and

(27)? (b* —1)(3b% + 13) 1.1
F*(Z, = C+0O(—)):
where C is a constant. The best case is obtained for the original Zaremba
sequence with C' = % — 2%54”.

Remark Indeed, the exact formulas for F*(Ry,,) and F*(Z,,,) can be
given. For reason of simplicity, we show the results in the present form.

For the asymptotic behavior of the star-diaphony, we have the following
result.

Corollary 2.3

. V"F*(Rym) lim V'F*(Zym) 7r_2((b2 —1)(36% + 13))
m—c  (/logh™ ~ m= /logh™  6b 5logh ’

[SIE

Theorem 2.4 For the diaphony,

271 (5b + 18)

4002 1)V(B2 452
B < V" (F2(R,,,) — (" —1)(b>+ 1)m 27*(b* — 30b + 23)

) <

3 ’ 45p%m+2 45

and

(B2 - 1) (b + 1)m
45h2m+2

C1 < V*"™(F*(Zpm) — ) < Cs,

where Cy and Cy being two constants.

Thus, we also have the exact asymptotic behavior of the diaphony.
Corollary 2.5

VF (Rym) ; V' F(Zpm) 7r_2{(b2 ~D(*+1)
m—oo (/logh™  m—=oo /logh™  3b 5log b

N

}

In order to prove these results, we first need recall the results on their
L?-discrepancies.

Theorem 2.6 We have
(b —1)%2 ,  (b> —1)(3b* + 60b + 13)m

T2 — b—2m
(Fp,m) gz ™ 72062
L3 v —1 L )
8 2apmtl T qym T 7opem

5



and

2 2
T*(Zym) = b2™( (b 17)2(322 + 13)m + O(1)).

The best result is obtained in base 2 for the the original Zaremba sequence
i base 2,

5m 3 Te 1 €
2 _ —m 2" e m m
T™(Zm) = 2 (192+8 64 dxom T 16x2m
1

The results on the Roth sequence in base 2 and the original Zaremba
sequence were given in [3], and the other results were given in [17].
We also need recall and generalize the results on their I estimates.

Proposition 2.7 a) For the Roth sequence (see [1]),

(b —1) +1+L)
12b 4pm

b) For the original Zaremba sequence (see [3]),

o 11

¢) For the general Zaremba sequence,

I(Rym) = 0~™(

s O=Dplem+1)—c2, -1 1 1
1(Zym) = b ™(— m Sy
(Zom) = b7 ( m 5 T )
where 0 < ¢ <b—1and ¢y =m —1 (mod b).

Proof We will only prove c).
Let m — 1 = gb + ¢y, and write a;(n) = (a;(n) © ), we have

bm—1 m—1b6™ 71 )
Z wb,m Z Z bm z+]+1
n=0 2,j=0 n=0
B m—1bm—1 az )
- z% Z{] bm+1 +z¢: ZO bm z+]+1
i=0 n= i£j n

= > ai(n)(ai(n) @ pi) + 1oy Z 2 }ﬂ Y ai(n)d(n)

j
i=0 a;(n)=0 ai(n),a;(n)=0




m—1 b—1 m—1 9
1 L1, -1 b

Z p—i+Jj Z a’z(n)a;(n) = Z h—itJ [T] =b [— m m + I —

1#£] ai(n),ag(n):[] 1£]

and

m—1 b—1 b—1b—1 cm—1b—1

Y ain)(ain) @) = g > i(i®l)+ i(i 1)

i=0 a;(n)=0 1=0 i=1 =0 i=1
(b—1)%0> (¢ — Dem(b—1)b
- “1-g¢,
(m Cm) 1 1
Thus, from
b™—1 pm
V"I Zym) =1+ Y Pym(n)dy(n) — R
=0
the c) follows. o

Then, Theorem 2.2 is a direct application of Theorem 2.4, Proposition
2.5 and the Koksma formula (F})? = (2n)4(T% — I%).
For the proof of Theorem 2.5, we need some notations and lemmas.

