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Abstract

We prove a global-in-time existence and uniqueness result for the Cauchy problem in the
setting of some model of Quantum Molecular Chemistry. The model we are concerned
with consists of a coupling between the time-dependent Hartree-Fock equations (for the
electrons) and the classical Newtonian dynamics (for the nuclei). The proof combines
semigroup techniques and the Schauder fized-point theorem. We also extend our result
in order to treat the case of a molecule subjected to a time-dependent electric field.

Résumé

Nous montrons que le probléme de Cauchy global pour un modéle de Chimie Quantique
moléculaire est bien posé. Le systéme que nous étudions couple d’une part les équations
de Hartree-Fock dépendantes du temps qui décrivent [’évolution de la configuration
électronique de la molécule, et d’autre part les équations de la dynamique Newtonienne
qui régissent le mouvement des noyauz. On utilise les techniques de semi-groupes pour
traiter ’évolution et un argument de point fize pour traiter le couplage. Le méme
probléme est ensuite étudié en présence d’un champ électrique dépendant du temps.

*Submitted to Mathematical Models and Methods in Applied Sciences.



1 Introduction

Most of the calculations performed in Quantum Chemistry at present are de-
voted to solving (an approximation of) the time-independent Schrodinger equa-
tion. Many interesting extremely accurate results can be obtained in this man-
ner such as the calculation of the ground state of a molecule containing several
hundreds of electrons along with its electronic or vibrational spectrum.

However, such an approach is most often inadequate to study dynamical phe-
nomena such as chemical reactions and it is then necessary to resort to the
time-dependent Schrodinger equation. As in the stationary setting, directly
tackling the numerical solving of the Schrodinger equation for computing a
chemical system, even a small system like a water molecule, remains out of the
scope of the computers available at present and most probably in the near fu-
ture. Consequently, efficient approximations are needed. Our purpose in this
article is to investigate the well-posedness of the Cauchy problem associated
with one of these approximations, namely a time-dependent electronic Hartree-
Fock dynamics coupled with a classical nuclear dynamics of Hellman-Feynman
type. In our opinion, this model, or similar models which share the same math-
ematical features, are about to play an important role in Quantum Chemistry
calculations.

Having briefly recalled some general mathematical properties of the Cauchy
problem associated with the time-dependent Schrodinger equation in a general
setting we present in Section 2 a few techniques used to approximate this equa-
tion in the specific framework of Quantum Chemisty. In particular, we introduce
and compare the adiabatic and the non-adiabatic approximations which both
allow one to treat separately the motion of the nuclei and that of the electrons.
We also present the time-dependent Hartree-Fock approximation which permits
one to deal with the electronic motion in the non-adiabatic approximation.

In Section 3, we consider (for the sake of simplicity) a Helium atom (consisting of
one nucleus and two electrons), and we write up for this system the Cauchy prob-
lem associated with a non-adiabatic approximation of the Schrédinger equation
in which the electrons obey the time-dependent Restricted Hartree-Fock equa-
tions and in which the nuclear-electron interaction is of Hellman-Feynman type.
The system we are concerned with is thus the following:

i5E(t,0) = ~80(0,2) + V(o — 2(0)6(t2) + (Iof + 1) (1000080
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where V(z) = — ;. Our main result is the proof of the well-posedness of this

Cauchy problem, i.e. the global existence and uniqueness of the solution (¢, T)
in the class

X = (C*([0, 4+o00[, L*(R?)) N C°([0, +00[, H*(R?))) x C?([0, +oc[, R?),

provided ¢° € H? (IR3). We have based our proof on semigroup techniques which
are perfectly adapted when looking for strong solutions. We have not found it



necessary to try to weaken the regularity of the initial electronic state because
the assumption ¢° € H? (]R3) does not seem restrictive to us from a physical
point of view (let us recall that, in particular, stationary electronic Hartree-Fock
states have such a regularity). The local existence (Section 3.2) is established
by the Schauder fixed point theorem, using in particular some properties of the
propagator for the family of linear Hamiltonians —A + V(- — Z(¢)) proved in
a paper by Yajima [22]. The uniqueness (Section 3.3), which is obtained by
the Gronwall Lemma, is based on estimates for the norm of the electronic wave
function in the Lorentz space L>*°. Finally, the global existence follows from
the charge and energy conservations. We have chosen here not to present the
simplest proof, but one which treats the three fundamental difficulties, namely
the non-local nonlinearity (|@|? x ﬁ)d), the Coulomb singularity carried by the
nuclear motion and the nonlinear coupling between the electronic and nuclear
dynamics, with general techniques. Consequently, it is important to note that
our proof and our principal result can both be extended to any molecular system
containing a finite number of electrons and nuclei modelled by the electronic
Hartree-Fock equations coupled with a classical Hellman-Feynman type nuclear
dynamics.

In Section 4, we extend the global existence and uniqueness result established
in Section 3 to the case when the molecular system under study is subjected
to a time-dependent uniform electric field. The results obtained in the final
section can be seen as a step towards the mathematical understanding of an
evolving domain in Chemistry: the optimal laser control of chemical reactions.
This technique has just emerged a few years ago. It consists in controlling the
behavior of chemical systems (described by the Schrodinger equation), the con-
trol parameter being the electric field generated by lasers. Technical capabilities
available at the present time allow one to produce ultrafast modulations of the
amplitude and phase of laser pulses so that efficient control can be achieved.
This is confirmed by various theoretical studies. Moreover, experimental evi-
dence of laser control of simple chemical reactions has been published. We refer
the reader to [4] and [20] and to the references therein. The numerical search
for optimal control is only conceivable for approzimations of the Schrodinger
equation such as that studied in this article. The result we obtain in Section 4
ensures the well-posedness of the evolution equation for a large class of control
parameters. Therefore, we are preparing some ground work in order to tackle
the control issues in future studies.

2 Approximations of the time-dependent Schrodinger
equation for molecular systems

The time-dependent Schrodinger equation in its general form reads

O
1— = H(t) v,
= H(B)Y
where for any ¢, the Hamiltonian H(t) is a self-adjoint linear operator acting
on the Hilbert space of the physical states, here denoted by #, and the wave
function v (¢) is an element of H of norm one. This equation completely describes
the evolution of the quantum system under consideration.



2.1 General setting

Let us begin this Section with a brief overview of some mathematical results
known to this day on the time-dependent Schrédinger equation in this general
setting. If the system is isolated, the Hamiltonian H(t) is independent on the
variable t. In this case, the well-posedness of the Cauchy problem

{ e
ot
0(0) = v,

with ¢° € H is guaranteed by the Stone’s theorem. More precisely, the evolution
of the system is governed by a group of unitary operators on H, the so-called
propagator (U(t,s))(¢,s)cr?, Which satisfies

O(t) = U(t,s)p(s), forall (t,s) € R?,
and enjoys the following properties:
1. U(t,s)U(s,r) = U(t,r) for all (t,s,7) € R

2. Ul(t,s) is unitary on H for all (¢,s) € R? and (t,s) ~ U(t,s) is strongly
continuous from R? to L(H);

3. denoting by D the domain of the operator H, U(t,s) € L(D) for all
(t,s) € R? and (t,s) — U(t,s) is strongly continuous from R? to £(D);
dU(t,s) dU(t,s)

4. the equalities i—;~ = H U(t,s) and i=—2>= = —U(t, s) H hold strongly

as equalities between operators from D to H.

