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Abstract

We study the link existing between the parametrization of differential operators by poten-
tial-like arbitrary functions and the localization of differential modules, while applying these
results to the parametrization of control systems. In particular, we insist on the fact that
the localization of differential modules is the natural way to generalize some well-known re-
sults on transfer matrix, classically obtained by using Laplace transform, to time-varying
ordinary differential control systems and to partial differential control systems with variable
coefficients. Among the many results presented, we include the comparison between scalar
observables, namely functions of the control system variables and their derivatives, satisfying
at least one ordinary or partial differential equation, and first integrals, in the ordinary case.

Keywords: Parametrization of differential operators, localization, controller form, control-
lability, transfer function, minimal realization, formal integrability, differential module, com-
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1 Introduction

If we consider an operator Dy : E — Fy and a section 7 of the vector bundle Fy, then a
necessary condition for the local existence of a section £ of E satisfying the inhomogenous
system Dy & = 7 is of the form D; n = 0. The operator D; only depends on the operator Dy
and it is called the compatibility conditions of Dy. An historical problem was to construct
effectively the operator D;. This problem was investigated by Riquier and Cartan at the
beginning of the century [2, 26] but received a nice improvement with Janet’s work in the
twenties |7]. Let us recall that, following Hadamard’s advice, his thesis advisor, Janet went
for a few months to Gottingen to study syzygies with Hilbert. Janet showed that the operator
D1 could be constructed by bringing the operator Dy to involutiveness and that D; was, in
general, of high order. Starting anew with the operator D, Janet proved that the procedure
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had to stop after at most n+ 1 steps, where n is the number of partial derivatives. We obtain
a sequence of differential operators D; on the “right” of Dy and depending only on Dy

D D D Dn— D,
0— 0 ——FE-"%5F—-5%F —3... 25 F,_, —F,—0,

where © denotes the solutions of Dy. More recently, in the seventies, the study of systems
of partial differential equations has been developped again by Spencer and students (Quillen,
Goldschmidt ...) [3, 15, 24, 25| with the differential geometric point of view. They formulated
systems of partial differential equations in terms of the jet theory of Ehresmann. Moreover,
Spencer introduced groups of §-cohomology to study the involutiveness of partial differential
operators. This theory is called the Formal Theory of Partial Differential Equations and it is
centered around the concept of formal integrability. Quillen and Malgrange have reformulated
the differential geometric Spencer’s approach in terms of a differential algebraic one, within
the framework of differential modules [14, 24].

Dually, if we have a system of partial differential equations Dyé = 0, it is sometimes
useful, in physics or in applied mathematics, to know when the solutions of the systems can be
parametrized by certain arbitrary functions called “potentials” (for example, curly =0 = 3¢
such that grad £ = ). The new problem is the following: starting with an operator Dy : £ —
Fpy, can we find a criterion to decide on the existence of an operator D_; : E_; — FE such
that Dy & = 0 represents exactly the compatibility conditions of the inhomogeneous system
D_10 = £ We shall say that D_; is a parametrization of the operator Dy. Thus, we would
like to construct a differential sequence, on the left of Dy and depending only on Dy,

B e, Pxp P Pop
in which each operator exactly describes the compatibility conditions of the previous one. This
criterion exists for sygyzies. It was first provided in the seventies by Palamodov for linear
partial differential operators with constant coefficients, and was extended by Kashiwara for
analytic ones [10, 17]. Their results are based on the differential module approach. They
say that the obstructions of embedding a left finitely generated D = A[d,, ..., d,]-module M,
where A is a differential ring and d; are the derivatives, into a sequence of k free D-modules
D5

0— M — D — D** — ... — D%t — D%, (1)
are:

e for k=0, the injectivity of the canonical map M N homp (homp(M, D), D) defined by
Vz € M,Vf € homp(M, D) : ¢(z)(f) = f(z),

e for k=1, the injectivity and the surjectivity of ¢,

e for k > 1, the injectivity and the surjectivity of ¢ plus other conditions on the vanishing
of certain extension modules [28] (Vi = 1,....,k — 1 : ext’,(Homp(M, D), D) = 0), a
beautiful but delicate powerful tool of homological algebra which is out of our scope
now and will be presented elsewhere.

