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1 IntroductionMost of the calculations performed in Quantum Chemistry at present are de-voted to solving (an approximation of) the time-independent Schrödinger equa-tion. Many interesting extremely accurate results can be obtained in this man-ner such as the calculation of the ground state of a molecule containing severalhundreds of electrons along with its electronic or vibrational spectrum.However, such an approach is most often inadequate to study dynamical phe-nomena such as chemical reactions and it is then necessary to resort to thetime-dependent Schrödinger equation. As in the stationary setting, directlytackling the numerical solving of the Schrödinger equation for computing achemical system, even a small system like a water molecule, remains out of thescope of the computers available at present and most probably in the near fu-ture. Consequently, e�cient approximations are needed. Our purpose in thisarticle is to investigate the well-posedness of the Cauchy problem associatedwith one of these approximations, namely a time-dependent electronic Hartree-Fock dynamics coupled with a classical nuclear dynamics of Hellman-Feynmantype. In our opinion, this model, or similar models which share the same math-ematical features, are about to play an important role in Quantum Chemistrycalculations.Having brie�y recalled some general mathematical properties of the Cauchyproblem associated with the time-dependent Schrödinger equation in a generalsetting we present in Section 2 a few techniques used to approximate this equa-tion in the speci�c framework of Quantum Chemisty. In particular, we introduceand compare the adiabatic and the non-adiabatic approximations which bothallow one to treat separately the motion of the nuclei and that of the electrons.We also present the time-dependent Hartree-Fock approximation which permitsone to deal with the electronic motion in the non-adiabatic approximation.In Section 3, we consider (for the sake of simplicity) a Helium atom (consisting ofone nucleus and two electrons), and we write up for this system the Cauchy prob-lem associated with a non-adiabatic approximation of the Schrödinger equationin which the electrons obey the time-dependent Restricted Hartree-Fock equa-tions and in which the nuclear-electron interaction is of Hellman-Feynman type.The system we are concerned with is thus the following:8>>>>><>>>>>: i@�@t (t; x) = ���(t; x) + V (x� �x(t))�(t; x) +�j�j2 ? 1jxj� (t; x)�(t; x)md2�xdt2 (t) = h�(t)jrV (� � �x(t))j�(t)i�(0; �) = �0; �x(0) = �x0; d�xdt (0) = �v0;where V (x) = � 2jxj . Our main result is the proof of the well-posedness of thisCauchy problem, i.e. the global existence and uniqueness of the solution (�; �x)in the classX = (C1([0;+1[; L2(IR3)) \ C0([0;+1[; H2(IR3)))� C2([0;+1[; IR3);provided �0 2 H2(IR3). We have based our proof on semigroup techniques whichare perfectly adapted when looking for strong solutions. We have not found it2



necessary to try to weaken the regularity of the initial electronic state becausethe assumption �0 2 H2(IR3) does not seem restrictive to us from a physicalpoint of view (let us recall that, in particular, stationary electronic Hartree-Fockstates have such a regularity). The local existence (Section 3.2) is establishedby the Schauder �xed point theorem, using in particular some properties of thepropagator for the family of linear Hamiltonians �� + V (� � �x(t)) proved ina paper by Yajima [22]. The uniqueness (Section 3.3), which is obtained bythe Gronwall Lemma, is based on estimates for the norm of the electronic wavefunction in the Lorentz space L3;1. Finally, the global existence follows fromthe charge and energy conservations. We have chosen here not to present thesimplest proof, but one which treats the three fundamental di�culties, namelythe non-local nonlinearity (j�j2 ? 1jxj)�, the Coulomb singularity carried by thenuclear motion and the nonlinear coupling between the electronic and nucleardynamics, with general techniques. Consequently, it is important to note thatour proof and our principal result can both be extended to any molecular systemcontaining a �nite number of electrons and nuclei modelled by the electronicHartree-Fock equations coupled with a classical Hellman-Feynman type nucleardynamics.In Section 4, we extend the global existence and uniqueness result establishedin Section 3 to the case when the molecular system under study is subjectedto a time-dependent uniform electric �eld. The results obtained in the �nalsection can be seen as a step towards the mathematical understanding of anevolving domain in Chemistry: the optimal laser control of chemical reactions.This technique has just emerged a few years ago. It consists in controlling thebehavior of chemical systems (described by the Schrödinger equation), the con-trol parameter being the electric �eld generated by lasers. Technical capabilitiesavailable at the present time allow one to produce ultrafast modulations of theamplitude and phase of laser pulses so that e�cient control can be achieved.This is con�rmed by various theoretical studies. Moreover, experimental evi-dence of laser control of simple chemical reactions has been published. We referthe reader to [4] and [20] and to the references therein. The numerical searchfor optimal control is only conceivable for approximations of the Schrödingerequation such as that studied in this article. The result we obtain in Section 4ensures the well-posedness of the evolution equation for a large class of controlparameters. Therefore, we are preparing some ground work in order to tacklethe control issues in future studies.2 Approximations of the time-dependent Schrödingerequation for molecular systemsThe time-dependent Schrödinger equation in its general form readsi@ @t = H(t) ;where for any t, the Hamiltonian H(t) is a self-adjoint linear operator actingon the Hilbert space of the physical states, here denoted by H, and the wavefunction  (t) is an element ofH of norm one. This equation completely describesthe evolution of the quantum system under consideration.3



2.1 General settingLet us begin this Section with a brief overview of some mathematical resultsknown to this day on the time-dependent Schrödinger equation in this generalsetting. If the system is isolated, the Hamiltonian H(t) is independent on thevariable t. In this case, the well-posedness of the Cauchy problem( i@ @t = H  ; (0) =  0;with  0 2 H is guaranteed by the Stone's theorem. More precisely, the evolutionof the system is governed by a group of unitary operators on H, the so-calledpropagator (U(t; s))(t;s)2IR2 , which satis�es (t) = U(t; s) (s); for all (t; s) 2 IR2;and enjoys the following properties:1. U(t; s)U(s; r) = U(t; r) for all (t; s; r) 2 IR3;2. U(t; s) is unitary on H for all (t; s) 2 IR2 and (t; s) 7! U(t; s) is stronglycontinuous from IR2 to L(H);3. denoting by D the domain of the operator H , U(t; s) 2 L(D) for all(t; s) 2 IR2 and (t; s) 7! U(t; s) is strongly continuous from IR2 to L(D);4. the equalities idU(t;s)dt = H U(t; s) and idU(t;s)ds = �U(t; s)H hold stronglyas equalities between operators from D to H.From now on, we denote by L(E) the vector space of bounded linear maps froma normed vector space E onto itself. In view of the time-invariance, we have inaddition in this case U(t; s) = U(t� s) = e�i(t�s)H .On the other hand, when the Hamiltonian explicitly depends on t, which hap-pens in particular when an external time-dependent electric �eld is turned on,the existence of a propagator may be di�cult to establish. A few general resultsexist, in particular the Kato's theorem [12], but they cannot be used in all cases.For instance, for H = L2(IR3) and H(t) = ��+V +E(t) �x with V (x) = � Zjxj (aparticle in a �xed Coulomb potential subjected to a time-dependent electric �eldE(t)) the Kato's theorem permits to conclude provided the time-dependent partof the potential is regular enough, which in the above setting means t 7! E(t) iscontinuous [11]. On the contrary, it is not su�cient to conclude for H = L2(IR3)and H(t) = �� + V +W (t) with V (x) = � Zjxj and W (t; x) = 1jx��x(t)j (whichfor instance models a particle placed in a �xed attractive Coulomb potentialV and interacting with a moving charged particle through the interaction po-tential W ) because of the singularity of the time-dependent potential. In thislatter situation, which occurs for example in the study of collision processes,the existence of the propagator may be established either as in [21] by locallydeforming the set of coordinates so that the moving particle (thus the singular-ity) remains �xed in this frame (let us note that such an approach allows one toconclude only when the time-dependent part of the potential is of the general4



