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had to stop after at most n+1 steps, where n is the number of partial derivatives. We obtaina sequence of di�erential operators Di on the �right� of D0 and depending only on D00 �! � �! E D0�! F0 D1�! F1 D2�! : : : Dn�1�! Fn�1 Dn�! Fn�! 0;where � denotes the solutions of D0. More recently, in the seventies, the study of systemsof partial di�erential equations has been developped again by Spencer and students (Quillen,Goldschmidt ...) [3, 15, 24, 25] with the di�erential geometric point of view. They formulatedsystems of partial di�erential equations in terms of the jet theory of Ehresmann. Moreover,Spencer introduced groups of �-cohomology to study the involutiveness of partial di�erentialoperators. This theory is called the Formal Theory of Partial Di�erential Equations and it iscentered around the concept of formal integrability. Quillen and Malgrange have reformulatedthe di�erential geometric Spencer's approach in terms of a di�erential algebraic one, withinthe framework of di�erential modules [14, 24].Dually, if we have a system of partial di�erential equations D0 � = 0, it is sometimesuseful, in physics or in applied mathematics, to know when the solutions of the systems can beparametrized by certain arbitrary functions called �potentials� (for example, curl � = 0) 9 �such that grad � = �). The new problem is the following: starting with an operator D0 : E !F0, can we �nd a criterion to decide on the existence of an operator D�1 : E�1 ! E suchthat D0 � = 0 represents exactly the compatibility conditions of the inhomogeneous systemD�1 � = �. We shall say that D�1 is a parametrization of the operator D0. Thus, we wouldlike to construct a di�erential sequence, on the left of D0 and depending only on D0,E�k�1 D�k�! E�k D�k+1�! : : : D�2�! E�2 D�1�! E�1 D0�! E;in which each operator exactly describes the compatibility conditions of the previous one. Thiscriterion exists for sygyzies. It was �rst provided in the seventies by Palamodov for linearpartial di�erential operators with constant coe�cients, and was extended by Kashiwara foranalytic ones [10, 17]. Their results are based on the di�erential module approach. Theysay that the obstructions of embedding a left �nitely generated D = A[d1; :::; dn]-module M ,where A is a di�erential ring and di are the derivatives, into a sequence of k free D-modulesDsi , 0 �!M �! Ds0 �! Ds1 �! ::: �! Dsk�1 �! Dsk ; (1)are:� for k=0, the injectivity of the canonical map M ��! homD(homD(M;D);D) de�ned by8x 2M;8f 2 homD(M;D) : �(x)(f) = f(x),� for k=1, the injectivity and the surjectivity of �,� for k > 1; the injectivity and the surjectivity of � plus other conditions on the vanishingof certain extension modules [28] (8 i = 1; :::; k � 1 : extiD(HomD(M;D);D) = 0), abeautiful but delicate powerful tool of homological algebra which is out of our scopenow and will be presented elsewhere.As far as we are concerned, the quite abstract previous results of Palamodov-Kashiwara seemto be unknown in applied mathematics or in physics. The purpose of this paper is �rst of allto show that these methods are useful in control theory. We shall show that the introductionof di�erential modules and homological algebra in control theory gives a characterization ofthe structural properties of the control systems in terms of intrinsic properties of di�erentialmodules. In particular, the controllability, which is one of the key-concepts of the controltheory, can be reformulated by means of torsion-free di�erential module. Every torsion-free2