From now on, we denote by £(E) the vector space of bounded linear maps from
a normed vector space E onto itself. In view of the time-invariance, we have in
addition in this case U(t,s) = U(t — s) = e {t=9)H,

On the other hand, when the Hamiltonian explicitly depends on ¢, which hap-
pens in particular when an external time-dependent electric field is turned on,
the existence of a propagator may be difficult to establish. A few general results
exist, in particular the Kato’s theorem [12], but they cannot be used in all cases.
For instance, for H = L?(R?) and H(t) = ~A+V +&(t) -z with V(z) = _VZ\ (a
particle in a fixed Coulomb potential subjected to a time-dependent electric field
E(t)) the Kato’s theorem permits to conclude provided the time-dependent part
of the potential is regular enough, which in the above setting means ¢ — £(t) is
continuous [11]. On the contrary, it is not sufficient to conclude for H = L*(IR?)
and H(t) = —A +V + W(t) with V(z) = =7 and W(t,2) = =y (which
for instance models a particle placed in a fixed attractive Coulomb potential
V' and interacting with a moving charged particle through the interaction po-
tential W) because of the singularity of the time-dependent potential. In this
latter situation, which occurs for example in the study of collision processes,
the existence of the propagator may be established either as in [21] by locally
deforming the set of coordinates so that the moving particle (thus the singular-
ity) remains fixed in this frame (let us note that such an approach allows one to
conclude only when the time-dependent part of the potential is of the general



form W (t,z) = W(x—Z(t))), or as in [22] by resorting to LP — L? estimates pro-
vided the time-dependent part of the potential is not too singular (the Coulomb
singularity being convenient in ]R3).

Let us now turn to the specific framework of Quantum Chemistry. We consider
a chemical system consisting of M nuclei and of N electrons. Denoting by
my, the mass of the k-th nucleus and zj, its charge, the “exact” non-relativistic
Hamiltonian reads

Mo Noq &
Ho= -Ygnta-Lsda-Y o2y O
k=1 =1 e

1 ZE 21
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1<i<j<N i il 1<k<I<M

The first term in the Hamiltonian H represents the kinetic energy of the nuclei,

the second term that of the electrons, the third term the attraction between

electrons and nuclei, the fourth and the fifth terms the interelectronic and the

internuclear repulsions respectively. The units used for writing this Hamiltonian

are the so-called atomic units, which are the most wide-spread in Quantum

Chemistry: in this unit system, the Planck constant A, the mass of the electron,
1

the elementary charge and the factor Txo; are all set to one (eo denotes the

dielectric constant of the vacuum). The space of the physical states reads

N M
H="Hn®MH,, with?H, = /\ LZ(R37CZ): Hn C ®L2(]R3: CZSK+1):
i=1 k=1

where H,, and H. denote respectively the subspaces of the nuclear and elec-
tronic wave functions and s; the spin of the k-th nucleus. The expression of
H, depends on the nature of the nuclei. In particular, it takes into account
the indicernibility or more precisely the fermionic or bosonic nature of nuclei
of same nature (same number of protons and of neutrons). From a purely the-
oretical point of view, the “exact” Cauchy problem for such a chemical system
is well-posed from the Stone’s theorem because of the self-adjointness of the
Hamiltonian (see [17]). However, for chemical systems made up of more than
two or three particles, this problem is of too much a large size to be directly
tackled by standard numerical methods and it is then necessary to approximate
it.

2.2 The adiabatic approximation

A standard approximation method is the so-called adiabatic approximation.
Briefly speaking, it consists in getting rid of the fast dynamics of the electrons
by assuming that at any time the electrons are in the electronic ground state,
which of course depends on the time via the nuclear coordinates (for the sake
of completeness, let us however mention that in a few studies the adiabatic
approximation means that the electrons remain in the k-th excited state, k
being independent of time; we shall only deal here with the ground state).
More precisely, the nuclei are assumed to interact with the electrons through
the potential



UZy,- -, Ta) = inf {(Qe, He(T1,- -, Za) - Ye), e € He, [[Yell = 1} (2)
where H, denotes the electronic Hamiltonian
L aly| 1
He(Zy,--+,%y) = —ZZ:; 38z = ;kz:l o = :ck(t)| + 1<§<N Fnt

Next, the nuclear motion is treated either as a quantum problem

;0¥n

= nwn

with

M 1 2k 2
22— an FU&Z1, -, Zp) + Z %;

k=1 1<k<I<M T — @]

or as a semi-classical problem, or also, which is most frequently the case, as a
classical problem. In the last case, the system reads

] M0 = Ve, (V@0 )+ Y

1<l<m<M |7t = T

U(ila"'ajM) = inf{<¢67H6(jla"'7jM) '¢€>7 ¢e € He, ||¢6|| = 1}

Let us remark that the adiabatic approximation is in fact the generalization of
the Born-Oppenheimer approximation to a time-dependent setting (see [9] for
details).

In practice, the minimization problem (2) has to be approximated, as in the
time-independent case, by one of the standard (Hartree-Fock [10] or Density
Functional [8]) method. However, problem (A) remains very time-consuming
since a time-independent minimization problem has to be solved for each time
step in order to compute VU. A possibility is to make an additional approx-
imation first introduced by Car and Parrinello [6]: it consists in replacing the
minimization problem by a fictitious (non-physical) electronic dynamics which
makes the electronic wave function evolve in the neighbourhood of the adia-
batic state. From a mathematical point of view, the Car-Parrinello method is
investigated in [3].

2.3 A non-adiabatic approximation

Unfortunately, the adiabatic approximation is only valid under some physical
assumptions for which we refer to [9]. In particular, when the electrons do not
stay in a well-defined Born-Oppenheimer energy surface, this approximation
cannot be used. This is the case for instance when a time-dependent electric
field in turned on since this perturbation induces a priori transitions in the
electronic spectrum.