formW (t; x) =W (x� �x(t))), or as in [22] by resorting to Lp�Lq estimates pro-vided the time-dependent part of the potential is not too singular (the Coulombsingularity being convenient in IR3).Let us now turn to the speci�c framework of Quantum Chemistry. We considera chemical system consisting of M nuclei and of N electrons. Denoting bymk the mass of the k-th nucleus and zk its charge, the �exact� non-relativisticHamiltonian readsH = � MXk=1 12mk��xk � NXi=1 12�xi � NXi=1 MXk=1 zkjxi � �xkj (1)+ X1�i<j�N 1jxi � xj j + X1�k<l�M zk zlj�xk � �xlj :The �rst term in the Hamiltonian H represents the kinetic energy of the nuclei,the second term that of the electrons, the third term the attraction betweenelectrons and nuclei, the fourth and the �fth terms the interelectronic and theinternuclear repulsions respectively. The units used for writing this Hamiltonianare the so-called atomic units, which are the most wide-spread in QuantumChemistry: in this unit system, the Planck constant �h, the mass of the electron,the elementary charge and the factor 14��0 are all set to one (�0 denotes thedielectric constant of the vacuum). The space of the physical states readsH = Hn 
He; with He = N̂i=1L2(IR3;Cj 2); Hn � MOk=1 L2(IR3;Cj 2sk+1);where Hn and He denote respectively the subspaces of the nuclear and elec-tronic wave functions and sk the spin of the k-th nucleus. The expression ofHn depends on the nature of the nuclei. In particular, it takes into accountthe indicernibility or more precisely the fermionic or bosonic nature of nucleiof same nature (same number of protons and of neutrons). From a purely the-oretical point of view, the �exact� Cauchy problem for such a chemical systemis well-posed from the Stone's theorem because of the self-adjointness of theHamiltonian (see [17]). However, for chemical systems made up of more thantwo or three particles, this problem is of too much a large size to be directlytackled by standard numerical methods and it is then necessary to approximateit.2.2 The adiabatic approximationA standard approximation method is the so-called adiabatic approximation.Brie�y speaking, it consists in getting rid of the fast dynamics of the electronsby assuming that at any time the electrons are in the electronic ground state,which of course depends on the time via the nuclear coordinates (for the sakeof completeness, let us however mention that in a few studies the adiabaticapproximation means that the electrons remain in the k-th excited state, kbeing independent of time; we shall only deal here with the ground state).More precisely, the nuclei are assumed to interact with the electrons throughthe potential 5



U(�x1; � � � ; �xM ) = inf fh e; He(�x1; � � � ; �xM ) �  ei;  e 2 He; k ek = 1g (2)where He denotes the electronic HamiltonianHe(�x1; � � � ; �xM ) = � NXi=1 12�xi � NXi=1 MXk=1 zkjxi � �xk(t)j + X1�i<j�N 1jxi � xj j :Next, the nuclear motion is treated either as a quantum problemi@ n@t = Hn nwith Hn = � MXk=1 12mk��xk + U(�x1; � � � ; �xM ) + X1�k<l�M zk zlj�xk � �xlj ;or as a semi-classical problem, or also, which is most frequently the case, as aclassical problem. In the last case, the system reads(A)8>><>>: mk d2�xkdt2 (t) = �r�xk 0@U(�x1(t); � � � ; �xM (t)) + X1�l<m�M zl zmj�xl � �xmj1AU(�x1; � � � ; �xM ) = inf fh e; He(�x1; � � � ; �xM ) �  ei;  e 2 He; k ek = 1gLet us remark that the adiabatic approximation is in fact the generalization ofthe Born-Oppenheimer approximation to a time-dependent setting (see [9] fordetails).In practice, the minimization problem (2) has to be approximated, as in thetime-independent case, by one of the standard (Hartree-Fock [10] or DensityFunctional [8]) method. However, problem (A) remains very time-consumingsince a time-independent minimization problem has to be solved for each timestep in order to compute rU . A possibility is to make an additional approx-imation �rst introduced by Car and Parrinello [6]: it consists in replacing theminimization problem by a �ctitious (non-physical) electronic dynamics whichmakes the electronic wave function evolve in the neighbourhood of the adia-batic state. From a mathematical point of view, the Car-Parrinello method isinvestigated in [3].2.3 A non-adiabatic approximationUnfortunately, the adiabatic approximation is only valid under some physicalassumptions for which we refer to [9]. In particular, when the electrons do notstay in a well-de�ned Born-Oppenheimer energy surface, this approximationcannot be used. This is the case for instance when a time-dependent electric�eld in turned on since this perturbation induces a priori transitions in theelectronic spectrum.In order to deal with such situations, the following approximation method isoften used. Firstly, the nuclei are considered as classical point particles. In the6



sequel, this is refered to as the point nuclei approximation rather than, as oftenin Chemistry as the Born-Oppenheimer approximation, since, as underlinedabove, this is in fact the adiabatic approximation which is a direct extension ofthe original idea of Born and Oppenheimer. However, the physical justi�cationof both the point nuclei and the Born-Oppenheimer approximations comes fromthe fact that nuclei are much heavier than electrons: the ratio is around 1836 forthe hydrogen nucleus, and is greater than 104 for most of the atoms encounteredin Chemistry. Consequently, the quantum nature of the nuclei can be neglectedwith good reason in most applications (let us recall that the tunnel e�ect transferprobability of a particle facing a potential barrier decreases exponentially withthe mass of the particle). The point nuclei approximation is almost always validin Chemistry (except for instance for studying speci�cally quantum phenomenainvolving nuclei as proton transfer by tunnel e�ect) and is therefore almostalways used: the state of the system is then described at time t by ��xk(t); d�xkdt (t)�1�k�M ;  e(t)! 2 IR6M � N̂i=1L2(IR3;Cj 2);where �xk(t) and d�xkdt (t) denote respectively the position and the speed of thek-th nuclear at time t and where  e(t) denotes the electronic wave function attime t. The motion of the electrons is controlled by the electronic Schrödingerequation i @ e@t = He(t) e; (3)where the electronic Hamiltonian readsHe(t) = � NXi=1 12�xi � NXi=1 MXk=1 zkjxi � �xk(t)j + X1�i<j�N 1jxi � xj jNotice that He(t) acts on the electronic variables only; the nuclear coordinates�xk(t) are parameters. In some applications, the integration time scale of (3) isvery small (say 10�15 s) and the motion of the nuclei can therefore be neglected:the nuclei remain �xed and the only equation to be solved is equation (3). Inother applications, the motion of the nuclei play a crucial role. It is of coursethe case in chemical reactions. Such situations are most often described by thesystem consisting of (3) together withmk d2�xkdt2 (t) = �r�xkW (t; �x1(t); � � � �xM (t))where W (t; �x1; � � � ; �xM ) = � MXk=1 ZIR3 zk �(t; x)jx� �xkj dx+ X1�k<l�M zk zlj�xk � �xlj :and �(t; x) = N RIR3(N�1) j ej2(t; x; x2; � � � ; xN ) dx2 � � � dxN denotes the electronicdensity. The above two equations mean that each nucleus moves according tothe Newton dynamics in the electrostatic potential created by the other nucleiand by the mean electronic density �. The term of electronic origin appearing7