di�erential module can be embedded in a free di�erential module (k = 0 in the Palamodov-Kashiwara's classi�cation), which means, in the operator language, that the operator D0de�ning the control system can be parametrized by an operator D�1. We shall show thatthe parametrization D�1 is just the generalization of the controller form for ordinary controlsystems (OD control systems) with time-varying coe�cients or for partial di�erential controlsystems (PD control systems) with variable coe�cients [8]. We shall show how to use theformal duality and the formal integrability theory (see the �rst paragraph) to check whethera control system is controllable or not and to compute e�ectively the operator D�1. Inthe nonlinear case, we show how to look for constrained observables and prove that sucha search in the general framework supersides the search for �rst integrals, in the ordinarydi�erential case. Secondly, The aim of this paper is to show that there exists another wayto compute a parametrization D�1 of the controllable system D0, by means of a localizationof the di�erential modules. We shall show that the localization approach is the natural wayto generalize the results given by the Laplace transform techniques to the time-varying ODcontrol systems or PD control with variable coe�cients [5, 13]. Finally, we will study thelink between those two approaches and we shall see that even if the parametrization foundby localization is sometimes �better� than the one computed by using the formal duality andthe formal integrability theory, in the sense that it is much simpler, it is in general �worst� inthe sense of the Palamodov-Kashiwara's classi�cation. Many explicit examples will illustratethe main results.2 Linear Control SystemsRecently, the language of the di�erential modules has been introduced in control theory tounderstand in a intrinsic way the structural properties of a control system. This introductionwas guided by the wish to have a tool, which formally looked like the Laplace transform, butwhich could permit a better understanding of the notion of controllability and observability.We recall that the Laplace transform changes a system of ordinary di�erential equations withconstant coe�cients into a matrix of rational fraction in the Laplace variable s (the transfermatrix of the system). For example, the system �y � _y � 2y � _u + 2u = 0 with y(0) = 0;becomes, by the Laplace transform, ŷ = (s�2)(s+1)(s�2) û, where we denote by ŷ; û the Laplacetransform of y; u. The transfer matrix of the system is H(s) = (s�2)(s+1)(s�2) = 1s+1 ; after thecancellation of the common factor (s� 2). In 1960, Kalman was the �rst to understand thatsuch a cancellation led to a loose of the controllability of the system, that is to the loose ofthe possibility of passing in �nite time T from any initial condition y(0) = 0 to any pointp 2 R by a appropriated command u [9] (8T; 8 p 2 R; 9u : [0; T ] ! R such that y(T ) = p).Moreover, such a cancellation, by a factor having a root with a negative real part, leads toa loose of the stability of the system and it is called �unstable cancellation�. The use of thedi�erential module prevents any cancellation [1, 4, 5, 13, 18]. Indeed, we shall write thesystem as ( ddt +1)( ddt �2)y� ( ddt �2)u = 0; i.e., ( ddt �2)(( ddt +1)y�u) = 0. The last equationleads to the existence of a torsion element, i.e. an element z = ( ddt + 1)y � u satisfying thenon zero equation ( ddt � 2) z = 0. In this way, the controllability of the control system can beseen as the lack of any torsion element, that is to say, in the algebraic language, the modulegenerated by the control system is a R[ ddt ] torsion-free di�erential module [28]. We see thatthe use of module permits to give an intrinsic de�nition of controllability and it provides aclear understanding of the previous cancellation, a fact that cannot be done with the Laplacetransform techniques (vector space over R( ddt )).3



2.1 Module TheoryLet D1 : F0 ! F1 be a linear partial di�erential operator, where F0 and F1 are vector bundlesover a manifold X of dimension n with local coordinates x = (x1; :::; xn). The operator D1sends a section � of F0 to a section � of F1. In order to generalize the previous results tovariable coe�cients case, we have to use more general �elds than R as for example R(t) orR(x1 ; :::; xn). Thus, we have to de�ne the notion of di�erential �eld.De�nition 1 1. A di�erential �eld K with n commutative derivatives @1; :::; @n is a ringwhich satis�es: 8 a; b 2 K; 8 i = 1; : : : ; n :� @ia 2 K;� @i(a+ b) = @ia+ @ib;� @i(ab) = (@ia)b+ a@ib;� @i@j = @j@i:2. Let K be a di�erential �eld containing Q with the set of derivatives f@1; :::; @ng and letus denote by D the K-algebra K [d1; :::; dn] of the di�erential operators, satisfying:(a) didj = djdi;(b) 8 a 2 K : dia = a di + @ia:The ring of di�erential operator D is a non commutative integral domain but it is a leftOre algebra, i.e., 8 (p; q) 2 D2;9 (u; v) 2 (D n 0)2 such that u p = v q.3. Introducing the di�erential indeterminates y = (y1; :::; ym), we denote by Dy the left D-module Dy1+Dy2+:::+Dym and byM the �nitely generated leftD-module determinedby the operator D1, i.e. M = Dy=(D1y), where (D1y) is the D-submodule generatedby the linear di�erential expressions of D1y.Remark 1 We shall use either the language of jet theory for systems of partial di�erentialequations (PDE) or the language of sections for operators [18]. In the �rst case, we writediyk� = yk�+1i , where � = (�1; :::; �n) is a multi-index of length j�j = �1+ :::+�n, whereas, inthe second case, di must be replaced by @i on sections. We shall use the notation @ij = @i @j .Example 1 Let us take the operator D1 : � ! � de�ned by� @2�1 � @1�1 � 2@1�3 + 2�1 + 2�2 = �1;@2�1 + @2�2 � @1�3 = �2; (2)and D = R[d1 ; d2]. We use y = (y1; y2) and we consider the D-module M = Dy=(y12 � y11 �2y31 + 2y1 + 2y2; y12 + y22 � y31).We recall certain properties of the D-module M [28].De�nition 2 � The D-module is free if there is a set of elements of M which generatesM and whose elements are independent on D.� The D-module is projective if there exist a free D-module F and a D-module N suchthat: F = M �N . Thus, the module N is also a projective D-module.� We call the torsion submodule ofM , theD-module de�ned by t(M) = fm 2M j 9 p 6= 0;pm = 0g. The D-module M is torsion-free if t(M) = 0, and in any case, M=t(M) is atorsion-free D-module. 4