As far as we are concerned, the quite abstract previous results of Palamodov-Kashiwara seem
to be unknown in applied mathematics or in physics. The purpose of this paper is first of all
to show that these methods are useful in control theory. We shall show that the introduction
of differential modules and homological algebra in control theory gives a characterization of
the structural properties of the control systems in terms of intrinsic properties of differential
modules. In particular, the controllability, which is one of the key-concepts of the control
theory, can be reformulated by means of torsion-free differential module. Every torsion-free



differential module can be embedded in a free differential module (k = 0 in the Palamodov-
Kashiwara’s classification), which means, in the operator language, that the operator Dy
defining the control system can be parametrized by an operator D_;. We shall show that
the parametrization D_; is just the generalization of the controller form for ordinary control
systems (OD control systems) with time-varying coefficients or for partial differential control
systems (PD control systems) with variable coefficients [8]. We shall show how to use the
formal duality and the formal integrability theory (see the first paragraph) to check whether
a control system is controllable or not and to compute effectively the operator D_;. In
the nonlinear case, we show how to look for constrained observables and prove that such
a search in the general framework supersides the search for first integrals, in the ordinary
differential case. Secondly, The aim of this paper is to show that there exists another way
to compute a parametrization D_; of the controllable system Dy, by means of a localization
of the differential modules. We shall show that the localization approach is the natural way
to generalize the results given by the Laplace transform techniques to the time-varying OD
control systems or PD control with variable coefficients [5, 13]. Finally, we will study the
link between those two approaches and we shall see that even if the parametrization found
by localization is sometimes “better” than the one computed by using the formal duality and
the formal integrability theory, in the sense that it is much simpler, it is in general “worst” in
the sense of the Palamodov-Kashiwara’s classification. Many explicit examples will illustrate
the main results.

2 Linear Control Systems

Recently, the language of the differential modules has been introduced in control theory to
understand in a intrinsic way the structural properties of a control system. This introduction
was guided by the wish to have a tool, which formally looked like the Laplace transform, but
which could permit a better understanding of the notion of controllability and observability.
We recall that the Laplace transform changes a system of ordinary differential equations with
constant coefficients into a matrix of rational fraction in the Laplace variable s (the transfer
matriz of the system). For example, the system § — ¢ — 2y — 4 + 2u = 0 with y(0) = 0,
ﬁ(i)ﬁ) @, where we denote by ¢, 4 the Laplace
transform of y,u. The transfer matrix of the system is H(s) = % = ?11, after the
cancellation of the common factor (s —2). In 1960, Kalman was the first to understand that
such a cancellation led to a loose of the controllability of the system, that is to the loose of
the possibility of passing in finite time 7" from any initial condition y(0) = 0 to any point
p € R by a appropriated command u [9] (VT,Vp € R, Ju :[0,7] — R such that y(T') = p).
Moreover, such a cancellation, by a factor having a root with a negative real part, leads to
a loose of the stability of the system and it is called “unstable cancellation”. The use of the
differential module prevents any cancellation |1, 4, 5, 13, 18|. Indeed, we shall write the
system as (£ 4+ 1)(4 —2)y — (£ —2)u =0, i.e, (& —2)((L 4+ 1)y — u) = 0. The last equation
leads to the existence of a torsion element, i.e. an element z = (% + 1)y — u satistying the
non zero equation (% —2) z = 0. In this way, the controllability of the control system can be
seen as the lack of any torsion element, that is to say, in the algebraic language, the module
generated by the control system is a R[] torsion-free differential module [28]. We see that
the use of module permits to give an intrinsic definition of controllability and it provides a
clear understanding of the previous cancellation, a fact that cannot be done with the Laplace

transform techniques (vector space over R(d—d)).

becomes, by the Laplace transform, g = 0



2.1 Module Theory

Let Dy : Fy — F1 be a linear partial differential operator, where Fy and F} are vector bundles
over a manifold X of dimension n with local coordinates z = (z',...,2"). The operator D;
sends a section 7 of Fy to a section ¢ of Fi. In order to generalize the previous results to
variable coefficients case, we have to use more general fields than R as for example R(¢) or
R(z!,...,z"). Thus, we have to define the notion of differential field.

Definition 1 1. A differential field K with n commutative derivatives 01, ..., 0, is a ring
which satisfies: Va,be K, Vi=1,...,n:
e Jia € K,
° 8l(a + b) = Bia + 8ib,
° 8l(ab) = (8ia)b-l— a0;b,
® 0,0; = 0;0;.
2. Let K be a differential field containing Q with the set of derivatives {01, ..., 0, } and let
us denote by D the K-algebra K [dy,...,d,] of the differential operators, satisfying:
(a) didj = djd;,
(b) Ya € K : dja = ad; + 0O;a.
The ring of differential operator D is a non commutative integral domain but it is a left
Ore algebra, i.e., ¥ (p,q) € D? 3 (u,v) € (D\0)? such that up =vgq.

3. Introducing the differential indeterminates y = (y',...,y™), we denote by Dy the left D-
module Dy' 4+ Dy?+...4+Dy™ and by M the finitely generated left D-module determined
by the operator Dy, i.e. M = Dy/(D;y), where (Dyy) is the D-submodule generated
by the linear differential expressions of D;y.