in W is called the Hellman-Feynman potential; its expression is connected withthe Ehrenfest Theorem (see [13] and also [2] for a mathematical argument).The point nuclei approximation enables one to deal with the nuclear part ofthe system. Now, as in the time-independent setting, the electronic Schrödingerequation cannot be solved directly and additional approximations are necessary.We have chosen here to focus on the Hartree-Fock method which we brie�ypresent here in a spinless context to simplify, so that hereHe = VNi=1 L2(IR3;Cj ).Taking the spin into account make the notations more cumbersome but doesnot add any mathematical issue.The Hartree-Fock approximation is of variational nature: it consists in forcingthe wave function to move on the manifoldA = � e(x1; � � � ; xn) = 1pN !det(�i(xj)); �i 2 H1(IR3;Cj ); ZIR3 �i � ��j = �ij�of He and in replacing equation (3) by the stationarity condition for the actionZ T0 h e(t); (i@t e(t)�He(t) e(t))i dt:The associated Euler-Lagrange equations [16] readi@�i@t = �H��i + NXj=1 �ij�jwhere �H� is the Hartree-Fock Hamiltonian�H� = �12� + MXk=1 zkj � ��xkj + NXi=1 j�ij2 ? 1jxj!� NXj=1���j � ? 1jxj��jand where the matrix (�ij(t)) is hermitian for any t. We draw the reader'sattention on the fact that this approximation, which can be interpreted as amean �eld approximation, has created nonlinearity: indeed the Hartree-FockHamiltonian depends on the electronic wave function. Contrary to what is of-ten claimed in the Chemical literature, the �ij(t) should not be interpretedas Lagrange multiplier associated with the constraints RIR3 �i��j = �ij (theseconstraints are automatically propagated by the dynamics because of the self-adjointness of the Hartree-Fock Hamiltonian), but rather as degrees of freedomassociated with the gauge invariance �i(t) �! Uij(t)�j(t) for any regular uni-taryN�N matrix valued function t 7! U(t). In particular, this gauge invariancecan be used to set the �ij(t) to zero for all t so that the above system can betransformed into the simpler onei@�i@t = �H��i: (4)Let us notice that the usual time-independent Hartree-Fock equations can beeasily deduced from (4), like the time-independent Schrödinger equation is de-duced from the time-dependent Schrödinger equation: indeed, let us searchsolutions of the form �i(t; x) = �i(x)e�i �i t; we thus obtain8



�H� � �i = �i�i:The time-independent Hartree-Fock method is a basic tool in Quantum Chem-istry (see [10], [16] or any textbook of Quantum Chemistry). It has been deeplystudied from a mathematical point of view, notably by Lieb and Simon [14] andLions [15]. The time-dependent Hartree-Fock model has also been mathemati-cally studied by Chadam and Glassey who proved in [7] the well-posedness ofthe Cauchy problem for �xed nuclei. Clearly, this assumption is too restrictivefor the study of chemical reactions. Our �rst purpose consists in extendingthe Chadam and Glassey's result by including the nuclear dynamics into theevolution system.The system under study couples the electronic Hartree-Fock evolution equationwith the Hellman-Feynmann nuclear dynamics and reads:(I)8>>>>>>><>>>>>>>: i@�i@t = �12��i � MXk=1 zkj � ��xk(t)j�i +0@ NXj=1 j�j j2 ? 1jxj1A�i � NXj=1���j�i ? 1jxj��jmk d2�xkdt2 (t) = �r�xkW (t; �x1(t); � � � �xM (t))�i(0) = �0i ; �xk(0) = �x0k ; d�xkdt (0) = �v0k:withW (t; �x1; � � � �xM ) = � MXk=1 NXi=1h�i(t)j zkj � ��xkj j�i(t)i + X1�k<l�M zk zlj�xk � �xlj :Let us notice that in calculations on large biological systems, the chemical sys-tem under consideration is sometimes split into two parts, the �rst one beingcomputed with Quantum Mechanics, the other one with Classical Mechanics.The so-obtained systems are of the same nature as system (I) and therefore theresults we obtain below also apply to them.Our �rst purpose is to show that this Cauchy problem is well-posed, i.e. thatsystem (I) has a unique global solution in a functional space to be made precisebelow, provided the �0i are chosen regular enough. This is the purpose of thenext section. As far as we know, this problem has not yet been investigated.3 The Cauchy problem for the isolated molecularsystemIn the sequel, Lp, Lp;r, Hs, and Ck;� without any additional argument denoterespectively the Lebesgue, Lorentz, Sobolev, and Hölder spaces of Cj -valuedfunctions on IR3. We also denote by Cu any real nonnegative universal constant(independent on the parameters of the problem) and by C0 any real nonnegativeconstant depending on the parameters of the problem and in particular on theinitial data. 9



For the sake of simplicity, the proofs presented in this section are performedon the example of the Helium atom (one nucleus and two electrons) in the Re-stricted Hartree-Fock formalism [10], [16]. However, it is important to note thatour argument goes through mutatis mutandis in order to conclude for a systemconsisting of a �nite number of nuclei and electrons in the Restricted or Un-restricted Hartree-Fock approximation [10]-[16]. In addition, we have rescaledthe mass unit so that me = 2, in order to eliminate the factor 12 in front ofthe Laplacian in the electronic Hamiltonian. The evolution equations underconsideration thus reduce to(II)8>>>>><>>>>>: i@�@t (t; x) = ���(t; x) + V (x� �x(t))�(t; x) +�j�j2 ? 1jxj� (t; x)�(t; x)md2�xdt2 (t) = h�(t)jrV (� � �x(t))j�(t)i�(0) = �0; �x(0) = �x0; d�xdt (0) = �v0:where for any t � 0, �(t) 2 H1, k�0kL2 = 1 and V (x) = � 2jxj .Our purpose is to show theTheorem 1. Suppose that �0 2 H2. Then, the system (II) has a unique globalsolution (�; �x) inX = (C1([0;+1[; L2) \ C0([0;+1[; H2))� C2([0;+1[; IR3):The rest of this section is devoted to the proof of the above theorem. This prooffalls into three steps:� subsection 3.2: existence of a local solution inX� = (C1([0; � ]; L2) \ C0([0; � ]; H2))� C2([0; � ]; IR3)for some � > 0 by a Schauder �xed point theorem;� subsection 3.3: uniqueness of this local solution in the class X� ;� subsection 3.4: charge and energy conservation and H2 estimate for con-cluding to global existence and uniqueness of the solution to (II) in X .In fact, simpler proofs of each of these results may be obtained for the peculiarcase of a one-nucleus system by a convenient change of coordinates. The ad-vantage of the proof we have chosen to present here is that the results obtainedin this way can be easily extended to cover the case of a more general chemicalsystem made of many nuclei and electrons. We now state a more general re-sult whose proof is a straightforward extension of the above proof and that wetherefore leave to the reader.Corollary 2. Suppose that �0i 2 H2 for all 1 � i � N . Then, the system (I)has a unique global solution (f�ig1�i�N ; f�xkg1�k�M ) inXN;M = (C1([0;+1[; L2) \ C0([0;+1[; H2))N � (C2([0;+1[; IR3))M :10