It is quite easy to note that every free D-module is projective and every projective D-moduleis a torsion-free, which can be summed up by the following module inclusions:free � projective � torsion-free:We have the following theorem. See [28] for more details.Theorem 1 1. If D is a principal ideal ring (for example D = K[ ddt ] with K a di�erential�eld), every torsion-free D-module is a free D-module.2. Every projective module over a polynomial ring k [�1; :::; �n], where k is a �eld, is free(Quillen-Suslin). Thus, over D = k [@1; :::; @n], with k a constant �eld (i.e., 8 i =1; :::; n;8 a 2 k : @i a = 0), any projective module is free.2.2 ControllabilityNow, let a control system be de�ned by the operator D1 : F0 ! F1. Let M be the D-module determined by this operator, i.e., M = Dy=(D1y). The lack of controllability of thepolynomial control system is due to the existence of torsion element. We �nd the followingde�nition of controllability in [1, 4, 13, 18].De�nition 3 1. We call observable of the control system any scalar function of the inputs,outputs and their derivatives up to a certain order. In the linear case, an observable isan element of M .2. A system is called controllable if every observable of the system does not satisfy by itselfa PDE.Theorem 2 A control system de�ned by an operator D1 is controllable i� the D-module Mdetermined by D1 is torsion-free.As a by-product, the control system de�ned by the D-module M=t(M) is always control-lable.Example 2 1. Let the OD control system be de�ned by� _�1 � �2 � �3 = 0;_�2 � �1 + � �3 = 0; (3)where � is a constant coe�cient in R. We let the reader check that for � = �1, theelement z = �1 � �2 satis�es _z + z = 0 and thus z determines a torsion element inthe corresponding D-module M . Moreover, if � = 1, we have z = �1 + �2 satisfying_z � z = 0 and thus it determines a torsion element in M . At least for two values of theparameter �, the control system is not controllable.2. Let us consider the system de�ned by:� @2�1 � @1�1 � 2@1�3 + 2�1 + 2�2 = 0;@12�3 � @2�1 � @2�2 = 0:This system is not controllable as the observable z = �1 satis�es @22z � @12z = 0.5



In the previous example, we have shown that for two disctinct values of the parametrer �,the system was uncontrollable. Now, we can wonder if for the others values of �, the systemis controllable. Thus, we would like to have a formal test permitting us to know whenevera system is controllable, i.e., whether the D-module generated by the system is torsion-free.However, any submodule of a free module is torsion-free and reciproquely any torsion-freecan be embedded in a free module. This is the �rst embedding in the Palamodov-Kashiwaraclassi�cation and we have to know if M ��! homD(homD(M;D);D) is injective or not (seethe introduction). This can be checked by using the formal duality and the formal theory ofPDE as it has been independently discovered in [18].3 ParametrizationEvery torsion-free module can be embedded into a free module (k = 0 in the previousPalamodov-Kashiwara's classi�cation), which means, in the operator language, that the op-erator D0 can be parametrized by a certain operator D�1. We shall show how to computee�ectively the operator D�1 for controllable systems and we shall also show that it is thegeneralization of the well-known controller form for control systems in the Laplace domain,i.e. in polynomial form with respect to the Laplace variables s = (s1; :::; sn) (see [8, 22]).3.1 Torsion-free D-moduleWe denote by E a vector bundle over a manifold X, by T ? the cotangent bundle of X, byE? the dual bundle of E and by ~E = Vn T ? 
 E? its adjoint bundle. The adjoint bundle ~Eis the right generalization of the concept of tensor density in physics [18].De�nition 4 IfD1 : F0 ! F1 is a linear di�erential operator, its formal adjoint ~D1 : ~F1 ! ~F0is de�ned by the following formal rules equivalent to the integration by parts:� the adjoint of a matrix (zero order operator) is the transposed matrix,� the adjoint of @i is �@i,� for two linear PD operators P;Q that can be composed: P̂ �Q = ~Q � ~P .We can easily verify that eeD1 = D1. It can be proved that, for any section � of ~F1, we havethe relation < �; D1 � > � < ~D1 �; � >= d(�);expressing a di�erence of n-forms (� 2 Vn T ? 
 F ?1 )< �; D1 � >2 Vn T ?), where d isthe standard exterior derivative. We can directly compute the adjoint of an operator bymultiplying it by test functions on the left and integrating it by parts.Example 3 Let us compute the adjoint of the operator D1 : � ! � de�ned by� _�1 � �2 � �3 = �1;_�2 � �1 + � �3 = �2: (4)We multiply the system on the left by the row vector (�1; �2) and we integrate the result byparts, we �nd ~D1 : (�1; �2)! (�1; �2; �3) de�ned by:8<: � _�1 � �2 = �1;� _�2 � �1 = �2;��1 + ��2 = �3: (5)6