3 Some lemmas

We will first give some notations.
a) For a [0, 1]-valued sequence, possibly finite, o = (z,)n>0, let

n—1 )
h) — Z etha:k.
k=0

b) For h € Z*, vy(h) = max{k > 0 such that b*|h} will denote the b-adic
valuation of h.

¢) For n = 3.%°; a;(n)b’ € N, denote ns = 37, a;(n)b* for s > 0.

We also recall the exponential sum formula of the Van Der Corput se-
quence (see [18] and [10]).

1

2

1

4pm



Lemma 3.1 For the Van Der Corput sequence ¢y,

avb (h) (TL) -1

Sn(h) _ e2ﬁih¢b(n*nvb(h))[bvb(h) Z 627Fih¢b(kb”b(h)) + e27rih¢b(avb(h)(n)bvb(h))n

k=0

In particular, we have

0, ’Lflvb(h) <m-—1,
Sim () = { b™, if vy(h) > m.

and this is also walid for the sequence y,y,. In addition, Sp(h) = n if
vp(h) > [log, n].

Remark For the generalized van der Corput sequences in base b, ¢ (n) =
3920 0i(ai(n))b~"! where ¥ = (0;);>0 being an infinite sequence of permu-
tations of the set {0,1,...,b—1}, this exponential sum formula is still hold.
Note that the second component ¢j(n) of the Zaremba sequence is one of
the generalized van der Corput sequences.

In the following, S, (h) concerns only the original van der Corput se-
quences even though all results are also valid for the generalized van der
Corput sequences.

As an application of the above formula, the following result follows.

Lemma 3.2 For the sequence ¢y and for any integer n € N,

[Sn(R)] < b””

Applying Lemma 3.1 in the case of n = b, we get the following lemma.

Lemma 3.3 a) For the diaphony of the sequence (¢y(n))o<n<om—1 and the

sequence Py m,

Fi (dn) = F () =

b)

=1 b —1
z::h_ Z ¢b 27rzhd>b || Z e2mh¢b — (12bm )

vr(h)—1]-



The following two lemmas are crucial for the proof of Theorem 2.5.

Lemma 3.4 a) Let h = b (gb + j) with 1 < j < b — 1, then

bm—1 p2us(h)+1
> Salh) = —smam
n=1 1 — ebmfvb(h‘)
b)
v2r2 (b* —1) 1 M=t R p2r2 (B —1)  15(2b2 —1)
—N<— S = Sp(h)|? <
%0 "5 Lb?m,%h?'% A R
and thus
| bmolq bl , (' —1)
BiL e Z; 7z ; SuM” = =550

Lemma 3.5 We have a)

b™—1
Z ¢bm 2mhq§b n) _ Z ¢b(n)627rih¢b,m(n)’
n=0
b)
e 1 b=t 27r7,h 7r2(b+ 2)(bm B 1)
§_2| Z z/)bm os(n )| < 12pm :
and c)

m
1 b —1

Zh2| Z ¢bm 27nh¢b )| _b2m Z h2| Z S b+ )

To prove Lemma 3.4 and Lemma 3.5, we will denote for each integer
leN

Ay ={h €N |uvy(h)=1}.
It is clear that h € A; if and only if there is an integer ¢ > 0 an integer

j €{1,...,b— 1} such that h = b!(gb + j). In addition, Card{ h | vy(h) =
I<m-—1 and 1<h<b™—1}=(b— 1)y,

)



Proof of Lemma 3.4.
For a), applying Lemma 3.1,

bm—1 b —1 avb(h)(n)_l
Z Sp(h) = Z 2T thde (=", (1)) s (h) Z o2y (kbo ()
et n=l k=0
bm—1
+ 627l'ih[¢b(n—nvb(h))+¢b(avb(h) (n)bvb(h)]n

n=1
Because forn =1,...,0m—1, n— nvb( j—1 = kb with k= 0,...,pm= () —
1, and ny -1 = 1,2,.. b”b( ) — 1, so the second term is