Let us also mention that the smeared nuclei case is technically much simpler thanthe point nuclei case here examined. Indeed, the reader will notice that the maintechnical di�culties are due to the Coulomb singularity of the nuclear potential.All these technical di�culties may be therefore skipped in the �regular� case.For the sake of clarity, we have regrouped the proofs of the main technical detailsin the following subsection.3.1 A few technical lemmataWe begin withLemma 3. Let us consider �1 2 H2 and �2 2 H2 and denote byf(�x) = h�1jrV (� � �x)j�2i for any �x 2 IR3:Then f 2 C1(IR3;Cj 3) \W1;1(IR3;Cj 3) andkfkL1 � 8kr�1kL2kr�2kL2 ;kDfkL1 � Cuk�1kH2k�2kH2 :Proof. The �rst inequality is a direct consequence of Cauchy-Schwarz and Hardyinequalities. Let us now consider the functiong(�x) = h�1jV (� � �x)j�2i = �2 ZIR3 �1(x)��2(x)jx� �xj dx;which is de�ned and bounded in IR3. Indeed,jg(�x)j � 2k�1kL2k �2(x)jx� �xj kL2 � 4k�1kL2kr�2kL2 :As �g = 8���1�2 is in H2 thus in C0;� for all 0 < � < 1=2, we have by ellipticregularity results that g 2 C2;� for 0 < � < 1=2. In addition, the equalityg = �2��1�2 ? 1jxj with �i 2 H2 implies that g 2 W 2;1 (by a repeated use ofYoung inequality) withkgkW 2;1 � Cuk�1��2kH2 � Cuk�1kH2k�2kH2 :Therefore, f = �rg belongs to C1(IR3;Cj 3) \W1;1(IR3;Cj 3) andkDfkL1 = kD2gkL1 � Cuk�1kH2k�2kH2 :Let us now prove the existence of the propagator for the one-electron part ofthe Hartree-Fock Hamiltonian.Lemma 4. Let �x 2 C1([0; T ]; IR3) and fH(t)gt2[0;T ] the family of hamiltoniansde�ned as H(t) = ��+ V (� � �x(t)):There exists a unique family of evolution operators fU(t; s); (t; s) 2 [0; T ]� [0; T ]gsuch that 11



1. U(t; s)U(s; r) = U(t; r) for all (t; s; r) 2 [0; T ]3;2. U(t; s) is unitary on L2 for all (t; s) 2 [0; T ]� [0; T ] and (t; s) 7! U(t; s)is strongly continuous from [0; T ]� [0; T ] to L(L2);3. U(t; s) 2 L(H2) and for all (t; s) 2 [0; T ] � [0; T ] and (t; s) 7! U(t; s) isstrongly continuous from [0; T ]� [0; T ] to L(H2); moreover for all C0 > 0there exists MT;C0 > 0 such that



d�xdt 



L1(0;T ;IR3) � C0 ) kU(t; s)kL(H2) �MT;C0 8(t; s) 2 [0; T ]�[0; T ];4. the equalities idU(t;s)dt = H(t)U(t; s) and idU(t;s)ds = �U(t; s)H(s) holdstrongly as equalities between operators from H2 to L2.Proof. This lemma is a consequence of a more general result by Yajima [22].In order to stay as close as possible to the notations used in [22], we extend�x to a function of class C1 (still denoted by �x) de�ned on [�T; T ] and so that

d�xdt 

L1(�T;T ) = 

d�xdt 

L1(0;T ). It is clear that V(t; x) = V (x� �x(t)) satis�esV 2 C0([�T; T ]; Lp)+C0([�T; T ]; L1); @V@t 2 L1(�T; T ;Lp1)+L1(�T; T ;L1);for 2 � p < 3 and p1 = 2p=(p+ 1). As proved in [22] this ensures the existenceand the standard properties of the propagator for the family of HamiltoniansfH(t)gt2[�T;T ]. For establishing the L(H2)-bound in statement 3, let us con-sider �0 2 H2 and �(t) = U(t; 0)�0. We have�(t) = U0(t)�0 � i Z t0 U0(t� s)V(s)�(s) ds;with U0(t) = eit�. Following [22], let us choose 2 � p < 3 and let us introducefor � > 0 the functional spacesX (�) = C0([��; � ]; L2)\L�(��; � ;Lq); X �(�) = L1(��; � ;L2)+L�0(�; � ;Lq0 );Y(�) = �u 2 C0([��; � ]; H2); @u@t 2 X (�)� ; Y�(�) = �u 2 C0([��; � ]; L2); @u@t 2 X �(�)� ;with q = 2p=(p�1), � = 4q=3(q�2), 1=q+1=q0 = 1 and 1=�+1=�0 = 1, equippedrespectively with the normskukX (�) = kukC0([��;� ];L2)+kukL�(��;� ;Lq) kukX�(�) = kukL1(��;� ;L2)+L�0 (��;� ;Lq0);kukY(�) = kukC0([��;� ];H2)+k@u@t kX (�); kukY�(�) = kukC0([��;� ];L2)+k@u@t kX�(�):We also de�ne as in [22] the operator S by(Su)(t) = Z t0 U0(t� s)u(s) ds:The following estimates are proved in [22]:12



� for all v 2 Y�(�), S � v 2 Y(�) andkS � vkY(�) � Cu(1 + �)kvkY�(�); (5)� for any � > 0, there exists a constant C� such that for � < 1=2 and for allu 2 Y(�), Vu 2 Y�(�) andkVukY�(�) � ��kVk eM + (2�)1�3=2p 



@V@t 



N� kukY(�)+C�kVk eMkukL1(��;� ;L2)(6)withkVk eM = kVkL1(��;� ;Lp)+L1(��;� ;L1); 



@V@t 



N = 



@V@t 



L1(��;� ;Lp1)+L1(��;� ;L1)With these notations, �(t) = U0(t)�0 � i(SV�)(t):Using inequalities (5) and (6), we obtain that for any � > 0 there exist a constantC� such that for � 2]0;min(1=2; T )[,k�kY(�) � kU0(t)�0kY(�) + kSV�kY(�)� C[k�0kH2 + (1 + �)kV�kY�(�)]� C �k�0kH2 + (1 + �)�(�kVk eM + (2�)1=4 



@V@t 



N )k�kY(�) + C�kVk eMk�0kL2�� ;where C does not depend on �0 and � . But in this context, we havekV k eM = 



 2jxj



Lp+L1 and 



@V@t 



N � 



d�xdt 



L1(��;�) 