Remark 1 We shall use either the language of jet theory for systems of partial differential
equations (PDE) or the language of sections for operators [18]. In the first case, we write
diyﬁ = yZ_Hi, where p = (g1, ..., pbry) is a multi-index of length |u| = 1 + ... + py, whereas, in
the second case, d; must be replaced by J; on sections. We shall use the notation 0;; = 9; 0;.

Example 1 Let us take the operator D; : § — ( defined by

Opn' — o' =201 + 20 + 2% = 7, 2)
0xn' + Oan? — Oy’ = (2,

and D = R[dy,dy]. We use y = (y',y?) and we consider the D-module M = Dy/(ys — yi —
2y} + 29" + 24, y3 + U3 — y})-

We recall certain properties of the D-module M [28|.
Definition 2 e The D-module is free if there is a set of elements of M which generates

M and whose elements are independent on D.

e The D-module is projective if there exist a free D-module F' and a D-module N such
that: £ = M & N. Thus, the module N is also a projective D-module.

e We call the torsion submodule of M, the D-module defined by ¢(M) = {m € M |3p # 0,
pm = 0}. The D-module M is torsion-free if t(M) = 0, and in any case, M/t(M) is a
torsion-free D-module.



It is quite easy to note that every free D-module is projective and every projective D-module
is a torsion-free, which can be summed up by the following module inclusions:

free C projective C torsion-free.
We have the following theorem. See [28] for more details.

Theorem 1 1. If D is a principal ideal ring (for ezample D = K[%] with K a differential
field), every torsion-free D-module is a free D-module.

2. Every projective module over a polynomial ring kX1, ..., Xn], where k is a field, is free
(Quillen-Suslin). Thus, over D = k|[0y,...,0,], with k a constant field (i.e., Yi =
1,...n,Va € k:0;a=0), any projective module is free.

2.2 Controllability

Now, let a control system be defined by the operator Dy : Fy — Fi. Let M be the D-
module determined by this operator, i.e., M = Dy/(D;1y). The lack of controllability of the
polynomial control system is due to the existence of torsion element. We find the following
definition of controllability in [1, 4, 13, 18].

Definition 3 1. We call observable of the control system any scalar function of the inputs,
outputs and their derivatives up to a certain order. In the linear case, an observable is
an element of M.

2. A system is called controllable if every observable of the system does not satisfy by itself
a PDE.

Theorem 2 A control system defined by an operator Dy is controllable iff the D-module M
determined by Dy s torsion-free.

As a by-product, the control system defined by the D-module M /t(M) is always control-
lable.

Example 2 1. Let the OD control system be defined by

-1 2 3
n—n"—n"=0,
{’f]2—771+05’l73:0, (3)

where « is a constant coefficient in R. We let the reader check that for &« = —1, the
element z = n' — n? satisfies # + z = 0 and thus z determines a torsion element in
the corresponding D-module M. Moreover, if & = 1, we have z = 5! + n? satisfying
Zz — z = 0 and thus it determines a torsion element in M. At least for two values of the
parameter «, the control system is not controllable.

2. Let us consider the system defined by:

Oont — Ot — 2013 4 2n' + 212 =0,
812773 — 82771 — 82772 =0.

This system is not controllable as the observable z = n' satisfies o227 — 9122 = 0.



In the previous example, we have shown that for two disctinct values of the parametrer «,
the system was uncontrollable. Now, we can wonder if for the others values of «, the system
is controllable. Thus, we would like to have a formal test permitting us to know whenever
a system is controllable, i.e., whether the D-module generated by the system is torsion-free.
However, any submodule of a free module is torsion-free and reciproquely any torsion-free
can be embedded in a free module. This is the first embedding in the Palamodov-Kashiwara

classification and we have to know if M 25 homp (homp(M, D), D) is injective or not (see
the introduction). This can be checked by using the formal duality and the formal theory of
PDE as it has been independently discovered in [18].

3 Parametrization

Every torsion-free module can be embedded into a free module (k = 0 in the previous
Palamodov-Kashiwara’s classification), which means, in the operator language, that the op-
erator Dy can be parametrized by a certain operator D_;. We shall show how to compute
effectively the operator D_; for controllable systems and we shall also show that it is the
generalization of the well-known controller form for control systems in the Laplace domain,
i.e. in polynomial form with respect to the Laplace variables s = (s, ..., s,) (see |8, 22]).

3.1 Torsion-free D-module

We denote by E a vector bundle over a manifold X, by T* the cotangent bundle of X, by
E* the dual bundle of E and by E = A" T* ® E* its adjoint bundle. The adjoint bundle £
is the right generalization of the concept of tensor density in physics [18].