As we have noticed in the introduction, it is sometimes useful to parametrize a systemof PDE by some �potentials� considered as arbitrary functions. It leads to the followingde�nition.De�nition 5 An operator D0 : E ! F0 is said to be a parametrization of the operatorD1 : F0 ! F1, if D1 represents exactly the compatibility conditions of D0 � = �.Let us describe the formal test checking if a D-module is torsion-free or not [18].Torsion-free Test & Parametrization:1. Start with D1.2. Construct its adjoint ~D1.3. Find the compatibility conditions of ~D1� = � and denote this operator by ~D0.4. Construct its adjoint D0 (= eeD0).5. Find the compatibility conditions of D0 � = � and call this operator D01.We are led to two di�erent cases. If D1 is exactly the compatibility conditions D01 of D0,then the system D1 determines a torsion-free D-moduleM and D0 is a parametrization of D1.Otherwise, the operator D1 is among, but not exactly, the compatibility conditions of D0. Thetorsion elements ofM are all the new compatibility conditions modulo the equations D1� = 0.Proof The operator ~D0 describes exactly the compatibility conditions of the operator ~D1and we have in particular ~D0 � ~D1 = 0) D1 � D0 = 0. Thus, D1 is among the compatibilityconditions of D0, which are described by the operator D01. Now, computing the di�erentialrank of the operators D01 and D1, we �nd that di� rk D01 = di� rk D1 (see [18] for moredetails). If D1 is strictly among the compatibility conditions of D0, then any new singlecompatibility condition � 0 in D01 is a di�erential consequence of D1 (di� rk D01 = di� rkD1), and we can �nd an operator q 2 D such that q � 0 = 0 whenever D1 � = 0. Thus, anynew single compatibility condition of D0 (not in D1) determines a torsion element. If D1describes exactly the compatibility conditions of D0, then the D-module M determined byD1 is torsion-free because M � D � and D � is a free D-module.We can represent the test by the following di�erential sequences where the numbers indi-cate the di�erent stages: D01�! F 01 52 E D0�! F0 D1�! F1 13 ~E ~D0 � ~F0 ~D1 � ~F1 2If theD-module determined by the operatorD1 is torsion-free, the test gives a parametriza-tion D0 of D1. This operator is the generalization of the controller form [8, 22] for non-surjective time-varying OD control systems and PD control systems with variable coe�cients(see [22] for more details). Let us illustrate it with example of ordinary di�erential time delaysystem presented in [16] but interpreted here as partial di�erential system.
7



Example 4 Let us try to know if the operator given by (2) is controllable or not. Wemultiply D1� on the left by � = (�1; �2) and we integrate the result by parts in order to �nd~D1 : �! �: 8<: �@2�1 + @1�1 � @2�2 + 2�1 = �1;�@2�2 + 2�1 = �2;2@1�1 + @1�2 = �3:The system admits only one compatibility condition of second order (formal integrabilitytheory) which de�nes the operator ~D0 : �! �:@22 �3 � @12 �3 � @12 �2 + 2@12 �1 � @11 �2 + 2@1 �1 � 2@1 �2 = �:Taking its adjoint, we �nally �nd the operator D0 : � ! � de�ned by:8<: 2@12 � � 2@1 � = �1;�@12 � � @11 � + 2@1 � = �2;@22 � � @12 � = �3: (6)We let the reader check that the operator D1 exactly generates the compatibility conditionsof D0 and thus D1 determines a torsion-free D-module. A parametrization of (2) is (6).We now describe how to compute the torsion elements.Computation of torsion elements:1. Compute D01 and check that D1 is strictly among D01.2. For any new single compatibility condition of the form D01� = � 0 of D01, compute thecompatibility conditions of the following system:� D1 � = 0;D01 � = � 0 (one equation only):3. We �nd that � 0 is a torsion element of M satisfying q � 0 = 0 with 0 6= q 2 D.We give an example of the search of torsion elements.Example 5 Let us consider the operator D1 : � ! �, adapted from a ordinary di�erentialtime delay system presented in [16], de�ned by:� @2�1 � @1�1 � 2@1�3 + 2�1 + 2�2 = �1;@12�3 � @2�1 � @2�2 = �2: (7)Its formal adjoint ~D1 : �! � is de�ned by:8<: �@2�1 + @2�2 + @1�1 + 2�1 = �1;@2�2 + 2�1 = �2;@12�2 + 2@1�1 = �3:There is one compatibility condition �@1�2 + �3 = 0 and thus the operator ~D0 : � ! � isgiven by: �@1�2 + �3 = �:8