 2jxj2 



Lp1+L1 :Therefore, as 

d�xdt 

L1(��;�) � C0, one can �nd for � > 0 small enough a constant0 < � < 1=2 independent on �0 (� depends however on C0) such that there existsa constant CC0 depending on C0 but independent on �0 satisfyingk�kL1(0;� ;H2) � k�kY(�) � CC0k�0kH2 :Consequently, for 0 � t � � , kU(t; 0)kL(H2) � CC0 , and therefore from state-ment 1 of Lemma 4,kU(t; 0)kL(H2) � C1+T=�C0 =MT;C0 ; 8t 2 [0; T ]:The same result holds for U(t; s) with (t; s) 2 [0; T ]� [0; T ].We now turn to a detailed analysis of the nonlinear term appearing in the �rstequation of (II).Lemma 5. For � 2 H1, let us de�neF (�) = �j�j2 ? 1jxj��:One has the following estimates 13



� for � 2 H1 and  2 H1,kF (�)� F ( )kL2 � Cu(k�k2H1 + k k2H1)k��  kL2 ; (7)� there exists a constant CF such that for all � 2 H2 and all  2 H2kF (�)kH2 � CF k�k2H1k�kH2 ; (8)kF (�)� F ( )kH2 � CF (k�k2H2 + k k2H2)k��  kH2 : (9)Proof. From Cauchy-Schwarz and Hardy inequalities, we havekF (�)� F ( )kL2 = k(j�j2 ? 1jxj )�� (j j2 ? 1jxj ) kL2� k(j�j2 ? 1jxj )(� �  )kL2 + k((j�j2 � j j2) ? 1jxj ) kL2� 2(k�kL2kr�kL2k��  kL2 + k kL2(kr�kL2 + kr kL2)k��  kL2)� Cu(k�k2H1 + k k2H1)k��  kL2 ;which proves (7). Let us now establish (8) and (9). Firstly,kF (�)kL2 � 2kr�kL2k�k2L2 :Next, for any arbitrary three functions a, b, and c in H2, we have� �(a b ? 1jxj )c� = 4�abc+ 2(ra b ? 1jxj )rc+ 2(arb ? 1jxj )rc+ (a b ? 1jxj )�c:We thus obtain



� �(a b ? 1jxj )c�



L2 � Cu(kakL6kbkL6kckL6 + krakL2krbkL2krckL2+kakL2krbkL2)k�ckL2� CukakH1kbkH1kckH2 : (10)The inequality (8) follows. Finally,kF (�)� F ( )k2H2 = kF (�)� F ( )k2L2 + k�(F (�)� F ( ))k2L2 ;and (7) provides us with a convenient upper bound of the �rst term of the righthand side. On the other hand,k�(F (�)�F ( ))k2L2 � k�((j�j2? 1jxj )(�� ))k2L2+k�(((j�j2�j j2)? 1jxj ) )k2L2 :Using (10), it is easy to conclude thatk�(F (�)� F ( ))k2L2 � Cu(k�k2H2 + k k2H2)k��  kH2 :14



Finally, we establish a somewhat unusual dispersion inequality for the free prop-agator, namelyLemma 6. Let U0(t) = eit� the propagator of the free particle. One haskU0(t)fkL3;1 � CuptkfkL3=2;1;for all f 2 L3=2;1.Proof. It is well-known (see [17] for instance) that for 2 � p � 1,kU0(t)fkLp � (2�jtj)�3=2+3=pkfkLp0 ; (11)with 1=p + 1=p0 = 1, for all f 2 Lp0 . Let 0 < � � 1. Inequality (11) is truein particular for p0 = 3 + � and p1 = 3 � �. As Lp;p = Lp (we recall that Lp;rdenote the Lorentz spaces), we thus can writekU0(t)fkLp0;p0 � (2�jtj)�3=2+3=p0kfkLp00;p00 ;kU0(t)fkLp1;p1 � (2�jtj)�3=2+3=p1kfkLp01;p01 :Lemma 6 follows by using the general Marcinkiewicz interpolation theorem (see[1] p. 113 for instance) with � = 1=2� �=6 so that1� �p0 + �p1 = 13 ; 1� �p00 + �p01 = 13=2 ; (1��)��32 + 3p0�+���32 + 3p1� = �12 :3.2 Local existenceAs announced above, this subsection is devoted to the proof of a local-in-timeexistence result for the system (II). We begin by �xing some arbitrary timeT > 0, and 0 < � � T such thatj�v0j+ 16 �m M2T;2jv0jk�0k2H2 � 2j�v0j; (12)8CFM3T;2jv0jk�0k2H2� < 1: (13)where we recall that the constant MT;2jv0j is de�ned in Lemma 4, alinea 3 andthe constant CF in Lemma 5 alinea 2. We shall proveProposition 7. The system (II) has a solution (�; �x) inX� = (C1([0; � ]; L2) \ C0([0; � ]; H2))� C2([0; � ]; IR3):Proof. This result is obtained by a Schauder �xed point theorem. Let us denotebyBe� = � 2 C1([0; � ]; L2) \ C0([0; � ]; H2) = k kC0([0;� ];H2) � 2MT;2jv0j k�0kH2	 ;Bn� = (�y 2 C1([0; � ]; IR3) = �y(0) = �x0; d�ydt (0) = �v0; 



d�ydt 



C0([0;� ];IR3) � 2 j�v0j) :15



In the sequel, Bn� is equipped with the topology of C1([0; � ]; IR3) and Be� with thetopology of C0([0; � ]; L2). We shall need to consider the set Bn� \ C2([0; � ]; IR3)equipped with the topology of C2([0; � ]; IR3). We shall also need the followingtwo lemmata whose proofs are postponed untill the end of the proof of Propo-sition 7.Lemma 8. Let  2 Be� . The equationmd2�zdt2 (t) = h (t)jrV (� � �z(t))j (t)i (14)with initial data �z(0) = �x0 and d�zdt (0) = �v0 has a unique solution in C2([0; � ]; IR3)and this solution belongs to Bn� . Furthermore, the applicationF : Be� �! Bn� \ C2([0; � ]; IR3) 7! �zis continuous and bounded.Lemma 9. Let �y 2 Bn� . The equationi@ @t (t; x) = �� (t; x) + V (x� �y(t)) (t; x) +�j j2 ? 1jxj (t; x)� (t; x) (15)with initial condition  (0) = �0 has a unique solution  in C1([0; � ]; L2) \C0([0; � ]; H2) and this solution is in Be� . Furthermore, the applicationG : Bn� �! Be��y 7!  is continuous and bounded.Let us denote by i the compact injectioni : Bn� \ C2([0; � ]; IR3) �! Bn� :In view of Lemmata 8 and 9 we can de�ne the functional K = i � F � G whichmaps Bn� into itself: if �y 2 Bn� , �z = K(�y) satis�es8>>>>><>>>>>: i@ @t (t; x) = �� (t; x) + V (x� �y(t)) (t; x) +�j j2 ? 1jxj (t; x)� (t; x)md2�zdt2 (t) = h (t)jrV (� � �z(t))j (t)i (0) = �0; �z(0) = �x0; d�zdt (0) = �v0with ( ; �z) 2 Be� � Bn� .The set Bn� is convex and bounded and again from Lemmata 8 and 9, K iscontinuous and compact sinceK : Bn� G�!Be� F�!Bn� \ C2([0; � ]; IR3) i,!Bn� ;16