Definition 4 If Dy : Fy — F} is a linear differential operator, its formal adjoint ﬁl : ﬁ'l — Fb
is defined by the following formal rules equivalent to the integration by parts:

e the adjoint of a matrix (zero order operator) is the transposed matrix,

e the adjoint of 0; is —0;,

e for two linear PD operators P, Q) that can be composed: ]726 =QoP.

We can easily verify that 251 = D,. It can be proved that, for any section A of F}, we have
the relation

<A\ Din>—<Di\n>=d(),
expressing a difference of n-forms (A € A"T* ® Ff =< X\, D1n >€ A"T*), where d is
the standard exterior derivative. We can directly compute the adjoint of an operator by
multiplying it by test functions on the left and integrating it by parts.

Example 3 Let us compute the adjoint of the operator Dy :  — ( defined by
-1 2 3 1
= =0’ =q,
. 4
{772_771_’_0”73:@2‘ (4)

We multiply the system on the left by the row vector (A1, A2) and we integrate the result by
parts, we find Dy : (A1, A2) — (u1, e, p3) defined by:

—>:\1 — A2 = 1,
—A2 — AL = pg, (5)
—A1 + a X = us.



As we have noticed in the introduction, it is sometimes useful to parametrize a system
of PDE by some “potentials” considered as arbitrary functions. It leads to the following
definition.

Definition 5 An operator Dy : E — Fy is said to be a parametrization of the operator
Dy : Fy — Fy, if Dy represents exactly the compatibility conditions of Dy € = 7.

Let us describe the formal test checking if a D-module is torsion-free or not [18].

Torsion-free Test & Parametrization:

1. Start with D;.
2. Construct its adjoint D.
3. Find the compatibility conditions of DA = 1 and denote this operator by Dy.

4. Construct its adjoint Dy (= Dy).
5. Find the compatibility conditions of Dy ¢ = n and call this operator Dj.

We are led to two different cases. If Dy is exactly the compatibility conditions D} of Dy,
then the system D; determines a torsion-free D-module M and Dy is a parametrization of D;.
Otherwise, the operator D; is among, but not exactly, the compatibility conditions of Dy. The
torsion elements of M are all the new compatibility conditions modulo the equations Dyn = 0.

Proof The operator Dy describes exactly the compatibility conditions of the operator Dy
and we have in particular 250 ) 251 =0 = Dy oDy =0. Thus, D; is among the compatibility
conditions of Dy, which are described by the operator Dj. Now, computing the differential
rank of the operators D] and D, we find that diff rk D] = diff rk D; (see [18] for more
details). If Dy is strictly among the compatibility conditions of Dy, then any new single
compatibility condition ¢’ in D] is a differential consequence of D; (diff rk D] = diff rk
D1), and we can find an operator ¢ € D such that ¢’ = 0 whenever Dy = 0. Thus, any
new single compatibility condition of Dy (not in D;) determines a torsion element. If D
describes exactly the compatibility conditions of Dy, then the D-module M determined by
Dy is torsion-free because M C D¢ and D€ is a free D-module.

We can represent the test by the following differential sequences where the numbers indi-
cate the different stages:

D] ,
2 E2E By B
3 E& R & B 2
If the D-module determined by the operator D; is torsion-free, the test gives a parametriza-
tion Dy of D;. This operator is the generalization of the controller form [8, 22| for non-
surjective time-varying OD control systems and PD control systems with variable coefficients

(see [22] for more details). Let us illustrate it with example of ordinary differential time delay
system presented in [16] but interpreted here as partial differential system.



Example 4 Let us try to know if the operator given by (2) is controllable or not. We
multiply Din on the left by A = (A1, A2) and we integrate the result by parts in order to find
'151 A — L

—02A2 + 2X1 = g,

The system admits only one compatibility condition of second order (formal integrability
theory) which defines the operator Dy : p — v:

Og2 13 — O12 3 — Oz pig + 2012 pr1 — O11 po + 201 py — 20; pg = v
Taking its adjoint, we finally find the operator Dy : ¢ — 1 defined by:

2012€ — 201 € =1,
—012& — 011 & + 201 & = 1%, (6)
Do & — D2 & =nd.

We let the reader check that the operator D; exactly generates the compatibility conditions
of Dy and thus D; determines a torsion-free D-module. A parametrization of (2) is (6).

We now describe how to compute the torsion elements.

Computation of torsion elements:

1. Compute D} and check that D; is strictly among Dj.

2. For any new single compatibility condition of the form Din = (' of D}, compute the
compatibility conditions of the following system:

Dl n= 0,
D} n = (' (one equation only).
3. We find that ¢’ is a torsion element of M satisfying ¢’ = 0 with 0 # ¢ € D.
We give an example of the search of torsion elements.