We �nd the operator D0 : � ! � de�ned by8<: 0 = �1;@1� = �2;� = �3;and we �nd the following operator D01 : � ! � 0� �1 = � 01;@1�3 � �2 = � 02 (8)Thus, the D-module determined by D1 admits torsion elements which can be computed by�nding the compatibility conditions of the systems8<: �1 = � 01;@2�1 � @1�1 � 2@1�3 + 2�1 + 2�2 = 0;@12�3 � @2�1 � @2�2 = 0;and 8<: @1�3 � �2 = � 02;@2�1 � @1�1 � 2@1�3 + 2�1 + 2�2 = 0;@12�3 � @2�1 � @2�2 = 0;and we �nd the two torsion elements satisfying� � 01 = �1;@22� 01 � @12� 01 = 0;and � � 02 = @1�3 � �2;@22� 02 � @12� 02 = 0:3.2 Projective & Free D-moduleLet us turn to a projective D-module. We only give here a charactarization of a projectiveD-module determined by a surjective operator D1. We refer the reader to [22] for a gen-eral treatment of projective D-modules and for their applications in control theory to thegeneralized Bezout identity [8]. See also [6, 29, 30, 31].Theorem 3 A surjective operator D1 : F0 ! F1 determines a projective D-module M if itsadjoint ~D1 is injective, i.e., if there exists an operator P1 : F1 ! F0 such that D1 �P1 = idF1 ,where idF1 is the identity operator of F1.Proof If the operator ~D1 is injective, then a di�erential consequence of the equations ~D1� = 0is � = 0. Using the formal integrability theory, we have ~D1� = � ) � = ~P1� and thus~P1 � ~D1 = id ~F1 ) D1 � P1 = idF1 . The operator P1 : F1 ! F0 is a right-inverse of D1 and D1determines a projective D-module.Finally, we have the obvious theorem.Theorem 4 An operator D1 determines a free D-module if it exists an injective parametriza-tion D0, i.e., if it exists a left-inverse P0 of the operator D0.9



Let us give an example to illustrate both projective and free D-modules.Example 6 Let us consider the following operator D2 : � ! �, de�ned by:@2�2 � x2@1�1 + �1 = �: (9)Its formal adjoint ~D2 : �! � is given by� x2 @1�+ � = �1;�@2� = �2;and we easily see that ~D1 is an injective operator as we have� = �x2@2�1 � (x2)2@1�2 � x2�2 + �1: (10)Thus, the operator D2 generates a projective D-module, and taking the adjoint of (10), weobtain a right-inverse P2 : � ! � of D2:� x2@2� + 2� = �1;(x2)2@1� � x2� = �2:We let the reader check that D2 � P2 = idF2 . We obtain the operator ~D1 : � ! �, bysubstituting (10) in ~D2, and we �nd:� (x2)2@12�1 + (x2)3@11�2 + 2(x2)2@1�2 � x2@1�1 + x2@2�1 + x2�2 = �1;x2@22�1 + (x2)2@12�2 + 2x2@1�2 + x2@2�2 = �2: (11)Dualizing ~D1, we obtain a parametrization D1 : � ! � of D2:� x2 @22 �2 + (x2)2 @12 �1 + 2 @2 �2 + 3x2 @1 �1 � x2 @2 �1 � �1 = �1;(x2)2 @12 �2 + (x2)3 @11 �1 � x2 @2 �2 � 2(x2)2 @1 �1 + x2 �1 � �2 = �2: (12)We see that we can parametrize the operator D2 by two arbitrary functions �1 and �2.Does there exist a parametrization of the new operator D1 ? To answer it, let us take theadjoint of D1 de�ned by (11) and let us see if it admits some compatibility conditions ~D0.We easily note that the two equations are not di�erentially independent (independent on D,see [12, 27]) as we have one compatibility condition between �1 and �2, i.e.x2@2�1 � (x2)2@1�2 � x2�2 � �1 = 0:Thus, the operator ~D0 : �! � is de�ned byx2@2�1 � (x2)2@1�2 � x2�2 � �1 = �;and dualizing it, we �nd the following operator D0 : � ! �:� �x2 @2 � � 2 � = �1;(x2)2 @1 � � x2 � = �2: (13)The operator D0 is an injective operator as we have� = @2 �2 + x2 @1 �1 � �1;and we can easily verify that D0 is a parametrization of D1. Thus, D1 determines a freeD-module with � for basis and the operator D2 admits a parametrization D1 which admitsitself a parametrization D0:0 �! E D0�! F1 D1�! F2 D2�! F2 �! 0:10