In order to deal with such situations, the following approximation method is
often used. Firstly, the nuclei are considered as classical point particles. In the



sequel, this is refered to as the point nuclei approximation rather than, as often
in Chemistry as the Born-Oppenheimer approximation, since, as underlined
above, this is in fact the adiabatic approximation which is a direct extension of
the original idea of Born and Oppenheimer. However, the physical justification
of both the point nuclei and the Born-Oppenheimer approximations comes from
the fact that nuclei are much heavier than electrons: the ratio is around 1836 for
the hydrogen nucleus, and is greater than 10* for most of the atoms encountered
in Chemistry. Consequently, the quantum nature of the nuclei can be neglected
with good reason in most applications (let us recall that the tunnel effect transfer
probability of a particle facing a potential barrier decreases exponentially with
the mass of the particle). The point nuclei approximation is almost always valid
in Chemistry (except for instance for studying specifically quantum phenomena
involving nuclei as proton transfer by tunnel effect) and is therefore almost
always used: the state of the system is then described at time ¢ by

dz N
({xk(t), d—tk(t)} <k<M,¢e(t)> e R x A\ LA(R%,C?),

i=1

where Z(t) and %(t) denote respectively the position and the speed of the
k-th nuclear at time ¢t and where ¢, (t) denotes the electronic wave function at
time ¢. The motion of the electrons is controlled by the electronic Schrodinger
equation

00, _
e = H(6) e, 3

where the electronic Hamiltonian reads

_ilA ZZ - 1
—2 " | —fﬂk(t)| @i — ;]

i=1 k=1 1<i<j<N

Notice that H,(t) acts on the electronic variables only; the nuclear coordinates
T (t) are parameters. In some applications, the integration time scale of (3) is
very small (say 107! s) and the motion of the nuclei can therefore be neglected:
the nuclei remain fixed and the only equation to be solved is equation (3). In
other applications, the motion of the nuclei play a crucial role. It is of course
the case in chemical reactions. Such situations are most often described by the
system consisting of (3) together with

d2fk _ _
e T (1) = 0, W (50, - 2r(1)
where
t
Re 2= 7| w’“| 1<k<I<M |2k — 1]
and p(t, ) = N [pav—n) [Ve|*(t, 2,22, -, &) dy - - - dy denotes the electronic

density. The above two equations mean that each nucleus moves according to
the Newton dynamics in the electrostatic potential created by the other nuclei
and by the mean electronic density p. The term of electronic origin appearing



in W is called the Hellman-Feynman potential; its expression is connected with
the Ehrenfest Theorem (see [13] and also [2] for a mathematical argument).

The point nuclei approximation enables one to deal with the nuclear part of
the system. Now, as in the time-independent setting, the electronic Schrédinger
equation cannot be solved directly and additional approximations are necessary.
We have chosen here to focus on the Hartree-Fock method which we briefly
present here in a spinless context to simplify, so that here H, = /\f\il L*(R?,0C).
Taking the spin into account make the notations more cumbersome but does
not add any mathematical issue.

The Hartree-Fock approximation is of variational nature: it consists in forcing
the wave function to move on the manifold

1
VNI

of H. and in replacing equation (3) by the stationarity condition for the action

A= {’1/16(371,"',37”) = det(‘bi(xj)); d)z € Hl(]RS,C),/Rg Qsi QSJ* :6ij}

T
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The associated Euler-Lagrange equations [16] read

B¢ - al
oy =H¢¢i+z)\ij¢j

=1

where Hg is the Hartree-Fock Hamiltonian

PO U AN A - S R
®= 75 +;|'—ik|+ ;W’J*m _Z<¢j'*m>¢1

j=1

and where the matrix (A;;(¢)) is hermitian for any ¢t. We draw the reader’s
attention on the fact that this approximation, which can be interpreted as a
mean field approximation, has created nonlinearity: indeed the Hartree-Fock
Hamiltonian depends on the electronic wave function. Contrary to what is of-
ten claimed in the Chemical literature, the A;;(t) should not be interpreted
as Lagrange multiplier associated with the constraints fR3 Gig; = dij (these
constraints are automatically propagated by the dynamics because of the self-
adjointness of the Hartree-Fock Hamiltonian), but rather as degrees of freedom
associated with the gauge invariance ¢;(t) — U;;(t)¢;(t) for any regular uni-
tary N x N matrix valued function ¢t — U(t). In particular, this gauge invariance
can be used to set the A;;(t) to zero for all ¢ so that the above system can be
transformed into the simpler one

z‘aa‘i’ = Hod;. (4)
Let us notice that the usual time-independent Hartree-Fock equations can be
easily deduced from (4), like the time-independent Schrodinger equation is de-
duced from the time-dependent Schrédinger equation: indeed, let us search
solutions of the form ¢;(t,r) = ¢;(x)e ¢ *; we thus obtain




H<I> ' ¢i = €i¢i-

The time-independent Hartree-Fock method is a basic tool in Quantum Chem-
istry (see [10], [16] or any textbook of Quantum Chemistry). It has been deeply
studied from a mathematical point of view, notably by Lieb and Simon [14] and
Lions [15]. The time-dependent Hartree-Fock model has also been mathemati-
cally studied by Chadam and Glassey who proved in [7] the well-posedness of
the Cauchy problem for fixed nuclei. Clearly, this assumption is too restrictive
for the study of chemical reactions. Our first purpose consists in extending
the Chadam and Glassey’s result by including the nuclear dynamics into the
evolution system.

The system under study couples the electronic Hartree-Fock evolution equation
with the Hellman-Feynmann nuclear dynamics and reads:

,

i6¢":_lA¢._§:Zi’9¢.+ i|¢.|2*i ¢._§:<¢’f¢.*i>¢.
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Let us notice that in calculations on large biological systems, the chemical sys-
tem under consideration is sometimes split into two parts, the first one being
computed with Quantum Mechanics, the other one with Classical Mechanics.
The so-obtained systems are of the same nature as system (I) and therefore the
results we obtain below also apply to them.

Our first purpose is to show that this Cauchy problem is well-posed, i.e. that
system (I) has a unique global solution in a functional space to be made precise
below, provided the ¢? are chosen regular enough. This is the purpose of the
next section. As far as we know, this problem has not yet been investigated.

3 The Cauchy problem for the isolated molecular
system

In the sequel, LP, LP" H*® and C** without any additional argument denote
respectively the Lebesgue, Lorentz, Sobolev, and Holder spaces of C-valued
functions on R®. We also denote by C,, any real nonnegative universal constant
(independent on the parameters of the problem) and by Cy any real nonnegative
constant depending on the parameters of the problem and in particular on the
initial data.



For the sake of simplicity, the proofs presented in this section are performed
on the example of the Helium atom (one nucleus and two electrons) in the Re-
stricted Hartree-Fock formalism [10], [16]. However, it is important to note that
our argument goes through mutatis mutandis in order to conclude for a system
consisting of a finite number of nuclei and electrons in the Restricted or Un-
restricted Hartree-Fock approximation [10]-[16]. In addition, we have rescaled
the mass unit so that m, = 2, in order to eliminate the factor % in front of
the Laplacian in the electronic Hamiltonian. The evolution equations under
consideration thus reduce to

06 ) o
18—52(15,»’6) = —A¢(t,x) + V(x — z(t))o(t,x) + <|¢| * m) (t,z)p(t, )
(D4 mE2 (1) = @IV (-~ 7(1)|6(0)

H0) =6, #0) =2, D)=

where for any t > 0, ¢(t) € H', ||¢°]|z2 = 1 and V(z) = —%.