Example 5 Let us consider the operator Dy : n — (, adapted from a ordinary differential
time delay system presented in [16], defined by:

dont — Ot —201m3 + 20t + 2n% = (L, 7
Oam® — Ot — don? = (2.

Its formal adjoint D; : A — p is defined by:

—0OoA1 + O2Xa + 01 A1 + 22X\ = p1,
Oodg + 201 = pa,
0122 + 201 A1 = p3.

There is one compatibility condition —d e + p3 = 0 and thus the operator 150 o — Vs
given by:
=012 + p3 = v.



We find the operator Dy : & — n defined by

0=n,
81527723
& =13,

and we find the following operator Df : n — ('

1_ 1
(75 o

Thus, the D-module determined by D; admits torsion elements which can be computed by
finding the compatibility conditions of the systems

nt =1,
Oyt — 01t — 2013 4 2n' + 21?2 = 0,
Oan® — Oam' — Bom® =0,

and
o —n? =2,
don' — Oin'* —201n* +2n' + 20° =0,
d12n® — Oan*t — Ban? =0,

and we find the two torsion elements satisfying

(t=n'
{ Do’ — D19¢" =0,
and

{ (2 =om® —n?,
992C'? — 912¢? = 0.

3.2 Projective & Free D-module

Let us turn to a projective D-module. We only give here a charactarization of a projective
D-module determined by a surjective operator D;. We refer the reader to [22] for a gen-
eral treatment of projective D-modules and for their applications in control theory to the
generalized Bezout identity [8]. See also |6, 29, 30, 31].

Theorem 3 A surjective operator Dy : Fy — Fy determines a projective D-module M f its
adjoint Dy is injective, i.e., if there exists an operator Py : F| — Fy such that Dyo Py = idp,,
where idp, is the identity operator of F}.

Proof If the operator D, is injective, then a differential consequence of the equations DiA=0
is A = 0. Using the formal integrability theory, we have D1\ = p = X\ = Pip and thus
751 o ﬁl = idﬁl = Dy o Py =idp,. The operator Py : Fi — Fj is a right-inverse of D; and D;
determines a projective D-module.

Finally, we have the obvious theorem.

Theorem 4 An operator Dy determines a free D-module if it exists an injective parametriza-
tion Dy, i.e., if it exists o left-inverse Py of the operator Dy.



Let us give an example to illustrate both projective and free D-modules.
Example 6 Let us consider the following operator Ds : { — m, defined by:
0y(* — a0t + ¢ = (9)
Its formal adjoint Dy : K — X is given by

2 01k + K = A,
—82I€ = )\2,

and we easily see that D; is an injective operator as we have
K = —$2(92)\1 — ($2)281>\2 — $2)\2 + A1, (10)

Thus, the operator Dy generates a projective D-module, and taking the adjoint of (10), we
obtain a right-inverse Py : m — ( of Da:

220y + 27 = (1,

()20, — 2%m = (2.
We let the reader clleck that Do o Py = idp,. We obtain the operator 151 : A = u, by
substituting (10) in Dy, and we find:

(22)2012A1 + (22)%011 X2 + 2(2%)201 A — 2201 M1 + 2201 + 220 = 1y, (11)
$2822>\1 + ($2)2812>\2 + 2:13281)\2 + $282)\2 = l2.

Dualizing D, we obtain a parametrization D; : n — ¢ of Da:

{ 12 0o n? + (22)2 012t + 20202 + 322010t — 22t —nt =1,

($2)2 (912 772 + ($2)3 811 771 _ $2 62 772 _ 2($2)2 81 771 + $2 771 _ 772 — C2' (12)

We see that we can parametrize the operator Dy by two arbitrary functions ' and 7.

Does there exist a parametrization of the new operator D; 7 To answer it, let us take the
adjoint of D; defined by (11) and let us see if it admits some compatibility conditions Dy.
We easily note that the two equations are not differentially independent (independent on D,
see [12, 27]) as we have one compatibility condition between u; and pe, i.e.

2?0op1 — (7%)201p2 — 2 e — p1 = 0.
Thus, the operator Dy : i — v is defined by

220op1 — (2°) 2012 — 22p0 — p1 = v,
and dualizing it, we find the following operator Dy : & — n:

_$282£ —2{= 7717
T Ve 13)

The operator Dy is an injective operator as we have
€=’ + a0 n' —n',

and we can easily verify that Dy is a parametrization of D;. Thus, D; determines a free
D-module with £ for basis and the operator Dy admits a parametrization Dy which admits
itself a parametrization Dy:

0—E2p 2upPap o

10



Let us give a useful corollary of theorem 4.

Corollary 1 A surjective OD operator Dy is controllable iff its adjoint is injective, i.e., iff
it exists a right-inverse Py of D1.