Let us give a useful corollary of theorem 4.Corollary 1 A surjective OD operator D1 is controllable i� its adjoint is injective, i.e., i�it exists a right-inverse P1 of D1.Example 7 Let us test the controllability of the OD control system (4). The operator D1de�ned by (4) is surjective and its formal adjoint is given by (5), i.e.8<: � _�1 � �2 = �1;� _�2 � �1 = �2;��1 + ��2 = �3Let us investigate the injectivity of ~D1. Di�erentiating the zero order equation and substi-tuting it in the others, we �nd the new zero order equation(1� �)(1 + �)�2 = _�3 � �1 + ��2 � ��3:We can easily verify that ~D1 is injective and thus controllable i� (1��)(1 +�) 6= 0. Finally,we obtain the following tree of integrability conditions:
(1� �)(1 + �) = 0 (1� �)(1 + �) 6= 0not controllable controllable

@@@@����
See [21, 23] for more general trees of integrability conditions. In this way, the controlla-bility of a surjective OD control system with unknown time-varying coe�cients depends on asingle tree of integrability conditions. In the general situation, it depends on two problems offormal integrability ( ~D0 and D0) and thus it depends on two trees of integrability conditions.We let the reader check that for � = �1 and � = 1, we �nd the torsion elements de�ned inexample 2. Let us show the link between torsion elements and �rst integrals of motion. If� = 1, the operator ~D1 is not injective and the solution of ~D1 � = 0 is, after one integration,�1(t) = �2(t) = e�(t�t0)�1(t0):Moreover, we have < �;D1� >=< ~D1�; � > + ddt(�1�1 +�2�2) and if we take (�; �) satisfyingD1� = 0 and ~D1� = 0, we obtain ddt (�1�1 + �2�2) = 0 and thus we obtain a �rst integral ofmotion � Z(t) = e�(t�t0)�1(t0)(�1(t) + �2(t));_Z(t) = 0:We can do the same for � = �1.We have the following theorem.Theorem 5 If D1 is a surjective and non controllable system, then the following numbersare equal:1. The number of solutions of the adjoint operator ~D1 that are linearly independent overthe constants of K. 11



2. The dimension over K of the jet space of order zero of the corresponding adjoint system.3. The number of torsion elements which are linearly independent over the constants of K.4. The number of �rst integrals that are linearly independent over the constants of K.Hence, we would like to stress the importance of torsion elements compared to �rst inte-grals in view of the following two comments:1. The search for torsion elements is purely algebraic while the search for �rst integrals ispurely analytic (integration needed).2. The concept of torsion elements can be extended to the PD case as the concept of �rstintegrals is only restricted to the OD case.Remark 2 In the nonlinear framework, a similary comment is still valid but is out of thescope of this paper devoted to linear systems. Shortly, we study here the case of an a�neOD system _y = a(y) + Psi=1 bi(y)ui. We have already indicated in [18] that the num-ber r of functionaly independent constrained observables, that is, observables satisfying atleast one OD equation is equal to the corank of the strong controllability matrix gener-ated by bi; [bi; bj ]; [a; bi]:::, because each such observable must be killed by this distribution.If we denote by z1; :::; zr such a functionaly independent set, we notice that the deriva-tives _z1; :::; _zr are still constrained observables and we have, according to the implicit func-tion theorem, _zi = �i(z1; :::; zr). Hence, if Z = f(t; z1; :::; zr) is a �rst integral, we have_Z = @f@t +Psi=1 @f@zi�i(z1; :::; zr) = 0. Hence, we �nd by integration (as in the linear caseindeed), exactly r functionaly independent �rst integrals Z1; :::; Zr killed by the vector �eld@@t+Psi=1 �i(z) @@zi . Once more, we notice that zi = gi(y) only depend on y while Zi = hi(t; y)explicitly depends on t in general. Of course, we notice that �rst integrals are trivially con-strained observables.We have shown how the theory of di�erential modules allows us to give a more intrinsicformulation of certain properties of the control systems. In particular, this theory makes clearthe fact that the simpli�cations of the transfer matrix correspond to the existence of torsionelements in the module generated by the control system.4 LocalizationWe would like to have a formal generalization, in the di�erential module language, of theLaplace transform but extended to time-varying ordinary di�erential equations or to par-tial di�erential equations with variable coe�cients. We shall recall that it can be done bylocalization. This method leads to the well-known concept, in control theory, of the minimal-realization which is just equivalent to �nd a realization of the torsion-free part of M . Thus,by extension of the coe�cients of M from D to Q(D), we can copy much of the Laplacemethods. This fact was �rst observed by Oberst [11, 13] in case of constant coe�cients andby Fliess [5] for time-varying control systems. Let us recall those results and develop themfor PD control systems with variable coe�cients.5 De�nition & PropertiesLet us recall some results about the localization. See [10] for more details.12