the maps F and G being continuous and bounded and the injection i beingcontinuous and compact. Then K has a �xed point �x in Bn� , which is in factalso in Bn� \ C2([0; � ]; IR3) and (�; �x) with � = F(�x) is a solution to (II) inBe� � (Bn� \ C2([0; � ]; IR3)) � X� . Proving Proposition 7 therefore amounts toproving Lemmata 8 and 9.Proof of Lemma 8. For equation (14) to have a unique solution in C2([0; � ]; IR3),su�ces it to prove that the functionf(t; �x) = h (t)jrV (� � �x)j (t)iis continuous, bounded and locally Lipschitz in �x. From Lemma 5, f(t; �x) is C1in �x for all t 2 [0; � ] andkf(t)kW 1;1(IR3;IR3) � Cuk k2C0([0;� ];H2):In particular, f is bounded and Lipschitz in �x with a uniform Lipschitz constanton [0; � ]� IR3. Besides, by considering a sequence (tn; �xn)n2IN in [0; � ]� IR3 thatconverges towards (t; �x) in [0; � ]� IR3, we obtainjf(tn; �xn)� f(t; �x)j � jf(t; �xn)� f(t; �x)j+ 2 ZIR3 jj (tn; x)j2 � j (t; x)j2jjx� �xnj2 dx� jf(t; �xn)� f(t; �x)j+ 16kr kL1(0;� ;L2)kr( (tn)�  (t))kL2 ;which implies that f is continuous since f(t; �x) is continuous with respect to �xand  2 C0([0; � ]; H1). Next, as  2 Be� , we havesup[0;� ]�IR3 jf j � 8 kr k2C0([0;� ];L2) � 16M2T;2jv0j k�0k2H2and thus in view of equation (12)



d�zdt 



C0([0;� ];IR3) � j�v0j+ �m sup[0;� ]�IR3 jf j � 2j�v0j:Then, F( ) 2 Bn� . Next, F is bounded since for any  2 Be� , �x = F( ) isbounded in C2([0; � ]; IR3) by a constant independent on  : indeed d2�xdt2 = fmwith f bounded by 16M2T;2jv0j k�0k2H2 . Finally, we prove the continuity of F .Let us consider  2 Be� and a sequence ( n)n2IN in Be� converging towards  in Be� (for the topology of C0([0; � ]; L2)). Denoting by �xn = F( n), �x = F( ),e n =  n �  and exn = �xn � �x, we obtainmd2exndt2 (t) = h n(t)jrV (� � �xn(t))j n(t)i � h (t)jrV (� � �x(t))j (t)i= h (t)jrV (� � �x(t))j e n(t)i+ h e n(t)jrV (� � �xn(t))j n(t)i+h (t)jrV (� � �xn(t))j n(t)i � h (t)jrV (� � �x(t))j n(t)i:Then, using Lemma 3, we obtain for all t 2 [0; � ]����md2exndt2 (t)���� � an + bnjexn(t)j17



withan = supt2[0;� ](jh (t)jrV (� � �x(t))j e n(t)ij + jh e n(t)jrV (� � �xn(t))j n(t)ij)and 0 � bn � Cuk kC0([0;� ];H2)k nkC0([0;� ];H2)Now (bn) is bounded since  n and  are in Be� and (an) goes to zero when ngoes to in�nity: indeed, as the elements of Be� are bounded in C0([0; � ]; H2 andtherefore in C0([0; � ]; L2) \ C0([0; � ]; L1), one can �nd C0 such that for any0 < � � 1,an = 2 sup�x2IR3; t2[0;� ] Zjx��xj<� j (t; x)j j e n(t; x)jjx� �xj2 dx + Zjx��xj�� j (t; x)j j e n(t; x)jjx� �xj2 dx!� C0�+ C0�2 k e nkC0([0;� ];L2) � 2C0�for n large enough. As exn(0) = dexndt (0) = 0, it follows from Gronwall Lemmathat exn goes to zero in C2([0; � ]; IR3) when n goes to in�nity.Proof of Lemma 9. This proof is based on Lemma 4 which ensures the existenceand the L(H2)-bounds of the propagator U(t; s) for the family of HamiltoniansH(t) = ��+V (x� �y(t)) and on the fact that the functional F (�) = (j�j2 ? 1jxj )�is locally Lipschitz in H2 (see Lemma 5). Indeed, using statement 3 of Lemma 4and inequality (9), one can check that the functional 7! U(�; 0)�0 � i Z �0 U(�; s)F ( (s)) dsis a strict contraction in the Banach space C0([0; � ]; H2) which maps Be� intoitself for �y 2 Bn� and � chosen according to (13). A standard application of thePicard �xed point theorem gives the existence and uniqueness of the solution to(M) �(t) = U(t; 0)�0 � i Z t0 U(t; s)F (�(s)) ds;in C0([0; � ]; H2). Next, we have for 0 � t; t0 � � , t 6= t0,1t0 � t (�(t0)� �(t)) = 1t0 � t(U(t0; 0)� U(t; 0))�0�i Z t0 1t0 � t (U(t0; s)� U(t; s))F ( (s)) ds�i 1t0 � t Z t0t U(t0; s)F ( (s)) ds;and statements 3 and 4 of Lemma 4 enable us to pass to the limit t0 �! t in L2in each term. We thus obtain that � belongs to C1([0; � ]; L2) and satis�es (15)in a strong sense. Besides, the solution to (15) with initial condition  (0) = �018



is unique in the class C1([0; � ]; L2)\ C0([0; � ]; H2). Indeed let  1 and  2 be twosolutions to (15) with  1(0) =  2(0) = �0. We have ( 1 �  2)(0) = 0 and astraightforward calculations shows thatddtk 1 �  2k2L2 = 2 ImhF ( 1)� F ( 2)j 1 �  2iL2 :Then, using (7), we obtain on [0; � ]ddtk 1 �  2k2L2 � Cu(k 1kC0([0;� ];H1) + k 2kC0([0;� ];H1))k 1 �  2k2L2Uniqueness follows by Gronwall Lemma. Next, it is straightforward that G isbounded since the target set Be� is bounded. To conclude this section we have toprove that G is continuous. For that, let us consider a sequence (�yn)n2IN in Bn�converging towards �y in Bn� and denote by  n = G(�xn),  = G(�x), e n =  n� ,eyn = �yn � �y. We havei@ e n@t = �� e n+V (���y) e n+(j j2? 1jxj ) e n+Re(( n+ )� e n? 1jxj ) n+(V (���yn)�V (���y)) n:Then denoting by U(t; s) the unitary propagator associated with the family ofHamiltonians H(t) = ��+ V (� � �x) + (j j2 ? 1jxj) we obtaine n(t) = �i Z t0 U(t; s)�Re(( n(s) +  (s))� e n(s) ? 1jxj ) n(s) + (V (� � �yn(s))� V (� � �y(s))) n(s)� ds:Therefore, we havek e n(t)kL2 � C0 Z t0 (k(V (� � �yn(s)) � V (� � �y(s))) n(s)kL2 + k e n(s)kL2) ds:As  n is bounded in L1(0; � ;L2) and also in L1(0; � ;L1), we havek(V (� � �yn)� V (� � �y)) nkL1(0;� ;L2) �!n!+1 0:Then e n goes to zero in C0([0; � ]; L2) by Gronwall Lemma.3.3 UniquenessThe purpose of this section is to prove theProposition 10. The solution (�; �x) to (II) is unique in the classX� = (C1([0; � ]; L2(IR3)) \ C0([0; � ]; H2(IR3))) � C2([0; � ]; IR3):Proof. We claim that Proposition 10 follows fromLemma 11. Let (�1; �x1) 2 X� and (�2; �x2) 2 X� two solutions of (II) anddenote by ex = �x1 � �x2 and e� = �1 � �2. Then there exists a constant C0depending only on k�1kC0([0;� ];H2) and k�2kC0([0;� ];H2) such that for all t in[0; � ], 19