'Ub(h,)—l

bm—1 pvb(h) 1 pm—vp(h) _q

2mihdy (n—"y, (h)— 2mihey (kbvo (W)
P D DR O D DR
n=1 nvb(h),1:1 k=0

pos(h) _ 1)pvs(h) )
= ( D) ) Sym—vym) (gb+7) =0

for vp(gb + j7) =0 and m — vy(h) > 1.
The same, for n = 1,...,0™ — 1, n — n,y = kb»MWF with k =
0,1,...,0m %=1 1 In addition ;") = 0, we have

pm—1 _ avb(h) (n)_l

Z Z 2mihgy (n—="vy, () pos (h) Z o2mihepy (16°6 ("))

bn(h) 1 b’"*”b(h)*l—l b—1  Gup(n)(n)—1

— pw(h) Z Z e?wihq&b(kb”b(h)“) Z Z 627rih¢b(lb“b(h))

nvb(h)—lzl k=0 avb(h)(n):l =0
with

— Ay (b (n)fl
b—1 b (h) b

Z Z 627rih¢,,(5bvb(h)) e

gy (ny(m)=1 =0 1—es

and
bm—vb(h)—lfl bm_vb(h)_lfl
. ) (ab+3) oy (k)
Z p2mihey (kbro(MFL) Z e%lbvb( : B0p ()1

- h)—1 _ 2
b p(M=t1 27’l'i(qb+j) k 1— e T;l]

— b m—uvp(h)—1
Z € b 2mwi(gb+7)
k=0 1 — epm—vo(R)

10



where ¢y (k) = bm,vb% Thus

b —1 2nic 2wy, (h)+1

S S (h) = p LT b _ oD
n 2mi(gb+j) 2mij 2mi(gb+j)

n=1 1—evm—w® L—e7vmq_ gym—u®)

For the proof of b), denote

b —1 1 b —1

Ty = Z ﬁ| Z Sn(h)|2

From a), we have

b —1 1 b4vb(h)+2 m—1 pii+2
T = Z ﬁ4 .2 w(gb+j) - Z 4h2 sin2 m(gb+j)
n=1 S oy (h) =0 heA; N[L,bm—1] S —pm=1
p2 b=lm—1 pm—i-11 1
- LYYy ;-
N b
4 j=1 1=0 =0 (gb+j)?sin? ”E,‘infi’)

We will first estimate the lower bound of the T},. Since sinxz < z for

z > 0, we have

42T m—1bm=l=1_1p—1 1
=0 g=0 j=1\9°7T]J
1.1 X1 1.2
= m( _b4)2 4+Z¥+(1_b4)2q4
g=1 g=1 g=1
1 X1 1.l
DIl Er- DI B
q=bm I=1 g=bl+1
1. &1 > 1
> m( _bj)qzlq4+,121¥.

Thus, the lower bound of T;, follows.
For the upper bound of the T,,, by Sirlm < 3+ % if z € (0,%] and
sintr > 2z if 0 <z < %, we have

b2 b—1m—1  bmi-1_1 1 b2
Ti=7 3 20 X% = (li+])
1003 =0 (gb+j)?sin’ % 4

11



with
b—1m—1 1

b2l Z

J=LI=0 b1 (gb + j)? sin

2 m(gb+j)
bmfl

pm—1 =
b—1m—1 1 .
1 b™ 7(gb + 7)
< Zme Z (b+ ) (b ) 3pm—! )2
imlim0 w1 4O I)T @O+
pm—1 =2
b—1m-—1 . Z bQ(m_[) bz—:lm—l . Z 1
< b + b
pm—1 =2 bmfl —2
2m +00 2m +o00
< mb2 ( ;4)2 14 bb 11( biz) %
T g=11 =11
and
b—1m—1 l 1
Iy = b?
j=11=0 qb+Xj:>; (gb + 5)? sin? ({4
pm—1 7 2
b—1m—1 1
=YYy | |
S by - (= PR sin ()
b—1m—1 l 22
< b’
pm—I >§
_ bz_:lm_lbfzz 3 1 ¥m 11
- -1 _ 2 _ 2"
i R (6m=* — (gb +j)) b—1 =q
Thus, we have the upper4bound of T},
Remark 2211 4T = o5 the lemma follows o