De�nition 6 Let S be a multiplicative subset of D, i.e. a subset of D satisfying the followingproperties:1. 1 2 S;2. 8 s; t 2 S ) st 2 S3. 8 a 2 D; s 2 S ) 9 b 2 D; t 2 S such that t a = b s:4. 8 a 2 D; s 2 S such that a s = 0) 9 t 2 S such that ta = 0:Let M be a D-module, then we de�ne the S�1D-module S�1M as the quotient of the sets(s; x) 2 S �M by the equivalence relation de�ned by:(s1; x1) � (s2; x2), 9 s01; s02;2 S such that s01s1 = s02s2 and s01x1 = s02x2:We denote by s�1x the equivalence class of the pair (s; x) and such a procedure is called �leftlocalization�. We have S�1M = S�1D 
D M .In particular, if we take S = Dn 0, we obtain S�1D = Q(D) the left �eld of fraction of Dand we have the following exact sequence0 �! t(M) �!M iS�! S�1M = Q(D)
D M;where t(M) is the torsion D-submodule of M . So, if the D-module M is a torsion-free D-module, then the homomorphism iS is injective and M is embedded into the Q(D)-vectorspace Q(D) 
D M . The torsion elements vanish in Q(D) 
 M , a fact which is similar,in the constant coe�cients case, to the cancellation in the transfer matrix. The followingtheorem extends the passage from left-coprime to right-coprime used in classical controltheory (D = R[s]) [8].Theorem 6 Let S = Dn 0 then we have:S�1D = DS�1: (14)Let us give an e�ective proof of this theorem, which makes clear the link between localizationtechniques and the use of duality through the formal test for checking whether a module istorsion-free or not.Proof Let a 2 S and b 2 D, we have to show that 9 p 2 D; q 2 S such that a�1b = p q�1.If b = 0, then the result is obvious. Let us suppose that b 6= 0. We denote by D1 : � ! � theoperator de�ned by: a �1 � b �2 = �:The adjoint ~D1 : �! � is de�ned by: � ~a � = �1;~b � = �2:Now, using the fact that D is a left Ore algebra, we can �nd one compatibility condition~D0 : �! � de�ned by ~p�1 � ~q �2 = �; (15)with ~q 6= 0 and thus ~p 6= 0. Dualizing, we obtain the operator D0 : � ! � given by :� p � = �1;q � = �2:13



Hence, � = q�1 �2 ) �1 = p q�1 �2: Finally, the kernel of the operator D1 is de�ned bya �1 � b �2 = 0; a 6= 0) �1 = a�1 b �2 and thus a�1 b = p q�1, which concludes the proof.We have the following corollary.Corollary 2 D is a right Ore algebra, i.e., 8 (a; b) 2 D2;9 (p; q) 2 (Dn0)2 such that ap = bq.When we start with an operator with constant coe�cients which determines a torsion-freeD = R[d1 ; :::; dn]-module, then we easily obtain a parametrization by localization. Indeed,we have the useful relation: @�1i @j = @j@�1i :Let us give an example.Example 8 Let us try to �nd by localization a parametrization of the divergence operatorin R3 , de�ned by: @1�1 + @2�2 + @3�3 = �:We have �3 = �@�13 (@1�1)�@�13 (@2�2)) �3 = �@1(@�13 �1)�@2(@�13 �2). Finally, if we denote� �1 = @�13 �1;�2 = @�13 �2;we have the following parametrization of the divergence operator:8<: @3 �1 = �1;@3 �2 = �2;�@1 �1 � @2 �2 = �3: (16)We remark that we do not �nd the usual parametrization of the divergence operator by thecurl. Moreover, this new parametrization (16) cannot be parametrized in its turn whereasthe curl is parametized by the gradient (k = 1 in the Palamodov-Kashiwara's classi�cation).We shall see that it is a general fact that the parametrizations found by localization are�simpler� than those obtained using the formal test, but they are �worst� in the sense ofPalamodov-Kashiwara's classi�cation of di�erential modules (see the introduction).The situation of operators with variable coe�cients is more complicated. However, theproof of theorem 7 shows how to use the formal duality and the formal integrability to �nda parametrization of an operator, when it determines a torsion-free D-module.Example 9 Let us consider the following system of PDE:@2 �2 � x2 @1 �1 + �1 = 0:We can solve the system with respect to �2: �2 = @�12 (x2 @1 � 1)�1. We pose a = @2 andb = x2 @2 � 1, and let us search two elements p and q 2 D such that ap = bq. This isequivalent to search ~p; ~q 2 D such that ~p~a = ~q~b, i.e. to �nd one compatibility condition ofthe following operator: � �@2� = �1;�x2@1�� � = �2: (17)This operator is injective as we have � = x2@2�2 � (x2)2@1�1 � x2�1 � �2 and we �nd twodi�erent compatibility conditions of (17): the �rst is de�ned by�@22�2 + x2@12�1 + 2@1�1 + @2�1 = 0:;14