Example 7 Let us test the controllability of the OD control system (4). The operator Dy
defined by (4) is surjective and its formal adjoint is given by (5), i.e.

—>:\1 — A2 = p1,
—A2 — A\ = p2,
A+ al = pu3

Let us investigate the injectivity of D;. Differentiating the zero order equation and substi-
tuting it in the others, we find the new zero order equation

(I —a)(l +a)Aa =13 — p1 +ap2 — aps.

We can easily verify that D; is injective and thus controllable iff (1 — a)(1 + c) # 0. Finally,
we obtain the following tree of integrability conditions:

l1-a)14+a)=0 (1—a)(l+a)#0

not controllable controllable

See [21, 23| for more general trees of integrability conditions. In this way, the controlla-
bility of a surjective OD control system with unknown time-varying coefficients depends on a
single tree of integrability conditions. In the general situation, it depends on two problems of
formal integrability (150 and Dy) and thus it depends on two trees of integrability conditions.
We let the reader check that for « = —1 and « = 1, we find the torsion elements defined in
example 2. Let us show the link between torsion elements and first integrals of motion. If
« = 1, the operator D, is not injective and the solution of D; A = 0 is, after one integration,

A(t) = Ao (t) = e~ 1)\ (8).

Moreover, we have < X\, Dy >=< Di\, 7 > —I—%()\ml + A2n?) and if we take (1, \) satisfying
Din =0 and 151)\ = 0, we obtain i()\1771 + )\2172) = 0 and thus we obtain a first integral of

dt
motion
Z(t) = e\ (t0) (n*(8) + n? (1)),
Z(t)=0
We can do the same for o = —1.

We have the following theorem.

Theorem 5 If Dy is a surjective and non controllable system, then the following numbers
are equal:

1. The number of solutions of the adjoint operator Dy that are linearly independent over
the constants of K.

11



2. The dimension over K of the jet space of order zero of the corresponding adjoint system.
3. The number of torsion elements which are linearly independent over the constants of K.

4. The number of first integrals that are linearly independent over the constants of K.

Hence, we would like to stress the importance of torsion elements compared to first inte-
grals in view of the following two comments:

1. The search for torsion elements is purely algebraic while the search for first integrals is
purely analytic (integration needed).

2. The concept of torsion elements can be extended to the PD case as the concept of first
integrals is only restricted to the OD case.

Remark 2 In the nonlinear framework, a similary comment is still valid but is out of the
scope of this paper devoted to linear systems. Shortly, we study here the case of an affine
OD system § = a(y) + Y.;_; bi(y)u;. We have already indicated in [18] that the num-
ber r of functionaly independent constrained observables, that is, observables satisfying at
least one OD equation is equal to the corank of the strong controllability matrix gener-
ated by b;,[b;, b;], [a, b;]..., because each such observable must be killed by this distribution.
If we denote by z1,...,2,. such a functionaly independent set, we notice that the deriva-
tives 21, ..., 2, are still constrained observables and we have, according to the implicit func-
tion theorem, z; = ¢i(z1,...,2,). Hence, if Z = f(t, 21,...,2) is a first integral, we have
7z = % + 37 g—zfigbi(zl,...,zr) = 0. Hence, we find by integration (as in the linear case
indeed), exactly r functionaly independent first integrals Z1, ..., Z, killed by the vector field
% +37 (l)i(z)a%i. Once more, we notice that z; = g;(y) only depend on y while Z; = h;(t,y)
explicitly depends on ¢ in general. Of course, we notice that first integrals are trivially con-
strained observables.

We have shown how the theory of differential modules allows us to give a more intrinsic
formulation of certain properties of the control systems. In particular, this theory makes clear
the fact that the simplifications of the transfer matrix correspond to the existence of torsion
elements in the module generated by the control system.

4 Localization

We would like to have a formal generalization, in the differential module language, of the
Laplace transform but extended to time-varying ordinary differential equations or to par-
tial differential equations with variable coefficients. We shall recall that it can be done by
localization. This method leads to the well-known concept, in control theory, of the minimal-
realization which is just equivalent to find a realization of the torsion-free part of M. Thus,
by extension of the coefficients of M from D to Q(D), we can copy much of the Laplace
methods. This fact was first observed by Oberst |11, 13| in case of constant coefficients and
by Fliess [5] for time-varying control systems. Let us recall those results and develop them
for PD control systems with variable coefficients.