Proof of Lemma 3.5. In the proof, Lemma 3.1 will be used repeatedly
without mentioned.

The proof of a) can be obtained easily.

For ¢), write

bm—1
meZ 2| Z Ppm (1 2mh¢b )|

hl n=0

12



b —1 —
1
_ 2mihgy( 27rzh¢ 2
= w | E ne2mthen(n)|2 4 —2 E b2,
vy (h)>m 0<vy(h)<m—1 =

From the exchange of sum, we have

bnf ne? ) = 5™ (S (1) — S,(h).
n=0

Thus, on the one hand,

00
Z 2| Z n627rzh¢)b z_:

Ub(h)Zm

bm— 2

T
o 1)2,
24(6 )

1
(o™ =+ =

n=0

On the other hand, because 0 < wy(h) < m — 1 if and only if there are
u,w € N with 1 <w < b —1 and h = ub™ + w, we have

b —1 bm—1
) %@nemb =3 2|z:s )2
0<vy(h)<m—1 h=1
oo bm—1
m
+uzlhzl ubm+h2|25 (ub™ + h)|?,

and so we will only need to estimate the last term. By Lemma 3.2,

4 o bm—1 1 b1
> | Y Sn(ub™+ h)?

b2(bm —1)2 == (ub™ + h)? =

oo bM—1 b2'Ub(h) 2 m—1

IA
gl\'J
<

3

|

[«
S4B

3
]
]
T

u=1 h=1 =0 heA; ﬂ[lybm,l]
a2 m=l 2
_ —1—-1;21 -1
= l (b—1)p" b = 6b2mbm ™ —1),
=0
so the estimate follows.
For the proof of b), remark that
Tnz—:l Z bl m—1 1 bm_i_:l— b—1 2(b+ 1)
2 Bl ’
I=0 heA;N[1,bm—1] h =0 b ¢=0 j=1 qb—i—] 6b
we can procede in a similar way as in the proof of c). o

13



4 Proof of Theorem 2.5

We only show it for the Roth sequence. In the case of Zaremba sequence,
the result can be shown similarly for Lemma 3.1 to Lemma 3.5 are also valid
for ¢, (n). The only differences are the constants C; and Cs.

Proof Denote

bm—1
12 = Z 627Ti(h11/1b,m(n)+h2¢b(n)),

n=0

bm—1
21 — Z e?ﬂih1¢b,m(n) and 22 Z 627r7,h2¢b

We have

b))
meFQ(Rb,m) = Z |h21f27,|2 + b2mF2(¢b,m) + b2mF2(¢b,m)- (5)
h1,h2#£0

In the following, we will use the F*(Ryp,,) to estimate >2), 5, % In-
’ 172

deed,

O™ (F*(Rym))* = Y h2h2 S0 — 81 — 52 + 81 + S, (6)
h1,h2#0
with

o0

L et
Sy =8> ?|§ + 37 Yy (n)etmione Z o2miha by (n)
hi=1""1 n=>0

and

b —1

Sy = 872 Z h2|_ + Z dp(n)e?™h2vom(n) _ 3 e?mth2vem(n)2 — g,

hz 1 n=0

as follows from Lemma 3.3 a) and Lemma 3.5 a). From Lemma 3.3, Lemma
3.4 and Lemma 3.5, we have

b™ b™

< 1.1
S1 < 87T2Zﬁ[1 +1 > tpm(n) Je2mihds(n) |2 4| Z e?mihes(n))2 | Z 2 ihes(n)|
h=1 n=0