E
Our purpose is to show the
Theorem 1. Suppose that 3° € H?. Then, the system (II) has a unique global
solution (¢, T) in

X = (C*([0, +00[, L*) N C°([0, +00[, H?)) x C*([0, +00[, R?).

The rest of this section is devoted to the proof of the above theorem. This proof
falls into three steps:

e subsection 3.2: existence of a local solution in
X- = (C'([0,7],L*) n C°([0,7], H?)) x C*([0,7],R?)

for some 7 > 0 by a Schauder fixed point theorem;
e subsection 3.3: uniqueness of this local solution in the class X ;

e subsection 3.4: charge and energy conservation and H? estimate for con-
cluding to global existence and uniqueness of the solution to (I7) in X.

In fact, simpler proofs of each of these results may be obtained for the peculiar
case of a one-nucleus system by a convenient change of coordinates. The ad-
vantage of the proof we have chosen to present here is that the results obtained
in this way can be easily extended to cover the case of a more general chemical
system made of many nuclei and electrons. We now state a more general re-
sult whose proof is a straightforward extension of the above proof and that we
therefore leave to the reader.

Corollary 2. Suppose that ¢? € H? for all 1 < i < N. Then, the system (I)
has a unique global solution ({¢i},<;cn - {Trti<panr) 0

Xy = (C([0, 400, L*) N C°([0, +00[, H*))N x (C?([0, +00[, R*))M.
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Let us also mention that the smeared nuclei case is technically much simpler than
the point nuclei case here examined. Indeed, the reader will notice that the main
technical difficulties are due to the Coulomb singularity of the nuclear potential.
All these technical difficulties may be therefore skipped in the “regular” case.

For the sake of clarity, we have regrouped the proofs of the main technical details
in the following subsection.

3.1 A few technical lemmata

We begin with

Lemma 3. Let us consider ¢; € H? and ¢ € H? and denote by
(@) ={(|VV (- —T)|p2) for any T € R?.

Then f € C'(R?,C*) N W (R?,C?) and

1fllz= < 8IIVorllL=(IVd2llL2,
I1Dfllze < Cullfrll izl d2lla>-

Proof. The first inequality is a direct consequence of Cauchy-Schwarz and Hardy
inequalities. Let us now consider the function

$1(2)" P2 ()

re T — 1T

9(x) = (|V (- — T)|h2) = —2 dr,

which is defined and bounded in R®. Indeed,
P2(x)

|z — 7|

l9(2)| < 2l|¢1 |-l L2 < 4llorllL2[[ V|l Lo-

As Ag = 8mdis is in H? thus in C% for all 0 < a < 1/2, we have by elliptic
regularity results that g € C?® for 0 < a < 1/2. In addition, the equality
g = —2¢}p2 % ﬁ with ¢; € H? implies that g € W2 (by a repeated use of
Young inequality) with

lgllwze < Cullpr@3llmz < Culldrll a2l 2l a2

Therefore, f = —Vg belongs to C'(R*,C*) N WH>(R?*,C?) and

IDfllze = I1D*gllL= < Culléllmzll 2=

Let us now prove the existence of the propagator for the one-electron part of
the Hartree-Fock Hamiltonian.

Lemma 4. Let 7 € C*([0,T),R?) and {H(t)}cp0,1) the family of hamiltonians
defined as

H(t) = -A+ V(- —z(t)).
There exists a unique family of evolution operators {U (¢, s), (t,s) € [0,T] x [0,T]}
such that

11



1. U(t,s)U(s,r) =U(t,r) for all (t,s,r) € [0,T)3;

2. U(t,s) is unitary on L* for all (t,s) € [0,T] x [0,T] and (t,s) — U(t,s)
is strongly continuous from [0,T] x [0,T] to L(L?);

3. U(t,s) € L(H?) and for all (t,s) € [0,T] x [0,T] and (t,s) — U(t,s) is
strongly continuous from [0,T] x [0,T] to L(H?); moreover for all Cy > 0
there exists Mr.c, > 0 such that

dz
), G0 = WD) < M, ¥ies) € 07107
L*>(0,T;R3
4. the equalities i% = H(t)U(t,s) and i% = —U(t,s) H(s) hold

strongly as equalities between operators from H? to L>.

Proof. This lemma is a consequence of a more general result by Yajima [22].
In order to stay as close as possible to the notations used in [22], we extend
T to a function of class C! (still denoted by %) defined on [T, 7] and so that

| %||Lw(7T’T) = ”%”LW(O,T)' It is clear that V(t,x) = V(z — Z(t)) satisfies
Ve CO([_Ta T]: Lp)+co([_T7 T]: LOO): 68_]: € LOO(_Ta Ta Lp1)+LOO(_T7 T) LOO):

for 2<p < 3andp; =2p/(p+1). As proved in [22] this ensures the existence
and the standard properties of the propagator for the family of Hamiltonians
{H(t)}e_71)- For establishing the L(H?)-bound in statement 3, let us con-

sider ¢° € H? and ¢(t) = U(t,0)¢". We have

¢@=%@wwévm—mMWSm

with Up(t) = €. Following [22], let us choose 2 < p < 3 and let us introduce
for 7 > 0 the functional spaces

X(1) = C%[-7, 7], L)NLY (=7, 7; L), X*(r) = L' (-7, 7; L)+ LY (r,7; LY),
Y(r) = {u € CO([—T,T],H2), — € X(T)} , YV'(r)= {u € CO([—T,T],LZ), % € X*(T)} ,

with ¢ =2p/(p—1),0 = 4q/3(q—2),1/q+1/q¢' =1 and 1/0+1/6' = 1, equipped
respectively with the norms

lullxry = llullco—r,r, 2y HllullLo(—rrpay  Nulla) = ||U||L1(—T,T;L2)+L6’(—T,T;Lq'),

ou ou
lullyry = ||U||00([777T1,H2)+||E||x(r), lully-(ry = ||U||00([7T,T]7L2)+||E||X*(T)-

We also define as in [22] the operator S by

(Su)(t) = /0 Uo(t — s)u(s) ds.

The following estimates are proved in [22]:

12



e for all v € Y*(7), S-v € Y(r) and

15 - vlly(ry < Cull +T)l0lly-(r), (5)

e for any € > 0, there exists a constant C. such that for 7 < 1/2 and for all
u e Y(r), Vu € Y*(r) and

oV
Wl < (Al + 2= | S0 )l GV gl
©)
with
M = Wlom i | 5| = |5
Lo°(—71,7;LP1)4+L>°(—7,7;L>)

With these notations,

$(t) = Uo(t)d° — i(SVe)(t).