5 Definition & Properties

Let us recall some results about the localization. See [10] for more details.
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Definition 6 Let S be a multiplicative subset of D, i.e. a subset of D satisfying the following
properties:

1. 1€ 8,

2. Vs,teS=ste S

3. Vae D,se€ S=dbe D,t € Ssuch thatta =bs.

4. Ya € D,s € Ssuch thatas =0 = 3t € Ssuch thatta = 0.
Let M be a D-module, then we define the S~'D-module S~!'M as the quotient of the sets
(s,z) € S x M by the equivalence relation defined by:

(s1,71) ~ (s2,22) & Is), sh, € S such that s|s; = shsy and s\ 21 = shas.

We denote by s~ !z the equivalence class of the pair (s,z) and such a procedure is called “left
localization”. We have S™'M = S~ 'D ®@p M.

In particular, if we take S = D\ 0, we obtain S™'D = Q(D) the left field of fraction of D
and we have the following exact sequence

0 — t(M) — M 55 S 'M = Q(D) ®p M,

where t(M) is the torsion D-submodule of M. So, if the D-module M is a torsion-free D-
module, then the homomorphism ig is injective and M is embedded into the Q(D)-vector
space Q(D) ® p M. The torsion elements vanish in Q(D) ® M, a fact which is similar,
in the constant coefficients case, to the cancellation in the transfer matrix. The following

theorem extends the passage from left-coprime to right-coprime used in classical control
theory (D = R[s]) [§].

Theorem 6 Let S = D\ 0 then we have:
S'D=DS. (14)

Let us give an effective proof of this theorem, which makes clear the link between localization
techniques and the use of duality through the formal test for checking whether a module is
torsion-free or not.

Proof Let ¢ € S and b € D, we have to show that 3p € D, ¢ € S such that a='b = pg~'.
If b =0, then the result is obvious. Let us suppose that b # 0. We denote by Dy : n — ( the
operator defined by:

ant —bn? =¢.
The adjoint Dy : A — p is defined by:

aA= K1,

b= M.
Now, using the fact that D is a left Ore algebra, we can find one compatibility condition
Dy : p# — v defined by

P —qu2 =v, (15)
with ¢ # 0 and thus p # 0. Dualizing, we obtain the operator Dy : £ — 1 given by :
{ pE=1
q& =1’

13



Hence, £ = ¢ 'n? = n' = pqg '7n% Finally, the kernel of the operator D; is defined by
an' —bn?> =0, a#0=n' =a"'bny? and thus a~' b = pg~!, which concludes the proof.

We have the following corollary.
Corollary 2 D is a right Ore algebra, i.c., ¥ (a,b) € D?,3(p, q) € (D\0)? such that ap = bq.

When we start with an operator with constant coefficients which determines a torsion-free
D = R[dy,...,d,]-module, then we easily obtain a parametrization by localization. Indeed,
we have the useful relation:
0710, = ;07"

Let us give an example.

Example 8 Let us try to find by localization a parametrization of the divergence operator
in R, defined by:
n' + 0an* + dsn” = ¢

We have 1® = —05 1 (91n') — 05 1 (0an?) = n® = —01(05'n") —02(05 'n?). Finally, if we denote

we have the following parametrization of the divergence operator:

83 51 = nla
83 52 = 7727 (16)
—01 & — 0 & =1,

We remark that we do not find the usual parametrization of the divergence operator by the
curl. Moreover, this new parametrization (16) cannot be parametrized in its turn whereas
the curl is parametized by the gradient (k = 1 in the Palamodov-Kashiwara’s classification).
We shall see that it is a general fact that the parametrizations found by localization are
“simpler” than those obtained using the formal test, but they are “worst” in the sense of
Palamodov-Kashiwara’s classification of differential modules (see the introduction).

The situation of operators with variable coefficients is more complicated. However, the
proof of theorem 7 shows how to use the formal duality and the formal integrability to find
a parametrization of an operator, when it determines a torsion-free D-module.

Example 9 Let us consider the following system of PDE:
O Ct—z?oct+¢t=0.

We can solve the system with respect to (?: (? = 82_1(352 01 — 1)¢t. We pose a = 02 and
b = 220y — 1, and let us search two elements p and ¢ € D such that ap = bg. This is
equivalent to search p,q € D such that pa = q~(~), i.e. to find one compatibility condition of
the following operator:

{ —ok = A1, (17)

—2201k — K = s

This operator is injective as we have k = 220x\y — (22)201 A1 — 22A\1 — X2 and we find two
different compatibility conditions of (17): the first is defined by

—0Ogo)o + 22019\ + 200 M1 4+ Ay = 0.,

14



whereas the second is given by:
—$2812>\2 + ($2)2811>\1 + 2:13281)\1 + Ay — Foho + A1 = 0.

So, in the first case, we have p = £20,2+20, +05 and § = 09, which give p = 22019 —01 —0»
and g = O93. Finally, we have

82($2812 — 81 — 82) = ($281 — 1)822,

and thus
C2 = 851($281 — 1)C1 = ($2812 — 81 — 82)8521 1.