����d2exdt2 (t)���� � C0 �jex(t)j+ ke�(t)kL3;1� (16)ke�(t)kL3;1 � C0 Z t0 1ps �jex(s)j+ ke�(s)kL3;1� ds: (17)Indeed, let us assume for the moment that Lemma 11 is proved and considerthe nonnegative continuous function on [0; � ]h(t) = �jex(t)j+ ke�(t)kL3;1�p :with p > 2. From inequalities (16) and (17), we deduce for all t 2 [0; � ]h(t) � �C0 Z t0 [(t� s) + 1ps ](jex(s)j+ ke�(s)kL3;1) ds�p� Cp0 �Z t0 [(t� s) + 1ps ]p0 ds�p=p0 �Z t0 h(s) ds�� Cp Z t0 h(s) ds;where the constantCp < +1 depends on p, � , k�1kC0([0;� ];H2) and k�2kC0([0;� ];H2).As h(0) = 0, we obtain h(t) = 0 for all t 2 [0; � ] from Gronwall Lemma. Unique-ness follows. There remains now to prove Lemma 11.Proof of Lemma 11. Let t 2 [0; � ]. We havemd2exdt2 (t) = h�1(t)jrV (� � �x1(t))j�1(t)i � h�2(t)jrV (� � �x2(t))j�2(t)i= h�1(t)� �2(t)jrV (� � �x1(t))j�1(t)i + h�2(t)jrV (� � �x1(t))j�1(t)i+h�2(t)jrV (� � �x2(t))j�1(t)� �2(t)i � h�2(t)jrV (� � �x2(t))j�1(t)i= h�2(t)jrV (� � �x1(t))j�1(t)i � h�2(t)jrV (� � �x2(t))j�1(t)i+h�2(t)jrV (� � �x2(t))je�(t)i+ he�(t)jrV (� � �x1(t))j�1(t)i:On the one hand we deduce from Lemma 3 that the function (t; �x) 7! h�2(t)jrV (���x)j�1(t)i is Lipschitz in the second variable with Lipschitz constant bounded byCuk�1(t)kH2k�2(t)kH2 and on the other hand, we havejh�jrV (� � �x)je�(t)ij � Cuk�kH2ke�(t)kL3;1 ;for � 2 H2 and �x 2 IR3. This proves (16). Let us now turn to the estimate (17)on e�. We can writee�(t) = �i Z t0 U0(t� s) hV (x� �x1(s))e�(s) + (V (x� �x1(s))� V (x� �x2(s)))�2(s)+(j�1(s)j2 ? 1jxj )e�(s) + ((j�1(s)j2 � j�2(s)j2) ? 1jxj )�2(s)� ds;20



where U0(t) = eit� denotes as above the free particle propagator which satisties(see Lemma 6) the estimatekU0(t)fkL3;1 � CuptkfkL3=2;1;for all f 2 L3=2;1. Thus,ke�(t)kL3;1 � Z t0 Cupt hkV (� � �x1(s))e�(s)kL3=2;1 + k(V (� � �x1(s)) � V (� � �x2(s)))�2(s)kL3=2;1k(j�1(s)j2 ? 1jxj )e�(s)kL3=2;1 + k((j�1(s)j2 � j�2(s)j2) ? 1jxj )�2(s)kL3=2;1� ds:Now, omitting the time-dependence in order to lighten the notationskV (� � �x1)e�kL3=2;1 � Cu 



 2jxj



L3;1 ke�kL3;1 ;k(V (� � �x1)� V (� � �x2))�2kL3=2;1 � k(V (� � ex)� V (�))�2(�+ �x2)kL3=2;1� 



���� 2jx� exj � 2jxj ���� j�2(x+ �x2)j



L3=2;1� 



 2jexjjxj jx � exj j�2(x+ �x2)j



L3=2;1� 2 



 j�2(x + �x2)jjxj jx � exj 



L3=2;1 jexj� Cuk�2kL1 



 1jxj



2L3;1 jexj;k(j�1j2 ? 1jxj )e�kL3=2;1 � Cu 



j�1j2 ? 1jxj



L3;1 ke�kL3;1� Cuk�1k2L2 



 1jxj



L3;1 ke�kL3;1 ;k((j�1j2 � j�2j2) ? 1jxj )�2kL3=2;1 � 



�je�j(j�1j+ j�2j) ? 1jxj� j�2j



L3=2;1� Cu 



�je�j(j�1j+ j�2j) ? 1jxj�



L6;2 k�2kL2� Cukje�j(j�1j+ j�2j)kL6=5;2 



 1jxj



L3;1 k�2kL2� Cu(k�1kL2 + k�2kL2)k�2kL2 



 1jxj



L3;1 ke�kL3;1 ;(see [23] for instance for a proof of the Young inequality in the Lorentz spaces).The estimate on e� follows. 21



3.4 Global existenceWe now conclude the proof of Theorem 1. As we have already established thelocal existence and uniqueness of the solution to (II) in X� for some � > 0, theglobal existence is equivalent to the existence of locally uniform estimates onj�x(t)j, ��d�xdt (t)�� and k�(t)kH2 (see Segal [19]).Let us consider T � such that (II) has a unique solution in X� for all � < T �.Firstly, the conservation of the L2-norm of � is a consequence of the self-adjointness of the (nonlinear) electronic Hamiltonian and can be established bycomputing the derivative ddtk�(t)k2L2 . We leave this calculation to the reader.Thus, for all t 2 [0; T �[, we havek�(t)kL2 = k�0kL2 = 1:Secondly, the total energyE(t) = m2 ����d�xdt (t)����2+ZIR3 jr�(t)j2+ZIR3 V (x��x(t))j�j2(t; x) dx+12D(j�(t)j2; j�(t)j2)where D(u; v) = RIR3 RIR3 u(x) v(y)jx�yj dx dy, is conserved. Therefore there exists aconstant C0 depending only on the initial data such that for all t 2 [0; T �[,����d�xdt (t)���� � C0;ZIR3 jr�(t)j2 � C0:We additionally conclude from the above �rst equation a bound on j�x(t)j. Now,for t 2 [0; T �[,k�(t)kH2 � kU(t; 0)�0kH2 + Z t0 kU(t; s)F (�(s))kH2 ds� MT�;C0 �k�0kH2 + CF (1 + C20 ) Z t0 k�(s)kH2 ds� :Therefore, by Gronwall Lemma, there exist two constants a and b dependingonly on the initial data such thatk�(t)kH2 � a eb tfor all t 2 [0; T �[. The global existence and uniqueness follow.4 The Cauchy problem for the molecular systemsubjected to a external uniform time-dependentelectric �eldWhen an external time-dependent uniform electric �eld E(t) is turned on, themolecular HamiltonianH given by (1) is modi�ed by the addition of the external22