Using inequalities (5) and (6), we obtain that for any e > 0 there exist a constant
C. such that for 7 €]0, min(1/2,7T)],

[6lly(r) 1T6(6)8°ly(ry + [1SVlly(r)

Oz + (1 + 7 [Velly- (]
c [||¢°||Hz F+7) (<e||vu o (2

<
<

IN

y
et + cavigioniiz)|

where C' does not depend on ¢° and 7. But in this context, we have

2 2
|z] |z[?

Therefore, as || % ||Loo

Vil =

LP4L> H H ‘ L~ (—7,7) LP14 L[>

o S < (Y, one can find for € > 0 small enough a constant
0<7T<1/2 independent on ¢Y (7 depends however on Cp) such that there exists
a constant Cc, depending on Cy but independent on ¢ satisfying

161l (0,r:82) < N1Dllycr) < Coll@” |2
Consequently, for 0 < ¢ < 7, |[U(t,0)||z(m2) < Cc,, and therefore from state-
ment 1 of Lemma 4,

||U(t70)||£(H2) < Cé’:rT/T = MT,CO: vt € [OaT]

The same result holds for U(t, s) with (¢,s) € [0,T] x [0,T].

We now turn to a detailed analysis of the nonlinear term appearing in the first
equation of (I).

Lemma 5. For ¢ € H', let us define

F() = <|¢>|2 *ﬁ) "

One has the following estimates

13



o forp € H' and ¢ € H*,

1F(¢) = F@)ll2 < Cullldllin + 10llE) 16 = ¥llee, (7)

e there exists a constant Cr such that for all ¢ € H? and all ¢ € H?

1F(@) = < Cr 6113 1] 2, (8)

1F(¢) = F@)llu= < CrlIgllie + 10 1172) 116 — e 9)

Proof. From Cauchy-Schwarz and Hardy inequalities, we have

IF(8) — F@)llpe = ||<|¢|2*§>¢—<|w|2*|;1|>w||m
< (el * ﬁ)(as — )l + (S — [6P) *Eﬂ)wup
< 200l IVBlluz 16 — llze + 6oz (IVlle + [IVelo)llé — bl2)
< Ll + 1126 — Blloe,

which proves (7). Let us now establish (8) and (9). Firstly,

IF()lz2 < 2Vl 2]l

Next, for any arbitrary three functions a, b, and ¢ in H2, we have

A [(ab* i)c} =4rabc+ 2(Vab* i)Vc +2(aVb* i)Vc + (abx i)Ac.
] ] ] ]

We thus obtain

HA {(ab* ﬂ>c] < Culllallzo bl llellze + [V allzs V5121 ¥ell
LZ
Fllallz Vbl | Al
< Cullallin bl lelle- (10)

The inequality (8) follows. Finally,

1F(¢) = F)ll3> = IF(9) = F@)IIZ= + IAF(9) — F())IIL2

and (7) provides us with a convenient upper bound of the first term of the right
hand side. On the other hand,

JAE@) - P2 < 1A ) (=) 3 +IANUSE ~ 912 k)0

] ]

Using (10), it is easy to conclude that
IAF(¢) = F@)IIZ2 < CulllgllEz + 141172116 — ¢l

14



Finally, we establish a somewhat unusual dispersion inequality for the free prop-
agator, namely

Lemma 6. Let Uy(t) = e the propagator of the free particle. One has

Cu
W) fllze.= < ==l fllLsrce,

for all f € L3/%>,
Proof. It is well-known (see [17] for instance) that for 2 < p < oo,

1Uo(®) fllze < @rlt) =222 fl] o, (11)

with 1/p+ 1/p' =1, for all f € L¥. Let 0 < e < 1. Inequality (11) is true
in particular for pg = 3+ ¢ and p; = 3 —e. As LPP = LP (we recall that LP"
denote the Lorentz spaces), we thus can write

10o(t) fllzrora < 2aft) =2 F2/P0 £

NUo(t) fllorwn < (2r|t])2/23/01) £

o,
Lpl’pl

Lemma, 6 follows by using the general Marcinkiewicz interpolation theorem (see
[1] p. 113 for instance) with § = 1/2 — €/6 so that

1_0+£ —1 1——9+i = i (1_0) <_§+3>+9 <_§+3> = _1
po p 3 py, py 3/2 2 po 2 m 2

3.2 Local existence

As announced above, this subsection is devoted to the proof of a local-in-time
existence result for the system (II). We begin by fixing some arbitrary time
T >0,and 0 < 7 < T such that

i 167 _
|2°] + TM%J\UOHWOH@ <202, (12)
8Cr M7 o0 b0l 72T < 1. (13)

where we recall that the constant My 5,0 is defined in Lemma 4, alinea 3 and
the constant Cr in Lemma 5 alinea 2. We shall prove

Proposition 7. The system (II) has a solution (¢, T) in
X; = (CH([0,7], L*) n C°([0, 7}, H?)) x C*([0, 7], R).

Proof. This result is obtained by a Schauder fixed point theorem. Let us denote
by

Bi = {1/) € Cl([077]7L2) N CO([OaT]aHZ) / ||¢||CO([O,T],H2) < 2MT,2|U°\ ||¢0||H2} )

dy

- — =0
20 =7,

B = {17 e C'([0,7],R%) / §(0)=2",

dy
dt

<2 |17°|} )
Co([o,7],R3)

15



In the sequel, B" is equipped with the topology of C* ([0, 7], R*) and B¢ with the
topology of C°([0, 7], L?). We shall need to consider the set B* N C?([0, 7], R?)
equipped with the topology of C2([0,7],IR*). We shall also need the following
two lemmata whose proofs are postponed untill the end of the proof of Propo-
sition 7.

Lemma 8. Let ¢ € BS. The equation

d?z

m—s (8) = WOIVV( - 2(1)[ (1) (14)

with initial data z(0) = z° and %(0) = v° has a unique solution in C*([0, 7], R?)
and this solution belongs to BY. Furthermore, the application

F: B — B*nC*0,7],R?)
v o= Z
18 continuous and bounded.
Lemma 9. Let §j € B?. The equation
oY

G 0.0) = ~A0(0,0) +V(a = g ) + (WP * 0,2) ) wita) (15

with initial condition ¥(0) = ¢° has a unique solution v in C'([0,7],L?) N
C°([0, 7], H?) and this solution is in BS. Furthermore, the application

Gg:B

43

e
T

— B
'_)

(8

NS

is continuous and bounded.

Let us denote by ¢ the compact injection
i: B"nC*0,7],R*) — B

In view of Lemmata 8 and 9 we can define the functional K = 7 o F o G which
maps BP into itself: if § € B?, z = K(g) satisfies

i%z(t,w) = —AP(t,x) + V(z — gt)(t, x) + <|¢|2 N Eﬂ(ﬁ@) bt 7)
S 0 = WOIVY (= 2)(0)
$(0) = go, 2(0) = 2°, %(0) _

with (v, z) € BE x B2.