n=0 n=0

14



bt b —1
+| Z A (1 Eet O ] Z Yy () 2TP M| 37 G2rihdn(n)))
n=0
mt (b4 1)
< 5 (g m + 5+ 15) 1)
and
< 1 bm—1 pm
Sp > 2_2 + | Z P (n) 2mh¢b |2+| Z e2mihgy(n) -y Z e2mihdy(n)
h=1 n=0 n=0
. b —1
| Z Po,m (1 )e2mihos(m)| 2| Z VYom(n )e2rihdn(n))| Z e2mihdn(n))]
n=0
(b4— D R430-15
> o - .
= 3 3 T T (8)

On the one hand, we have

1 . 1
Z h2h2 |212|2 S b2m(F (Rbym)) - 251 + Z h2h2 2|21||22|
hiha#0 7172 hi,h2#0

+2|12[| 21| + 2/ E12[[Bo] = [Z1]* = [Z2%),  (9)
and on the other hand,
1

1 m
> —h2h2|212|2 > V"(F*(Rym))” —251— Y 123 (221|122
hi1,ha#0 71772 hi,h2#0

+2|812| 1] + 2|812]|Ze| + [Z1 + [22)?).  (10)

From Lemma 3.1, we have

5 2? 5 |5 _ DS '22'2=4§3i§3 _n
h2h3 h2h3 h2 k2 & (kbm)2 9’

hi,he#0 1772 hi,ha0 71772 h1#0 "1 hoz0 k=1" k=1
[Zu|[B2] |21 IEzl = v, ot
. %: h2h2 Z 1 Z 2 - Z (kbm)2) T ogp2m?
1,h2#0 h1#£0 ha#0 k=1

and since |Xqo| <™

|212||21| |212||22| |212|b > 1 9 7r4
2 g~ 2 T 2 32 73 Ge ez U2 =
h1,ha0 17%2 h1,ha#0 h1#0 "L k=1 k=1

15



It follows from (7), (8), (9) and (10) that
2t (b — 1) 27 (b? — 30b)

b2mF2 < b2m F* 2
and
2t (b* — 1) 10
2m 2 2m * 2 4
F > F ——s—"m — — 11).
From the estimate of F"*(Ry,,) in Theorem 2.2, the result follows. o

5 Some remarks

The most popular measure of the irregularity of the distribution of a I°-
valued sequence 0 = (£,)n>0 in I° is the star-discrepancy which is defined
for every positive integer N by

Diy(0) = sup ~Cn (x,0)|.
xels N

We have Ty(0) < D3/(0), thus the general lower bound of Tv (o) is also

hold for the star-discrepancy.

For the star-discrepancy of the Roth sequence, an exact formula was
obtained in [3], in which the leading term for N D} (o) is (1/3)log, N. The
Zaremba sequence was introduced to improve the Roth sequence by per-
muting suitably the digits of the Roth sequence, and an exact formula was
obtained in [17] for ND% (o) with the leading term (1/5) log, N. Curiously
enough, we have seen that for the Zaremba sequence it is best possible apart
from the value of the constant and it is not the case for the Roth sequence.
This has been mentioned by Niederreiter in [6].

With the results on their star-diaphony and diaphony, we may explain
this fact in the following way. The star-diaphony (or diaphony) is one part
of the L? dicrepancy, the Zaremba sequence is obtained by improving the
other part of the L? dicrepancy, I, and without changing the star-diaphony
as it is already optimal.

Remark in [2], Grozdanov introduced a sequence by changing the digits of
the Roth sequence as follows: X, = {(¥2,m (1) + 5t $2(n)+3m1) bo<n<om 1.
By the definition of the diaphony, it has the same diaphony as the Roth se-
quence. With the result in this paper, we find that his estimate about the
lower bound of the diaphony of the Roth sequence is wrong.
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