electric potential V(t; x) = �PMk=1 zkE(t) � �xk +PNi=1 E(t) � xi created by the�eld.In the present section, our purpose is to show that the Cauchy problem exam-ined in this previous section, namely that corresponding to the non-adiabaticapproximation with a Hartree-Fock electronic dynamics coupled with a classicalHellman-Feynman type nuclear dynamics, is still well posed when the moleculeis subjected to an external uniform time-dependent electric �eld. As mentionedin the introduction, this situation appears in particular in the modelling of lasercontrol of chemical reactions.We leave open the interesting questions concerning the long-time behavior of thesystem when the electric �eld is time-independent. When nuclei are �xed andfor a linear electronic Schrödinger equation (in other words, when the electronicHamiltonian is linear and time-independent) we know from the R.A.G.E. Theo-rem and its corollaries that the electronic wave function leaves the region of thenuclei and does not return (see [18] for details). We do not know what happenswhen nuclei are allowed to move and/or when the electronic Hamiltonian isnonlinear, except that there exists no stationary state (see [5]). Nevertheless, itseems to us reasonable to conjecture that all the nuclei move towards the regionof negative in�nite potential while the electronic cloud moves towards the re-gion of positive in�nite potential. We hope that this observation will stimulatefurther research.As above, we reason about the system describing the Helium atom in the Re-stricted Hartree-Fock approximation but, again as in the previous section, ourargument can easily be extended to a molecular system consisting of a �nitenumber of electrons and nuclei. In presence of an external time-dependent uni-form electric �eld, system (II) becomes(IIe)8>>>>><>>>>>: i@�@t = ���+ V (� � �x(t))� + E(t) � x�+�j�j2 ? 1jxj��md2�xdt2 (t) = h�(t)jrV (� � �x(t))j�(t)i + zE(t)�(0) = �0; �x(0) = �x0; d�xdt (0) = �v0:The domain of the self-adjoint operator�H�(t) = ��+ V (� � �x(t)) + E(t) � x+�j�(t)j2 ? 1jxj�contains H2ef = n� 2 H2(IR3) = p1 + jxj2 � 2 L2(IR3)o if E(t) 6= 0 andequals H2 in the special case when E(t) = 0. The space H2ef is a Hilbertspace when equipped with the normk�kH2ef = �kp1 + jxj2 �k2L2 + k��k2L2�1=2 :Let us now state and proveProposition 12. Let E 2 C0([0;+1[; IR3). If �0 2 H2ef , the system (IIe) hasa unique global solution (�; �x) in 23



Y = (C1([0;+1[; L2) \ C0([0;+1[; H2ef ))� C2([0;+1[; IR3):The following lemma is useful for establishing the proof of the above Proposition.Lemma 13. Let  2 C0([0;+1[; L2); � 2 C0([0;+1[; IR); � 2 C0([0;+1[; IR3);f 2 C0([0;+1[; IR); and g 2 C0([0;+1[; IR3): Denote by�(t; x) = f(t)ei[�(t)+�(t)�x] (t; x + g(t)):Then � 2 C0([0;+1[; L2).Proof. Su�ces it to prove the continuity at t0 = 0. In order to lighten thenotations, we assume that f(0) = 1, g(0) = 0, �(0) = 0 and �(0) = 0. Let0 � t � 1. We havek�(t)� �(0)kL2 = kf(t)ei[�(t)+�(t)�x] (t; x+ g(t))�  (0; x)kL2� kf(t)ei[�(t)+�(t)�x]( (t; x + g(t))�  (0; x+ g(t)))kL2+kf(t)ei[�(t)+�(t)�x]( (0; x+ g(t))�  (0; x))kL2+k(f(t)ei[�(t)+�(t)�x] � 1) (0; x)kL2� C0k (t)�  (0)kL2 + C0k (0; x+ g(t))�  (0; x)kL2+k(f(t)ei[�(t)+�(t)�x] � 1) (0; x)kL2 :As  2 C0([0;+1[; L2), we havek (t)�  (0)kL2 �!t!0 0:Besides, in view of Lebesgue convergence theorem,k(f(t)ei[�(t)+�(t)�x] � 1) (0; x)kL2 �!t!0 0:Finally, let � > 0, R � 1 and N � 0, such that denoting by  N (t; x) =max( (t; x); N), one hasZjxj�R�1 j (0; x)j2 dx � �=4 and ZIR3 j N (0; x)�  (0; x)j2 dx � �=4:As from Lebesgue convergence theoremZjxj<R j N (0; x+ g(t))�  N (0; x)j2�!t!0 0;one can �nd � > 0 such that for any 0 � t � � ,k (0; x+ g(t))�  (0; x)k2L2 � �:This concludes the proof of the continuity of � at t0 = 0 in C0([0;+1[; L2).Proof of Proposition 12. Uniqueness. Firstly, let us assume that (IIe) has asolution in Y . Following [11], we de�ne24



�(t; x) = ei[k(t)+h(t)�x]�(t; x� 2G(t)); �y(t) = �x(t) + 2G(t);with h(t) = R t0 E(s) ds, G(t) = R t0 h(s) ds and k(t) = R t0 jhj2(s) ds � 2h(t) �G(t).The evolution equations satis�ed by (�; �y) read(fIIe)8>>>>><>>>>>: i@�@t = ���+ V (� � �y(t))�+�j�j2 ? 1jxj��md2�ydt2 (t) = h�(t)jrV (� � �y(t))j�(t)i + (z + 2m)E(t)�(0) = �0; �y(0) = �x0; d�ydt (0) = �v0:Clearly, �y 2 C2([0;+1[; IR3) and, using Lemma 13, a straighforward calculationshows that � 2 C0([0;+1[; H2). Inserting this result in the �rst equation in(fIIe), we obtain in addition @�@t 2 C0([0;+1[; L2). Consequently, (�; �y) 2 X .The same argument as in Section 3.3 shows that the solution to (fIIe) in X isunique. Therefore, if it exists, the solution to (IIe) is unique.Existence. Following the same strategy as in Section 3.2, it can be proved thatsystem (fIIe) actually has a solution (�; �y) in X (the drift term (z + 2m)E doesnot bring up any additional di�culty). Besides, p1 + jxj2� 2 C0([0;+1[; L2).Indeed, let us consider the function �(x) =p1 + jxj2, which satis�esr�(x) = x(1 + jxj2)1=2 2 L1 and ��(x) = � 3 + 2 jxj2(1 + jxj2)3=2 2 L1;and a monotonic sequence (�n)n2IN of non-negative functions in D(IR3) suchthat� �n, r�n, and ��n converge a.e. towards �, r�, and �� respectively;� �n � �, jr�nj � 2jr�j and j��nj � 2j��j.Clearly, for any n 2 IN, �n(t; x) = �n(x)�(t; x) is in C0([0;+1[; H2) and satis�esthe following equation�n(t) = U(t; 0) �n(0)� i Z t0 U(t; s)fn(s) ds;where U(t; s) is the propagator associated with the family of HamiltoniansH(t) = ��+ V (� � �y(t)) + �j�j2 ? 1jxj� and wherefn(t; x) = 2r�n(x) � r�(t; x) + ��n(x)�(t; x):Denoting by �(t; x) = �(x)�(t; x) and f(t; x) = 2r�(x)�r�(t; x)+��(x)�(t; x),it follows from the convergences�n(0) �!n!+1 �(0) in L2 and fn �!n!+1 f in C0([0;+1[; L2)that � satis�es 25
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