whereas the second is given by:�x2@12�2 + (x2)2@11�1 + 2x2@1�1 + @1�2 � @2�2 + �1 = 0:So, in the �rst case, we have ~p = x2@12+2@1+@2 and ~q = @22, which give p = x2@12�@1�@2and q = @22. Finally, we have@2(x2@12 � @1 � @2) = (x2@1 � 1)@22;and thus �2 = @�12 (x2@1 � 1)�1 = (x2@12 � @1 � @2)@�122 �1:Let us pose � = @�122 �1, we obtain the parametrization:� @22� = �1;x2@12� � @1� � @2� = �2: (18)Similary, with the second compatibility condition, we shall obtain another parametrization:� x2@12� + 2@1� � @2� = �1;(x2)2@11� � 2x2@1� + � = �2: (19)We remark that we are in the same situation as in the example 8: we have obtained twodi�erent parametrizations of (2) which are more simple compared to (12). However, thosetwo parametrizations cannot be parametrized at their turn whereas (12) is parametrized byan injective operator.Let us try to explain why the localization techniques give more simple parametrizationsthan the formal test. Firstly, we have to remark that the parametrization (16) of the di-vergence operator has two arbitrary functions whereas the parametrization by the curl hasthree arbitrary functions in R3 . The same remark may be done for the previous example: theparametrizations (18) and (19) have just one arbitary function whereas (12) has two. Thenumber of arbitrary functions in D0 is equal to the number of equations of its adjoint ~D0and thus, there is in general less compatibility conditions in the ~D0 computed by localizationthan on the formal test. Indeed, when we use localization, we do not need to compute all thecompatibility conditions of ~D1 but just a di�erential transcendence basis. The fact that westill have a parametrization of D1 is due to the following non trivial theorem.Theorem 7 Let D1 : F0 ! F0 be an operator determining a torsion-free D-module andlet D0 : E ! F0 be a parametrization of D1 with a kernel having a non zero di�erentialtranscendence degree. Then, there exists a parametrization D00 : E0 ! F0 of D1 with a kernelhaving zero di�erential transcendence degree. We call such a parametrization D00 a minimalparametrization of D1.The proof of this useful result, which seems to be new, is quite technical and will be givenin an appendix at this end of this paper as it involves diagram chasing in a necessary way.Finally, we understand that the localization techniques are a particular case of the formal testfor torsion-free D-module, crucially using the duality, in which we do not have to compute allthe ~D0 but only a di�erential transcendence basis. We notice that it is much more di�cultto treat the PD case than the OD case, which is already delicated by itself, and this is thereason for which this technique has never been used up to now.15



5.1 Minimal RealizationLet us generalize the well-known concept, in control theory, of minimal realization to time-varying OD control systems and PD control systems with variable coe�cients [1, 8].De�nition 7 Let the operator D1 : F0 ! F1 determine a D-module M then a minimalrealization of M is an operator D01 : F0 ! F 01 which determines the D-module Mnt(M), i.e.Mnt(M) = Dy=(D01y).Theorem 8 Let D1 be an operator determining the D-module M , then a minimal realizationof M is the operator D01 : F0 ! F 01, given by the last step of the formal torsion-free test.Example 10 A minimal realization of the control system (7) is given by (8).6 ConclusionWe hope to have convinced the reader that the localization technique is the only tool which,at the same time, is coherent with the transfer matrix approach in the case of constantcoe�cients ordinary control systems and can be extended to the variable coe�cients or tothe partial di�erential case along a procedure which constitutes the core of commutativealgebra. The only di�culty met is to adapt such a procedure to the non commutative casein order to use the Ore property of the ring of di�erential operators. In this framework, wehope to have proved that the corresponding duality technique, based on a systematic use ofthe adjoint operator and the concept of formal integrability, will play a major constructiveand e�ective role in the study of control theory for partial di�erential operators, delay andn-Dimensional systems.7 AppendixLet give a proof of theorem 7: If the kernel of the parametrization D0 of D1 has a zerodi�erential transcendence degree, then D00 = D0. Let us suppose that the kernel of D0 has anon zero di�erential transcendance degree [12, 27]. Let us select a maximal set of di�erentiallyindependent compatibility conditions among ~D0 (the image of this new operator ~D00 mustproduce a di�erential transcendence basis of the kernel of ~D�1). We have the commutativediagram 0 0# #~E�1  � ~E00  � 
 � 0k #~E�1 ~D�1 � ~E ~D0 � ~F0 ~D1 � ~F1# # k k0  � ~E0 ~D00 � ~F0 ~D1 � ~F1;#0where by construction, the transcendence degree of the space of solutions 
 is zero (thecorresponding di�erential module is a torsion module). We notice that the low row may not16
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