The set B is convex and bounded and again from Lemmata 8 and 9, K is
continuous and compact since

K B9 Be L Br 0 ([0, 7], R?) < BT,
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the maps F and G being continuous and bounded and the injection i being
continuous and compact. Then K has a fixed point Z in B}, which is in fact
also in B? N C2([0,7],R?) and (¢,%) with ¢ = F() is a solution to (IT) in
B¢ x (B* N C?([0,7],IR?)) C X,. Proving Proposition 7 therefore amounts to
proving Lemmata 8 and 9.

Proof of Lemma 8. For equation (14) to have a unique solution in C?([0, 7], R?),
suffices it to prove that the function

f(t,2) = WOIVV (- - 2)[y(1)
is continuous, bounded and locally Lipschitz in . From Lemma 5, f(t,z) is C!
in z for all ¢ € [0, 7] and
1 @Ollwrooge g3y < CullllZo(go,7,02)-

In particular, f is bounded and Lipschitz in  with a uniform Lipschitz constant
on [0,7] x R®. Besides, by considering a sequence (t,, Z,)nen in [0,7] x R? that
converges towards (¢,7) in [0,7] x R?, we obtain

|f(tn7in) - f(t,ﬂ_?)| dx

IN

|f(t;53n)—f(t,:i)|+2/ [ (tn, 2)* — ¥ (t, 2)]?]

R3 |z — Zp|?
< f(6zn) = f(62)] + 16]IV Y| oo (0,m02) IV (0 (E0) — ¢ (1)) ] L2,

which implies that f is continuous since f(¢,Z) is continuous with respect to &
and ¢ € C°([0, 7], H'). Next, as ¢ € B¢, we have

sup | f] < 81V [[Zo(j0,r),12) < 16 M7 0, 16172
[0,7]xR3

and thus in view of equation (12)

Then, F(¢) € B!. Next, F is bounded since for any ¢ € BE, z = F(¢) is
bounded in C?([0,7],IR®) by a constant independent on %: indeed % = %
with f bounded by 16 M%z\vt)\ |¢°[|,=- Finally, we prove the continuity of F.
Let us consider ¢ € B¢ and a sequence (1, )nen in BE converging towards ¢
in B¢ (for the topology of C°([0, 7], L?)). Denoting by z, = F(¢n), T = F(¥),

Yy =Yy — ¢ and T, = T, — T, we obtain

dz
dt

<%+ = sup |f] <2)°).
Cco([o,7],R3) M [0,7]xR3

&z,
m-—s (t)

(Un(OIVV (- = Zn (@) [Yn(t)) = Q@IVV (- —z(8))[4 (1))

WOV (- = 2@)|dn (1)) + Gn(OIVV (- = Zn
H@OIVV (- = 2n(0)[9n(8)) = DOIVV (- = Z(2)) |10 (1))

Then, using Lemma 3, we obtain for all ¢ € [0, 7]

‘ &>z,

0| E A A0)
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with

an = sup ([(@)|VV (- = ZE)|Pn()] + (u(DIVV (- = (1)) (1))

tel0,7]

and

0 < b, < Culldllcoo, 7, m2) 1¥nllco o7, m2)

Now (by,) is bounded since v, and ¢ are in B¢ and (a,) goes to zero when n
goes to infinity: indeed, as the elements of B¢ are bounded in C°([0, 7], H? and
therefore in C°([0,7], L?) N C°([0, 7], L>), one can find Cp such that for any
0<e<,

|z — zf? |z — z|?

o am ( [ Wl [ e,
le—z|<e |lz—z|>€

zeR3, te[0,7]

Co ~
< Coe+ 6—;||1/1n||00([0,r],L2) < 2Cpe
for n large enough. As z,(0) = %(0) = 0, it follows from Gronwall Lemma

that 7, goes to zero in C2([0, 7], R*) when n goes to infinity.

Proof of Lemma 9. This proof is based on Lemma 4 which ensures the existence
and the £(H?)-bounds of the propagator U (t, s) for the family of Hamiltonians
H(t) = —A+V(x—9(t)) and on the fact that the functional F'(¢) = (|¢|2*ﬁ)q§
is locally Lipschitz in H? (see Lemma 5). Indeed, using statement 3 of Lemma 4
and inequality (9), one can check that the functional

s UC,006° — i / U 8)F((s)) ds

is a strict contraction in the Banach space C°([0, 7], H?) which maps B¢ into
itself for y € B and 7 chosen according to (13). A standard application of the
Picard fixed point theorem gives the existence and uniqueness of the solution to

t
(M) () = U(t,0)¢° — i / Ut 5)F(8(s)) ds,
in C°([0, 7], H?). Next, we have for 0 < t,t' <7, t #1t/,

1 1

T O) —6() = S (U(,0) - U(t,0)¢"

-i [ U8 ~ Ut ) P(o) ds

-t

1
t—t

—i

/t Ut $)F((s)) ds,

and statements 3 and 4 of Lemma 4 enable us to pass to the limit ¢ — ¢ in L?
in each term. We thus obtain that ¢ belongs to C*([0, 7], L?) and satisfies (15)
in a strong sense. Besides, the solution to (15) with initial condition 1(0) = ¢°

18
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is unique in the class C1([0, 7], L?) N C°([0, 7], H?). Indeed let 1; and 2 be two
solutions to (15) with 1 (0) = ¥2(0) = ¢°. We have (¢1 — 12)(0) = 0 and a
straightforward calculations shows that

D lln — allf = 2Tm(F () — F@a)lihy — ).

Then, using (7), we obtain on [0, 7]

d
EH% —all72 < Cullltnllooo,rp,m1) + 1W2llcoo,m,m))|ltr — 2|72

Uniqueness follows by Gronwall Lemma. Next, it is straightforward that G is
bounded since the target set B¢ is bounded. To conclude this section we have to
prove that G is continuous. For that, let us consider a sequence (7, )nen in B?
converging towards g in B and denote by ¢, = G(Z,), ¥ = G(Z), Vn = 1y — 1,
Un = Yn — y. We have

ot

= APV (=)t (9P )B4 Re( (Wt 0) Bk Yt (V (=) =V (— ) o

] ]

Then denoting by U(t, s) the unitary propagator associated with the family of
Hamiltonians H(t) = —A + V(- — #) + (|¢|*> * 1) we obtain

||

Bult) =i [ U(e) (Re((z/)n(s) () Pn(5) % N (5) + (V= ) — VI — y<s>>>¢n<s>) ds.

]

Therefore, we have

~ t ~
(Ol < Co/o IV =gn(s) =V = g()) ()2 + l[vn(s)llL2) ds.
As v, is bounded in L>(0,7; L?) and also in L>(0,7; L*°), we have

V(= 90) = VC = Dnllzmoras) , = 0

Then t,, goes to zero in C°([0, 7], L2) by Gronwall Lemma.