Let us pose n = 82_21C1, we obtain the parametrization:

Byan = ¢,
18
{ 2?019n — O — don = (2. (18)

Similary, with the second compatibility condition, we shall obtain another parametrization:

{ z2019m + 201m — Ao = (1,

(x2)28117] — 2220 +n = (2 (19)

We remark that we are in the same situation as in the example 8: we have obtained two
different parametrizations of (2) which are more simple compared to (12). However, those
two parametrizations cannot be parametrized at their turn whereas (12) is parametrized by
an injective operator.

Let us try to explain why the localization techniques give more simple parametrizations
than the formal test. Firstly, we have to remark that the parametrization (16) of the di-
vergence operator has two arbitrary functions whereas the parametrization by the curl has
three arbitrary functions in R?. The same remark may be done for the previous example: the
parametrizations (18) and (19) have just one arbitary function whereas (12) has two. The
number of arbitrary functions in Dy is equal to the number of equations of its adjoint Dy
and thus, there is in general less compatibility conditions in the Dy computed by localization
than on the formal test. Indeed, when we use localization, we do not need to compute all the
compatibility conditions of Dy but just a differential transcendence basis. The fact that we
still have a parametrization of D; is due to the following non trivial theorem.

Theorem 7 Let Dy : Fy — Fy be an operator determining a torsion-free D-module and
let Dy : E — Fy be a parametrization of Dy with o kernel having a non zero differential
transcendence degree. Then, there exists a parametrization Df, : E' — Fy of Dy with a kernel
having zero differential transcendence degree. We call such a parametrization Djy, a minimal
parametrization of Dy.

The proof of this useful result, which seems to be new, is quite technical and will be given
in an appendix at this end of this paper as it involves diagram chasing in a necessary way.
Finally, we understand that the localization techniques are a particular case of the formal test
for torsion-free D-module, crucially using the duality, in which we do not have to compute all
the Dy but only a differential transcendence basis. We notice that it is much more difficult
to treat the PD case than the OD case, which is already delicated by itself, and this is the
reason for which this technique has never been used up to now.
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5.1 Minimal Realization

Let us generalize the well-known concept, in control theory, of minimal realization to time-
varying OD control systems and PD control systems with variable coefficients |1, §|.

Definition 7 Let the operator D; : Fy — F; determine a D-module M then a minimal
realization of M is an operator D} : Fy — F| which determines the D-module M\t(M), i.e.

M\t(M) = Dy/(D1y).

Theorem 8 Let Dy be an operator determining the D-module M, then a minimal realization
of M is the operator D : Fy — FY, given by the last step of the formal torsion-free test.

Example 10 A minimal realization of the control system (7) is given by (8).

6 Conclusion

We hope to have convinced the reader that the localization technique is the only tool which,
at the same time, is coherent with the transfer matrix approach in the case of constant
coefficients ordinary control systems and can be extended to the variable coefficients or to
the partial differential case along a procedure which constitutes the core of commutative
algebra. The only difficulty met is to adapt such a procedure to the non commutative case
in order to use the Ore property of the ring of differential operators. In this framework, we
hope to have proved that the corresponding duality technique, based on a systematic use of
the adjoint operator and the concept of formal integrability, will play a major constructive
and effective role in the study of control theory for partial differential operators, delay and
n-Dimensional systems.

7 Appendix

Let give a proof of theorem 7: If the kernel of the parametrization Dy of D; has a zero
differential transcendence degree, then Dj = Dy. Let us suppose that the kernel of Dy has a
non zero differential transcendance degree [12, 27]. Let us select a maximal set of differentially
independent compatibility conditions among Dy (the image of this new operator f){) must
produce a differential transcendence basis of the kernel of ﬁ_l). We have the commutative

diagram

0 0

L L

E{ +«— E" +—Q+—0

| 4 ] ]

E, & E DCLENY T RRCA )

L L ||
- D! - P, =

0 +— F — Fy <+— P,
!
0

where by construction, the transcendence degree of the space of solutions 2 is zero (the
corresponding differential module is a torsion module). We notice that the low row may not
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be formally exact at Fy. Taking the adjoint of all these operators, we get the commutative
diagram:

0
, {

0 g 2 op Dy R

! 1 I I

E, 2 g Dy g Dy op

I } 1

E, — E" — 0

I I

0 0

An easy chase proves that the full diagram is formally exact and then the upper row is for-
mally exact at Fy as desired, that is, Dj is a parametrization of D; such that its kernel has
a zero differential transcendence degree.

A dual module version of this proof can be given by introducing a maximal free D-

submodule of the D-module determined by D_;.
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