3.3 Uniqueness
The purpose of this section is to prove the

Proposition 10. The solution (¢, Z) to (II) is unique in the class
X, = (C'([0,7], L*(R?)) n C°([0, 7], H*(R?))) x C*([0, 7], R?).

Proof. We claim that Proposition 10 follows from

Lemma 11. Let (¢1,Z1) € X, and (¢2,T2) € X, two solutions of (II) and
denote by T = Ty — Ty and ¢ = ¢1 — ¢o. Then there exists a constant Cy
depending only on ||¢1||lco(jo,r),m2) and ||@2llcoo,),m2) such that for all t in
[0, 7],
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d’z

) < Co (1 + 1~ (16)
~ t1 o, ~
160) 5= < Co | = (175 + 13(e) ) . a7

Indeed, let us assume for the moment that Lemma 11 is proved and consider
the nonnegative continuous function on [0, 7]

h) = ()] +19(0)ls=) "

with p > 2. From inequalities (16) and (17), we deduce for all ¢ € [0, 7]

M) < <Co /Ot[(t—s)+%m&(sn+||$<s)||m,w>ds)p
< a / -9+ 2 ds)p/,, (f A s)
<

[ e
where the constant Cp < 400 depends onp,T, ||¢1||CO([07T],H2) and ||¢2||OO([O,T]7H2)'

As h(0) = 0, we obtain h(t) = 0 for all ¢ € [0, 7] from Gronwall Lemma. Unique-
ness follows. There remains now to prove Lemma 11.

Proof of Lemma 11. Let t € [0,7]. We have

m%(t) = (o @IVV (- = 21(8)|o1 (1) — (D2(O)|[VV (- — 22(2))|¢2(2))
= (¢1(t) = p2(DVV (- = 21(8))|h1 (1)) + (P2(1)[VV (- — 21())|¢1 (1))
H(@2(D)|VV (- = Z2(1))[91(£) — ¢2(2)) — (@2(1)|[VV (- — Z2(1))[¢1(2))
= ()VV (- = Z1(t)|o1 (1)) — (D2(0)[VV (- — Z2(t))|¢1(2))
b2 (DIVV (- = Z2(0)|(1)) + (B(O)IVV (- — Z1.(1)|61.(£)).
On the one hand we deduce from Lemma 3 that the function (¢,Z) — (¢2(¢)|VV (-—

Z)|¢1(t)) is Lipschitz in the second variable with Lipschitz constant bounded by
Cullo1 ()| 2| P2 (8)|| 2z and on the other hand, we have

(SIVV (- = 2)|b(1)] < Cull@llzz | 6()]] 5.,

for ¢ € H? and Z € R®. This proves (16). Let us now turn to the estimate (17)
on ¢. We can write

- / Ualt = 3) [V (2 = 21()d(s) + (V& = 71(5)) = V(& = 7a(5))) ()
o « L ygas)] ds,

)0(5) + (|61 (5)[* = 1@2(s)]*) 2]

+(| 1 ()] *
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where Up(t) = e*® denotes as above the free particle propagator which satisties
(see Lemma 6) the estimate

Cy
||U0(t)f||L3-°° < WH}C”sz,m,

for all f € L3/%°. Thus,

~ t ~
lo(t)lpse < /0%[”V('_3_31(8))(1)(3)”L3/2’°°+||(V('_jl(s))_V('_3_32(8)))(1)2(3)”L3/2’°°
1 ~ 1
(g1 (s)]? * m)fﬁ(s)ﬂm/m + 1((I¢1()]* = 1¢2()]) * m)@(s)“m/m ds.
Now, omitting the time-dependence in order to lighten the notations
IV (- = 21)l| psrze < Cl Tl [EArEe
3,00
V(= 21) =V (- = Z2))p2llpsrzee < V(- =7) = V() pa(- + T2)]| L3/2.0
< |25 ] 1o+
= Wz =2 Jof| 7 .
2|z| _
S de—a!=Er=i L,
lz] |z — 2] || Ls/2.0
1 2
< CullgallL= |Z],
|| L3:00
10617 % =) llgne < CulliPx=|| 1Bz
|£II| - |~'L'| 3,00
, -
< Culldrllze il o o]l 3.,
2 2 1 7 1
161 = 162) 5 D)allprem < H(|¢|<|¢1|+|¢>2|)*—) 6]
|£II| |$| L,3/2,00
- 1
< (ol +ioah e )| henlie
|| L6:2
- 1
< Culllgl(lpr] + 2Dl persz || llp2llL>
|| L3,
1 ~
< Culllpillpe + llg2llz2)l @2l L —‘ Bl s,
|| L300

(see [23] for instance for a proof of the Young inequality in the Lorentz spaces).
The estimate on ¢ follows.
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3.4 Global existence

We now conclude the proof of Theorem 1. As we have already established the
local existence and uniqueness of the solution to (I7) in X, for some 7 > 0, the
global existence is equivalent to the existence of locally uniform estimates on

Z(0)], |5 (1)] and [|¢(t)]|m= (see Segal [19]).
Let us consider T* such that (II) has a unique solution in X, for all 7 < T™*.

Firstly, the conservation of the L2-norm of ¢ is a consequence of the self-
adjointness of the (nonlinear) electronic Hamiltonian and can be established by
computing the derivative % ||¢(t)||2,. We leave this calculation to the reader.
Thus, for all ¢ € [0,T*[, we have

()l = ll¢°[lz2 = 1.

Secondly, the total energy

()\ / V()P + / Via—2(0)I0P (t,2) dat2 DO, [6(0)?)

where D(u,v) ng ng "‘z vl ) dg dy, is conserved. Therefore there exists a

constant Cp depending only on the initial data such that for all ¢ € [0, 7],

dz
dt

()‘<Co,

/ V6] < Co.
R3

We additionally conclude from the above first equation a bound on |Z(t)|. Now,
for t € [0, T,

[16()]| 2> 1U(t,0)6°] 12 +/0 Ut 8)F(¢(s)|| > ds

IN

IN

t
M ¢, (||¢°||Hz L ORI+ CY) / 16(3)] 11 ds) .

Therefore, by Gronwall Lemma, there exist two constants a and b depending
only on the initial data such that

l¢(t)llrr= < ae’*

for all t € [0,T*[. The global existence and uniqueness follow.

4 The Cauchy problem for the molecular system
subjected to a external uniform time-dependent
electric field

When an external time-dependent uniform electric field £(¢) is turned on, the
molecular Hamiltonian H given by (1) is modified by the addition of the external
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electric potential V(t,z) = — ZkM:1 zp€(t) - Ty + Zf\il E(t) - z; created by the
field.

In the present section, our purpose is to show that the Cauchy problem exam-
ined in this previous section, namely that corresponding to the non-adiabatic
approximation with a Hartree-Fock electronic dynamics coupled with a classical
Hellman-Feynman type nuclear dynamics, is still well posed when the molecule
is subjected to an external uniform time-dependent electric field. As mentioned
in the introduction, this situation appears in particular in the modelling of laser
control of chemical reactions.

We leave open the interesting questions concerning the long-time behavior of the
system when the electric field is time-independent. When nuclei are fixed and
for a linear electronic Schrédinger equation (in other words, when the electronic
Hamiltonian is linear and time-independent) we know from the R.A.G.E. Theo-
rem and its corollaries that the electronic wave function leaves the region of the
nuclei and does not return (see [18] for details). We do not know what happens
when nuclei are allowed to move and/or when the electronic Hamiltonian is
nonlinear, except that there exists no stationary state (see [5]). Nevertheless, it
seems to us reasonable to conjecture that all the nuclei move towards the region
of negative infinite potential while the electronic cloud moves towards the re-
gion of positive infinite potential. We hope that this observation will stimulate
further research.

As above, we reason about the system describing the Helium atom in the Re-
stricted Hartree-Fock approximation but, again as in the previous section, our
argument can easily be extended to a molecular system consisting of a finite
number of electrons and nuclei. In presence of an external time-dependent uni-
form electric field, system (II) becomes

iy = A0V a0 480 w0+ (6P x ) o
(110) 3 mE2 (1) = (@ (- - )W) + £ (1)
HO) =", B0 =2, T(0) =

The domain of the self-adjoint operator

Hy(t) ==-A+V(—-2@)+ER) -2+ <|(;5(t)|2 * i)

]

contains H2, = {¢e HXR®) | JI+[iP¢c L2(JR3)} if £(t) # 0 and
equals H? in the special case when £(t) = 0. The space H; is a Hilbert
space when equipped with the norm

1/2
I8llmz, = (IVI+TeP ol + 1A032)

Let us now state and prove

Proposition 12. Let £ € C°([0, +oo, R?). If ¢° € Hff, the system (I1e) has
a unique global solution (¢, Z) in
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Y = (C'([0,+00[, L*) N C°([0, +oo[,H62f)) x C?([0, +oo[, R?).

The following lemma is useful for establishing the proof of the above Proposition.

Lemma 13. Let ¢ € C°([0, +oo[, L?), a € C°([0, +oo[,R), B € C°([0, +oo[, R?),
f €0, +oo[,R), and g € C°([0, +00[,R*). Denote by

((t,2) = f()e OOy (¢ 2 4+ g(t)).
Then ¢ € C°([0, +oo], L?).

Proof. Suffices it to prove the continuity at to = 0. In order to lighten the
notations, we assume that f(0) = 1, g(0) = 0, a(0) = 0 and 3(0) = 0. Let
0 <t <1. We have

168 = Oz = IF @)™ OFFOp(t, 2+ g(2)) — (0, 2)|] 12

1£ ()OO, 2 4 g(2) — (0,2 + g(1)))] 2
+|f ()l or ””](1!1(0, z+9(t)) = ¥(0,2))|| L2
HI(f (@) OO —1)05(0, )| .2

Coll$(t) = (0|22 + Coll(0, z + g(t)) — ¥ (0, z)|| >
HI(f (@) OO —1)0p(0, )| 2.

As ¢ € C°([0, +o0[, L?), we have

IN

IN

l(t) = $(0) 12 — 0.
—0
Besides, in view of Lebesgue convergence theorem,
1(£ () O+ —1)9(0, )| 2 — 0.
t—0

Finally, let ¢ > 0, R > 1 and N > 0, such that denoting by ¥n(t,z) =
max(1(t,x), N), one has

/ (0, 2) 2 de < ¢/4  and / o (0, 2) — (0, )2 de < €/4.
|z|>R—1 R?
As from Lebesgue convergence theorem
[ o0+ 9@) - un .0 0.
|w|<R t—0

one can find 7 > 0 such that for any 0 < ¢ < 7,

14(0, 2 + g()) — (0, 2)[|7= <e.
This concludes the proof of the continuity of ¢ at to = 0 in C°([0, +o00], L?).

Proof of Proposition 12. Uniqueness. Firstly, let us assume that (II.) has a
solution in Y. Following [11], we define
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X(ta ZL“) = ei[k(t)+h(t).z]¢(t7 T — 2G(t))7 g(t) = ﬂ_f(t) + 2G(t)7

with A(t fo s)ds, G(t fo s)ds and k(t fo |h|%(s) ds — 2h(t) - G(t).
The evolutlon equatlons satlsﬁed by (X, ) read

i A+ V(- g+ (|x|2 *i) Y

8t2 2|
() ¢ m %20 = WOV (= FOXO) + G + 20
x(0) = ¢o, 7(0) = z°, ZZ(O) =,

Clearly, 7 € C?([0, 4+o00[,R?) and, using Lemma 13, a straighforward calculation

shows that x € C°([0,+oo[, H 2). Inserting this result in the first equation in
(I1,), we obtain in addition B—X € C°([0,+o0][, L?). Consequently, (x,%) € X.
The same argument as in Sectlon 3.3 shows that the solution to (I1.) in X is
unique. Therefore, if it exists, the solution to (I1.) is unique.

Ezistence. Following the same strategy as in Section 3.2, it can be proved that
system (II.) actually has a solution (x, ) in X (the drlft term (z + 2m)5 does
not bring up any additional difficulty). Besides, \/1 + |z|2x € C°([0, +-o0[, L?).
Indeed, let us consider the function n(z) = /1 + |z|?, which satisfies

T o 3+ 2z|?

€ L=,
A+ PP

and a monotonic sequence (7, )nen Of non-negative functions in D(IR?) such
that

® Mn, VN, and An, converge a.e. towards 1, Vn, and An respectively;

® n <11, [Via| < 2[Vn| and |Any,| < 2|A7.
Clearly, for any n € N, &, (¢,z) = nn(x) x(t, ) is in C°([0, +oo[, H?) and satisfies

the following equation

£a(t) = U(t,0) £,(0) — i / U(t, ) fuls) ds

where U(t,s) is the propagator associated with the family of Hamiltonians
H(t)=-A+V(-—g(t)+ (|X|2 ‘7) and where

fu(t,z) = 2V, (z) - Vx(t, @) + Any(z) X (¢, 2).

Denoting by £(t,) = n(z) x(t,2) and f(t,) = 2Vn(z)-Vx(t,2)+An(x) X(t, ),
it follows from the convergences

£,(0) — €(0) inL? and fnn—)_+)oof in C°([0, +o0[, L?)

n—+00

that & satisfies
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£(t) = U(t,0)£(0) — i / U(t, ) f(s) ds,

wich implies in particular that £ € C°(]0, +o0], L?).
Finally, denoting by

ot x) = e IROTHOGH2 GO\ (1 2 1 2G(1)),

Z(t) = y(t) — 2G(t).

and using again Lemma 13, it is easy to conclude that (¢, %) is in Y and satisfies
(II.) in a strong sense.
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